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PREFACE  

This is the thirteen time when the conference “Dynamical Systems: Theory 
and Applications” gathers a numerous group of outstanding scientists and engineers, who 
deal with widely understood problems of dynamics met in daily life.  

Organization of the conference would not have been possible without a great effort 
of the staff of the Department of Automation, Biomechanics and Mechatronics, as well as 
Committee of Mechanics of the Polish Academy of Sciences. The financial support has 
been given by the Polish Academy of Sciences. 

It is a great pleasure that our invitation has been accepted by recording in the history 
of our conference number of people, including good colleagues and friends as well as a 
large group of researchers and scientists, who decided to participate in the conference for 
the first time. With proud and satisfaction we welcomed over 180 persons from 29 
countries all over the world. They decided to share the results of their research and many 
years experiences in a discipline of dynamical systems by submitting many very interesting 
papers.  

This year, the DSTA Conference Proceedings were split into three volumes entitled 
“Dynamical Systems” with respective subtitles: Mathematical and numerical approaches; 
Mechatronics and life sciences and vol. 3 Control and stability. Additionally there will be 
also published two volumes of Springer Proceedings in Mathematics and Statistics entitled 
“Dynamical Systems. Modelling” and “Dynamical Systems. Theoretical and Experimental 
Analysis”.  

These books include the invited papers and regular papers dealing with the following 
topics:  

• control in dynamical systems,  
• stability of dynamical systems, 
• asymptotic methods in nonlinear dynamics, 
• mathematical approaches to dynamical systems, 
• dynamics in life sciences and bioengineering, 
• engineering systems and differential equations,  
• original numerical methods of vibration analysis, 
• bifurcations and chaos in dynamical systems, 
• vibrations of lumped and continuous systems,  
• non-smooth systems,  
• other problems.  
Proceedings of the 13th Conference „Dynamical Systems - Theory and Applications" 

summarize 164 and the Springer Proceedings summarize 60 best papers of university 
teachers and students, researchers and engineers from whole the world. The papers were 
chosen by the International Scientific Committee from 315 papers submitted to the 
conference. The reader thus obtains an overview of the recent developments of dynamical 
systems and can study the most progressive tendencies in this field of science.  
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Our previous experience shows that an extensive thematic scope comprising 
dynamical systems stimulates a wide exchange of opinions among researchers dealing 
with different branches of dynamics. We think that vivid discussions will influence 
positively the creativity and will result in effective solutions of many problems of 
dynamical systems in mechanics and physics, both in terms of theory and applications.  

We do hope that DSTA 2015 will contribute to the same extent as all the previous 
conferences to establishing new and tightening the already existing relations and scientific 
and technological co-operation between both Polish and foreign institutions.  

On behalf of both  
Scientific and Organizing Committees 

Chairman 
Professor Jan Awrejcewicz 
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On the vibrations of a composite structure with 

hexagonal structure of a circular inclusions

(VIB302-15)

Igor V. Andrianov, Jan Awrejcewicz, Bernd Markert, Galina A. Starushenko 

Abstract: One of the major advantages of homogenization is a possibility of the 

generalization of the obtained results. Namely, if a solution to the local problem is 

found, then without principal problems one may solve not only the analyzed problem, 

by also a series of related static and dynamic problems, including: linear, quasi-

linear, the eigenvalue problems, etc. The mentioned approach has been applied to the 

eigenvalue problems regarding the perforated structures and periodically non-

homogenous 2D constructions with a  square mesh of inclusions. In this work we have 

used theory of averaging to solve the vibrations problem regarding stiffly clamped 

rectangular membrane with periodically located circular inclusions creating a 

hexagonal mesh. The relations governing eigenvalues (frequencies) and 

eigenfunctions have been derived. The derivation of analytical formulas governing 

membrane eigenforms and frequencies consists of three parts. In the first part the 

local problem regarding a cell (inclusion) of the composite is studied. Second part is 

focused on finding main terms of the averaged problem. The third part is aimed at an 

estimation of the first improvement term with respect to the membrane fundamental 

frequency. 

1. Introduction

The problem of transition of waves in periodic structures consists of a wide spectrum of various

questions having roots in different fields of physics and mathematics including mechanics of 

deformable solids, theory of electromagnetic vibrations and waves, electrotechnics, theory of 

vibrations, mechanics of composites, theory of crystals, etc. 

The first background of the problem investigation has been introduced in 1686 by Newton [31], who 

studied 1D chain of oscillators while computing the second velocity. Beginning from 1727, a study of 

1D chains of oscillators has been carried out by J. Bernoulli and nest by his son D. Bernoulli, who in 

1753 formulated the superposition principle i.e. any motion of the vibrating system can be presented 

as a superposition of its eigenvibrations. 

Further development of 1 D models of the wave transition in periodic structures is associated with 

the works of Cauchy, Rayleigh [34] and Kelvin [25]. In the years 1835-1836 Hamilton obtained 

remarkable results regarding the light transition in crystals [24]. A review of the state of the art of the 

development of theory of wave distributions in 1 D chains of oscillators can be found in reference 

[16]. 
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Among the fundamental works published in the middle of the previous century we mention 

monographs of Brillouin [14, 15] and Brillouin and Parodi, where not only the mathematical theory of 

1 D chains is presented, but also systems with the cell of periodicity having a few degrees-of-freedom 

(DOFs) have been considered. In reference [16] the obtained results of investigations are generalized 

into 3D case and a solution to 3D wave equations is given. Chains of coupled particles have been 

considered by Ashcroft and Solid [8]. Born and Karman [12] have applied this concept of chains to 

model wave transitions in crystals from a point of view of solid mechanics. Idealization idea 

introduced through coupled chains of particles/masses has been also applied in other scientific 

disciplines like atomic and molecular dynamics in physics, in chemistry and biology as well as in 

mechanics for modeling rod and beam constructions with added particles, in quasi-periodic systems, 

etc. [see for, instance, 17, 19, 28, 29, 35]. 

In the series of publications [23, 30, 36, 37] the transition and localization of elastic waves in 

periodic composite materials have been studied. 

On the other hand it is well known that the theory of averaging belongs to one of the effective 

mathematical tools for modeling physical processes of different kind in periodic non-homogenous 

structures [9, 10, 27]. One of the major advantages of the homogenization is a possibility of the 

generalization of the obtained results. Namely, if a solution to the local problem is found, then 

without principal problems one may solve not only the analyzed problem, but also a series of related 

static and dynamic problems, including: linear, quasi-linear, the eigenvalue problems, etc. The 

mentioned approach has been applied to the eigenvalue problems regarding the perforated structures 

and periodically non-homogenous 2D constructions with the square mesh of inclusions in references 

[4-7]. 

Application of the asymptotic homogenization [2, 3] is based on the procedure of multi-scale 

series and yields reliable solutions regarding long waves for the low frequencies level [1, 13,21]. The 

discussed approach has been applied in the linear case in references [1, 18, 20]. On the other hand, in 

references [11,22,33] the method of asymptotic homogenization has been applied in the case of large 

deformations with a successive linear distribution of the elastic wave. 

In this work, based on the averaging theory and the multi-scale series, the analytical results 

regarding dynamic features of the membrane vibrations having periodically located circular 

inclusions in the form of a hexagonal mesh are obtained. In particular, relations yielding 

eigenfrequencies and the associated eigenfunctions including first improvement terms are derived. 

12



2. Problem formulation in terms of averaging theory

We consider the eigenvalue problem of a vibrating rectangular membrane clamped along its

contour treated as a composite structure with periodically located circled inclusions forming the 

hexagonal mesh (Figure 1). 

Figure 1.    Composite material with hexagonal structure of inclusions  

In the general case, the membrane eigenvalue problem can be formulated in the following form: 

2 2 2
2

2 2 2

u u u
c

x y t

  
    

  
     in i


; (1) 

2 2 2
2

2 2 2

u u u
c

x y t

  
    

  
     in i


; (2) 

u u  ,

2 2u u
c c

n n

 
  


   on i

; (3) 

0u   on  ; (4) 

 ,u f x y 
, 

 ,
u

F x y
t





 for 0t  , (5) 

where: u –transversal displacement of the membrane points; 
2 p

c 


, p –stress inside 

the membrane,  –surface density; n –external normal to the inclusion contour. 

Solution to the problem (1)-(5) is assumed to be as follows: 
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   , , , i tu x y t u x y e   , (6) 

where   –stands for a circular frequency. 

Then, owing to (6) problem (1)-( 3) can be transformed to the following form

2 2

2 2
0

u u
u

x y

 
 

  
 

 in i

 ; (7) 

2 2

2 2
0

u u
u

x y

 
  

    
  

 in i

 ; (8) 

u u  ,

u u

n n

  
 

   on i
, (9) 

where: 

2

2

c

c




  ; 

2

2c


  . 

Following the theory of averaging [9, 10] and applying two-scale techniques [31] the solutions to 

the problem (7)-( 9), (4) in the form of asymptotic series regarding a small parameter characterizing 

the structural period are assumed in the following form 

     

   

0 10 1

2

20 2

, , , , ,

, , , , ...

u u x y u x y u x y

u x y u x y

 



        

      

, (10) 

where: ,   stand for the fast variables, and 
x

 


, 
y

 


. 

The frequency is also presented in the form of the asymptotic series: 

2

0 1 2 ...      . (11) 

After splitting procedure regarding   being applied to relations (7), (8), the following infinite 

recursive set of equations is obtained 

2 2

1 1

2 2

1

2 2

1 1

2 2

0;

:

0;

u u

u u

 



 

 
 

 


 
 

 

(12) 
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2 2 2 2 2 2

0 0 1 1 2 2

0 02 2 2 2

0

2 2 2 2 2 2

0 0 1 1 2 2

0 02 2 2 2

2 2 0;

:

2 2 0;

u u u u u u
u

x yx y

u u u u u u
u

x yx y

   

   

     
      

      


      
        

       

(13) 
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 

2 2 2 22 2 2 2

10 10 3 31 1 2 2

2 2 2 2 2 2

1 0 0 1 10

2 2 2 22 2 2 2

10 10 3 31 1 2 2

2 2 2 2 2 2

1 0 0 1 10

2 2

0;
:

2 2

0;

u u u uu u u u

x yx y x y

u u u

u u u uu u u u

x yx y x y

u u u

    



    



      
       

        

   


       
         

         

   

(14) 

The compatibility relations (9) takes the form: 

1

1 1: u u   ; (15) 

2

2 2: u u   ; (16) 

0 0 01 1:
u uu u

n n n n

    
     

    
; (17) 

1 10 102 1 2 1:
u uu u u u

n n n n n n

        
       

      
, (18) 

where 
n




, 

n




 are derivatives along the external normal to an inclusion contour regarding fast 

and slow variables, respectively: 

cos cos
n

  
  

  
, (19) 

cos cos
n x y

  
  

  
. (20) 

Therefore, the problem of finding a solution to the complex space governed by equations (7)–(9), (4) 

is split to a series of problems in the spaces of essentially simpler geometry in comparison to the input 

problem.  
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3. Derivation of analytical formulas governing membrane eigenforms and

frequencies

Owing to the general procedure of the homogenization method a solution to the problem (7)–(9), 

(4) can be divided into three parts:  

Figure 2.   Characteristic structure of the composite cell: i

 –matrix area; i

 –inclusion area. 

(i) In the first part a solution to the local problem is defined [9, 10], i.e. we study a periodically 

repeated cell of the composite (see Figure 2):  

2 2

1 1

2 2
0

u u  
 

 
 in i

 , (21) 

1 1u u  ,   01 1 1
uu u

n n n

   
   

  
 on i , (22) 

1 0u   on 
*

i . (23) 

(ii) The second part is aimed at finding main parts of the eigenfunctions and frequencies of the 

averaged problems. The averaged equation is obtained through application of the following averaging 

operator  

     
*

1
, , , , , , ,

i

i i

x y x y d x y d 

 

 
 
          
 
 
  

  (24) 

to relations (2.13), and the input problem takes the following form: 
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2 2

0 0

2 2

2 2 2 2

1 1 1 1

0 0*

1
0

i

i i

u u
q

x y

u u u u
d d u

x y x y

   

 

  
  

  

 
 

                
            
 
  

 
(25) 

where 
*

i i i

    ; 
*

i i

i

q

   



–averaged parameter in the sense of Foight.

Taking into account the relations for 1u
, 1u

 which define the problem on the cell (21)–(23), the

averaged problem can be transformed to the following one: 

2 2

0 0

0 02 2
0x y

u u
q q q u

x y

 
   

 
 in 

* , (26) 

0 0u   on  , (27) 

where: 
1*

2

0
:

0

x

y

  
  

  
–smooth membrane space with the reduced characteristics; xq , yq –

averaged parameters of the following form: 

   1 1 1 1

*

1
x

i

i i

u u
q q d d

 

 

 
  
     
  
    

  ; (28) 

   1 2 1 2

*

1
y

i

i i

u u
q q d d

 

 

 
  
     
  
    

  , (29) 

where:  1 i
u

  1, 2i  –are the solutions to the local problems (21)–(23), estimated with accuracy up

to constant multipliers corresponding to the slow solution component: 

       0 0

1 1 1 1 2
, ,

u u
u u u

x y

   
     

 
. 
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Solution to the eigenvalue problem (26), (27) in the smooth space of the rectangular membrane with 

reduced physical characteristics can be formulated in the following form 

0

1 1 1 2

sin sinmn

m n

m x n y
u S

 

 

 
 , (30) 

2 2
2

0

1 2

x y

m n
q q

q

    
      
     

, (31) 

where constants  , 1, 2, ...mnS m n   are defined by the initial conditions (5).

(iii) The third part of our approach is focused on estimation of the first improvement term regarding 

the frequency 1 . This requires finding one more approximation to the function u
, i.e. we need to

find functions 2u
 as a solution to the following compatibility problem:

2 22 2 2 2

0 02 2 1 1

0 02 2 2 2
2 2

u uu u u u
u

x yx y

        
       

       
 in i

 ; (32) 

2 22 2 2 2

0 02 2 1 1

0 02 2 2 2
2 2

u uu u u u
u

x yx y

          
         

         
 in i

 ; (33) 

2 2u u  ,   102 2 1 11
uu u u u

n n n n n

      
     

    
 on i ; (34) 

2 0u   on 
*

i . (35) 

Observe that the structure of the problems regarding the first and second approximations of the cell is 

identical, and they differ only in the amount an even component, which does not play the principal 

role, i.e. it does not introduce an essential input to the averaging, and hence it can be omitted while 

estimating the frequency 1 [6,7].

Consequently, relations for the functions 2u
, yielded by solving the problems (32)–(35), can be

presented in the following general way: 

   2 1 0 10 2 ,u u u u U       , 

where    2 2, ,U U      . 
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Owing to the latter remark, the averaged problem of the second approximation is governed by the 

averaged equation obtained by application of the averaging operator (24) to relations (34):  

 
2 2

10 10

0 10 1 02 2
0x y

u u
q q q u u

x y

 
    

 
 in 

* , (36) 

with the following boundary condition 

10 1u u   on  , (37) 

where 1u  is the averaged part of the function  1 , , ,u x y   .

It should be emphasized that the relation (36) includes two unknown functions: 10u – slow 

solution of the 
1  order and the first improvement term to the frequency 1 . In order to find the

frequency 1 we need to transform (36) applying the known scheme (see [26]). Namely, we multiply

(30) by 0u  and next we integrate this equation by parts regarding the space 
* , which taking into 

account (26) and boundary condition (27) yields the following relation: 

1 2 2 1
1 2

2 0 0

1 0 10 10
0 0

0 0 0 0

0
x y

x y
x y

u u
q u dxdy q u dy q u dx

x y

 

 

 
   

     . (38) 

Therefore, if 

10 1 0u u    on  , 

then 1 0  , and the series responsible for eigenfrequency begins with 2 , i.e. the term of order

2 . 

In the case when 10u  does not satisfy the boundary conditions on the external membrane contour, i.e. 

10 0u   on  , we get non-zero first improvement term regarding the eigenfrequency, which taking 

into account (38) has the following form: 

   
2 1

1 2

0 0

1

2

0

0 0

x yq y dy q x dx

q u dxdy

  

 
 

 

, (39) 

where 
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 
1

0

10
0

x

x

u
y u

x






 


; 

 
2

0

10
0

y

y

u
x u

y






 


. (40) 

Subsequent term of the series (10), (11) can be found by analogous scheme and its estimation 

does not require principal difficulties. 

4. Conclusions

The theory of averaging has been applied in order to solve the problem of vibrations of the

rectangular membrane stiffly clamped along its contour, representing the composite structure with 

periodically located circular inclusions within the hexagonal mesh. 

In the general case, the fundamental analytical relations of smooth components of the 

eigenfunctions and the eigenfrequencies (30), (31) as well as of their first fast oscillating terms (21)-

(23), (39), (40) have been derived. 

Practical realization of the proposed approach depends strongly on finding a solution of the 

problem regarding the cell, i.e. in a correct estimation of the averaged characteristics of the non-

homogenous structure. 

Depending on the values of the physical and geometric characteristics of the composite a solution 

to the local problem can be obtained either by an asymptotic series or by combined analytical-

numerical approaches. 

Acknowledgments 

This work has been supported by the Polish National Science Centre, MAESTRO 2, No. 

2012/04/A/ST8/00738. 

References 

[1] Andrianov, I.V., Bolshakov, V.I., Danishevs’kyy, V.V. Weichert, D. Higher-order asymptotic 

homogenization and wave propagation in periodic composite materials. Proceedings of the Royal 

Society of London 464 (2008), 1181–1201. 

[2] Andrianov, I.V., Danishevs’kyy, V.V., Ryzhkov, O. I., Weichert, D. Dynamic homogenization 

and wave propagation in a nonlinear 1D composite material Wave Motion 50 (2013), 271–281. 

[3] Andrianov, I.V., Danishevs’kyy, V.V., Topol, H., Weichert, D. Homogenization of a 1D 

nonlinear dynamical problem for periodic composites ZAMM-Journal of Applied Mathematics and 

Mechanics 91 (2011), 523–534. 

[4] Andrianov, I.V., Starushenko, G.A. Asymptotic methods in the theory of perforated membranes 

of nonhomogeneous structure. Engineering Transactions. 43 (1995), 5–18. 

[5] Andrianov, I.V., Starushenko, G.A. Homogenization method for mechanical problems in multi-

connected domain. Problems of Mechanical Engineering (1987) 48–54. (in Russian). 

20



[6] Andrianov, I.V., Starushenko, G.A. Solution of Dynamic Problem for Perforated Structures by 

the Method of Averaging. Journal of Soviet Mathematics 57 (1991), 3410–3412. 

[7] Andrianov, I.V., Starushenko, G.A. Using of homogenization method for investigation of 

perforated plates oscillations. Journal of Soviet Mathematics 65 (1995), 1503–1507.  

[8] Ashcroft, N.W., Mermin, D.N. Solid state physics. Thomson Learning, Toronto, 1976. 

[9] Bakhvalow, N.C., Panasenko G.P. Averaging processes in periodic media. Nauka, Moscow 

1984. (in Russian) 

[10] Bensoussan A., Lions, J.L., Papanicolaou, G., Asymptotic analysis for periodic structures. North-

Holland Publishing Company, Amsterdam, 1978. 

[11] Bertoldi, K., Boyce, M.C. Wave propagation and instabilities in monolithic and periodically 

structured elastomeric materials undergoing large deformations. Physical Review B 78 (2008), 

184107 

[12] Born, M., von Kármán, T. On fluctuations in spatial grids. Physikalische Zeitschrift 13 (1912), 

297-309 

[13] Boutin, C., Auriault, J.L. Rayleigh scattering in elastic composite materials. European Journal of 

Mechanics B/Fluid 31, 12 (1993), 1669-1689 

[14] Brillouin L., Über die fortpflanzung des lichtes in dispergieren den medien. Annalen der Physik 

343, 10 (1914), 203-240. 

[15] Brillouin, L. Wave propagation in periodic structures. Dover Publications Inc, New York, l953 

[16] Brillouin, L., Parodi, M., Wave propagation in periodic structures. Dunod Editeur, Paris, 1956 

(In Russian) 

[17] Cao, W., Qi, W. Plane wave propagation in finite 2-2 composites. Journal of Applied Physics 78 

(1995), 4627–4632. 

[18] Chen, W., Fish, J. A dispersive model for wave propagation in periodic heterogeneous media 

based on homogenization with multiple spatial and temporal scales. Journal of Applied Mechanics 68 

(2001), 153–161. 

[19] Fang, X., Tang, J., Jordan, E., Murphy, K.D. Crack induced vibration localization in simplified 

bladed-disk structures. Journal of Sound and Vibration 291 (2006), 395–418. 

[20] Fish, J., Chen, W. Higher-order homogenization of initial / boundary-value problem. Journal of 

Engineering Mechanics 127 (2001), 1223–1230. 

[21] Fish, J., Chen, W. Space-time multiscale model for wave propagation in heterogeneous media. 

Computer Methods in Applied Mechanics and Engineering 193 (2004), 4837–4856. 

[22] Gei, M., Movchan, A.B., Bigoni, D. Band-gap shift and defect-induced annihilation in 

prestressed elastic structures. Journal of Applied Physics 105 (2009), 063507. 

[23] Golub, M.V., Zhang, C., Wang, Y.S. SH-wave propagation and scattering in periodically layered 

composites with a damaged layer. Journal of Sound and Vibration 331 (2012), 1829–1843. 

[24] Hamilton, W. R. The Mathematical Papers of Sir William Rowan Hamilton. Vol. 2. Dynamics. 

University Press, Cambridge, 1940. 

[25] Kelvin, W. T. Popular Lectures and Addresses, Vol. 1. Macmillan and Co., London, 1889 

[26] Collatz, L. Eigenvalue problems. Nauka, Moscow, 1968 (in Russian). 

21



[27] Lions, J.L. On some homogenisation problem, ZAMM-Journal of Applied Mathematics and 

Mechanics 62 (1982), 251-262.  

[28] Massimiliano, G. Wave propagation in quasiperiodic structures: stop / pass band distribution and 

prestress effects. International Journal of Solids and Structures 47 (2010), 3067–3075.  

[29] Mishuris, G.S., Movchan, A.B., Slepyan, L.I. Localised knife waves in a structured interface. 

Journal of the Mechanics and Physics of Solids 57 (2009), 1958-1979. 

[30] Movchan, A.B., Movchan, N.V., Haq, S. Localised vibration modes and stop bands for 

continuous and discrete periodic structures. Materials Science and Engineering 431 (2006), 175– 183. 

[31] Knife, A. Methods disturbances, Nauka, Moscow, 1976 (in Russian). 

[32] Newton I., The mathematical principles of natural philosophy. Dawsons of Pall Mall, London, 

1968; 

[33] Parnell, W. J. Effective wave propagation in a pre-stressed nonlinear elastic composite bar. IMA 

Journal of Applied Mathematics 72 (2007), 223–244. 

[34] Rayleigh, L. On the maintenance of vibrations by forces of double frequency, and on the 

propagation of waves through a medium endowed with a periodic structure. Philosophical Magazine 

24 (1887), 145–159.  

[35] Slepyan, L.I., Tsareva, O.V. Energy flux for zero group velocity of the current wave. Soviet 

Physics-Doklady 32 (1987) 522-526 

[36] Smyshlyaev, V.P. Propagation and localization of elastic waves in highly anisotropic periodic 

composites via two-scale homogenization. Mechanics of Materials 41 (2009), 434–447. 

[37] Yan, Z.Z., Zhang, C., Wang, Y.S. Analysis of wave propagation and localization in 

periodic/disordered layered composite structures by a mass-spring model.  Applied Physics Letters 94 

(2009), 161909. 

Igor V. Andrianov, Professor: Institute of General Mechanics, RWTH Aachen University, 

Templergraben 64, D-52056, Aachen, Germany (igor.andrianov@gmail.com) 

Jan Awrejcewicz, Professor: Technical University of Łódź, Department of Automation, 

Biomechanics and Mechatronics 1/15 Stefanowski St., PL-90-924, Lódz, Poland and Department of 

Vehicles, Warsaw University of Technology 84 Narbutta Street, 02-524 Warszawa, Poland 

(awrejcew@p.lodz.pl) 

Bernd Markert, Professor: Institute of General Mechanics, RWTH Aachen University, Templergraben 

64, Aachen 52062, Germany (markert@iam.rwth-aachen.de) 

Galina A. Starushenko, Professor: Dnipropetrovs’k Regional Institute of State Management, of 

National Academy of State Management at the President of Ukraine, Gogolya 29, UA-49631, 

Dnipropetrovs’k, Ukraine (gs_gala-star@mail.ru) 

22



Identification of a non-linear damping coefficient characteristics in
the free decay test of a single pendulum with friction

(VIB001-15)

Jan Awrejcewicz, Pawe l Olejnik

Abstract: A pendulum in form of an equal arms angle body being a part of
a two degrees-of-freedom mechanical system with friction is identified with
respect to the observed influence of some resistance of its rotational motion in
ball bearings. It is damped in a much more complex manner, what could be
considered as a non-linear damping. There is supposed between others, that
the effective non-linear damping characteristics depends on a few effects such as
fluid friction caused by vibrations of the pendulum with two springs in the air,
as well as unknown kinds of a frictional resistance existing in ball bearings. The
model under investigation finds its real realization on a laboratory rig designed
for experimental investigations of viscous and structural frictional effects. A
transient response oscillations of the pendulum are described by the explicitly
state-dependent free decay. A free decay test of the pendulum with the state-
dependent non-linear parameters of damping and stiffness has been performed
in this paper. It provided interesting observations that led to elaboration of a
method of the overall damping coefficient identification. Effects of application
of the proposed semi-empirical method of identification of the overall damping
and stiffness coefficients have been illustrated and discussed.

1. Introduction

In the theory of waves the linear models are commonly applied to predict the performance

of various engineering objects. In offshore engineering and naval architecture it is common

practice to determine damping coefficients, both linear and non-linear, from free decay tests

[10]. For example, in ocean engineering it is common practice to obtain damping coefficients

of floating structures from free decay tests [1]. Authors of the paper present some work

on the determination of non-linear damping coefficients for flap-type oscillating wave surge

converters from free decay tests. Simulations of free decay tests in computational fluid

dynamics are presented as well as their validation against experimental results is performed.

Analysis of the obtained data reveals that linear quadratic-damping, as commonly used in

time domain models, is not able to accurately model the occurring damping over the whole

regime of rotation amplitudes. The authors concluded that a hyperbolic function is most

suitable to express the instantaneous damping ratio over the rotation amplitude.

In the design process, it is essential to use accurate numerical simulation tools to predict

the complex aero-hydro-servo-elastic response of a floating wind turbine [11]. Cited paper
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focuses on the use of the open-water test data of the SWAY prototype wind turbine to

calibrate a floating offshore wind turbine numerical model for future validation efforts. After

turbine deployment and installation of the NREL instrumentation, five free decay tests were

conducted on the SWAY prototype by displacing the system and allowing it to return to

equilibrium. The inability to model frictional damping in the universal joints of the system

contributes to discrepancies between measured and simulated results. The inability to model

frictional damping in the universal joints in the tension rod became significant in affecting

the overall motion of the system.

Presented examples and many problems in other measurements of damping [6–9] confirm

the need of continuation of investigations on techniques related to identification of parameters

of oscillating bodies, especially, when some difficult properties like viscous damping are

necessary to determine [12–14].

Our paper is focused on identification of a non-linear damping coefficient characteristics

during free vibrations of a single pendulum with friction [3].

The angle body – a single pendulum, a part of the 2-DoF mechanical system with friction

shown in Fig. 1a is damped in a much more complex manner, what could be considered as

a non-linear damping of some characteristics that is by assumption dependent on angular

displacement and velocity of the pendulum rotating about the pivot point s (see Fig. 1).

One assumes in the research an existence of an effective non-linear damping character-

istics, which could be dependent on system states affected by a few possible phenomena:

– fluid friction caused by vibrations of the pendulum 1 with two springs in the air (see

Fig. 1a);

– unknown kinds of resistance existing in ball bearings, in which both ends of an alu-

minium shaft 2 are mounted to allow rotation of the pendulum about the joint s.

It is likely a hypothesis, but there will be proved in a free decay test an existence of a non-

linear explicitly state-dependent characteristics of damping and stiffness of the pendulum.

To get knowledge about the true characteristics of both parameters, the block 3 (see in

Fig. 1a) has been stopped and a transient response (see Fig. 2) of pendulum 1 in the free

decay test was analysed using some parameter identification method presented below.

Originally, self-excited vibrations of the block 3 sliding on the moving belt cause some

irregularly forced response of the pendulum [15]. The pendulum 1 is coupled with the block

by means of two springs, and therefore, it changes the normal and tangent contact forces

in the frictional connection created by the stick-slip contact of the block sliding on the

moving belt. A precise mathematical description of dynamical behaviour of the the single
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pendulum 1 is very important in the context of identification of the static as well as kinematic

characteristics of a frictional contact in the block-on-belt model [16].

a) experimental stand

b) a physical model of single pendulum

Figure 1. Picture of the experimental stand (a) for measurement of friction characteristics

with the particular physical model (b): 1 – the pendulum under investigation, 2 – an alu-

minium shaft rotating in ball bearings fixed in the frame, 3 – the block sliding on the belt

(temporarily stopped in the experiment), 4 – incremental encoder, 5 – a microcontroller for

data acquisition, 6 – a direct current motor with gear, 7 – a direct current motor driver.
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Figure 2. Time history of a transient response of the pendulum in the free decay test. The

time series ym(t) has been acquired from measurements on the laboratory rig (see Fig. 1).

2. A semi-empirical method of estimation of the non-linear characteristics of

overall damping and stiffness

It would be interesting to check if the damping and stiffness coefficients of the investigated

free decay oscillations are constant.

At small enough angles of rotation, the starting equation in our research follows

mÿ + cẏ + ky = 0, for y ≈ ϕr and ϕ < π/36, (1)

where: y [m] is the linear displacement of the pendulum, ϕ [rad] – angle of rotation, a virtual

mass m = J/r2 [kg], mass moment of inertia J = 2.4423 ·10−4 [kg·m2], arm length r = 0.078

[m], unknown overall damping c → c̃ϕ(t) [N·s/m], unknown overall stiffness k → k̃ϕ(t) +

k1 +k2 = k̃ϕ(t)+145.82 [N/m], where: k1, k2 – constant stiffness coefficients estimated from

static characteristics of both elastic elements (linear springs), k̃ϕ(t) – unknown implicitly

state-dependent function of stiffness of the rotational connection (see the joint s in Fig. 1b),

which is created by the ball bearings and the pendulum mounted in the bearings, c̃ϕ(t)

– unknown implicitly state-dependent function of overall coefficient of damping in both

symmetrically situated rotational joints.

Equation (1) can be represented in a classic form of a non-forced traditionally damped

harmonic oscillator

ÿ +
ω

Q
ẏ + ω2y = 0, (2)
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where the damping component at ẏ is written in canonical form by means of a quality factor

Q – a dimensionless parameter of strength of viscous friction in motion of the pendulum [1].

Our oscillator has small mass and is fairly small damped, so factor Q is defined by

2πE/|∆E|, where E is the energy of oscillation, ∆E is the energy loss per cycle of the

oscillation because of dissipation [17]. The dissipation is expressed either in terms of the

dimensionless quality factor or by a damping ratio δ, which has the dimension of frequency.

Then, by a definition [17]

2δẏ =
ω

Q
ẏ. (3)

Applying in Eq. (3) the definition of period T = 2π/ω between time instances of every

two adjacent turning point amplitudes Ai and Ai+1, one finds, that constant logarithmic

decrement of damping, called the damping ratio δ is given by

δ =
1

T
ln

Ai

Ai+1
=
π

Q
.

If we check the successive period durations of the free decay oscillations shown in Fig. 2,

then all points are irregularly distributed as shown in Fig. 5. Therefore, some usage of any

constant damping ratio of the real free response of our single pendulum is not well justified.

In consequence, constant damping ratio δ is to be substituted by δ̃(t), which will exhibit a

non-linear characteristics dependent on time going in the free decay test.
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Figure 3. A discrete FFT of a time series ym(t) of the pendulum’s linear displacement ac-

quired from the measurement of angle ϕ on the experimental stand. One dominant frequency

is found as marked by the dashed line.
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Analysing in Fig. 3 the frequency spectrum of vibrations from the experimental time

series ym(t) of our single pendulum, one observes, that the body vibrates with the dominant

frequency fF ≈ 10.9 [Hz] corresponding to ωF ≈ 68.45 [rad/s].

Let us now select two adjacent turning point amplitudes separated by one period T of

motion, i.e.: A1 = 0.421, A2 = 0.371 [cm].
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Figure 4. A comparison of two time histories confirming discrepancy between the experi-

mental trajectory ym(t) and correspondingly the analytical solution ye(t).

.

Then, let us calculate the angular frequency ω with respect to the period T related to

the time elapsed between two successive measurements of peak amplitudes A1 and A2. We

get constant angular frequency, period of oscillations and a damping ratio as below:

ω =
2π

T
= 67.630 [rad/s], T = tA2 − tA1 = 0.093 [s], δ =

1

T
ln
A1

A2
= 1.481 [1/s].

Comparable values of both angular frequencies, i.e. ω ≈ ωF are confirmed, so after

that simple calculus the exact transient response ye(t) [cm] of the oscillator with exponential

decay

δe(t) = A1 exp (−δt), (4)

and constant angular frequency ω takes the analytical form

ye(t) = δe(t) cos(ωt) = A1 exp (−δt) cos(ωt) = 0.421 exp (−1.481t) cos(67.63t). (5)

The solution ye(t) given in Eq. (5) is drawn in Fig. 4 using a red line.
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We see in Fig. 4, that the obtained estimate solution ye(t) bounded by the line of the

exponential decay δe(t) passing through turning point amplitudes of the solution, does not

coincide with the experimental trajectory ym(t) (black line) representing the measurement.

Drawing a conclusion, the estimated parameters of the investigated transient response

given by Eq. (5) are not valid at each successive constant period T . Therefore, the highest

inaccuracy in the coverage of both compared time trajectories is visible at the end of the

pendulum’s free decay oscillations, i.e. at final time tk = 1.4 [s], when ye(t) should much

closely tend to zero.

The procedure of searching for the new approximating function δ̃f (t) – a state-dependent

polynomial decay, which replaces the standard exponential decay with a constant damping

ratio, as well as for an approximation of ω̃(t), resulting from T̃ (t) is proposed below. Tilde

over the symbols make them distinguishable from constants ω, T and function δe(t).

2.1. Estimation of a polynomial decay δ̃f of oscillations

The polynomial decay is an important function in context of the initiated dynamical analysis

and the frictional phenomena observed on a stick-slip contact surface of the block-on-belt

model investigated on the experimental stand. Moreover, it has significant influence on

evaluation of damping properties of the pendulum vibrating at significant velocity variations

as observed during experiments [2, 4, 5, 18].

The quality factor introduced in Eq. (2) is expressed by [17]

Q(t) =
π

T̃ (t)

(
a1δ̃f (t) + a2 +

a3

δ̃f (t)

) .
(6)

We obtain the first sought approximation in a form of the polynomial decay (see black

doted line in Fig. 4 and 8)

δ̃f (t) =
a2(p(t)− 1) + r(p(t) + 1)

2a1(1− p(t)) , (7)

where: δ̃f (t) is the polynomial decay of oscillations, p(t) = 2a1A1+a2−r
2a1A1+a2+r

exp(−rt), r =√
a22 − 4a1a3, and a1 = −3.45, a2 = 2.52, a3 = 0.05 are numerically estimated.

2.2. Estimation of variable angular frequency ω̃

Now, we search for an estimation of the second system parameter that is directly connected

with the unknown variable stiffness coefficient, i.e. ω̃ – the implicitly state-dependent angular

frequency of motion.

As it is shown in Fig. 5, the polynomial function T̃ (t) of period instances can be

obtained from a continuous approximation of measurement points Tm(i) = tA(i) − tA(i+1)
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for i = 0 . . . 16 with the use of the following polynomial of third degree

T̃ (t) = γ3t
3 + γ2t

2 + γ1t+ γ0 for γ̄(3...0) = [−2, 28, −147, 9385]× 10−5. (8)
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Figure 5. Non-smooth distribution of periods Tm(i) (green circles) calculated between

time tA(i) and tA(i+1) of appearance of the successive peak amplitudes A(i) and A(i + 1)

of oscillations in the experimentally acquired series ym(t) versus i-th cycle number. Third

degree polynomial approximation T̃ (t) of the distribution is matched by solid line.

We have observed that fitting of the trajectory ym(t) at its final stage for t ∈ [1.2, 1.4]

[s] regarded to small-amplitude vibrations of the pendulum could be more precise. There-

fore, the free response’s approximation was checked for a replacement of the polynomial

approximation ω̃(t) by a logarithmic one ω̃l(t) (see Fig. 6), that reads

ω̃l(t) = b1ω̃(t) + b2 log ω̃(t) + b3 for b̄(1...3) = [2.57, 0.13, 93]× 10−3. (9)

Figure 6 illustrates a time-dependent function ω̃(t) that results from the polynomial

approximation T̃ (t) given by Eq. (8) with its logarithmic fit ω̃l(t) for the purpose of im-

provement of the stage of small-amplitude vibrations of the pendulum. After checking the

resulting effectiveness of approximations ω̃(t) and ω̃l(t), the first one has been selected.

If δ̃f (t) given by Eq. (7) states for the desired approximation of turning point amplitudes

of free decay oscillations of the analysed pendulum, then using the obtained polynomial

approximation (8) an implicitly state-dependent angular frequency reads

ω̃(t) =
2π

T̃ (t)
for t ∈ [0, tk]. (10)
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Figure 6. A polynomial approximation of the angular frequency ω̃(t) (black line) and its

logarithmic fit ω̃l(t) (red line).

2.3. Estimation of implicitly state-dependent parameters of the pendulum

This section takes into account the obtained estimates (6) and (10) to provide definitions of

parameters for the investigated dynamical system.

Comparison of terms at state variables y and ẏ in Eq. (1) divided by m and in Eq. (2)

yields:
c̃ϕ(t)

m
=
ω̃(t)

Q(t)
and

k̃(t)

m
= ω̃2(t),

and after rearrangement:

c̃ϕ(t) =
mω̃(t)

Q(t)
and k̃(t) = mω̃2(t). (11)

The non-linear functions of system parameters, i.e. the variable damping coefficient

c̃ϕ(t) and variable stiffness coefficient k̃(t) have been drawn in Fig. 7. These parameters are

denoted as functions of time, but it is only valid for the time going in the free decay test.

Therefore, the parameters will be implicitly state-dependent when one will need to apply

them in the simulation of dynamics of full mechanical system shown in Fig. 1 composed of

the block-on-belt subsystem and the identified pendulum forced by motion of the block.

It is worth reminding that by obtaining the stiffness coefficient k̃(t) in Eq. (11) we have

identified the overall stiffness of the pendulum (see Sec. 2) that includes constant components

k1 and k2 of springs. Unknown at the beginning the state-dependent stiffness k̃ϕ(t) of the

rotational connection of the pendulum at point s (see Fig. 1b) is found k̃ϕ(t) = k̃(t)−k1−k2.
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Figure 7. Non-linear functions of system parameters: a) the variable damping coefficient

c̃ϕ(t) (dashed line), b) the variable stiffness coefficient k̃(t) (solid line).

3. Numerical verification of the non-linear approximations of parameters of the

pendulum

First case. Verification of accurateness of the analytical formula (see blue line in Fig. 8)

yf (t) = δ̃f (t) cos(w1ω̃(t)t), (12)

where: δ̃f (t) is defined by expression (7), ω̃(t) is defined by (10), and w1 = 1.02 is a non-

dimensional fitting parameter of angular frequency.

Second case. The identified non-linear approximations (7) and (10), respectively for

δ̃f (t) and ω̃(t), are put into a numerical model of the analysed single pendulum to check

accurateness of the numerical solution ys(t) in comparison to measurement ym(t).

A state-space representation of the single pendulum dynamics described by one second

order differential equation (2) is as follows:

ẏ1(t) = y2(t),

ẏ2(t) = − ω̃(t)

Q(t)
y2(t)− w2

2ω̃
2(t)y1(t).

(13)

Solving numerically system (13) we obtain a numerical solution ys(t) = y1(t) – a linear

displacement of the pendulum matched in Fig. 8 by red line. Also here, a non-dimensional

fitting parameter of angular frequency w2 = 1.029 is applied in the numerical model to

obtain the computed time history ys(t) better fit to the experimental counterpart ym(t).
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Figure 8. Time histories of a transient response of the pendulum in the free decay test:

ym(t) – measurement (thick grey line), ys(t) – numerical solution (red line), yf (t) – analytical

solution (blue line) that takes into account the identified parameters of the pendulum.

Third case. Average displacement of the pendulum in i-th period of oscillations of the

time trajectories y(t) visible in Fig. 8 can be taken into account in the qualitative assessment

of the obtained approximations.

The average displacements ȳ(i) in i-th cycle period have been computed numerically for

the three time series ym(t), ys(t) and yf (t) by means of the formula (bar over the symbol
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denotes the average value)

ȳ(i) =
1

T̃ (i)

∫ T̃ (i)

0

y(t)dt for i = 1 . . . 16 and y = {ym, ys, yf}. (14)
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Figure 9. Average displacements of the pendulum in i-th cycle period of oscillations for

the measurement ym(t) in relation to the approximates ys(t) and yf (t).

If we take a look at series ȳs(i) and ȳf (i) drawn in Fig. 9, then interchangeably, an

average of ȳs(i) is closer to ȳm(i), but sometimes an average of ȳf (i). As it is seen, our mea-

surement series ym(t) is irregular in the duration of each time period of its oscillations. One

would find the best result of our identification if ȳs(i) or ȳf (i) could as much as possible co-

incide with ȳm(i). Hereby, a qualitative method of assessment of the presented identification

a single pendulum’s parameters has been proposed.

4. Conclusions

The high degree of coverage of trajectories ym(t) and yf (t) presented in Fig. 8 proves, that

the two system parameters such as damping c and stiffness k introduced at the beginning in

Eq. 1 have to be made dependent on the pendulum’s state variables. For that requirement,

the two implicitly state-dependent parameters c̃ϕ(t) and k̃(t) are proposed.

The non-linear function of c̃ϕ(t) drawn in Fig. 7 has an important property. Up to about

1 second of the free decay response, damping of the pendulum depends almost linearly on

time. In rough approximation it can be assumed as constant. In Fig. 4, the moment of

time points to the turning point amplitude of about 0.05 [cm]. One can use the linear piece
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of function c̃ϕ(t) while the oscillator’s angular velocity is high enough. When the vibration

body exhibits an irregular dynamics by reaching low velocity regimes of motion, then the

whole non-linear characteristics visible in Fig. 7 has to be used.

The identified parameters of irregularly damped single pendulum’s motion have signif-

icant influence on dynamics of the entire dynamical system, which also includes the block-

on-belt model. For the practical use of the identified functions of both system parameters,

it is necessary to use a transition from the phase space of the free decay to the phase space

of full system dynamics including self-excited vibrations of the block on the moving belt. It

will regard to much deeper analysis supported by a dedicated numerical methods and will

be presented by the authors in further extension of the work.
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An explanation of water acting on rails wear 

using finite elements method

(NON054-15)

Henryk Bąkowski 

Abstract: The article presents, in a complex way, the impact of most essential 

operational factors upon tribological properties such as the wear and friction 

coefficient being the main cause of fatigue-contact wear in the rolling-sliding contact 

both in the presence and absence of water. Operational curves have been elaborated to 

predict the character and intensity of the wear in various operational conditions. 

Obtained the wear debris from rolling-sliding contact provided to creation the models 

3D of the real contact with defects. However, the performed laboratory research on an 

Amsler testing stand in the rolling- sliding contact of the roller-roller system made it 

possible to determine the mechanism and intensity of the wear taking into 

consideration railway stock, road profile and some constraints along railway tracks 

i.e. load, skid and speed as well as weather conditions. The paper attempts at 

explaining the wear mechanisms of wheel-rail in laboratory test with the Finite 

Elements Method (FEM). Numerical analysis allow to determine local stress values 

which are essential for understanding the wear mechanisms of the analyzed contact. 

The obtained results of operational investigations prove that cracks and spallings of 

the micro and macro scale appear in areas with maximum stress and deformation. On 

the basis of the conducted simulation tests, FEM was found to be the right tool used to 

identify the areas of special wear hazard. This seems crucial for the improvement of 

safety of rail vehicles. 

1. Introduction

The wear of wheel-rail couple is an extremely complex and difficult process to analyze.

Continuous change and the presence of diverse factors over the short period of time make the wear 

difficult to interpret. However, the performed laboratory research on an Amsler testing stand in the 

rolling- sliding contact of the  roller-roller system made it possible to determine the mechanism and 

intensity of the wear taking into consideration railway stock, road profile and some constraints along 

railway tracks i.e. load, skid and speed as well as weather conditions. The so far carried out 

researches have been run in a sectional procedure, investigating the impact of skid, selected stresses 

or speed upon the wear of rolling-sliding contact and rolling contact fatigue which do not permit 

complex analysis to be performed. Moreover, the effect of railway stock type,  different values of 

skids with most frequently found road profile or speeds depending on the introduced constraints or 

purpose have not been taken into consideration. The article [1] provides the description of the  
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research which aim at determining the values of axial and tangent forces as well as presents  the 

results of tribological tests on the railway wheel. The values of contact stresses in the presented article  

are convergent with the results featured in the paper (645-882 MPa) [2]. Papers [2,3] feature the 

description of laboratory tests performed in dry contact at the skid values of 2.5-25% or 0.06% at the 

assumed value of speed of 500 rpm. The tests with the presence of lubricating medium have been 

described in papers [4,9] where the skid was appropriately reflected for the operational conditions 

(0.5-5%). However, the authors did not do any tribological research with the effect of rotational speed 

to be taken into account since the constant value of 400 rpm had been  suggested beforehand. More 

extreme conditions were suggested by the authors of the paper [4,5] where the speed ranged between 

160-300 km/h at the load of   16000-25000 N. Lower speed results in greater depth of plastic strains 

than it is observed in case of higher speed. Thorough analysis of load impact prove that fatigue cracks 

occur at lower load values (16000 N) whereas longer cracks have a tendency to develop at higher 

speed which pose a real risk since  crosswise cracks propagation might appear. 

1.1. The effect of water 

Another fundamental operational factor which changes the mechanism and intensity of the wear 

is undoubtedly the presence of lubricating medium in a wheel-rail couple [6]. The research on a real 

object have been described where the presence of lubricating medium (oil) resulted in twofold 

decrease in  mass decrement. Unfortunately, rainwater impact  has  been disregarded here. 

According to official statistics the presence of water upon the rails surface in Poland lasts 130 

days (April to October) which means the annual rainfall ranges between 500-700 mm i.e. 500-700 

liters per m2 [8]. In the overwhelming part of Europe (Table 1) annual rainfall amounts to 300-800 

mm ( 300-800 liters per m2). 

Table 1. Annual rainfall in Europe [4] 

The value of precipitation, mm 

Europe 

Mountainous areas Coast Lowland areas 

1000-2000 3000-4000 400-600 

More attention should be focused on the presence of water from melted snow upon the rolling 

surface of rails in winter season. Thus the number of days when water stays upon the rail surface 

increases which significantly effects tribological properties of wheel-rail contact (see figure 1). 

Water accumulated upon the rail rolling surface penetrates cracks and pores and in consequence 

increasing the length of subsurface fracture [6,7]. The most dangerous case is observed when cracks 

propagate not on the surface but deep into the material (see figure 2). 
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Figure 1.   Delamination character of the wear: a) rolling surface of a rail, b) wear model according to 

Suh’s flakes wear theory [10] 

             

Figure 2.   The 3D distribution of stresses in the rail 

2. Experimental details 

2.1. Test apparatus 

The studies  have been performed in a rolling-sliding contact in the conditions of dry friction and 

the presence of water. Amsler testing stand with a roller-roller  friction center, where both the 

specimen and specimen-counter were of a roller shape, was used (see figure 3a). As the result of 

rotational motion the rollers, sharing the same contact area, generated the phenomena of surface 

fatigue or abrasive-adhesive wear of the material (depending on the values of operational factors). 

Friction coefficient was measured with tensometric force transducer mounted in the bottom part of the 

arm loaded with weights. Fig. 3b shows the scheme for friction force calculation. 
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a) b) 

Figure 3.   Friction center (a) action of forces in a rollin-sliding contact on Amsler stand, 

scheme mashine (b): 1- specimen, 2 - specimen-counter, 3 – water pipe 

Friction force T was determined on the basis of formula (1) resulting from the condition of 

equilibrium of flat converging forces: 

r

RF
TRFrT


                                                                                                 (1)

where: 

T – friction force, N 

F – countervailing force of friction force  N 

r –radius of specimen-counter, m 

R – arm of force F, m 

Laboratory investigations performed reflected the most significant operational factors 

present in a real object which effect the durability of wheel-rail contact. In real conditions the 

minimum wheel load upon the rail occurs during the ride of  an empty freight train, whereas the ride 

of a fully loaded freight train corresponds to the maximum wheel load i.e. 20000N/wheel and 

100000N/wheel. The minimum sliding value  (γ =0.3%) occurs at the ride of a train along the straight 

section of the railway track, whereas the maximum value (γ =5%) along a curve with a slope and/or 

elevation. The third parameter is speed and two values were analyzed: ca. 40 km/h and over 100 

km/h. All values are the regulations and  provisions in force at Polish Railway. Laboratory 

investigations were performed both in dry and lubricated contact on Amsler stand in roller-roller 

system. The measurement of mass decrement of the tested specimens was run in cycles but the values 

of friction coefficient were registered constantly. Laboratory tests feature one peculiarity which is the 

fact that  monitoring the impact of one selected factor is possible here. This cannot be done  in real 

conditions. These all data allowed to carry out a simulation using Finite Elements Method. 

 1 

 3 

 2 
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3. Results and discussion  

To carry out simulation studies for Finite Elements Method was to perform experimental tests to 

determine the tribological properties (eg. coefficient of friction). This allowed the knowledge of wear 

mechanisms operating in the contact area by carrying out simulation studies. 

3.1. Test wear 

Figure 4 present the impact of operational conditions upon the wear and friction coefficient. 

Laboratory tests aimed at reflecting the impact of operational conditions upon the intensity and 

mechanism of wear in relation to diverse operational conditions.  
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Figure 4.   The relation of mass decrement and friction coefficient in a rolling-sliding contact following 

the tribological test versus skid and speed of the train ride : a) on the curve, b) at the speed 

of maximum 
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On the figure 4a observed high value of wear in the contact wet reflecting a train passenger or 

cargo unloaded at a low coefficient of friction. Under such conditions, the intensity of wear is not too 

large and may lead to the phenomenon of surface fatigue running surface. 

The ride of a fully loaded freight and passenger train in the straight section and on the curve in 

the wet contact can lead to the intensification of wear. With increasing value of the wear of the train 

load is slightly reduced, but it increases the coefficient of friction and does not damage the 

appearance of RCF at the running surface. With the increase the speed reduces the wear value in dry 

and wet contacts, is dictated by the formation of a hydrodynamic lubrication. Effect of speed on wear 

mechanism is significant, because it changes the intensity wear. 

The most alarming signals come in tribological research, reflects a train passenger or freight straight 

length at the maximum speed (see figure 4b). Wear value is close to the maximum wear. This can 

lead to the appearance of fatigue damage on the surface friction. 

3.2. Surface layers 

After the tribological tests had been performed upon the specimens, they were again subjected to 

microscopic studies in order to explain the essence of wear mechanism and to examine discrepancies 

between  the dry and wet contact. Figure 5 presents the illustrative surfaces after tribological test was 

performed. Discrepancies in the wear process upon the friction surface were observed and show the 

change in wear mechanism with  the same operational parameters i.e. load, skid and speed. Cracks 

which occur in wet contact lead to the development of ragged flakes protruding upwards. The 

phenomenon of wear pitting reflected in the form of wear products being torn off the friction surface 

does not occur in a dry contact  (see figure 5a,b,c). 

Friction surface in a wet contact features the roughness and numerous crevices which might also 

be penetrated by water leading to further propagation of cracks as the result of closing the liquid 

inside. Water pressure is so high that it causes  crack propagation which results in large craters 

developing  upon the surface (see figure 5d). 

On the figure 6 presented wear mechanism occurring in wheel-rail contact. The wear mechanism 

in the presence of water occur under the influence of the propagation of fatigue cracks as a result of 

action space fluid. This process is closely related to the so-called. the effect of closing the fluid in the 

gap, resulting in a crack of the contact area comes to closing the gap present in the fluid. Closing of 

the liquid occurs as a result of contact between the edge of the gap influenced by the forced contact. 

At the time of closing the gap between the edge of the parted walls located below the edge of the fluid 

which has entered the gap from the outer contact surface. When closing the gap inside of it, there is a 

high pressure fluid which acts on the wall of the gap, causing to increase of crack. 
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Figure 5.   Friction surface of specimens made of rail steel after rubbing: a) stereomicroscope, b) SEM 

microscope, c) surface topography in a dry contact, d) surface topography in a wet contact 
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a) b) 

c) d) 

e) f)

 Figure 6.   The wear mechanism in rolling-sliding contact in the presence of a liquid represented by the 

surface analysis: 1 - railway rail 2 – roughness, 3 - liquid reservoir, 4 - railway  wheel 

3.3. Simulation test 

Simulation tests were performed by the Method of Finite Elements in rolling-sliding contact. The 

designed geometrical models were equipped with a crack identical to the one which occurs during 

operation. In order to compare the distribution and values of stresses/strains, the studies in dry and 

wet contact were carried out (see figure 7). The presence of water decreases the value of  stresses but 

it also make them accumulate at the tip of a crack which might result in crosswise fracture in 

consequence leading to rail braking at the defined  operational conditions which enhance the fatigue 

wear. 
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Figure 7.   Distribution of reduced stresses according to von Mises (a) and strains (b) 

4. Conclusions 

On the basis of the performed tribological, metallographic and prophilographometric tests the 

following was found: 

-  destruction of the surface layer in rolling-sliding contact takes the form of the delamination wear 

mechanism in the form of the flake wear debris, 

-  in a dry contact, directly proportional correlation between the wear and friction coefficient is found 

which results in the increased wear intensity or change of wear mechanism, 

-  in a wet contact, inversely proportional correlation between the wear and friction coefficient is 

found which results in RFC damages upon the rolling surface, 

-  in a wet contact during the train ride along a straight section, the wear mechanism changes for 

maximum speed and load  values which might lead to contact fatigue damages (RCF rolling contact 

fatigue), 

-  for minimum speed, the wear is much more threatening (real possibility of fatigue wear) than in 

case of  higher speed due to lubricating film which appears, 

-  tearring off wear debris have a shape and size appropriate to the material and operational factors 

influencing to the process of the formation and propagation cracks, 
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-  size and shape wear debris are a reflection of the surface layer states. By means of an efficient 

system for the collection and identification of the wear debris and friction surface condition can 

successfully monitor the status of the technical system, 

-  it is advisable to monitor the execution of state of mobile device surface layer of the diagnostic 

criteria proposed in this work. Additional studies using the above device is a rapid, non-invasive 

and inexpensive solution complementary ultrasonic and magnetic allow to make the right decisions 

about the technical condition of the object. 
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A study on the effect of human running cadence based on the
bouncing ball model

(LIF099-15)

László Bencsik, Ambrus Zelei

Abstract: Running is a very popular sport on professional and especially on
hobby level. Professional athletes improve their body motion carefully, while
hobby runners usually do not focus on the energy efficient and injury preventing
running form. The running form is characterized by some fundamental param-
eters, like step size, stride frequency and strike pattern besides many other
kinematic parameters. Much information can be found on the internet and in
magazines about the correct running form, although these information are not
based on scientific investigation in most of the cases. The main reason is that
the running has a quite complex dynamics with many parameters leading to
highly complex mechanical models. Thus it is hard to accomplish quantitative
investigations that provides useful and practical conclusion. Although the run-
ning form characteristics can be investigated by pure mechanical calculations
if a proper model exists. We propose a simple bouncing ball model to prove
that runners should choose relatively high stride frequency. Cadence should be
always kept around 180 steps/min according to the experience, while running
speed should be modified by varying the stride length. We show that higher
stride frequency implies lower risk of injury and energy efficiency. The model
based estimations are supported by a large sample measurement data.

1. Introduction

Many works like [2, 23] contribute to the thorough understanding of bipedal locomotion,

human walking and running. Several approaches have been developed which try to realize

the healthy, injury preventing, energy efficient and natural way of running in practice [16–18].

Many papers study the effect of foot strike pattern and footwear experimentally [1,7,10,13,

15,19,25].

A lot of complex high degree of freedom (DoF) mechanical models exist, which are suit-

able for motion capturing, dynamic and kinematic analysis of the human body and running

motion carefully. However these investigations are hard to use for prediction regarding the

effect of a parameter modification. A simplified dynamical model can be more predictive

than a very complex model with large number of parameters. Starting from the most com-

plex models, e.g. [21] towards the simplest ones, we can mention some low DoF segmental

models [15, 26,27] and some spring legged models [20,24], besides many other examples.
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Increasing the complexity of the model, the number of parameters can grow exponen-

tially. The most fundamental parameters, with which the running form can be characterised,

are the running speed, step size, stride frequency and strike pattern besides many other kine-

matic parameters. Many articles study the effect of cadence c, which is considered to be one

of the most important parameters, when running form is analysed [4,5,9,14,22]. This work

also focuses on stride frequency which is also common to call cadence.

At a certain speed, an infinitely many variations of stride length and stride frequency

can be chosen. The experiments explained in [4] showed that the optimal cadence, when

the oxigen uptake (the indicator of physical loading of the body) is minimal, and the freely

chosen convenient cadence are not the same for everyone.

In this paper we show by means of a simple dynamic model that cadence has a direct

effect on energy efficiency and impact intensity. The estimations are based on the bouncing

ball model. The bouncing ball model itself is validated by measurements.

2. The bouncing ball model

In order to achieve the minimally complex model, the mass of the body can be shrunken

into one point mass when it is in flight phase. The model is valid if external forces, like

aerodynamic forces are neglected. The parabolic path of the CoM during flight phase is

depicted in figure 1. The motion of the centre of gravity (CoG) in flying phase is described

CoG

y

x

h

Figure 1. Idealized path of a runner’s CoG.

by a parabolic curve:

x(t) = x0 + ẋ0t, (1)

y(t) = y0 + ẏ0t−
g

2
t2, (2)
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where x0 and y0 are the initial position coordinates and ẋ0 and ẏ0 are the initial velocity

components represented in a Cartesian system, depicted in figure 1.

The time period Tf of the flight phase can be expressed based on time derivative of

equation (2). The vertical velocity is zero, when the CoG is on the top of the parabola at

t = Tf/2, so that we can write:

0 = ẏ0 − g
Tf

2
. (3)

Besides, we can apply the principle of conservation of mechanical energy in vertical direction,

from which it is easy to determine the initial vertical velocity magnitude as the function of

the height h of the parapolic path.

ẏ0 =
√

2gh. (4)

Combining equations (3) and (4) we obtain the height h of the parabola as a function of the

flying phase time period:

h =
1

8
gT 2

f . (5)

Equation (5) clearly shows that the height of the parabolic path is a function of the time

period of each step hence it is a parameter of cadence.

The total time period T [s] of one step is in direct relation with cadence c which possesses

[steps/min] unit:

T =
60

C
, (6)

and the time period Tf of the flying phase and cadence has the relation:

Tf =
60

C
rf , (7)

where rf = Tf/T is the ratio of the flying phase time duration. Its typical value is in the

range rf = 0.4...0.7. In this work we assumed rf = 0.6 airborne phase ratio. The path in

the flying phase is depicted in figure 2 in case of different cadence values.

3. Measurements

In order to prove the validity of the bouncing ball model we accomplished an experiment,

when the motion of 41 runners was video-captured. Every investigated person was hobby

runner in the age from 15 to 50 and from both sex. The measured people were told to run

a distance of 5km with a convenient speed on an open air running track. Their motion was

recorded on a 3m long distance by a high resolution video camera after the first 4 km. The

speed of the camera was 50 frames/s and the resolution was set to 1920 × 1080 pixels.
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Figure 2. Parabolic path of CoG during flying phase in different cadence values (150...190).

The foot landing position and the vertical elevation A of the head was registered based on

the video frames. The vertical displacement A of the head gives an acceptable estimation of

the vertical displacement of the CoG of the body, however reference [8] provides a comparison

of methodologies and the results of a large scale data experiment which aims to measure the

vertical displacement of runners. Besides, the characteristic time durations, like stride period

T , and flight phase duration Tf was determined based on the frame indices. The velocity

of each person was determined based on the time duration that was needed to complete a

2.5m predefined distance. The parameters listed in table 1 were determined in case of each

runner: horizontal speed vx, stride length s, cadence c and vertical displacement A.

4. Validation of the model and discussion of the results

In order to validate the model, the measured data was plotted in figure 3 in which the

theoretical height h of the parabolic path as a function of cadence c is shown by solid line.

The measured values are depicted by dots, while the a curve fitted on the measurement

data is plotted by a dashed curve. Qualitatively good coherence can be observed between

the measured data and the theoretical curve, however the quantitave data have 20% error in

average. The average of the measured displacement is larger than the theoretically predicted

value. The possible reason is the further vertical displacement in reality when the leg is

grounded. For the investigation of this phenomena many researches are available, e.g. [20,24].

The relation between the parabola height h and the vertical velocity component v−y = ẏ0

right before the impact is given by (4). It is shown by [12] and [6] that the impact forces
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Table 1. Measured data of 41 people: running speed vx, stride length s, cadence c, vertical

displacement A

no. vx s c A
km/h m 1/min mm

1 16.1 1.45 176 65

2 13.6 1.3 167 80

3 9.4 0.9 171 52

4 9.2 0.9 176 76

5 9.8 0.975 167 74

6 9.4 0.875 188 70

7 9.8 0.96 167 66

8 9.4 0.91 171 74

9 11.0 1.125 158 93

10 8.8 0.975 150 88

11 13.6 1.3 171 91

12 10.6 1.11 162 96

13 7.5 0.725 171 63

14 9.6 0.901 171 40

15 10.2 0.975 176 59

16 9.7 0.99 162 86

17 6.8 0.725 150 56

18 6.8 0.725 150 44

19 13.8 1.375 167 91

20 9.8 0.88 171 85

21 9.8 1.08 150 92

no. vx s c A
km/h m 1/min mm

22 12.3 1.27 167 76

23 8.0 0.8 171 52

24 8.8 0.97 150 76

25 8.3 0.845 162 73

26 8.2 0.945 146 104

27 10.6 0.95 182 46

28 9.4 1.05 146 85

29 9.5 1.0 158 65

30 7.3 0.725 167 38

31 10.3 0.925 182 55

32 9.8 1.075 150 107

33 7.5 0.835 150 70

34 9.6 0.995 178 64

35 11.5 1.105 171 69

36 9.7 0.99 162 85

37 8.0 0.79 171 66

38 10.6 0.995 176 44

39 11.4 1.08 176 68

40 12.9 1.23 171 87

41 7.6 0.855 150 70

correlates with the kinetic energy content which is absorbed due to the foot impact. It

is called constrained motion space kinetic energy (CMSKE) in the literature. CMSKE is

directly proportional to the impulse of the contact reaction force and also to the peak reaction

force [11, 12]. The related effective mass concept for foot impact is introduced in [3] for a

one DoF model. The cited studies showed that foot strike intensity can be characterised by

the CMSKE which depends on the pre-impact configuration and velocity and the effective

mass matrix. All in all, the lower the vertical velocity is, the smaller the impact intensity is.

Since, the vertical direction motion is constrained by the ground in the bouncing ball

model, CMSKE is calculated from the vertical velocity component only:

Ec =
1

2
mẏ20 . (8)

We substitute equation (4) into (8) which provides the relation between the pre-impact

velocity and the height of the parabolic path. We obtain the following linear relation between
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Figure 3. Height h of the parabolic path as the function of cadence is plotted by solid line.

The measurement data for the vertical displacement A is depicted by dots. The dashed line

shows the curve fitted to the measurement data.

CMSKE (Ec) and parabola height:

Ec = mgh. (9)

Equation (9) shows that all of the potential energy of level h is absorbed by the constraint

that arises when the foot touches the ground at the end of the flight phase. The main

message is that that the impact intensity is in linear relation with the vertical displacement

of the body. The vertical displacement values A on figure 3 are directly proportional with

the impact intensity, that can be characterised by the impulse IF of the vertical component

of the contact force:

A = γIFy, (10)

where γ is a scale factor. The the impulse of the contact force is obtained by integrating it

on the time duration of the impact:

IFy =

∫
Fy. (11)

Figure 3 shows that infinitely high stride frequency and zero stride length should be

chosen theoretically in order to reach minimal energy cost and impact intensity. It is obvious,

that it is not feasible in reality. The optimal stride frequency is limited by the muscular

activity that depends on the stretch-shortening cycle of the muscles, which is not included
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by the model. Nevertheless, the model predicts correctly, that higher cadence should be kept

in order to achieve better energy efficiency and lower risk of impact induced injury.

Figure 4. Running speed (vx) versus cadence (c): measured data and the best fit line.

Figure 5. Running speed (vx) stride length (s): measured data and the best fit line.

As a secondary result shown by figures 4 and 5 the measurements confirmed that people

tend to chose a larger stride length and they do not change the cadence, when they are

running in different speed. So in case of the examined people, the running speed is set by

changing the stride length and not the cadence. The dashed line shows a line fitted on the

measured values.

53



5. Conclusions

The bouncing ball model was proposed and large scale experimental data was collected in

order to validate the model. It is experimentally confirmed that the bouncing ball model

is the minimally complex dynamic model when cadence and its effect on ground impact

intensity and energy efficiency of running are studied. According to the model, the vertical

displacement is directly proportional to the impact intensity, characterized by the impulse of

the ground-foot contact force. We showed by means of a very simple dynamical model that

stride frequency has a direct effect on energy efficiency of human running and impact intesity

when foot collides with the ground. The model verified that higher cadence is preferable,

when energy efficiency and injury preventing running form is developed.
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[12] Kövecses, J., and Kovács, L. Foot impact in different modes of running: mechanisms

and energy transfer. Procedia IUTAM 2 (Symposium on Human Body Dynamics, 2011),

101–108.

[13] Larson, P. Comparison of foot strike patterns of barefoot and minimally shod runners

in a recreational road race. Journal of Sport and Health Science 3, 2 (2014), 137–142.

doi:10.1016/j.jshs.2014.03.003.

[14] Li, L., van den Bogert, E. C. H., Caldwell, G. E., van Emmerik, R. E. A.,

and Hamill, J. Coordination patterns of walking and running at similar speed and

stride frequency. Human Movement Science 18, 1 (1999), 67–85. doi:10.1016/S0167-

9457(98)00034-7.

[15] Lieberman, D. E., Venkadesan, M., Werbel, W. A., Daoud, A. I., D’Andrea,

S., Davis, I. S., Mang’Eni, R. O., and Pitsiladis, Y. Foot strike patterns and

collision forces in habitually barefoot versus shod runners. Nature, Biomechanics 463,

7280 (2010), 531–535.

[16] Chi Running official homepage. www.chirunning.com, 2015. last accessed: Aug.

2015.

[17] Natural Running Center official homepage. www.naturalrunningcenter.com,

2015. last accessed: Aug. 2015.

[18] Newton Running official homepage. www.newtonrunning.com, 2015. last ac-

cessed: Aug. 2015.

[19] Meredith, K., Castle, B., Hines, D., Oelkers, N., Peters, J., Reyes, N., Conti,

C., Pollard, C., and Witzke, K. Peak impact ground reaction force during barefoot

and shod running. International Journal of Exercise Science: Conference Proceedings

8, 3 (2015). article 13.

[20] Merker, A., Kaiser, D., and Hermann, M. Numerical bifurcation analysis of the

bipedal spring-mass model. Physica D: Nonlinear Phenomena 291, 15 (2015), 21–30.

55



[21] Mombaur, K., Olivier, A.-H., and Crétual, A. Forward and inverse optimal

control of bipedal running. Modeling, Simulation and Optimization of Bipedal Walking

18 (2008), 165–179. Volume 18 of the series Cognitive Systems Monographs.

[22] Morin, J., Samozino, P., Zameziati, K., and Belli, A. Effects of altered stride

frequency and contact time on leg-spring behavior in human running. Journal of Biome-

chanics 40, 15 (2007), 3341–3348. doi:10.1016/j.jbiomech.2007.05.001.

[23] Novacheck, T. F. The biomechanics of running. Gait and Posture 7 (1998), 77–95.

[24] Srinivasan, M., and Holmes, P. How well can spring-mass-like telescoping leg models

fit multi-pedal saggital-plane locomotion data? Journal of Theoretical Biology 255, 1

(2008), 1–7. doi:10.1016/j.jtbi.2008.06.034.

[25] Wit, B. D., Clercq, D. D., and Aerts, P. Biomechanical analysis of the stance

phase during barefoot and shod running. Journal of Biomechanics 33 (2000), 269–278.
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Optimization of accuracy on a low-cost 3D mapping 

system for indoor navigation 

(MTR200-15)

Yves Bergeon, Václav Křivánek, Jean Motsch and Alexandr Štefek 

Abstract: This paper focuses on the possibility for a robot to retrieve its position 

relatively to a previous map created in a preliminary pass. To be able to find a 

position of a robot, the common solution is to use costly sensors (mostly lasers) to 

recalibrate the position evaluated by low cost onboard sensors (in order to deal with 

drifts of the low cost sensors). Our work evaluates the possibility to use a low cost 3D 

sensor (Microsoft Kinect or Asus Xtion) in an unknown environment, creating a 3D 

map in a first pass and using this map to estimate the position of the robot. This paper 

describes the tools used and presents some optimizations to improve accuracy. 

1. Introduction

Nowadays, robots begin to be widely used and near future will see newer robots for new usages, 

especially at home for supplying old people in their daily tasks. One of the challenges about such 

robots is the ability for them to know where they are in rooms (in a flat or inside a house). To get its 

position, robot should use a map of every room. On the other hand, to get a low cost robot, the map 

can’t be furnished for each house by the manufacturer. The robot needs to be able to build its own 

map alone or under the supervision of an operator the first time the robot discovers the house. Then, 

after this first operation to create the map, low cost sensors are commonly used on robots to compute 

its position. This process is not straightforward as its looks like. Several artefacts make it difficult to 

achieve a high degree of accuracy: odometry on wheels lost position if robot slips on the floor, 

accelerometer or gyroscope sensor drifts over time due to a double integration to get position from 

acceleration.  Even if these sensors were perfect, in a house, the robot can be hurt by an opening door 

or a walking pet. 

Such problems are already known, especially in industrial plants. When autonomous robots move 

in an industrial environment, different kinds of low cost sensors are onboard (odometry, inertial 

measurement unit, infrared and ultrasounds sensors) but also lasers which allow to recalibrate the 

position each time the robot comes near specific targets, dispatched in strategic locations along the 

moves of the robot. The main drawback of this method is that an analysis had to be done beforehand 

to find these strategic locations. 
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Robots for security application face the same problems. To inspect buildings, robots can be 

brought by people to inspect a specific place. In this case, the robots have to find their correct position 

to be able to inspect the different rooms with the programmed algorithm which define the different 

moves. 

For such problems, we developed an entire system to be able to build the map of the different 

rooms (using autonomous moves or supervised creation of the map) and we evaluate in practice the 

accuracy of our localization. We also identify some drawbacks of our method and optimize the 

system to improve accuracy after examination of preliminary results. 

2. Architecture of the system

We focus on using open solutions and relying only on non-free tools to evaluate the accuracy of our 

system. The robot chosen is originally based on the RDS Reference Platform from Microsoft 

(Parallax Eddie Robot). This platform was created to be integrated with Microsoft Robotics 

Development Studio [RDS], at that time a complete integrated development system for robots. 

Unfortunately, RDS has been discontinued. As a consequence, we moved to a different system: Robot 

Operating System, aka ROS. ROS is a meta-operating system which can work on top of Ubuntu 

Linux system (its primary development), Android system and Microsoft Windows partially. ROS was 

developed at its debut by Willow Garage and is now maintained by the Open Source Robotics 

Foundation (OSRF) and by many contributors around the world. The simulator maintained by OSRF 

was used in last DARPA challenge. 

ROS allows to use packages coming from different sources and to communicate from one 

package to another one using asynchronous messages (publisher/subscriber system) or services 

provided by other packages. This quite loose coupling eases the use of packages from different 

sources, like a package provided by a manufacturer, another one developed by a free contributor, and 

your own package. Currently, more than 1900 packages are available for ROS on its indigo version.1  

For our robot, whose structure is not far from the turtlebot robot from Willow Garage, we used a 

modified package for the turtlebot to be able to get our robot moving, to control its moves and to 

avoid obstacles. 

1 http://www.ros.org/debbuild/indigo.html 
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Figure 1.   Microsoft Reference Development Platform (left) and 

Turtlebot 2 from Willow Garage2 (right) 

We are looking for more than to move the robot in the different rooms of a building, but we also 

want to be able to create a map of the different rooms as the robot is moving. For this, we use a low-

cost RGBD Camera (Microsoft Kinect for Xbox 360) that doesn’t use a laser, but only infrared 

sensors to measure depth.  

Figure 2.   Microsoft Kinect for Xbox360 

The building of such a 3D Map is performed using the RGBDSLAM package developed by 

Freiburg University. This package performs localization and mapping simultaneously. We developed 

a strategy of moves for our robot to be able to compute a 3D Map. Reflecting the Kinect sensor own 

limitations, our map is restraint to an angular view of 78° about the z-axis.. This building of a global 

map is based on the fusion of successive RGB images, using points of interest in the images (found 

by SIFT [3] or SURF). We also need to get the depth of each of these points of interest to create a 3D 

map. 

2 https://www.willowgarage.com/turtlebot 
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Our first implementation of such this architecture was used to move the robot allowing the 

creation of the map of 2 rooms in 3D. The strategy of moving is not covered by this article. The result 

of the creation of the map of these 2 rooms is provided in figure 3 in 3D and in figure 4 in 2D. 

Figure 3.   Creation of the 3D Map in RGBDSLAM in the first room 

Figure 4.   Map of the 2 rooms in 2D 

As you can see on the map in 2D on figure 4, it seems that walls are not well detected as large 

lines for these walls are found. In fact, the artefacts are created by shelves that are against the walls 

and get detected. They look like some walls. We can conclude that the walls are indeed well detected. 
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3. Development of localization

After the first pass of creation of the map, we want to be able to localize the robot with respect to the 

map stored. To do this, we stored all the points of interest detected during the creation of the map. 

Each point of interest is defined as a quasi-unique key-point including x, y, z coordinates and a local 

description. The descriptor associated is a collection of 128 double values computed from gradient in 

the vicinity of this point (see figure 5). 

Figure 5.   Descriptor of key-point in YAML format provided by RGBDSLAM. 

When we put the robot on the floor, we choose to get only one picture to detect few points of 

interest and to compare them with points stored during the creation of the map. To evaluate if a new 

key-point is similar to one stored in the map, we need to evaluate for each new point the closest key-

point in the map and to reject points too far. This is performed using the method developed in [4]. Of 

course, the more points you get, the more computations you have to perform. The process may be 

costly both for time and energy.  

4. Results and optimization

The first results of this work were published in [1] with an average of accuracy of 60 cm. To improve 

accuracy, we optimized some points of our algorithm. This optimization is done offline on another 

computer, compared to the mapping that is performed using an onboard computer. 

The first problem is due to descriptor provided for SIFT points. In specific cases, some values of 

descriptor are not determined and RGBDSLAM provide NaN (Not a Number) in place of values. This 

affects our algorithm because some false key-points are detected which influence the precision of the 

position. In our new algorithm, all of the SIFT points that contain NaN were removed from the points 

detected in the new picture. 

%YAML:1.0 

Feature_Locations: 

   - { x:1.9235734939575195e+00, y:9.1164451837539673e-01, 

     z:8.4125488996505737e-01 } 

Feature_Descriptors: !!opencv-matrix 

   rows: 394 

   cols: 128 

   dt: f 

   data: [ 2.83587305e-03, 2.81927316e-03, 6.62827045e-02, 

 2.08859712e-01, 1.70482565e-02, 6.17182814e-03, 3.56298918e-03, 

 1.79634208e-03, 6.66413130e-03, 5.77429961e-03, 1.11864410e-01,… 
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The second aspect we optimize is about the range of detection. Even if Microsoft doesn’t provide 

accuracy data about his Kinect sensor (in term of volume of detection), this sensor was developed to 

be used in a range from 2m to 4.5m. We therefore remove all key points outside this range for the 

new picture. 

Figure 6 presents the position of the robot (black triangle) without optimization, figure 7 with 

optimization and figure 8 shows the comparison with real position. 

Figure 6.   Position of the robot detected (triangle) without optimization 

Figure 7.   Position of the robot detected (triangle) with optimization 
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Figure 8.   Position of the robot without optimization (light triangle), with optimization (strong 

triangle) and black circle for the real position. 

As expected, the accuracy of detection is better with optimization. This come at a reduction of 

the number of key-points detected. For example, without optimization, 450 points were detected. In 

our tests, we have generally one fourth of the initial key-points that are kept. In some cases, as for 

larger room, depending of position and orientation of the Kinect sensor, we get only a few key-points. 

One further comment is about the nature of the key-points detected. The key points detected on 

the last picture are not always the ones detected in the initial map. It depends heavily on luminance, 

position and orientation of the robot and even occlusions. With optimization, we observe that some 

case of no common key-points appeared. To be able to get more matching points, we can increase the 

distance of the matching comparison. As the method used [4] offer, we can modify a parameter to 

accept matching of farthest points. This ensures more key-points that can be matched but also induces 

a higher probability of wrong matching. In that case, there is a trade-off to find between accuracy and 

matching key-points detection. 

5. Conclusions

In this paper, we presented the architecture of our 3D mapping system and the approach we chose. At 

this time, we are able to create a 3D Map and to localize the robot in the room. We added a 

refinement step  to our algorithm to detect the position of the robot in the room. These optimizations 

allow getting a better accuracy at a price of rejecting many key-points detected, and in some cases no 

detection is possible. The result of increasing the number of matched key-points doesn’t look like a 

good solution, because the effect on accuracy is not easy to assess. 
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The future work will focus on using multiple views with the robot on the floor. The first idea will 

be to take pictures using only rotation of the robot to see if this improves detection of key-points and 

to check if accuracy is improved. 

The other point we had to work on is the CPU consumption. Detecting SIFT points and showing 

in 3D the result with RGBDSLAM is a heavy task that is relatively slow. We have to improve this 

part and to implement all part of our algorithm of detection directly onboard on the robot. 
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Study of dynamic forces in human upper limb in forward fall 
(LIF281-15)

Paweł Biesiacki, Jerzy Mrozowski, Jan Awrejcewicz 

Abstract: Knowledge of dynamic forces acting on the upper limb is useful, and 

sometimes even necessary, in its treatment and rehabilitation after injuries, during 

prostheses designing, as well as in optimization of the sports training process. In this 

work an attempt to determine the quantity of the inertia forces generated in forward 

fall has been undertaken. For this purpose a simplified mechanical model of the 

human body biokinematic chain has been prepared. Geometric data and mass of each 

element have been taken from anthropometric atlas for the Polish population. 

Kinematic data necessary to perform the analysis was calculated using fundamental 

laws of Mechanics. In this way accelerations of the selected points necessary for the 

determination of inertia forces acting on the individual links of the model were 

yielded. For validation of the obtained results a numerical model was constructed 

using SimMechanic module of the Matlab Simulink software. It made possible to 

compare the results obtained in both simulation methods. To make joints model more 

realistic a values of the viscous friction were assumed. 

1. Introduction

Approximately 90% of all fractures of the distal radius, humeral neck and supracondylar region of the 

elbow are caused by the forward fall onto the outstretched hand [1]. The mechanism of joint 

interaction, the forces distribution within the joint and the contributory effects of elbow joint 

disorders must be fully understood in order to prevent and minimalize those injuries. 

Chiu and Robinovitch [2] applied a two–degrees-of–freedom (2-DOF) lumped-parameter 

mathematical model for simulations of a fall on the outstretched  hand with  full elbow extension. 

Their model analysis suggested that fall from a height greater than 0.6 m carry significant risks of 

wrist fractures. The effect of elbow flexion at the moment of impact was investigated by Chou et al 

[3]. were considered elbow loads for models between elbows full flexion and full extension during 

a forward fall. The results of valgus-varus elbow analysis showed that shear force for the elbow full 

flexion model is 68% lower than in the case of the elbow full extension. Investigations of the ground 

reaction forces during forward fall showed that the first peak force value is reduced during an elbow 

flexion movement, while the impact peak force is postponed to the second peak force. From this 

follows conclusion that the elbow flexion movement may reduce the risk of injury during a forward 

fall. An experimental model for elbow load during a simulated one-armed fall arrest for three 

different forearm axially rotated postures and the relationship between the elbow flexion angle and 

different axially rotated postures were investigated in [4]. The results indicated that a fall on the 
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outstretched hand with externally rotated forearm should be avoided in order to reduce excessive 

valgus-varus shear force on the elbow joint. 

A 2-DOF impact model of bimanual forward fall arrests, basing on in vivo data of experimental 

falls, was constructed [5]. Its validation was confirmed by response simulation with separate 

experimental data. Results of its analysis indicated that the rapid arm movement towards the ground 

alone could be a major risk factor for fall-related injuries and that prolongation of the impact time 

through decreasing relative velocity between hand and ground allows to decrease the ground reaction 

force. In the study [6] authors investigated a stress contribution in the human upper limb during 

forward fall on the outreached hands. The results indicated that less risk of the fracture is supination 

position of the forearm. 

Dynamic models of human movement help researchers identify key forces, movements, and 

movement patterns that should be measured. It was found that the muscle function depends strongly 

on both shoulder and elbow joints position. Using Lagrange’ a method an at-home resistance training 

upper limb exoskeleton was designed with a 3DOF shoulder joint and a 1DOF elbow joint to allow 

both single and multiple joints upper limb movements in different planes [7]. The contribution of 

individual muscles motion of the glenohumeral joint during abduction and the examination of the 

effect of elbow flexion on shoulder muscle function was investigated by Ackland and Pandy [8].  

The fall simulation studies have investigated the biomechanical analysis on elbow extension and 

elbow flexion models. However, there is very little information about dynamical forces acting on the 

upper limb. Thus, the present study performs an numerical investigations to evaluate the torque in 

each joint during forward fall. The numerical results may provide useful insights into potential 

reduced risk of injuries during forward fall. 

2. Methods

Computer modeling is an effective tool to accelerate and improve the design of new mechanical 

system. Matlab and Simulink module are appropriate tools for creating computer model. To 

investigate the velocities and accelerations of the mass center of gravity (CGi) of each parts of the 

proposed simplified model of the human body developed was the mathematical model by.  
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Figure 1.   Mathematical model of human body 

 

Human body was modeled as a three parts system including: torso with legs (link1 - dimension r1), 

arm (link2 - dimension r2) and forearm with hand (link3 - dimension r3). Each part is represented as a 

rigid link with length proportions and mass distribution corresponding to the Polish population. The 

dynamic equations of such a mechanical system were derived using energy method. Lagrangian L of 

this system is defined as:  

( , ) ( , ) ( )L q q T q q V q   (1) 

where T is the total kinetic energy and V is the total potential energy of the system, q  and q are the 

generalized coordinates and generalized velocities of the system, respectively. The equation of motion 

is given by: 

d L L

dt q q q

   
   

   
 (2) 

where ),( qq   is the dissipation function. 

A three links system has three degrees of freedom (3-DOF), and hence three generalized coordinates 

are needed to describe it in arbitrary configuration. The generalized coordinates are θn, where 

n=1,2,3.  
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In formulation of the dynamic equations the following designations were used: 

ri - length of ith body part, where i = 1,2,3,

CGi – locations of the center of gravity of ith link, where i = 1,2,3, 

a – distance from joint 1 to CG2, 

b - distance from joint 2 to CG2, 

c - distance from joint 3 to CG3, 

mi – mass of ith body part, where i = 1,2,3,

Ii – moment of inertia of ith link about CGi, where i = 1,2,3,

ki - friction factor of ith link, where i = 1,2,3.

The position vectors for the center of mass for parts 1, 2 and 3 with respect to the fixed coordinate 

system are as follows: 

 torso with legs

1 1 1cos sinCGr a i a j    , (3) 

 arm

2 1 1 2 2 1 2( cos cos ) ( sin sin )CGr r b i r b j       , (4) 

 forearm with hand

3 1 1 2 2 3

2 1 2 2 3

( cos cos cos )

( sin sin sin )

CGr r r c i

r r c j

  

  

   

  
. (5) 

Differentiation of the equations (3), (4), (5) gives the velocities of the CGi: 

 torso with legs

. .

1 1 1 1 1(sin ) (cos )CGr a i a j      , (6) 

 arm

. . .

2 2 1 2 2 2 1 1 2 2 2( sin sin ) ( cos cos )CGr r b i r b j            , (7) 

 forearm with hand:

. . .

3 1 32 1 2 1 2 3

. . .

1 2 31 1 2 2 3

( sin sin sin )

( cos sin sin )

CGr r r c i

r r c j

     

     

    

  

(8) 

The total kinetic energy of the whole system is given by: 

. . . .
2 2 2

1 2 31 1 2 2 3 3 1 2 3

1
( , ) ( ) )

2
T q q m v m v m v I I I        (9) 
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Where v1, v2, v3 are the absolute velocities of CG1, CG2 and CG3, respectively. They was 

found by solving the equations (4), (5), (6). After simplification we have: 

2.
2

11v a   (10) 

2 2. . . .
2 2

1 2 1 2 2 12 1 12 cos( )v r b rb          (11) 

2

2

2 2 2. . . . .
2 2 2

1 2 3 1 2 2 13 1 1 2

2. . . .

1 3 1 3 2 3 2 31

2 cos( )

2 cos( ) 2 cos( )

v r r c r r

r c r c

      

       

     

   

 (12) 

 

Substituting equations (10), (11), (12) into equation (9) we get following equation for the total 

kinetic energy of the system: 

2 2 2. . . .1 1 12 2 2 2 2 2( , ) ( ) ( ) ( )1 2 31 2 1 3 1 1 2 3 2 2 3 32 2 2

. .
( )cos( )2 1 2 31 2 3 2

. . . .
cos( ) cos( )1 3 1 3 2 3 2 33 1 3 2

T q q m a m r m r I m b m r I m c I

r m b m r

m r c m r c

  

   

       

         

   

   

 (13) 

Potential energy of the system is expressed by the following formula: 

1 1 2 2 3 3( ) CG CG CGV q m gh m gh m gh   , (14) 

where 3,2,1, ihCGi is the height of center of gravity of ith link.  The respective values are as 

follows: 

1 1sinCGh a   (15) 

2 1 1 2sin sinCGh r b    (16) 

3 1 1 2 2 3sin sin sinCGh r r c      (17) 

Substituting equations (15), (16), (17) into equation (14), we obtained the total potential energy 

of the system as: 

)sinsin)(sin)()( 332232113121  gcmgrmbmgrmrmamqV   (18) 

The Lagrangian of the system has the form: 

. .

( , ) ( , ) ( )L q q T q q V q   (19) 
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Substituting equations (13) and (18) into equation (19) we get 

2. . .1 12 2 2 2 22( , ) ( ) ( ) 21 2 1 3 3 1 2 3 2 212 2

. . .1 2 2( ) ( )cos( )2 1 2 33 3 1 2 3 232

. . . .
cos( ) cos( )1 3 1 3 2 3 2 33 1 3 2

( ) sin ( ) sin sin )
1 2 1 3 1 1 2 3 2 2 3 3

L q q m a m r m r I m b m r I

m c I r m b m r

m r c m r c

m a m r m r g m b m r g m gc

         

           

           

        

(20) 

To find the dynamic equations of the system we have to compute partial derivatives of the 

Lagrangian (20): 

. .
( )sin( ) 1 21 2 3 2 2 1

1

. .
sin( ) ( ) cos1 33 1 1 3 1 2 1 3 1 1

L
r m b m r

m r c m a m r m r g

   


    


   



    

(21) 

. .

1 21 2 3 2 2 1

2

. .

2 33 2 2 3 2 3 2 2

( )sin( )

sin( ) ( ) cos

L
r m b m r

m r c m b m r g

   


    


    



   

(22) 

. . . .

1 3 2 33 1 1 3 3 2 2 3 3 3

3

sin( ) sin( ) cos
L

m rc m r c m gc        



     


(23) 

.
2 2 2

11 2 1 3 1 1.

1

. .

2 31 2 3 2 2 1 3 1 1 2

( )

( )cos( ) cos( )

L
m a m r m r I

r m b m r m rc





     


    



    

(24) 

. .
2 2

2 22 3 2 2 1 2 3 2 2 1.

2

.

33 1 2 3

( ) ( )cos( )

cos( )

L
m b m r I r m b m r

m rc

   



  


      



 

(25) 

. . .
2

3 1 23 3 3 1 1 3 3 2 2 3.

3

( ) cos( ) cos( )
L

m c I m r c m r c      




     



(26) 

2 2 2

1 2 1 3 1 1 1 1 2 3 2 2 1 2

1

. . .

2 1 21 2 3 2 2 1 3 1 1 3 3

. .

1 33 1 1 3 3

( ) ( )cos( )

( )sin( )( ) cos( )

sin( )( )

d L
m a m r m r I r m b m r

dt

r m b m r m r

m rc

   


       

    

 
       

 

     

  

(27) 
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2

2 3 2 2 1 1 2 3 2 2 1 2

2

. . .

2 1 11 2 3 2 2 1 3 2 2 3 3

. .

2 33 2 2 3 3

( ) ( )cos( )

( )sin( )( ) cos( )

sin( )( )

d L
m b m r I r m b m r

dt

r m b m r m r

m r c

   


       

    

 
      

 

     

  

 (28) 

2

3 3 3 3 1 1 3 1

3

. . .

1 3 13 1 1 3 3 2 2 3 3

. .

2 33 2 2 3 2

( ) cos( )

sin( )( ) cos( )

sin( )( )

d L
m c I m rc

dt

m rc m r c

m r c

   


       

    

 
    

 

    

  

 (29) 

Assuming that the dissipation of the system comes from friction in the joints, we get the 

following relation: 
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Partial differentiation of the equation (30) yields: 
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Substituting equations (21)-(33) into equation (2), one gets the following dynamic equations of 

three parts human body model: 
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Figure 2 presents the Simulink diagram used to solve the equations (34), (35) and (36). The 

results obtained in this way was validated using Simmechanic module of Matlab (Figure 3). 

Figure 2.   Simulink diagram used to simulate the dynamical system. 

Figure 3.   Simmechanic diagram used to simulate the dynamical system. 
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3. Results 

A sine function has been used as an input for calculation of the angular position of each link at the 

time. The sine input function is presented in Figure 4. Each joint is actuated individually with the sine 

function as an angular displacement about rotational axis zi, where i=1,2,3. Continuous line (y1) 

represents angular position of link 1 (torso with legs), dotted-dashed line (y2) denotes angular 

position of link 2 (arm), and fine dashed line (y3) shows angular position of link 3 (forearm with 

hand).  

 

Figure 4.   Angular input function. 

 

The figure above shows the simulated movement of the torso with legs, where ankle, shoulder 

and elbow joints are actuated. The functions were chosen in order to reflect the movement of the 

human body during the forward fall. The simulation time corresponds to the movement of the body 

without external forces, only under the action of the force of gravity. 
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Table 1. Model parameters of the simulated system. 

Body parts 

Torso with legs Arm Forearm with hands 

P
ar

am
et

er
s 

ri [m] 1.80 0.3 0.4 

a [m] 0.861 - - 

b [m] - 0.15 - 

c [m] - - 0.2 

mi [kg] 66 2.4 1.9 

Ii [kg m2] 21.564 0.015 0.017 

ki 0.01 0.01 0.01 
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Figure 5.   Accelerations of the links’ centers of gravity: a) torso with legs, b) shoulder, c) forearm with 

hands. 
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Figure 6.   Torques applied to the links: a) torso with legs, b) shoulder, c) forearm with hands. 

The diagrams on the figures 5 and 6 present accelerations and torques, respectively. Figures 5a 

and 6a refer to CG1 of torso with legs body part, figures 5b and 6b to CG2 of arm, figures 5c and 6c to 

CG3 of forearm. The subscripts m and s occurring in diagrams’ description denote values obtained 

using Simulink and Simmechanic programs, respectively. 

4. Conclusions

Modelling of the upper limb is important for better understanding of the relationship between 

different kinds of motion parameters and generated internal forces. The proposed model, although 

very simplified, gives some insight on the possible human dynamic behavior under the influence of 
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various forces acting on a man, during his locomotion, for example. The model discussed in this study 

was built to identify the problems arising from modelling in general and the issues concerning the 

forward dynamics simulation. In the results of the forward model, it could be seen that the initial 

conditions are of extreme importance. The aim of this research was to develop a dynamic model of 

the human upper limb and to evaluate this model by adopting an appropriate motion analysis system 

to verify hypotheses of the established motion during forward fall and to determine the torque in each 

joint of the upper limb for further verification studies. 

Comparison of the results of the motion simulation during forward fall, obtained using both Simulink 

and Simmechanic methods, showed good consistency. The little discrepancies in the results may be 

due to minor differences in the geometric model built in Simmechanic and its mathematical 

description. 
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Investigation of motion of a freight wagon aimed to 

identify the forces acting on the side wall of the wagon 

(VIB235-15)

Andrzej Buchacz, Andrzej Baier, Krzysztof Herbuś, Michał Majzner, Piotr Ociepka 

Abstract: In the work is considered the modification of the cargo space of a freight 

wagon of the 418V type. On the basis of the conducted inspection of the state of 

plating of freight wagons, carried out under the project number PBS2/A6/17/2013 

realized as a part of the Applied Research Program, funded by the National Research 

and Development Centre, it is possible to state that the main causes of damage and 

therefore repairing of wagon plating are chemical interactions of the carried material 

and the wagon body as well as mechanical damages. The introduced structural change 

consists in the use of composite panels which should protect the steel plating of 

a wagon body. Therefore, it is necessary to carry out a series of studies to check, 

among others, the strength parameters of the adopted constructional solution. For this 

purpose it is necessary to determine the maximal value of the force, derived from 

transported freight, which acts on the side walls of a wagon. In the work is presented 

a series of tests related to motion analysis of a freight wagon of the 418V type. The 

aim of numerical analysis was to determine the maximal permitted speed at which the 

car does not go off the rails. These tests were performed using the “Motion 

Simulation” module of the software of the CAD/CAE/CAM class Siemens PLM NX. 

It has been created a model prepared for motion simulation, in which have been 

defined joints necessary for the proper mapping of the wagon motion on a track way. 

The cycle of numerical tests was preceded by determination of the expected value of 

the permitted speed limit. This allowed narrowing the range of numerical 

investigations. 

1. Introduction

The introduction of various modifications in constructional solutions of the existing technical means, 

which aim is to improve their chosen properties, requires every time additional tests. In this study is 

considered the technical mean, which is a dumping freight wagon of the 418V type (Fig. 1). The main 

components of the analyzed system are: wagon box (1) mounted on the frame, two-axle bogies (2), 

the axes with mounted wheels (3) and a track (4), after which moves the considered wagon. Plating of 

the wagon box is constantly exposed to chemical interaction related to the harsh environment of the 

transported cargo and to mechanical influences associated mainly with the wrong process of loading 

and unloading of the wagon [1]. The mentioned groups of interactions could adversely affect the 

length of the life cycle of the wagon. Eliminating or reducing the listed interactions should allow to 
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extend the time of operation of the wagons, as well as reducing the costs of repairs. In the research 

project, realized by the team of investigators, is considered the idea of utilization the composite 

panels to cover the interior of the plating of the wagon box. The introduction to the wagon 

construction these changes forces conducting a series of strength tests regarding the modified system 

components. For this type of researches is necessary to know the maximal force with which the 

carried load acts on objects entered into the system. The analyzed force reaches its maximal value at 

the time when the freight wagon is moving, at the maximal permitted value of the speed, on the arc-

shaped raceway. Therefore it was attempted to determine the maximal speed of movement of the 

wagon on the raceway in the form of an arc. 

Figure 1.   Object subjected to virtual investigations (freight wagon of the 418V type) 

The considered object of investigations has the following characteristics: the length of 12,54 [m], 

width of 3.08 [m], height of 3.2 [m], wagon weight 27 000 [kg], loading capacity 31 [m3] payload 52 

000 [kg]. 

2. Analysis of motion of the freight wagon

The first step of investigations of the freight wagon was to create a model prepared for motion 

simulation. For this purpose was used the “Motion Simulation” module of the system of the CAD / 

CAE / CAM class (Siemens PLM NX) [2,3]. The model, prepared to motion simulation, was created 

on the basis of a solid model, which imitates the geometrical form of the 418V dumping, freight 

wagon. The model preparation consisted of defining: the objects of the “link” type (representing the 

geometrical form of particular components of the wagon); the objects of the “joint” type (specifying 

possible ways of movement mating between objects of the “link” type by receiving a certain number 

of degrees of freedom); objects of the “connectors” type (defining the nature of the contact between 

the wheels of the wagon and the rails). During creating the model, prepared for motion simulation, the 

following assumptions were made: 

 all objects of the “link” type are perfectly rigid - they do not undergo a deformation,

 geometric objects, being a part of a single object of the “link” type, do not change its position in

relation to other objects belonging to the same object of the “link” type, 
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 assumed model of the track maps its ideal state of the geometric form without deformation 

resulting from the manufacturing process and exploitation, 

 model of the track including its tilt, 

 wagon moves independently on the track, without regarding the contact with other wagons or a 

locomotive, 

 part of the track, which is a straight line, is designated to accelerate the wagon to the required 

speed value, 

 main motion analysis is carried out on the part of the track in the form of an arc. 

In the first developed model it was created 8 objects of the “link” type, 7 objects of the “joint” 

type and 16 objects of the “connectors” type. The first model, prepared to the motion simulation, 

contains the following groups of objects (Fig. 3). Objects of the “link” type: 

 L_Wagon – representing the geometrical form of the wagon box, with a frame and all elements 

which, during the movement, do not change their position relative to each other, 

 L_Tor – representing the geometrical form of the track on which moves the investigated wagon, 

 L_Os_WP_1, L_Os_WP_2, L_Os_WT_3, L_Os_WT_4 – representing the geometrical form of 

particular axles with wheels, 

 L_Wozek_P, L_Wozek_T – representing the geometrical form of two-axle bogies 25TNa. 

Objects of the „joint” type: 

 J_Fix (fixed type) – defining the behavior of the L_Tor object by limiting him 6 degrees of 

freedom (restrain), 

 J_Os_1_P, J_Os_2_P, J_Os_3_T, J_Os_4_T (revolute type) – defining the possible move 

between the objects L_Os_WP_1, L_Os_WP_2 and L_Wozek_P and L_Os_WT_3, L_Os_WT_4 as 

well as L_Wozek_T by limiting three degrees of freedom associated with object translation and two 

degrees of freedom associated with object rotation (it provides the rotation of the bogie axis together 

with wheels in relation to the body of the bogie), 

 J_Wozek_P-Wagon, J_Wozek_T-Wagon (revolute type) – defining the possible move between 

the objects L_Wozek_P, L_Wozek_T and L_Wagon (it provides the rotational move of bogies in 

relation to the wagon box). 

Objects of the „connectors” type:  

 G_Prosta_Koloi-osj – i=1..8, j=1..4 (3D contact type) – defining the nature of the 3D contact 

between the objects L_Os_WP_1, L_Os_WP_2, L_Os_WT_3, L_Os_WT_4 and L_Tor on a straight 

part of the track, 

 G_Luk_Koloi-osj – i=1..8, j=1..4 (3D contact type) – defining the nature of the 3D contact 

between the objects L_Os_WP_1, L_Os_WP_2, L_Os_WT_3, L_Os_WT_4 and L_Tor on the section 

of track in the form of an arc. 
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In order to introduce the extortion in the analyzed system it was defined the object of the „driver” 

type, which was linked with the J_Os_1_P object of the „joint” type. This link allowed to apply the 

extortion force in the form of the angular velocity of the front axle of the wagon, on which are 

mounted wheels. Forced in this way rotational movement of the bogie axle, through the use of the 

objects of the 3D contact type between the track and wheels of the wagon, and the objects of the 

revolute type between the axles of the bogie and its body as well as the bogie body and the wagon 

box, is transferred into the linear movement of the whole wagon. The extortion, introduced to the 

system, is defined as follows (Fig. 2): 

 ,,t,,t,timeSTEP 1100  (1) 

where: 

t0 – the beginning of the time interval in which the rotational speed of the L_Os_WP_1 object reach 

the value  ω0, 

t1 – the end of the time interval in which the rotational speed of the L_Os_WP_1 object reach the 

value  ω1. 

Between the value of the rotational speed ω related with the L_Os_WP_1 object and the value of the 

linear speed V of a moving wagon is the following relationship: 

,rV   (2) 

where: r – the radius of the L_Os_WP_1 object in the place of a contact with the L_Tor object. 

Figure 2.   Graphical representation of the utilized extortion 

To map the behavior of the wagon running on a trackway were created the objects of the 3D contact 

type. These objects characterize the way of mating between the wheels, included in the objects 

L_Os_WP_1, L_Os_WP_2, L_Os_WT_3, L_Os_WT_4 and rails belonging to the L_Tor object. It 

was assumed that the wheels with axles and rails are made of steel with the following basic 

parameters: density 7.8 * 10-6 [kg/mm3], Young's modulus 210 000 [N/mm2], Poissons ratio 0.3. On 

the basis of the documentation it was assumed that the created contact will be characterized by the 
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following parameters: stiffness (k) 100000 [N/mm], stiffness exponent (m) 1.5, material damping 

(cmax) 50 [N*s/mm], penetration depth (g) 0.1 [mm], stiction velocity 0.1 [mm/s], friction velocity 10 

[mm/s], static coefficient of friction 0.3, dynamic coefficient of friction 0.25. Basing on the presented 

parameters the model of 3D contact calculates the contact normal force (Fn). Normal force of the 

contact is expressed as the following relationship: 

,FFF ndnsn   (3) 

,gkF m

ns   (4) 

,
dt

dg
cF

nd
  (5) 

 ,c,g,,,gSTEPc maxmax00  (6) 

 

Figure 3.   Model prepared for the motion simulation 

In order to accelerate the wagon to the required speed it should be created a straight section of the 

track with the length of 200 [m] (Fig. 4). The length of the acceleration part of the track is resulted 

from the assumption that the tested object moves independently along a track-way, wherein is only 

driven the front axle of the wagon (to the desired speed and then it is kept constant value during the 

81



motion on the arc-shaped raceway) according to the expression 1. Due to the occurrence of the slip 

between the wagon wheels and the rail, in the start-up phase, it was increased the static coefficient of 

friction and dynamic coefficient of friction to the value that guarantees the target speed in the 

assumed period of time. It should be noted that these coefficients were changed only on the straight 

part of the track, and the move on the most dangerous part of the railway in the form of an arc took 

place in accordance with the previously adopted values of the parameters of the o 3D contact object. 

Figure 4.   Graphical representation of  the railway 

Firstly it was realized the analysis of the movement of such elaborated model, without taking into 

account the carried load. The simulations were performed taking into account the motion parameters 

listed in Table 1. 

Table 1. The list of values of parameters related with the extortion (wagon without the cargo) 

V [km/h] t0 [s] t1 [s] ω0 [/s] ω1 [/s] Simulation result 

70 0 15 0 2422 Without derailment 

80 0 15 0 2768 Without derailment 

90 0 15 0 3114 Without derailment 

95 0 15 0 3287 Without derailment 

100 0 15 0 3460 Derailment 

Figure 5.   Exemplar results of the movement simulations of the wagon without the carried cargo: 

a) without derailment, (b) the wagon derailment
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Then it was analyzed the wagon model with the carried cargo. For this purpose the object L_Wagon 

has been modified and it was introduced the body with a volume corresponding to the volume of the 

cargo space, equal to 31 [m3]. It was assumed that the wagon is transported gravel with an average 

density of 1 650 [kg/m3]. It was obtained the value close to the maximal capacity of the wagon of 52 

000 [kg]. For the model taking into account the carried load also was conducted a series of 

simulations, with regard to the parameters in Table 2. 

 

Table. 2. The list of values of parameters related with the extortion (wagon with the cargo) 

V [km/h] t0 [s] t1 [s] ω0 [/s] ω1 [/s] Simulation result 

70 0 15 0 2422 Without derailment 

75 0 15 0 2595 Without derailment 

77 0 15 0 2665 Without derailment 

78 0 15 0 2768 Derailment 

 

Figure 6.   Exemplar results of the movement simulations of the wagon with the carried cargo: 

a) without derailment, (b) the wagon derailment 

The obtained results of the analysis, on the basis of visual evaluation of derailing of the wagon, let to 

eliminate the ranges of speed values above which explicitly comes to wagon derailment from the 

track. However, with regard to the positive results of the simulation it should be examined the level of 

safety of the wagon movement on the track in the form of an arc. Accordingly, in the work is assumed 

that in the cases in which there has been no explicit derailment, it should be calculated the index of 

derailment danger, shown in [4,5]. The authors of these works suggest that the safety of wagon 

movement on the track is dependent on the relationship of forces Fy/Fz (Fig. 7). Where Fy force is 

described as a lateral, guiding one and the Fz force is described as the force of a vertical pressure of a 

wheel on the rail. Due to the geometry of the rail head and existing components of friction forces 

between the wheel and the rail head, it is assumed that the movement of the wagon along the track is 

safe if the ratio Fy/Fz < 0.78. Whereas this value is exceeded, it should be checked the vertical 

displacement of the wagon wheel, which should not be greater than 5 [mm]. 
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Figure 7.   Graphical representation of the guiding force Fy and the force of vertical pressure of the 

wheel on the rail Fz: (a) safety case, (b) danger case [comp. 4] 

Figure 8.   Values of the derailment index of the wagon at the speed equal to 70 [km/h] 

Figure 9.   Values of the derailment index of the wagon at the speed equal to 77 [km/h] 
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Due to the considered, in this work, the area of the problem the more interesting object of 

investigations is the wagon carrying the cargo. Figure 7 and 8 show diagrams which present the 

derailment index for the wagon with the transported load. In both presented cases, the value of this 

index is greater than the limit value. It could be seen that in the case of a wagon moving at the speed 

of 70 [km/h], the maximal value of the index is 1.2 and relates to wheel4 moving on the outer rail on 

the arc (wheel1,3,5,7 - the wheels moving on the internal rail, wheel2, 4,6,8 - the wheels moving on 

the outer rail). When the speed increased to 77 [km/h] maximal value of the ratio has increased to 

approx. 1.9 and relates to the same wheel. In the next step the displacement characteristics of the axle 

with wheel4 was examined. Fig. 10 shows that the characteristics of the wheel4 is within the range of 

the allowable displacement in the vertical axis (value referred to the reference value equal to 634 

[mm] in the absolute coordinate system). 

 

Figure 10.   Displacement of the wheel4 in the vertical axis 

during the wagon movement on the arc at the speed equal to 77 [km/h] 

On the basis of the two criteria it could be assumed that the maximal safe speed value at which moves 

the investigated wagon with the cargo, on the arc-shaped track, is 77 [km/h]. It should be noted 

however that in the case of analyzing the movement of a wagon moving at high velocities, besides to 

the phenomenon of climbing the wagon wheel on the rail head is also dangerous the phenomenon of 

detachment of the wheels of the wagon moving on the inner rail due to the occurrence of a centrifugal 

force. Therefore, in the work it was decided to examine the course of the value of the force Fz 

pressing the wagon to the rail. If the value of this force is equal to zero then the vertical movement of 

the wheels should be checked. In Figure 11 it could be seen that at approximately 22 second of the 

movement the force Fz is equal to zero. This means that the wheels wheel1,3,5,7 of the traveling 

wagon completely detached from the rail. This is illustrated in Fig. 12. The maximal displacement of 

the wheel in the vertical axis amounted to 25 [mm]. 

85



Figure 11.  Course of variability of the pressing force Fz 

Figure 12.  Vertical displacement of the wagon wheels 

3. Modification of the model prepared for motion simulation

The next phase of the work included operations aimed the detailing of the virtual model of the wagon 

movement on the trackway. For this purpose, the model prepared for motion simulation was 

complemented with the elastic elements. The introduced change forced also the remodeling of the 

same model. In the analyzed model was adopted an elastic element with a line characteristics: 

    ,txtxkFs 21  (7) 

where: k – stiffness 1*108[N/m], x1(t), x2(t) – displacements of the ends of the spring as a function of

time. 
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Figure 13.   Introduction of elastic elements to the virtual model 

For the modified wagon model, a cycle of motion simulation has been carried. Simulations were 

conducted in accordance with the previously described procedure for the speed values equal to 70 

[km/h] - no derailment, 75 [km/h] - no derailment, 77 [km/h] - no derailment, 80 [km/h ] - wagon 

derailment. Subsequently, the value of the wagon derailment index, at the maximal speed equal to 77 

[km/h], has been determined. In the described case, the maximal value of the index amounted to 7. 

Accordingly, it was verified the vertical displacement of wheels which run on the outer rail. All 

values of vertical displacements of these wheels does not exceed the value of 5 [mm]. Then it was 

verified the variation of the pressing force Fz and the vertical displacements of all wheels. On the 

basis of Fig. 14 it could be concluded that the maximal vertical displacement of the wheels was 8 

[mm] with respect to the initial displacement equal to 634 [mm] in the absolute coordinate system. 

 

Figure 14.   Vertical displacements of wagon wheels (detailed model) 

4. Conclusions 

As the result of conducted investigations was obtained the value of the safe speed movement of  

a wagon transported a cargo on the trackway equal to 77 [km/h]. The simplification, used in the work, 
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in the form of the lack of a trackway slope allows assume that the adopted model provides a margin 

of the safe speeds. As the result of model detailing it was obtained the model with lower values of 

vertical displacements of the wagon wheels, at the same speed of movement of the wagon on the track 

in the form of an arc. In order to obtain a proper fit of operation of the virtual model to the real object 

the research aimed at identifying the real object properties should be continued. 
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Negative elements optimization and realization in synthesis 

of discrete mechatronic systems

(VIB151-15)

Andrzej Buchacz, Damian Gałęziowski 

Abstract: In the paper, authors the known problem of vibration control, have studied 

in case of elements which can exhibits negative values and are applied to mechatronic 

discrete systems. Structures have been combined from piezo actuators, connected 

electric networks and mechanical discrete models. Depending on the phase of the 

synthesis process, chosen damping configuration of the piezo with the electric 

network, negative elements have been identified and described. Subsequently with the 

study on selection of corresponding negative stiffness and damping, presented in the 

graph form, optimal values for the systems can be read. Additionally, as the result 

limits and constrains in physical application and realization can be determined. The 

study has been done based on two degrees of freedom replacement model of cascade 

system. 

1. Introduction

In general, the technological development results in the automation and robotisation of several

different processes and productions in various kinds of industrial branches. Nowadays, all engineering 

works depends on the design that should correspond as much as possible to the real models. With help 

of the surrounding digitization, computer aided modeling, calculations, and smart materials, it’s 

possible to determine new and consistently cheapest solutions for known physical problems. The 

unwanted effect of vibration which is related mainly with machines, devices creation, work or their 

usage in divers conditions, is also one of the most important problems. That is due to the influence for 

the durability, maintenance and costs it can generate. This means an optimization in the parameters of 

modeled systems, in the assumed simplification level, will lead to calculable benefits and advantages 

in the reality. As a consequence it will lead to the optimization of the costs in the fabrication and 

production of the proper goods. 

In the paper, authors the shortly introduced problem of vibration control, have studied in case of 

elements that can exhibits negative values and have applied them to mechatronic systems that have to 

comply with given requirements in form of the resonant and antiresonant frequencies. These systems 

have been combined from piezoelectric stack actuators, electric external networks,  mechanical 

discrete models and have been synthesized [1]. The usage of piezoelectric materials for vibration 

control is commonly known [2, 3]. With the semi-active damping method that utilize the negative 

89



capacitance elements it’s possible to improve damping performances of vibrating systems [3-5]. 

Following achievements [1, 3-5] authors investigated the possibilities of determination and usage of 

parameters that will lead to negative value elements in the considered structures, what has been 

introduced in [6]. Negative stiffness [7], or damping elements, which can be obtained from 

dimensionless transformation and retransformation of mechanical replacement models are leading to 

negative capacitance and resistance elements in considered final mechatronic structures.  

The work extends and continues the works done in Gliwice Research Centre related with 

designing, analysis and synthesis of various types of mechanical and mechatronic vibration systems 

[1, 2, 6]. Based on last world-wide studies and achievements connected with negative value elements 

the work is giving a new approach to the problem of synthesis, going out of known frames. Negative 

capacitance [3-5], negative resistance [8, 9] connected within specific circuits might be new 

interesting solutions in vibration isolation area. Applying these achievements to the synthesis issue, 

it’s possible to shorten design time for the new systems that should work under specific and required 

conditions and widen the field of practical application in vibration control area. 

2. Negative elements in mechatronic discrete systems

 Considered mechatronic systems in each case are excited by the force F(t) and contain: 

mechanical part, piezo stack actuator connected  to external electric network. Elements that can obtain 

negative values in these systems during solving the reverse task, have been introduced by the authors 

in [6]: 

- in mechanical replacement model: stiffness and damping, 

- in final mechatronic structure: negative capacitance and resistance. 

All of them depends on the structure type, complexity of the system (number of degrees 

of freedom - DOF, piezo elements) and selected synthesis method. What is important, the ones related 

to mechanical replacement models,  are used indirectly. This is connected with the algorithm 

of synthesis [6], that contains transformation to dimensionless model and retransformation to final 

mechatronic structure phases.  

3. Key parameters identification and study

Due to complexity of the problem, the study has been done based on the cascade discrete

mechanical replacement model with 2 DOF, received from distribution of the dynamical 

characteristics function U(s) into continuous fractions, fig 1. The slowness function U(s), has been 

written as: 
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where: l – odd degree of numerator, k – degree of denominator, 1 kl , H – any positive real 

number. 

 Dynamical equation of the systems, and further analysis is done in dimensionless time τ: 

.2,1 t   (2) 

To transform the electric parameters that comes from piezo element characteristics from non-

dimensional model to final mechatronic one, piezoelectric equation are used: 

,eEsKE   (3) 

,EesD s  (4) 

where: σ – mechanical stress, KE – Young Modulus, s – mechanical strain, D – electrical 

displacement, εs – electrical permittivity, E – electrical field, e – piezoelectric constant. 
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Figure 1.   Mechanical replacement models with 2 DOF and their final mechatronic structures with 

piezo stack actuators 

 Synthesis process, while receiving the mechanical replacement model has been algorithmized. 

Key parameter during the distribution, is the stiffness c1 which is the first element obtained from 

solving the reverse task.  
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This value impacts on the rest of the elements inside the mechanical replacement model 

and indirectly for connection of piezo with electric circuit.  Following of (1), in general selection 

range of c1, is defined as: 

.,0
1

0










c

d
H  (5) 

From the other side, parameters related with applied piezo stack actuator, has been limited to the 

capacitance  Cps. That is needed to calculate the values of corresponding elements in the connected 

external circuits: LRn, LCn, LRCn (symbol n in written configuration types refers to negative values 

inside the network). The influence of the selection of both parameters that are leading to the optimal 

values and application constrains has been shown in next subsections.  

3.1. LRn configuration 

To obtain system represented in the fig. 1A, stiffness c1 has to be equal to the upper limit (5). 

That generates in total the system with two inertial and stiffness elements in the mechanical 

replacement model. Here damping  element dp normally should be taken according equations: 

,2 2hmd p  .0,0 minmin  h  (6) 

However to receive it negative, it has to be treated separately and the value of parameter h has  

to be taken out of the limits (6) and should be below the 0. That is generate after transformation and 

retransformation negative value of resistance Rx, which existence and usage in vibration damping was 

shown in [8, 9]. 

The impact of selection of dp out of defined frames (6) for the resistance in the LR configuration 

RxLR of considered systems has been presented in the fig 2.  

Figure 2.   Resistance RxLR in the electric circuit in the function of damping dp 
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 The capacitance Cps of the piezo can get only positive values. This is related with the fact that 

this value is connected with applied stack actuator. However in the fig. 3 it has been shown                   

the influence of Cps for the values of the resistance Rx, written as: 

,
2cC

d
R

ps

p

x 
 (7) 

with positive and negative values of damping dp in the mechanical replacement model. 

 

Figure 3.    Resistance in the electric circuit in the function of damping, for: the positive value of dp – 

Rxp, and negative value –  Rxn  

3.2. LCn configuration 

 The LCn, is one of the semi-active damping configuration of the system. Here the selection of c1, 

determines all parameters in mechanical replacement model and what is the most important impacts 

on appearance of additional c3 stiffness in the system. Taking the value of c1 out of required range (5), 

it’s possible to determine negative values of stiffness c3, that with the stiffness c2 determine the 

dimensionless parameter δ, which directly impacts on capacitance Cx in the external electric network: 

,
2

3

c

c
  (8) 

.


ps

x

C
C   (9) 

In the fig. 4 the impact of selection of c1 to c2 and c3 stiffness has been highlighted. Then in the figure 

5, behavior of the capacitance Cx.  
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Figure 4.   The influence of selection of c1 to c2 and c3 stiffness 

Figure 5.   Capacitance Cx in the function of c1 stiffness 

In case of LCn system, selection of the c1, impacts also on inertial element m2. That’s making 

indirect influence on external inductance Lx. To check that impact, following parameter λ is defined in 

the system as: 
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Based on (10), dynamical equations of the mechanical replacement model and transformations done 

according (2-4), the inductance Lx in electric network is written as: 
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2

1



ps

x
C

L   (11) 

Final dependence of the inductance Lx with constant Cps, from selection of c1 has been presented 

in the figure 6. 

 
Figure 6.   Dependence of Lx, from selection of the stiffness c1 

Increasing the value of capacitance Cps with the selection of piezo type actuator, referring to the 

equation (11) is causing the decrease of the value of Lx in the system. 

3.3. LRCn configuration 

 Relations between inductance Lx, capacitance Cx and the selection of c1, in case of the system 

LRCn are equal to LCn configuration. The difference is coming from additional damping element, 

which as opposed to LRn system is proportional to stiffness element: 

,3cd p  .0,
2

0 max

max

 


  (12) 

Therefore influence of c1 to the external resistance Rx has been investigated and shown in the figure 7. 

The value is calculated following equation (7). Dependence of stiffness c2 from c1 is the same as in 

the figure 4. 
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Figure 7.   Resistance Rx in the external electric network in the function of c1 

4. Discussion for physical realization

From physical realization side, during synthesis of considered systems, and the first phase

of creation of mechanical replacement model, selection of c1 is the most important. As in case of LRn 

configuration it do not have the influence on the parameters of the systems, in case of LCn and LRCn 

it has to be taken into consideration while designing of structures that has to comply with given 

resonant and antiresonant frequencies. However there are some constrains that comes from synthesis 

process. Taking the value out of required range (5) results in negative value of stiffness c3. 

Nonetheless this is realizable with the piezostack actuator connection with LCn or LRCn system, as it 

is transformed to circuit with negative capacitance proposed in [3-5] . Taking the value too much 

from defined range out of upper limit (5), is causing the value of c3 gets again positive value, but c2 

receives in the same time negative value, figure 8. That’s out of defined frames of considered 

systems, which means systems with negative stiffness c2 are not possible to be synthesized. 

Another issue has been identified as damping, or resistance in LRn or LRCn system. As in case 

of LRn, the value of damping has to be lower than zero from the definition, in case of LRCn it can be 

as well but this is not a must. With the selection of c1, the value of dp can be adjusted to negative 

value (figure 9) and used in the structure. The damping performance in each circumscribe case can be 

tuned or adjusted by the designer needs according presented elements, parameters related and their 

values. 
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Figure 8.   Limits in the selection of c1 for c2 and c3 

 

Figure 9.   Damping dp in the function of c1 

5. Conclusions 

 In the paper the negative elements and related most important parameters, to find optimal values 

while designing of mechatronic discrete vibrating systems, have been studied and presented. Physical 

realization constrains and range of the limits for described parameters following shown graphs can be 

read. The paper is the verification and extension of latest achievements related with synthesis of 

considered systems and usage of piezo and negative elements in vibration control. It is planned to 

study the problem in further works focusing for stability conditions, and do the investigation of usage 

directly the novel negative resistance isolators in vibration control. 
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Two-axis mechanical vibration harvester 
(VIB176-15)

Vytautas Bučinskas, Andrius Dzedzickis, Nikolaj Šešok, 
Ernestas Šutinys, Igor Iljin, Artur Kazickij 

Abstract: Powering of various sensors and data transmitter in remote environment 

requires power supply from batteries or installed power lines. In case of autonomic 

devices this became technologically inconvenient and raises maintenance costs. 

Ability of utilize mechanical vibration for small-scale power generation is known, but 

there are many cases, when such devices are not available due to characteristics of 

vibration. Applications like railroad cargo wagon, having no electrical equipment, 

there is an excellent example of application of vibration harvester. Usually harvesters, 

used in industry, are tuned to certain frequency and serve as source of power for many 

sensor powering applications. In case of chaotic vibrations, especially low frequency 

chaotic vibration, taking place in the space, requires special solution. This paper 

proposes solution of two-axis harvester, operating as mechatronic system with two 

mechanical and two electrical degrees of freedom. Research of such harvester is done 

theoretically and experimentally. Theoretical research was performed using Simulink 

model, build for all 4 degrees of freedom in different physical domains using original 

methodology. Experimental research performed on special test piece, excited by 

dynamic vibrator, using real vibration data from wagon frame accelerations in the trip. 

Paper presents results of the research and comparison between theoretical and 

experimental research. Finally, conclusion on research and obtained results are drawn. 

1. Introduction

Harvesting of mechanical energy there is well known and widely used process in small energy 

applications. It is necessary to state that mostly these devices are efficient in harmonic vibration cases 

and they are tuned to single frequency. Non-tuned harvesters still are under research and harvesting of 

energy from chaotic vibrations still is a challenge [1]. 

In XXI century technologies such as MEMS, MS and wireless systems, monitoring and 

supporting systems are increasingly penetrating to human’s life. All these technologies requires 

source of energy, which typically are batteries of different kind. Significant amount of different 

batteries in these devices requires monitoring and change of these batteries on time. In order to make 

systems more reliable and free from taking care of these sources of energy, there are possible to use 

mechanical energy for fulfilling of such small energy needs [1-4]. 

Energy harvesting systems are known in nowadays life. They can supply energy in places where 

conventional batteries is inconvenient to use of one or another reason. Mechanical energy is widely 
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available in real life. Structural vibration of road from traffic, bridge vibration can be easily harvested 

and used for mili- and microwatt energy supply. Human body also generates certain amount of 

mechanical energy. For example, if one considers large networks of low powered sensors (such as 

those, which may be attached to a bridge as part of a structural health monitoring system) then one 

can envisage a scenario where energy harvesters are used to transfer the vibration energy of the bridge 

into electrical energy for the sensors. This would alleviate the need for batteries, which, in this 

scenario, would be difficult to replace. Low energy consumption devices are requested in the market 

and will be more requested in the future [2-6]. 

This paper is dedicated to some aspects of building wagon frame generated mechanical energy 

harvester, based on electromagnetic induction effect. Wagon frame motion has low frequency (<20 

Hz) and chaotic directions. Classic vibration harvesters with low resonance frequency will have big 

mass and size, so there exist mechanical problem to build a sensitive dynamic system, consisting from 

high-frequency energy transforming systems and sensitive to low frequency mechanical system. In 

order to create a harvester system is necessary to research dynamical properties of such system. 

Research here is performed in few steps using dynamic and mathematical model of the system. Use of 

such model allows finding values of the system stiffness, damping ratio, which will allow maximize 

amount of generated power from railway wagon vibrations. 

This paper is an attempt to create system for railway wagon sensor power feeding device, which 

can give autonomy for sensors and other information transmitting devices. 

2. Theoretical research

Figure 1.   The horizontal pendulum revolves freely around suspension point. 

The pendulum revolves freely around suspension point, which is excitation aroused by 

coordinates x0 and y0 (see figure 1). At a time, when the pendulum touches the lower spring, the 

system get kinematic excitation y0 from the spring in vertical direction. The movements of the 

pendulum are described by coordinate θ1. 

The coordinates of the pendulum concentrated mass: 
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1101 cos lxx ; 
1101 sin lyy . (1) 

The systems kinematic energy is: 

 2
11

2
11

2

1
ymxmT    (2) 

Considering that x0, y0 and θ1 is function of time: 

11101 sin   lxx ; 
11101 cos   lyy . (3) 

In this way, the kinematic energy expression, which is applied to any state of the system: 

   211101

2

11101 cos
2

1
sin

2

1
   lymlxmT . (4) 

The Lagrange equation of second type created for each state of the system is: 

0
1111






































 
TT

dt

d . (5) 

There are three state of the object in question: 

1) The horizontal pendulum lying on the bottom affixed springs (see figure 2): 

 

Figure 2.   The horizontal pendulum in the lower position. 

In this case, the potential energy is: 

01111
2
11111 ;

2

1
ylkgym    (6) 

Dissipation function is: 

01111
2
111

2
11 ;

2

1

2

1
ylhr     (7) 

In this case, the equation corresponds to this condition: 

 
011011

1
2
111111

2
111101110111

2
11 coscossin

ylhylk

lkglmlhrylmxlmlm







  . (8) 
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Or taking into consideration that sinθ1=θ1; cosθ1=1. 

  0110111
2
11111

2
11101110111

2
11 ylhylklkglmlhrylmxlmlm    . (9) 

2) Horizontal pendulum raised up from the rest position, as shown in figure 3:

Figure 3.   The horizontal pendulum intermediate position. 

In this case, the potential energy is: 

11gym (10) 

Dissipation function is: 

2
11

2

1
 r (11) 

This state of taking sinθ1=θ1; cosθ1=1 corresponds to equation: 

0111101110111
2
11  glmrylmxlmlm    (12) 

3) Horizontal pendulum raised to the top for some reason and it compresses on the top the protective

spring (see figure 4).

Figure 4.   The horizontal pendulum in the top position. 

The potential energy is: 

1112
2
12211 ;

2

1
lkgym   (13) 

Dissipation function is: 

1112
2
122

2
11 ;

2

1

2

1
  lhr  (14) 
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Corresponding to the equation: 

  01
2
12111

2
12101110111

2
11   lkglmlhrylmxlmlm   (15) 

 

Figure 5.   The vertical pendulum revolves freely around suspension point. 

The pendulum revolves freely around suspension point, which transmits excitation along 

coordinates x0 and y0 (see figure 5). The movement of the pendulum describes the coordinate θ2. 

The vertical pendulum additionally has two springs on the left and on the right, whose function - 

to prevent the pendulum to rotate too much. (The pendulum is applicable structural limitations). 

It is three condition of systems: 

1) – Pendulum is in contact with a spring on the right side; 

2) – Pendulums isn’t in contact with a spring; 

3) – Pendulum is in contact with a spring on the left side. 

The coordinates of the pendulum concentrated mass: 

22022202 cos;sin   lyylxx  (16) 

The systems kinematic energy is: 

 2
22

2
22

2

1
ymxmT    (17) 

Considering that x0, y0 and θ2 is function of time: 

2220222202 sin;cos    lyylxx  (18) 

Then kinematic energy expression any state of the system is: 

   222202

2

22202 sin
2

1
cos

2

1
   lymlxmT  (19) 
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The Lagrange equitation of second type created for each state of the system is: 

0
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d  (20) 

1 condition 

Figure 6.   The vertical pendulum is in contact with a spring on the right side. 

Then vertical pendulum is in contact with a spring on the right side (see figure 6), the equation of 

potential energy is: 

2
21322

2

1
 kgym (21) 

Where y2=y0-l2cosθ2; Δ21=l2θ2. 

 222322202
2

1
cos  lkglmgym  (22) 

Dissipation function is: 

2
213

2
22

2

1

2

1
  hr  (23) 

Where 2221  l
. 

 2223
2
22

2

1

2

1
  lhr  (24) 

Corresponding to the equation: 

0

sinsincos
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2
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2
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222222
2
2220222022
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(25) 

or taking everywhere sinθ2=θ2; cosθ2 =1: 
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02
2
232

2
23222222

2
222022022   lklhrglmlmylmxlm  . (26) 

2 condition 

 

Figure 7.   The vertical pendulum is not in contact with a spring. 

Then vertical pendulum is not in contact with a spring (see figure 7), the equation of potential 

energy is: 

2220222 cos glmgymgym  (27) 

Dissipation function is: 

2
22

2

1
 r  (28) 

This state of taking sinθ2=θ2;cosθ2=1 corresponds to equation: 

0222222
2
222022022    rglmlmylmxlm  (29) 

3 condition 

 

Figure 8.   The vertical pendulum is in contact with a spring on the left side. 
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Then vertical pendulum is in contact with a spring on the left side (see figure 8), the equation of 

potential energy is: 

2
22422

2

1
 kgym (30) 

Where 2222 l
.

 222422202
2

1
cos  lkglmgym  (31) 

Dissipation function is: 

2
224

2
22

2

1

2

1
  hr  (32) 

Where
2222  l .

Corresponding to the equation: 
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222222
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2220222022
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lklh
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
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(33) 

or taking everywhere sinθ2=θ2; cosθ2 =1: 

02
2
242

2
24222222

2
222022022   lklhrglmlmylmxlm  . (34) 

The horizontal pendulum transition conditions from one state to another. 

The starting position of the pendulum is horizontal (see figure 2). The mass of pendulum m1 lying 

on the spring (k1, h1). Whereas the lower spring (k1, h1) bottom induction operates in a known 

oscillation y0, is switching to another condition (the horizontal pendulum intermediate position see 

figure 3) consider the condition (the lower spring not compressed and in which case it is disable 

with):

0011  yL  .

The transition to another condition (the pendulum rise to achieve and presses the spring (k2, h2) 

see figure 4) consider the condition: 

max11  

It is assumed that θ1max=10°. 

The vertical pendulum slides mode condition during oscillation from one state to another. 

The starting position of the pendulum is vertical. The main condition: the pendulum oscillate 

between springs k3, h3 and k4, h4 but not touch them (see figure 7). 
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If pendulum moves in direction of coordinate θ2 and oscillation angle is bigger than θ2max, spring 

is compressed k3, h3 (see figure 6). In this why condition of changing state is: 

max22    

When pendulum moves in direction opposite to coordinate θ2 and pendulum reaches spring k4, h4 

(see figure 8), condition of changing system state is:  

max22    

Accredited, that θ2max=10°; θ2max=-10°. 

Equations are solved using methodology described in [7]. Equations are rewritten in operational 

form after that in virtual MatLab environment is created SIMULINK model. In both system states 

excitation coordinates is x0, y0. 

The system of horizontal pendulum is described by coordinate θ1. Pendulum oscillation speed is  

1


 kinetic energy of horizontal pendulum is T1: 

2

2
1

2
11

1




Lm
T . (35) 

System of vertical pendulum is described by coordinate θ2. Oscillation speed is 2


 kinetic energy 

of vertical pendulum T2: 

2

2
2

2
22

2




Lm
T . (36) 

 Simplified schematic of energy harvester with horizontal pendulum and harvester with vertical 

pendulum is presented in figures 9 and 10.  
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Figure 9.   The simplified block diagram of horizontal vibration harvester. 

Figure 10.   The simplified block diagram of vertical vibration harvester. 
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Electromagnet, which is used in our system, creates nonlinear coefficients of resistance. 

 111 ; fr   and  222 ; fr  . In simplified diagrams this coefficients are represented by 

nonlinear damping blocks. 

3. Results of research  

In order to determine optimal parameters of pendulum it was decided to change oscillating mass m 

and coefficient of stiffness k. For the experiment were randomly selected free different masses 

(m1=0,040kg; m2=0,030kg; m3=0,020kg) and free coefficients of stiffness (k1=5000kg; k2=10000kg; 

k3=20000kg). Using different masses and coefficients of stiffness were created 9 combinations for 

calculations: m1k1; m2k1; m3k1; m1k2; m2k2; m3k2; m1k3; m2k3; m3k3. The Bests result are obtained 

solving combination m1k3, this results are represented in figures 11 and 12. 

 

 

Figure 11.   Dependency of kinetic energy in respect to time. 

 

Figure 12.   The horizontal pendulum angular velocity dependence of time. 

4. Conclusions 

Performed theoretical research and modelling of horizontal and vertical pendulum of two axis 

harvester behavior from kinematic excitation brings interesting and useful results. These pendulums 

can be excited from movement of real transport mean suspension parts, railroad wagon bogie frame, 
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for example. Such pendulum system can realize movement of wagon for energy harvesting in 

efficient way. Given results allows drawing these conclusions: 

 system efficiently excited from existing movement of railway wagon frame and bogie;

 amplitudes of excitation allows to harvest few miliwatts of electrical energy on coil;

 proposed model is useful for such system analysis and definition of parameters.
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Analysis of vibrations of a cable-pulley system using the absolute
nodal coordinate formulation

(VIB086-15)

Radek Buĺın, Michal Hajžman, Pavel Polach

Abstract: Cable vibrations can have an important effect on the motion of
a whole mechanical system and therefore it is reasonable to investigate the
dynamic behaviour of such systems including these structural parts. This pa-
per deals with the application of the absolute nodal coordinate formulation
(ANCF) used for the modelling of a system composed of a cable, a pulley, a
motor with prescribed motion and another rigid body, which is driven by the
motor with the cable. The ANCF was chosen as a suitable approach that can
allow to consider detailed interaction of a cable and a pulley with its nonlin-
ear behaviour. The ANCF uses absolute positions of nodes (reference vectors)
and slopes (reference vector derivations) as the set of nodal coordinates. An
in-house modelling tool in the MATLAB system was created based on the
proposed modelling methodology and the vibrations of the cable during the
motion of the whole system was studied with respect to different parameters.
The calculated results were compared with the measured results during real
experiments.

1. Introduction

There exist various machines and mechanisms, which are composed of the cables or wires

as driving elements. The motion control of such mechanical systems can be affected by

undesirable vibration of the flexible cable elements. Therefore, detailed modelling of such

systems is an actual problem in nonlinear dynamics.

Ways of the cable modelling can be divided into several groups based on complexity. The

simplest way how to incorporate cables in the equations of motion of a mechanism is the force

representation of a cable (e.g. [5]), where the inertia of cables is negligible with respect to the

other parts. The cable is represented by the force dependent on the cable deformation and its

stiffness and damping properties. A more accurate approach is based on the representation

of the cable by a point-mass model (e.g. [6]). In order to represent also bending behaviour

of cables their discretization using the finite segment method [10] or so called rigid finite

elements [11] is possible. Other more complex approaches can utilize nonlinear 3D finite

elements [3] or can employ elements based on the absolute nodal coordinate formulation

(ANCF) [10].
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This paper deals with the application of the ANCF used for the modelling of a system

composed of a cable, a pulley, a motor with prescribed motion and another rigid body, which

is driven by the motor with the cable. An in-house modelling tool in the MATLAB system

was created based on the proposed modelling methodology and the vibrations of the cable

during the motion of the whole system was studied with respect to different parameters.

The calculated results were compared with the measured results during real experiments.

2. ANCF cable model

A planar ANCF beam element of length l with two nodes (see figure 1) will be briefly intro-

duced in this section. Global position r = [ rx, ry ]T of an arbitrary beam point determined

by parameter p can be written as

r(p) = S(p)e, e = [ e1 e2 . . . e8 ]T , (1)

where S ∈ R2,8 is a global shape function matrix, e is a vector of element nodal coordinates

and p ∈ (0, l) is a parameter of a curve.

Figure 1. ANCF planar beam.

Standard procedures (e.g. the Lagrange equations or the principle of virtual work) can

be used in order to derive a mathematical model of the planar ANCF beam element. Kinetic

energy of the element with material density ρ is

Ek =
1

2

∫ l

0

ρAṙT ṙ dp =
1

2
ėT

∫ l

0

ρASTS dp ė =
1

2
ėTMeė, (2)

where Me is the element mass matrix.

Strain energy Ep of the element is used for the derivation of elastic forces in the ANCF

beam model and the form of an adopted elasticity model determines the complexity of
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the whole model. In [1], there are several approaches, which employ the separation of the

strain energy of longitudinal deformation Epl and the strain energy of transverse (bending)

deformation Ept as

Ep = Epl + Ept =
1

2

∫ l

0

EAε2 dp+

∫ l

0

EIκ2 dp, (3)

where E is Young modulus, A is the area of the cross-section and I is the second moment

of the area about a transverse axis. The possible models are then classified according to the

expressions for longitudinal strain ε and curvature κ. General expressions for these quantities

are

ε =
1

2
(r′T r′ − 1), κ =

∣∣∣∣d2r

ds2

∣∣∣∣ , (4)

where s is the parameter of a curve. Berzeri and Shabana [1] introduced several suitable

models for both longitudinal and transverse elastic forces, whereas the formulation denoted

L2T2 is employed in this paper in order to investigate the cable-pulley interaction.

The whole model of the ANCF planar beam element [1] is of the form

Meë + Ke(e)e = Qek (5)

and is characterized by constant mass matrix Me, strongly nonlinear stiffness matrix Ke(e)

derived using the strain energy and by vector of external forces Qek. The assembling of a

discretized flexible body (i.e. fibre, cable) model is straightforward and can be extended by

a suitable model of viscous forces.

3. Contact forces between a cable and a pulley

The presented cable model can be combined with the models of other bodies. The pulley is

modelled as a rigid body with one degree of freedom (rotation), the fibre is modelled as a

deformable body and it is discretized using the ANCF method to n elements. During the

interaction of these two bodies, the contact forces arise not only in element nodes and the

contact forces are distributed along the length of the contact arc. Therefore k points, which

correspond with the Gauss-Legendre integration points, are determined on each element

(k = 5 was used in this work). The contact forces are then evaluated for each of these point.

Let us have element e (e = 1, . . . , n) and point i (i = 1, . . . , k). In each time step, the

contact variables for each cable point are determined. The normal and friction forces can be

evaluated and then a Gauss-Legendre quadrature is used to obtain the vector of generalized

contact forces.
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3.1. Contact kinematics

Few contact variables, which are used in contact force models, are introduced. When each

cable contact point i interacts with the pulley for the first time, new stiction point ist is

defined on the pulley. The initial position of stiction point ist is the same as the position

of contact point i. During the simulation, the position of these two points is not equal,

because contact point i is rigidly attached to the cable and stiction point ist moves with the

pulley. The position of the contact and stiction point can be defined by angles αi and αi,st,

respectively. Then the radial penetration δei is defined as

δei = R− |ri − r0| , (6)

where R is the pulley radius, ri is the position of contact point i of the cable (defined in

equation (1)) and r0 is the absolute position of the pulley center. The tangential displacement

of the contact point with respect to the stiction point is defined as

sei = R(αi − αi,st). (7)

Penetration velocity ˙δei and tangential velocity ṡei are

˙δei = −ṙTi n ṡei = −ṙTi t−Rω, (8)

where n and t are normal and tangent vectors to the pulley surface at the contact point.

3.2. Normal contact force model

The well-known normal contact force formula was introduced by Hertz [2]. This model is

based on the theory of elasticity and describes a force between two perfectly flexible solids

with frictionless surfaces. The Hertz law can be expressed as

FNei = Kδnei, (9)

where K is the contact stiffness and n is the positive exponent, which reflects the shape of

contact bodies. This basic contact force model does not consider the dissipation of energy

during contact, therefore more complex models were developed. Hunt-Crossley’s model of

the normal contact force [2]

FNei = Kδnei(1 +D ˙δei), (10)

where D is the damping factor, was proposed as a more complex modelling approach. It

is based on a simple dissipation model, where the damping coefficient is dependent on the

penetration. The resultant normal contact force vector is defined as FNei = FNein.
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3.3. Friction force model

The friction forces must be also added to the interaction model. At first, friction force model

based on Threlfall model [2] were tested. It is formed by equation

FTei = cfFN

(
1− e−3(ṡei/vr)

)
, (11)

where cf is a friction coefficient, vr is a small characteristic relative tangential velocity.

This friction model is easy to implement, but it does not describe the stiction phenomenon

very well. Better stiction friction model can be found in [7]. This model uses two separate

tangetial force models, one for stiction force and one for sliding force and was tested in this

paper. The resultant friction contact force vector is defined as FTei = FTeit.

4. Whole multibody model

The cable model can be combined with the models of other flexible or rigid bodies and

with the model of kinematic joints. Due to the usage of absolute displacements as nodal

coordinates it is easy to define the kinematic constraint equations such as revolute or trans-

lational joints. The constraints between the chosen coordinates can be written using the

vector notation

Φ(q, t) = 0 (12)

and for the use in equations of motion it must be differentiated to obtain the Jacobian matrix

Φq =
∂Φ

∂q
=

[
∂Φi

∂qj

]
, i = 1, 2, . . . , m, j = 1, 2, . . . , n, (13)

where m is the number of constraints and n is the number of dependent coordinates. After

the introduction of vector of Lagrange multipliers λ the whole system of equations, which

fully describe the problem of the coupled system of flexible and rigid bodies, can be written

in the matrix form M ΦT
q

Φq 0

 q̈

−λ

 =

 g(q, q̇, t)

γ(q, q̇, t)

 =

 Qk −B(q̇,q)q̇−K(q)q

γ(q, q̇, t)

 . (14)

Generally, vector g(q, q̇, t) contains the sum of all generalized, potential and dissipative

forces and appropriate other derivatives of a kinetic energy, while vector γ(q, q̇, t) follows

from the differentiation of the constraint equations (see [10]). The approaches to the numer-

ical solution of equation (14) used practically in this paper are summarized in [4].
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5. Application

Experimental measurements focused on the investigation of the fibre behaviour were per-

formed on an assembled weigh-fibre-pulley-drive mechanical system (see figure 2), which was

described e.g. in [8,9]. A carbon fibre with a silicone coating is driven with one drive and it

is led over a pulley. The fibre length is 1.82 meters (fibre weight is 4.95 grams), the pulley

diameter is 80 millimetres. At the drive the fibre is fixed on a force gauge. In the other

end of the fibre there is a prism-shaped steel weight (weight of 5.035 kilograms in this case),

which moves in a prismatic linkage on an inclined plane. Drive excitation signals can be of a

rectangular, a trapezoidal and a quasi-sinusoidal shape and there is a possibility of variation

of a signal rate. The amplitudes of the drive displacements are up to 90 millimetres. In the

case presented in this paper the weight position angle α is 30 degrees and the pulley-fibre

angle ϕ is 150 degrees and it is changing during the motion.

Figure 2. Scheme of the testing mechanical system composed of a drive, a pulley, a weight

and a cable.

The particular signal defining the motion of the drive is in figure 3 together with the

measured position of the weight with respect to time. The measured motion of the drive

served as an input signal (kinematic excitation) for the numerical simulations. Chosen

calculated dynamic response of the weight using complex cable-pulley interaction based on

ANCF beam elements is shown in figure 4.

In order to study the complex behaviour of the cable during the motion, figure 5 shows
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Figure 3. Measured motion of the drive and the weight during the experiment.
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Figure 4. Measured and calculated motion of the weight for two different friction models.

time history of the transversal motion of the chosen node between the pulley and the drive.

This motion characterized transversal vibration of the cable which could be the problem

during the motion control of accurate mechanisms. Such character of the motion can be

seen also in figure 6, where the real trajectory of one chosen node between the pulley and

the weight is shown for two different friction models. Interesting information can be obtained
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Figure 5. Calculated transversal vibration in a chosen node of the cable between the pulley

and the drive.
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Figure 6. Calculated trajectory of a chosen node of the cable between the pulley and the

weight.

also from the parametric studies combined with state space plots for the motion of chosen

nodes (figure 7).
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Figure 7. State space trajectory of a chosen node of the cable.

6. Conclusions

The beam based on the absolute nodal coordinate formulation was used for the modelling of

cables, which could interact with pulleys or sheaves and demonstrate interesting nonlinear

behaviour. The cable-pulley interaction was studied by the weight-fibre-pulley-drive system

with prescribed kinematic excitation of the drive. Similar problem was also addressed e.g.

in [7] but the contribution of this paper is in the comparison with experimental results

measured on the real mechanical system and the focus on the transversal vibration.
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Robotic automation of the turbo-propeller engine blade grinding process

(MTR091-15)

Andrzej Burghardt, Dariusz Szybicki, Piotr Gierlak, Krzysztof Kurc, 
Magdalena Muszyńska  

Abstract: This paper proposes a robotic automation system for the grinding of turbo-

propeller engine compressor vanes. This proprietary conceptual solution includes  

a data acquisition system (a robotic 3D scanner), a neural control system and a robot 

which executes the grinding process using force control. The proposed solution has 

been verified on real-life components. 

1. Introduction

The continuous development of a sensory and actuation system allows the extension of the useful 

range of robotic systems into new areas of technology. The development of industrial robotics focuses 

mainly on applications that require a high level of process-robot interaction. This includes the blade 

or vane grinding process, where varying allowances must be removed. The key driver behind this 

development (with the minimization of human labor costs aside) is to improve the levels of safety and 

repeatability of product manufacture.  

The available references provide noteworthy works from two companies: AV&R Automation of 

Canada and JOT Automation of Finland. Moreover, the issue of blade and vane grinding and 

polishing by a Yamaha robot is considered in [2]. An interesting approach to the problem is 

demonstrated with an extensive ABB robotic station in [3]. The results of investigations into the 

aspects of force distribution, tool wearability and allowance removal during robotic processing are 

discussed in [4, 5]. The technology-related topics are largely confidential corporate information; 

hence the number of works published on this matter is very low. 

2. Genesis of the problem

Blades, vanes or airfoils are components of turbine engines, installed therein in cascades. The airfoil 

form allows conversion of the energy of the passing fluid into mechanical energy. In reverse 

applications of that solution, the airfoils allow conversion of mechanical energy into the kinetic 

energy of the passing medium, as used in compressors, for example. The main users of currently 

manufactured blades and vanes are the aerospace and power engineering sectors. There are a number 

of blade airfoil manufacturing technologies: from the most advanced, such as single-crystal casting, 

through CNC machining to electrochemical machining, a technique which has been used for decades. 
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Electrochemical airfoil forming is economically viable; however, the technology is sensitive to 

a number of factors that affect the processing parameters, e.g. temperature, electrical current value, 

gap clearance, etc. The resulting unique airfoils require a manual grinding process, which must be 

undertaken for every single piece produced, culminating in final polishing.  

The solution presented herein has been delivered for, on request of and in cooperation with Pratt 

& Whitney Rzeszów. It is a proposal for the automation of the blade/vane airfoil grinding process. 

Airfoil grinding is a repetitive and tiresome process which demands high manual skills, and thus it is 

fit for robotization or automation. Moreover, the solution discussed herein will markedly improve 

occupational hygiene and safety in the work environment, while reducing the number of defects by 

improving the finished product quality through elimination of the human factor (stress, fatigue and 

other errors) from the process. 

3. Process robotization

A blade from the Pratt & Whitney PT6 engine was selected as an example of the type requiring the 

grinding process to be performed with robotic automation.  

Figure 1.   Diagram of the robotic processing station. 
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The proposed robotic station will comprise an IRB 140 robot for processed component handling, 

a grinding tool, and an IRB 1600 robot with a 3D scanning head. The measurement system cooperates 

with the ATOS Professional software to exchange data with the robot controller (IRC5) over the 

TCP/IP protocol. The RobotWare robotic controller software assures control over both robots, and 

also features a force control functionality.  

The processing parameter (pressure force) variable is determined by a neural network. Based on 

a set of data produced from a number of test trials, the FVRL neural network makes decisions 

depending on the information fed back from the measurement system. The final force value, 

determined by the neural network, is transmitted to the IRC5 controller. 

The proposed robotic processing station, as shown in Fig. 1, was used in a study into the 

feasibility of automating the process of grinding turbine-prop engine blades. 

3.1. Data acquisition system 

The proposed robotic system enabled acquisition of measurement data representing the processed 

shape established by 3D scanning (Fig. 2). 

 

 

Figure 2.   The measurement process. 

The scanned 3D model is compared with a CAD master model to provide measurable information. 

The data thus provided is then exported to Matlab/Simulink. The measurement process uses an 

extension of the ATOS software, Professional Blade, which is intended for the measurement 

inspection of all types of blades. 
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Figure 3.   Image of measurements in progress. 

The measurement system allowed 80 points to be produced (Fig. 3), representing the relationship of 

force to the amount of removed material. 

3.2. Neural process controller 

The neural controller for the blade grinding process was built in Matlab with the use of the Neural 

Network Toolbox library feature. A feed-forward network was applied to approximate the 

relationship between tool pressure and material allowance, with learning occurring via an error 

backpropagation algorithm [1]. A programming tool was developed for the study that allowed testing 

of the quality of the network approximation in relation to the following parameters: number of hidden 

network layers, number of neurons in hidden layers, neuron activation functions, teaching parameters, 

etc. Tests were carried out by changing the number of hidden layers from 1 to 3 and the number of 

neurons per layer from 3 to 30, while three types of neuron activation functions were investigated: 

linear, unipolar sigmoid and bipolar sigmoid. Based on the results, a network was chosen having two 

hidden layers and nine neurons in each hidden layer. The hidden layers featured unipolar sigmoid 

functions for neuron activation, whereas the output layer had linear activation functions. The weights 

for the neural network were learned using an algorithm based on the Levenberg-Marquardt 

optimization method. 

The teaching data were provided from the experimental measurements. The blade suction face 

had 80 evenly spaced points, positioned at the intersection of the lines shown in Fig. 4, where the 

geometrical features were measured in order to determine the material allowance.  Next, the same 

surface was machined at a predefined tool pressure force, followed by another measurement of the 

surface geometry. The experimental procedure allowed the relationship to be established between the 

removed material layer and the tool pressure force. 
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Figure 4.   Material allowance on the blade suction face. 

The neural process controller was designed to learn the studied problem in reverse: the controller 

generated the tool pressure force values at each of the 80 measurement points at a known value of 

allowance for each of these locations. The input and output layer structures of the neural network was 

related to the measurement data structure; hence the neural network had 80 inputs and 80 outputs (see 

Fig. 5), equal to the number of measurement points. 

 

 

Figure 5.   Neural network structure. 
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The network input data vector contained the material allowance values for the 80 measurement 

points, and the input data was standardized at an interval of [0-1]. The structure of the neural network 

means that the material allowance value at any defined point affected the value of the force generated 

at that same point as well as the pressure force values at other points. The advantage of this solution 

was that the generated pressure force would not change rapidly between adjacent points. This was 

considered important in order to achieve streamlined (smooth) machining. Moreover, it made the 

process control system less sensitive to potential measurement errors. 

Figure 6.   Graphical presentation of the tool pressure forces required to remove the material allowance 

at the individual measurement points. 

Fig. 6 gives a graphic representation of the values of pressure force at the individual measurement 

points as generated by the neural process controller for the blade shown in Fig. 4. 

Figure 7.   Relationship between pressure force and allowance at selected measurement points, as 

generated by the neural process controller. 
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It is evident that where larger allowances occurred the generated pressure forces was higher than 

at the points with a lower allowance. The exact dependences between tool pressure force and material 

addition at measurement points C13 and C28 are shown in Fig. 7. The magnitudes of the relationships 

were developed by the neural controller for the grinding process. The dependences were similar in 

nature at the other measurement points. 

The values of applied pressure forces were in the range 2.5-8 N. The applied tool pressure forces 

were never below 2 N, which is the lowest limit of effective force control in the robot control system. 

On the other hand, pressure forces above 8 N would result in overheating of the cutting tool surface, 

which was considered unacceptable. 

3.3. Force controlled robot 

The traditional approach to robotic processing of material involves the execution of preprogrammed 

motion trajectories. In reality, there are a number of technological processes (e.g. casting or 

electrochemical machining) that warrant the production of intermediates with an accuracy tolerance 

high enough to require adapting the robot motion trajectory to suit the varying airfoil form. One of the 

tools able to solve this problem is force control, where the robot controlled motions are adjusted 

according to feedback from force sensors. 

 

 

Figure 8.   View of robot paths, RobotStudio software. 

The solution proposed here applies the FC pressure functionality. Based on a number of test runs, 

a solution was proposed that consisted of a fixed tool and a moving reference system for the work 

object, attached to the robot arm. The IRC5 controller software of the robot, the program, and the pre-

set motion trajectories were developed in RobotStudio (Fig.8). 
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Figure 9.   Simulation of a station, RobotStudio software. 

An advantage of the proposed approach is the reduced impact of disturbances from 

electrochemical machining spindles. With the rotating tool installed on a robotic arm, a force sensor 

records the force value and its disturbance (Fig. 9). In order to eliminate the latter, low-pass filtering 

values are selected for each individual solution. The filtered measurement signal of the force values in 

three axes operated with an electrochemical spindle mounted on a robotic arm is shown in Fig. 10. 

The measurements were recorded at a preset stabilization of the force at 5 N using the ABB Test 

Signal Viewer software. 

Figure 10.   Measurement values from the three axes. 

The force control approach allows the system to be protected from the effects of long-term wear 

of the tool, and the adaptation of the motion trajectory to minor variables on the component form. 

4. Verification

The present study concerned the grinding of a blade suction surface. The robotic processing

station is shown in Fig. 11. The blade before and after grinding is shown in Fig. 12. The measurement 

report for pre and post grinding is shown in Fig. 13, respectively. 
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Figure 11.   Robotically automated processing station. 

               

Figure 12.   View of a blade before and after grinding. 

               

Figure 13.   Measurement report before and after grinding. 

The present study demonstrated that the grinding process could be completed within the preset 

manufacturing tolerance ranges. 
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5. Conclusions

The employment of generalizing properties in an artificial neural network has allowed the

generation of information that enables the tool to component contact force to be managed in a way 

that assures grinding to the predefined specifications. The present solution is still at the laboratory 

stage; further development work will focus on automation of the solution by integrating the network 

algorithms within the robot controller instead of using a separate PC workstation. 
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Nonlinear dynamics of waves in inhomogeneous media with 

fractal structures

(NON244-15)

Anatoli Chigarev, Victor Polenov, Pavel Shirvel 

Abstract: The wave propagation in an elastic inhomogeneous medium with 

mechanical parameters which are functions of the spatial coordinates is considered. It 

is assumed that the pore sizes or the including sizes are small compared with the 

distance at which the kinematic and geometrical characteristics of the motion change 

significantly. Generally, the mathematical models in the theory of wave propagation 

are continuous, linear and smooth. Natural media are generally rough and 

discontinuous. It is possible to determine the fractal dimension, which characterizes in 

fact the irregularity of the real media. It is known that the fractal dimension exceeds 

the Euclidean dimensions. An wave in an inhomogeneous medium is understood as an 

isolated surface, which the stresses and rates of displacement are discontinuous. The 

Fermat’s principle allows to construct ray trajectories, the principle of Huygens 

allows to construct wave fronts. An acoustical energy in continuous media in 

accordance with Fermat’s principle and principle of Huygens propagates along ray 

tubes and locates at a surface front of the wave. In the paper is considered the 

modification of the Fermat’s principle for wave propagation in the media with fractal 

structure. In this case the differential equations for the ray trajectories have the order 

which is equal to the dimension of the medium. Mathematical simulation of the 

deterministic chaos for the behavior of the energy flux lines in the frame of nonlinear 

dynamics of rays in the inhomogeneous medium is considered. 

1. Introduction

The model of elastic stratified medium widely is applied in seismology geotechnique [1-4]. In the 

case, if a medium constitutes from discrete layers, then it is necessary to solve the boundary problem 

for each layer. It is enough a laborious investigation [5]. The dynamic equations for inhomogeneous 

media are the differential equations with variable coefficients. As is known for solving of these 

equations have not general analytical methods. The most famous methods which are applied for 

solving of differential dynamical equations for inhomogeneous media are a ray method [6] and 

method of effective medium [7]. For some time past a hypoplastic model is applied for an 

investigation of seismic wave propagation in a soil [8, 9]. The model of hypoplastic medium allows to 

describe many effects which are observed in granular soils. We consider a successive application of 
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effective medium method and of ray method in order to receive of approximate analytical solutions 

for description of shear wave propagation in stratified layer, which lies on a half space. 

How it is known a real soil is inhomogeneous, it being knows that usually it is stratified in a depth. 

We take the model of effective medium which has the same macroscopic properties as real 

inhomogeneous medium. The effective model can be received on a basic of experimental results in 

the form of phenomenological theory or on a basic of theoretical accounts. We take as effective 

model a hypoplastic medium [8, 9], which describes a medium with initial stresses increased in depth 

linearly. It is correct if a thickness  nili ,...,2,1  of each layer is comparatively less than a thickness

L  of a great layer  Lli  .

For a solving of constitutive phenomenological equations we apply a ray method. An application 

of this method is correct if a wave length   (or a width of a wave packet) is less than a variation 

scale of effective properties. It is mean that macroscopic properties change monotonically in a depth. 

1.1. Formulation of problem 

The layer of stratified granule medium lies on the surface 101 xx   (Fig. 1). A thickness of the layer 

is L . At 0t  the plane 101 xx   (the surface 0S ) the velocity begins to move with the velocity 

),( 10 tx  in the directions 2x . Then there is the plane shear wave which propagates in the 

direction 1x . At first we consider a propagation of energy in any layer. 

x1=x10

x1+l1

x1+l1+l2

x2

L

x1

Figure 1.   The stratified layer L which lies on halfspace 10xx  . 

2. Shear wave propagation in stratified granular layer with effective hypoplastic

properties

Let a layer of a thickness L  be on a half space 101 xx  . The layer L  constitutive from some layers 

of thicknesses ),...,2,1( nili  , it being know that ,Lli   ),...,2,1( ni  . For example it may be an 

interchange of layers of sand and clay (Fig. 1). 
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 Let a shear wave be to incidences on a plane boundary 101 xx   and is propagated from the half 

space 101 xx  . If we want to solve the problem exactly we must set boundary conditions (or 

connected conditions) and describe wave propagation for each layer. There are very unwieldy 

expressions especially for multiple scattered waves. 

 A method of effective medium allows to obtain a solution of this problem [7]. Applied an 

averaging method (method of homogenization or energy continuation) we obtain a phenomenological 

model of inhomogeneous medium [7]. 

 Suppose that macroscopic (effective) conditions of layer medium are described of the equations 

of a hypoplastic medium [8, 9]. 

In general case the equations of wave propagation in hypoplastic medium have the form [6, 7] 

,Div *

dt

d
fT


  (1) 

where f  is a mass force vector,   is a vector of quantity of motion,   is a rate vector, 

e

e sl






1

*
 is effective (average) density, l  and s  are densities of liquid and hard fraction in a 

soil respectively, T  is a tensor of effective (total) stresses in an inhomogeneous medium, e  is a pore 

quantity. 

 The kinetic equations we write in the form of constitutive equations of a hypoplasticity [8, 9] 
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T  is Jaunman’s derivative time. 
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 A density 
*  satisfies the equation of continuity 

  ,0div *
*




dt

d
 (5) 

and pore quantity e  satisfies the equation 

.)1( trDee   (6) 
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We represent the each field value ),( txTij , ),( txii , ),( txui , ),( tx , ),( txe  which describes a 

dynamical state in hypoplastic medium in the form of the sum 

TTT
~

  ,   ~
, uuu ~  ,   ~*

, eee ~*   , 

where T ,  , u , 
 , e  describe initial state and T

~
, 

~
, u~ , 

~
, e~  describe disturbances.

The initial stresses ),( txT 
 satisfies to the equations of equilibrium 

,0 gradDiv 
 fPT l  (7) 

then the equations for disturbances have the form 

, gradDiv
dt

d
PT l


 (8) 

Here and in the future the sign ~ we do not write. 

Let Eq. (2) be the form 
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The equation for disturbances follows from Eq. (4) for case when 
*
ijT


 is not enough 

||||),(),( DeTNDeTLT   . (10) 

Therefore the Eqs. (1), (3), (5) describe a disturbance propagation in hypoplastic medium. 

3. Shear wave propagation in effective hypoplastic medium

Set initial and boundary conditions on plane 101 xx   in the form 

),0,(),( 12012 xtx t    ),,(),( 10212 101
txtx xx   (11) 

),0,(),( 1120112 xTtxT t   ).,(),( 1012112 101
txTtxT xx   (12) 

The motion equation Eq. (3) in this case has the form 
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and the definition Eqs. (10) we write in the form [5, 7]. 
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 The coefficients iK  we write analogous [6, 7] in the form 
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 Suppose that for an initial state it has place the condition 0)( 112  xT . 

 Then the coefficients 7541 ,,, KKKK  vanish and we obtain from Eqs. (13-16): 
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 Combined Eq. (13), Eq. (16) we obtain the equations for wave disturbance propagation in the 

layer with effective properties 
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4. Solving of equations of shear wave propagation in layer

The differential equations Eqs. (19),(20) have variable coefficients. It does not exist of general 

analytical methods for a solving of similar equations. The ray method is the most effective among 

different asymptotic methods for solving of differential equations with variable coefficients [6]. 

For nonstationary waves an application of this method is correctly, if a wave length   is more 

less than a variable of a scale of effective layer parameters. It has place if an inhomogeneity of a layer 

changes in a depth monotonic. 

It is know that usually a stiffness of a layer changes local nonmonotonic in a depth, but effective 

stiffness is monotonic function of spatial coordinate in a depth. 

Let in the equations Eq. (19), Eq. (20) be the coefficients )(),( 11 xxKi   are effective parameters 

of medium and a scale of variable iK ,   is more greater than a wave length. An effective 

approximation gives us principal estimation of wave field values caused of integral (average) 

conditions of real medium. 

Write the solution of the equations Eq. (19), Eq. (20) in the form 
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where  1x  is eiconal, )(),( 1
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If 0f  is Heaviside function )(H  then nf  has form 
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Let initial impulse be an impulse function )(0 tf  in the form 
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where the function  ,0 tJ  is expressed with a helping of Heaviside function 
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The boundary conditions by 101 xx   have the form 

 

 



,)(),(

,)(),(

010
)0(

1210
)0(

12

010
)0(

210
)0(

2

tJxTtxT

tJxtx
 (29) 

The wave which comes in the point 1x  is described with a registration in the formulas 
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The conditions allow to obtain a variation of wave profile. With a registration Eq. (29), Eq. (30) 

we have 
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Integrated on t  the left part of (31) from O  up to  1x  we obtain 
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From Eq. (4.31), Eq. (33) it follows that if 1
)()(

)()(
4

10103

113 




xxK

xxK
 then a wave profile takes place a 

compression. Therefore the rate displacement wave has the compression and the shear stress wave has 

the decompression (Fig. 2). 

x1 /L

x12 / L

1

τV   / τ1V

10 x13 / L x14

L

x15

L

x16

L

x17

L

Figure 2. The results of shear stress wave’s decompression. 

Consider a propagation of shear wave which has triangular profile. In this case we can calculate 

analogous to rectangular impulse. The results of these calculations are presented schematically on 

Fig. 3. 

x1 /L

x12 / L

1

ττ  / τ1τ

10 x22 / L

Figure 3. The schematically results of propagation of shear wave which has triangular profile. 

5. Oblique wave incidence on boundary of layer

Consider the oblique wave incidence on the boundary 101 xx   from the half space 101 xx  . In this 

case the rays will be curve lines which satisfy to the equations [17]. 

,
ds

xd  
,gradn

ds

nd



n

ds

d



, (34) 
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where   is a tangential vector to ray trajectory, n  is a refraction coefficient, s  is a length along a 

ray. 

For the systems of differential equations  we set boundary conditions on initial surface 

,0xx  ,0xx   0 ,  (35) 

for  0SS    101 xx  . 

If ray trajectory is found so surface (eiconal)   is calculated along a ray accordingly do formula 
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x  [7,8,17,18]. Ray trajectories are orthogonal to surface   constx  1 . 

Consider the Eq. (34) in plane 21Oxx   
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The equation for ray trajectory has the form [17] 
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Set L  be 500 m then we have 

1

2

500

500

x
n


 ,  (38) 

where   ),(/, 21021 xxCCxxn S  is a refraction coefficient. 

The behavior of rays for different angles between an axis 1x  and rays is depicted on Fig. 4. How 

it follows from Eqs. (37,38) 0/ 1 dxdn , then ray trajectories which have the angle 
2

0


  become 

bent and drew near to the vertical. Therefore the wave front, which incidences on the free surface 

Lx 10 , is parallel to plane Lxx  101  and a refraction wave is plane, too. 
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Figure 4. The schematically behavior of rays for different angles between an axis 1x  and rays. 

6. Conclusions

A combined application of effective medium method and of ray method allows to solve the

problems of wave propagation in a stratified medium. A model of a hypoplastic medium is applied in 

the capacity of an effective medium. This approach is correct if thickness il  of each layer is more 

less then L   nilli ,...,2,1,  . An application of ray method is correct if L , where   is wave

length. The most best approaching has place for il . 

The acoustical approach describes wave propagation in effective layer for condition 
0

ijij TT  , 

where 
0

ijT  is an initial stress state, ijT  is disturbance stress state which propagates in the form of

shear wave in a direction of free surface. 

A wave, reflected from a free surface, propagates in the direction – 1x  and is summed from a 

direct and a reflective wave. From the energy conservation law it follows that an amplitude of a direct 

wave decreases and amplitude of a reflective wave accumulates and increases in the direction of a 

free surface. 
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On the dynamic response of suspended footbridges

 (VIB139-15)

Mariella Diaferio 

Abstract: Several Authors have underlined the possible activation of large amplitude 

oscillations of suspended footbridges due to the nonlinear behavior of the hangers, 

which act as linear elastic springs in tension and do not react in compression. In fact, 

in particular conditions the pedestrian- induced loads and/or the wind actions may 

cause oscillations that, in some parts of the footbridge span, achieve amplitude higher 

than the initial deformation of the hangers due to dead loads; in these cases such 

hangers slack and, consequently, the stiffness of the footbridge decreases. Thus the 

footbridge may undergo to unexpected large amplitude oscillations that the usually 

utilized models cannot predict, as they assume a bilateral behavior for the suspended 

system. Here, the response of suspended footbridges is evaluated introducing a 

continuous model that is obtained adopting the nonlinear equivalent regularization 

technique proposed for suspended bridges. The solution of the aforementioned 

continuous model is evaluated in closed form by means of perturbation methods. The 

dynamic analysis shows the possibility of the coexistence of multiple solutions, some 

of which are characterized by high amplitude. In order to identify the conditions for 

the activation of such phenomena, the evaluated responses are plotted for different 

values of the mechanical parameters of the examined structure and of the considered 

actions. 

1. Introduction

Starting from the observation that during the collapse of the original Tacoma Narrows Bridge the 

torsional oscillations, that have caused the failure, were associated with the slackening of some 

hangers, many Authors [1]-[10] have study such phenomenon by considering the effects of the 

unilateral behavior of the hangers, that react only in tension.  

Such papers [1] –[10] focus the attention on the behavior of long span bridges and on the effects of 

wind loads. In detail in [1]- [5] the Authors have underlined that for taking into account the unilateral 

behavior of the hangers, the equations of motions have to be rewritten by expressing the hangers 

restoring forces by means of terms which depends on the sign of the relative displacements between 

main cables and the deck; consequently, the solution has to be evaluated by means of the numerical 

integration of the equations of motion.   

In detail, in [1]-[3] Mc Kenna et al., due to the difficulties in the numerical integration, have 

focused their study on the no-node oscillations of the deck, i.e. relative displacements of the same 

sign on the overall deck. This hypothesis allows to reduce the study of the entire footbridge to an its 
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single transversal section with a single degree of freedom (the vertical translation of the deck) or two 

degrees of freedom (vertical and torsional displacements). The same approach has been chosen by 

other Authors [4][5][7][8] and the activation of large amplitude oscillations have been evaluated for 

different load conditions and geometrical parameters of the bridge. 

However the main limit of this approach is the necessity of a numerical integration of the 

equations of motion that restricted the effective application of the procedure, for example, a 

parametric study becomes extremely cumbersome. 

In [6][9], the authors have proposed a different approach that substitutes the unilateral behavior 

of the hangers with a smooth nonlinear one whose parameters are evaluated by minimizing the 

difference between the variation of the global elastic energy due to a generic deformation associated 

with the two considered behaviors. 

The main advantage of this approach is the possibility of rewriting  the equations of motion 

introducing smooth nonlinear terms which allow the application of analytical integration procedure 

even if approximated, as the multiple scale method. 

Consequently, in [6][9], the solutions of the equations of motion have been analytically evaluated 

and a parametric study has been performed in order to estimate the geometrical parameters and load 

conditions which may activate the slackening of hangers. 

More recently, some Authors [11]-[13] have underlined the possibility of large amplitude 

oscillations, due to the nonlinear behavior of the hangers, also into suspended footbridges induced by 

pedestrian loads. 

In fact, as these structures are devoted to static loads smaller than the ones of suspended bridges, 

and considering the wide spread of innovative materials, it has become possible the realization of 

suspended footbridges extremely flexible and, as a consequence, more prone to large amplitude 

oscillations.  

In [11] the Authors propose a section model for suspended footbridges which is able to take into 

account the  unilateral behavior of the hangers, and they demonstrate that for a pedestrian load acting 

along the torsional direction, the model may show large amplitude oscillations associated with the 

slacking of hangers.In [12] Bruno et al. analyze the 3D finite element model of a  suspended 

footbridge subjected to a torsional load due to pedestrians, in this case the large amplitude oscillations 

are obtained also for frequency forcing values smaller than the torsional frequency of the model. 

In [13]  the Authors extend to the suspended footbridges the approach proposed in [6] [9] for 

suspended long span bridges, evaluate the solution of the equation of motion and plot the oscillation 

amplitude for different values of the forcing frequency of the pedestrian load. 

The present paper analyses the vertical and torsional oscillations of suspended footbridges by 

considering a simplified continuous model that is able to describe the vertical and torsional relative 
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displacements between the main deck and the cables. The study investigates the oscillations due to 

pedestrian loads, which, as well known, may be represented by a n harmonic load acting or in the 

vertical, or in the vertical and torsional, or only in the torsional direction.  

The analysis reveals that, taking into account the nonlinear behavior of the hangers, the 

footbridges in certain conditions (which are strictly correlated with the geometrical characteristics of 

the footbridges and with the load conditions) may undergo large amplitude oscillations which cannot 

be predicted by means of the “classical” models.    

2. Suspended footbridge model 

The model here presented has the aim of describing the relative oscillations between the main cables 

and the deck, consequently in order to simplify the equations of motion, the main cables have been 

considered fixed.  

The hangers are assumed to be massless, vertical and able to react only in tension with a linear 

law, moreover they are modelled as uniformly distributed along the span (i.e. the distance between 

two consecutive hangers is much lower than the span length i<< L) (Fig.1). The reference equilibrium 

configuration is characterized by the presence of dead loads, which are assumed to be balanced 

mainly by the suspension system, as a consequence, the hangers present an in initial elongation of wo 

which is considered constant along the span length. 

 

Figure 1.   Continuous model of a suspended footbridge: a) longitudinal view, b) cross section. 

On the basis of the aforementioned hypothesis, the deformed configuration of the system can be 

describe by means of a vertical y and a torsional  displacements, and the equations of motion can be 

written as follow: 

      txFwkwywykyCykym dPPd
IV

dd ,2 000 


       (1) 

      txFwywykCkI P , '' 00   
   (2) 

where the prime and the dot symbolize the time and space derivate respectively, md and I  denote the 

unit mass and torsional inertia of the deck respectively , while  dk , k   the vertical and torsional 

 



z1
z2

y


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geometrical stiffness of the deck per unit length of the bridge; CCd ,  are the damping coefficients, 

FFd  ,  are the forcing terms,   the deck half-width,  the  ()+ denotes the “positive part” of the

function, L the bridge span. 

In the present paper the forcing terms are due to pedestrian loads, that are modelled by means of 

harmonic forces. The equations of motion are treated by substituting the piecewise terms (i.e. the 

restoring force of the hangers) by an equivalent cubic approximation [6] [9], by rewriting the 

equations of motion in a non-dimensional form, by expanding the unknown displacements as a linear 

combination of sinusoidal function with unknown amplitude, and by adopting the multiple scale 

method [14] to evaluate the analytical solution.  

Here for sake of brevity, the application of the aforementioned procedure and the study of stability of 

the obtained solutions are not reported, while the structural response is plotted for different loading 

and geometrical parameters. The chosen geometrical parameters are here reported: 

, 
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2
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02 


d

d
d

m
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0 2 
 


I

C
  (3) 

Moreover, it has been introduced the parameter β that represents the ratio between the angular 

frequency of the first mode of the footbridge and the one of the deck alone, that is the contribution of 

the suspended system [6] [9]. 

3. The dynamic response of suspended footbridges

The present paragraph describes the dynamic response of suspended footbridges induced by 

pedestrian loads; which is modeled by means of a periodic function. To explore all the possible 

dynamic behavior of the structure, different conditions of external and internal resonances are 

investigated, varying the geometrical and load parameters. 

Firstly, it has been investigated the response in the case of pedestrian load acting along the 

torsional direction, that Bruno et al. [12] consider as representative of an out- of phase motion of 

pedestrian walking in opposite directions on the two sides of the deck. In fig. 2 the frequency- 

response curve of the elongation of the hangers is plotted for the case of a force acting along the 

torsional direction and resonant with the first torsional mode of the structure and without internal 

resonant conditions (4 denotes the detuning, i.e. the difference between the forcing frequency and the 

externally resonant  natural frequency of the system). The figure 2 shows that in a range of frequency 

values there is the coexistence of multiple solutions, one of which is unstable and the other two are 

stable. Considering the latest two solutions it can be observed that the greatest one, which is 

associated with the activation of slackening of the hangers,  may be also 5-7 times the smaller one. As 

well known, the effective response of the structure depends on the initial condition of the motion. 
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Figure 2.   Frequency-response curves of elongation of the hangers: eccentric action on the deck nearly 

resonant with the relative torsional mode with one halfwaves (frequency ω4(1)); no internal 

resonance with vertical modes: ξd=ξθ=0.006, β=6, Λ=2.71, λθ=17,  Fθ=0.01md g 0.6 l,   Fd=0 

 To verify the influence of some parameters on the structural response the aforementioned 

external conditions have been investigated varying the intensity of the pedestrian load. In figure 3 the 

frequency- response curve of the elongation of the hangers is plotted considering the torsional 

pedestrian load acting with an eccentricity equal to 60% of   the deck half-width, and varying the 

intensity of pedestrian load: in detail two cases are taken into account: a load equal to 1% and to 0.5% 

of the deck self-weight. The curves demonstrate that also in presence of load with no high intensity, 

large amplitude oscillations may occur. 

 

Figure 3.   Frequency-response curves of elongation of the hangers: eccentric action on the deck nearly 

resonant with the relative torsional mode with one halfwaves (frequency ω4(1)); no internal 

resonance with vertical modes: ξd=ξθ=0.006, β=6, Λ=2.71, λθ=17,   Fd=0, two cases 

Fθ=0.01md g 0.6 l and  Fθ=0.005md g 0.6 l   
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In figure 4 the frequency- response curve of the elongation of the hangers is plotted varying the 

eccentricity of the pedestrian load, it can be verify that an increase of the eccentricity of 30% of the 

deck half-width induces an increase of 50% of the amplitude of the maximum amplitude of 

oscillation, and of 100% of the amplitude of the frequency range in which multiple solutions are 

possible.  

Figure 4.   Frequency-response curves of elongation of the hangers: eccentric action on the deck nearly 

resonant with the relative torsional mode with one halfwaves (frequency ω4(1)); no internal 

resonance with vertical modes: ξd=ξθ=0.006, β=6, Λ=2.71, λθ=17,   Fd=0, two cases 

Fθ=0.005md g 0.6 l and  Fθ=0.005md g 0.9 l   

In figure 5 the solution for a torsional pedestrian load resonant with the first torsional mode of the 

structure is plotted varying the load frequency; in this case there is also the presence of an internal 

resonance between the first torsional mode and the third flexural mode of the structure (in  figure 5 3 

denotes the internal detuning, i.e. the difference between the natural frequency 1:1 internally resonant 

and the natural frequency externally resonant). Due to this circumstance, the structure manifests the 

possibility of two kinds of response: one is similar to the ones described  in the above reported figures 

(that is the footbridges shows only torsional oscillations even if there is the coexistence of multiple 

solutions), while the other is characterized by the activation of oscillations with both torsional and 

vertical components. As can be seen, there is a  frequency range in which 7 different solutions are 

possible, three of which are unstable. 

In this case the structure may show large amplitude vertical oscillations which cannot be estimated by 

means of the “classical” models. 
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Figure 5.   Frequency-response curves of elongation of the hangers: eccentric action on the deck nearly 

resonant with the relative torsional mode with one halfwaves 1:1 internal resonance with the 

three half-waves vertical mode: ξd=ξθ=0.006,β=10,Λ=1.57,λ_θ=18,σ3=0.03,  

  Fθ=0.015md g0.8l,   Fd=0 

4. Conclusions 

This paper studies the nonlinear dynamic response of footbridges due to the unilateral behavior of the 

hangers. In detail, the equivalent nonlinearization, proposed in [6][9], is here applied to study the 

response of such structures.  

The frequency – response curves of the elongation of the hangers have been plotted for different 

load and geometrical parameters, showing the possibility of multiple solutions, some of which are 

characterized by large amplitude and slacking of the hangers.  

Moreover, in particular cases in which the geometrical parameters allows the activation of 

internal resonances, the system may display large amplitude oscillations both in the vertical and in the 

torsional directions, even if the force has only a torsional component. 

The future research will analyze the structural response for a wide range of the geometrical and 

load parameters, in order to verify the conditions that may inhibit the phenomenon of slackening of 

the hangers. 
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Inducing modal interaction during run-up of a magnetically 
supported rotor

(MTR261-15)

Fadi Dohnal, Athanasios Chasalevris

Abstract: In general, introducing a parametric anti-resonance in a vibrating
system couples two of the many vibration modes and enables an energy ex-
change between those two. This feature is employed during the run-up of a
Jeffcott rotor supported by two active magnetic bearings. The vibration
performance at bearing stiffness modulation is compared to the well-known
performance at nominal bearing characteristics for a simple run-up at a con-
stant rate. It is shown that by introducing a specific periodic change of the
bearing stiffness coefficients, a mode coupling between two selected modes is
activated. This coupling impacts the maximum amplitude developed during
passage through resonance. At each critical speed transient vibrations of the
corresponding mode are excited. Due to the mode coupling, if one mode is
excited at a critical speed then energy is transferred to the other mode too.
On one hand, the maximum amplitude at the first critical speed is decreased
by modulation since some vibration energy is transferred to the highly damped
second mode where it is partly dissipated. On the other hand, the maximum
amplitude at the second critical speed is increased by modulation since some
vibration energy is transferred to the lightly damped first mode. The concept
is outlined briefly by numerical studies.

1. Introduction

The beneficial effect of a parametric anti-resonance on self-excited vibration was discovered

by Tondl in his pioneering work [15]. This concept was then transferred to general dynamic

systems [4], was interpret physically as an energy transfer between the vibration modes of

the original system and was validated experimentally for simple systems including a flexible

rotor [7]. A recent summary on this topic can be found in [5]. A parametric anti-resonance is

a specific parametric combination resonance which does not lead to a parametric instability

but enables an increased dissipation of vibration energy.

Active magnetic bearings as discussed in this paper offer the possibility to apply a desired

time-periodic variation of the bearing characteristics with an accuracy that enables a para-

metric anti-resonance phenomenon. In rotating machines fluid film bearings are commonly

used which inspired investigations on applying a variation of the fluid film bearing charac-

teristics via a bearing shell of variable geometry [1–3]. Journal bearings of variable geometry
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aim control the fluid film characteristic passively or actively. The recent works on the pas-

sive adjustment of the bearing geometry and thus of fluid film characteristics confirmed a

displacement reduction during passage through critical speeds. The promising concept of a

variable geometry bearing and its physical realisation via a moving bearing shell is followed

in very recent studies [10, 12] and combined with the concept of parametric anti-resonance.

Adjusting bearing properties in a time-periodic manner has several benefits, like increased

stability limits that allow a larger operation range and decreased vibration amplitudes when

passing through critical speeds.

In the present investigation, a flexible rotor supported by bearings is investigated whose

dynamic properties are controlled semi-actively. Such a concept was proposed for active

magnetic bearings in [6, 9] and validated theoretically and experimentally. It allowed the

steady-state operation of active bearings beyond the stability limit of the implemented PID

controller. The rotor configuration in [6] is summarised and its run-up characteristic at

parametric anti-resonance is discussed briefly.

2. System modelling

Preliminary theoretical investigations [8, 16] showed that introducing a periodic change in

the bearing stiffness is capable of increasing the rotor speed limit of a simple Jeffcott

rotor under the influence of a destabilising self-excitation. This approach is followed to

enhance the effective damping of an already stable flexible rotor shaft under the action of

unbalance and electromagnetic forces [9]. The experimental realisation is shown in Fig. 1: A

slender, flexible rotor shaft supported by two active magnetic bearings (AMBs). The shaft

is torsionally rigid and isotropic. A rigid disk (D) is attached to the shaft center and two

bearing studs (AMB1, AMB2). The disks are unbalanced. The total length of the shaft is

680 mm. The main system parameters are listed in Table 1.

AMB1 D AMB2 coupling

motor

680 mm

Figure 1. Jeffcott rotor supported by two magnetic bearings [6]: (left) experimental test

rig, (right) corresponding dynamic model (taken from [6]).
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Table 1. Properties of the Jeffcott rotor.

bending stiffness of rotor shaft 41.4 Nm

total rotor length and diameter 680 mm, 8 mm

mass and axial moment of inertia of disc 1.20 kg, 1.40 · 10−3 kg m2

mass of studs in AMB1 and AMB2 0.88 kg

radial bearing clearance 0.8 mm

specific load capacity 13 N/cm2

The electromagnetic forces generated in the AMBs depend on the rotor deflection and the

magnetic field. The magnetic field can be changed in a wide range by the current provided

to the electromagnets. The actual position of the rotor shaft is measured by inductive

sensors (two for each radial direction). These signals are processed by the real-time controller

hardware dSpace which implements decentralised PID controllers to regulate the currents

provided by power amplifiers to each of the electromagnets and, hence, to levitate the rotor.

The parametric anti-resonance is implemented in parallel to this PID control by an open-loop

control of the proportional action,

kP (t) = kP (1 + ε sin νt). (1)

This realises a periodic change in the active bearing stiffness which is implemented in both

AMBs in figure 1.

2.1. Nominal operation of an AMB

AMBs consist of pairs of electromagnets that are arranged, in general, in two perpendicular

axes enabling to control the rotor position within a plane. Since electromagnets can apply

only attracting but no repelling forces, two electromagnets are needed for each direction.

A typical arrangement of magnets in a radial magnetic bearing is shown in Figure 2. This

geometry has the advantage that the forces in z- and y-direction are (almost) uncoupled and

can be calculated separately.

The electromagnetic force generated by the AMB depends on its geometry parameters (cross-

section of the pole shoes, size of the air gap) and its electromagnetic properties (number of

turns, permeability) and is a strongly nonlinear function of these parameters. In practice,

however, the resulting force can be linearised close to a certain operation point. With the

rotor displacement from the centre position r and the initial gap width s0, the force-current-

displacement relationship of the magnetic bearing becomes

Fm = F+ − F− = km

(

(

i+
s0 + r

)2

−

(

i−
s0 − r

)2
)

, (2)
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Figure 2. Geometry of the stator and forces in a magnetic bearing.

see [14] for more details. The magnetic bearing constant km depends on geometry parameters

(cross-section of the pole shoes, size of the air gap) and electromagnetic properties (number

of turns, permeability). The nonlinearities of the magnetic force are generally reduced by

adding a high bias current i0 to the control current ic, so that the actuator currents are

given by

i+ = i0 + ic and i− = i0 − ic. (3)

It is common to set the bias current to half of the maximally available current (saturation or

limitations of the power amplifier) in order to exploit the full operation range. Linearizing

the magnetic force about the operation point (i0, s0) for small control currents and small

displacements results in

F lin
m = 4km

(

i0
s20

is −
i20
s30

r

)

= kiic − ksr. (4)

Herein, ki is the current-force constant and −ks the negative bearing stiffness,

ki = 4km
i0
s20

and ks = 4km
i20
s30

. (5)

Assuming a high bias current for pre-magnetisation and small control current ic and radial

rotor deflection r. Herein, ki is the current-force constant and −ks the negative bearing

stiffness. Cross-coupling parameters are neglected.

The most widely used control concept for an AMB is a PID controller. The proportional

(kP ) and the derivative actions (kD) constitute the stiffness and damping characteristics of

154



the bearing while the integral action (kI) assures that the radial rotor deflection r keeps

track with a predefined setpoint,

ic = kP r + kD ṙ + kI

∫

r dt. (6)

Inserting into eq. (4) leads to

F lin
m = cmr + dmṙ + kikI

∫

r dt, cm = kikP − ks, dm = kikD, (7)

with the active stiffness and active damping coefficients cm and dm. Adjusting the control

parameters kP and kD determines the dynamic properties of the AMB. Both AMBs are

isotropic.

The discrete version of the control law in eq. (6) is realized on the digital real-time hardware

dSpace by a processor board DS1103. Figure 3 shows the control loop of an active magnetic

bearing system in block diagram notation. It illustrates that the transfer functions of sensors,

filters, AD/DA converters and amplifiers have to be taken into account when analyzing the

system. In the most simple case, the transfer functions are all treated as constant and

independent of the frequency. This assumption can be made if the bandwidth of the hardware

is approximately ten times larger than the highest system frequency of interest, and if the

discretisation errors of the AD/DA converters are reasonably small.

The rotor position is measured by four eddy current sensors, two for the z- and two for the

y-direction. Collocation of the sensor and actuator is achieved by placing one sensor on each

side of the stator. The exact displacement in the centre of the bearing is found by averaging

both signals. This improves the control performance significantly. Before the sensor signal

reaches the AD converter, it is filtered by a low pass filter with Butterworth characteristic.

Controller hardware

PositionLowpass
Filter

(m)rMB (N)F
AmplifierDSP

Bearing
Magnetic

Rotor

Converter
A/D

Converter
D/A (A)i

Sensors

Figure 3. Control loop of an active magnetic bearing system, see [14].

2.2. Equations of motion of a continuous shaft with discrete disks

The flexible, continuous shaft is discretised using finite beam elements. For a finite beam

element of length li, bending stiffness EI , cross-section A and density ρ, the inertia and
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stiffness matrix become [11]

M
z/y
bi =

ρAli
420















156 ∓22li 54 ±13li

∓22li 4l2i ∓13li −3l2i

54 ∓13li 156 ±22li

±13li −3l2i ±22li 4l2i















, (8)

and

C
z/y
bi =

2EI

l3i















6 ∓3li −6 ∓3li

∓3li 2l2i ±3li l2i

−6 ±3li 6 ±3li

∓3li l2i ±3li 2l2i















(9)

with respect to the element coordinate vector in z-direction and y-direction, respectively,

q
z
i =

[

zi ϕyi zi+1 ϕyi+1

]T

, q
y
i =

[

yi ϕzi yi+1 ϕzi+1

]T

. (10)

Rigid disks of mass mr and moment of inertia Θr are attached at discrete positions along

the shaft. Their symmetry axis is aligned with the central rotary axis. For rigid disks that

are attached to the end points of a finite beam element, the corresponding mass and stiffness

matrices have diagonal form and read

Mr =















mri

Θri

mri+1

Θri+1















. (11)

The element matrices in eqs. (8), (9) and (11) are assembled to the global system matrices

M
z/y
b , C

z/y
b and Mr with respect to the global coordinate vectors

q
z =

[

z1 ϕy1 · · · zn ϕyn

]T

, q
y =

[

y1 ϕz1 · · · yn ϕzn

]T

. (12)

Adjusting the control parameters kP and kD determines the dynamic properties of an AMB.

With the mechanical properties in eq. (7), the stiffness and damping matrices with respect

to the global coordinate vector have diagonal form with entries at the location of the AMBs,

Cm =



























0

cm1

0

. . .

cm2

0



























, Dm =



























0

dm1

0

. . .

dm2

0


























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(13)

The rotor system is excited by unbalance forces originating from eccentricities εi of the five

rigid disks of mass mi (including the bearing studs). The unbalance force vectors can be

written as

fz = −(cosϕ(t))̈
[

m1ε1 0 m2ε2 0 . . . m5ε5 0
]T

,

fy = −(sinϕ(t))̈
[

m1ε1 0 m2ε2 0 . . . m5ε5 0
]T

, (14)

where ϕ(t) is the rotary angle of the shaft counted positively in negative x-axis according to

the definitions in [13].

The element matrices from eqs. (8), (9) and (11) are assembled to global system matrices with

respect to the global coordinate vectors in eq. (12). Together with the global system matrices

in eq. (13) describing the electromagnetic actions and the unbalance forces in eq. (14), the

equations of motion of the rotor system at constant speed Ω with respect to the global

coordinate vector q = [qz,T ,qy,T ]T become

Mq̈+Dq̇+Cq = f (15)

with the assembled coefficient matrices and the global force vector

M =





Mz
b +Mr 0

0 M
y
b +Mr



 , D =





Dm −ΩGr

ΩGr Dm



 ,

C =





Cz
b +Cm 0

0 C
y
b +Cm



 , f =





fz

fy



 . (16)

The only source of damping is the control strategy in the AMBs. The lateral vibrations in

y- and z-directions are coupled by gyroscopic effects of the rigid disks, however, within the

present investigation, the influence of gyroscopic effects on the first is negligible. For safety

reasons, retainer bearings acting at discrete positions along the rotary shaft are applied but

these are not in the focus of the present study. The operational deflection of the present

rotor is assumed to be sufficiently small such that rotor-stator contacts are excluded and the

linearisation of the electromagnetic force in eq. (4) remains valid.

A time-periodic stiffness variation in the rotor system is realised in the AMBs by introducing

a time-dependent proportional action kP (t) in the PID controllers [9]. This control parameter

is changed periodically for both AMBs simultaneously according to eq. (1) resulting in the

global time-periodic stiffness matrix

C(t) = C0 + εCt sin νt, (17)

where C0, Ct are constant coefficient matrices.
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3. Parametric anti-resonance at steady-state operation

Numerical calculations are performed in order to find a proper parametric anti-resonance

for this system. The discretised continuous shaft is excited by unbalance forces originating

from the rigid disk. The discretised equations are solved by direct numerical integration for

different values of the control frequency ν of the time-periodicity introduced in eq. (1).

Initially, the rotor shaft rests at the centre position q = 0. Since unbalance forces f acts on

the rotor system, the rotor shaft is deflected from this initial condition to a new deflection

that rotates with the rotor speed Ω. The transition between these two states is described by

free vibrations. A sample time history for the radial deflection of the disk D

|rD| =
√

y2
D + z2D (18)

at constant, nominal AMB characteristics (ε = 0 in eq. (1)) and at a constant rotor speed

of Ω = 60 rad/s is shown in Fig. 4. This rotor speed is below the first critical speed.

Transient vibrations of the rotor are introduced by an initial deflection of the rotor from

the steady-state deflection due to unbalance. The first three natural frequencies obtained

from an eigenvalue analysis of the undamped system in eq. (15) at rest are listed in Table 2

together with the resulting parametric anti-resonance and resonance frequencies. Evaluating

the analytical predictions in [8] reveals that for the present system, parametric anti-resonance

can be only achieved at the difference type ν ≈ |ωk − ωl|/n. Note that the time history in

Fig. 4 describes the radial deflection of a disk in a coordinate system that is fixed to the

disk. Consequently, the frequency components observed are modulated by the rotor speed.

Now, the periodic open-loop control in the AMBs is switched on following the control law

in eq. (1). First, the vibration behaviour is investigated at a control amplitude of ε = 0.20

and a fixed control frequency ν in the range between 0 and 300 rad/s. Numerical integration

of the equations of motion in eq. (15) at ν = 0 rad/s results in the time history already

shown in Fig. 4. All time histories in the frequency range of interest are summarised in

the contour plot in Fig. 5. Light areas depict low values and dark areas high values of the
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Figure 4. Rotor deflection of disk D under the action of unbalance forces for ε = 0.
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disk deflection |rD|. Additionally, frequency lines of parametric resonance and combination

resonance frequencies are plotted for the orders n = 1 up to n = 5 on the right hand side of

the figure. Their line thickness is scaled by the order n. The frequencies listed in Table 2

are of order n = 1 and are plotted as lines with the largest thickness.
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Figure 5. Numerically calculated radial deflection rD in dependency of the control param-

eter ν at ε = 0.20 (taken from [6]).

All possible frequency combinations νn are divided into three sets corresponding to the three

block on the right hand side of the figure: the two sets 2ωi/n and (ωk + ωl)/n that corre-

spond to parametric resonances while the set |ωk − ωl|/n which corresponds to parametric

anti-resonances. These frequency lines help encoding the complex distribution of the time

series. At each of these frequencies a dense frequency interval exist within which the system

vibrations are either excited or damped. If these frequency intervals overlap, it depends

which effect dominates. In general, the destabilising effect at frequencies 2ωi/n dominates

over the damping enhancement at parametric anti-resonances.

The transient behaviour of the nominal rotor in Fig. 4 corresponds to ν = 0 in Fig. 5.

Switching on the periodic open-loop control of the AMBs following the control law in eq. (1)

changes the transient behaviour. Destabilising effects, a decrease in effective damping, are

found where the control parameter ν is in the vicinity of the frequencies (ωi + ωj)/n. The

corresponding parametric resonance frequencies can be identified by comparison with the

frequency lines on the right hand side, e.g. the shaded area at 218 rad/s corresponds to the

frequency (ω1 + ω2)/2. Indentations in the distribution towards lower time values in Fig. 5
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Table 2. First natural and parametric frequencies of the Jeffcott rotor at rest, Ω = 0.

natural frequencies

ω1 = 164 rad/s, ω2 = 272 rad/s, ω3 = 339 rad/s

main parametric resonance frequencies

2ω1 = 328 rad/s, 2ω2 = 544 rad/s

ω1 + ω2 = 436 rad/s, ω1 + ω3 = 503 rad/s

main parametric anti-resonance frequencies

|ω1 − ω2| = 108 rad/s, |ω1 − ω3| = 174 rad/s

|ω2 − ω3| = 67 rad/s

give hints for a parametric anti-resonance. The main parametric anti-resonance is found at

the white region close to the frequency 170 rad/s. This is the optimum control frequency to

be chosen for the proposed open-loop control in eq. (1) for this specific rotor system.

4. Parametric anti-resonance during run-up

The run-up characteristics of the Jeffcott rotor supported by two active magnetic bearings

whose proportional control action is varied periodically are shown in Fig. 6. At constant

run-up acceleration, the first critical speed is passed at 2 s showing a major amplitude peak

and the second critical speed at 6 s at very small. Activating the optimum parametric

anti-resonance ω3 − ω1 identified in the previous section with a strength of ε = 0.2 mode

coupling is introduced and energy transfer between the corresponding modes is activated.

This coupling leads to an equal distribution of the maximum amplitudes at both critical

speeds during run-up. At each critical speed transient vibrations of the corresponding mode

are excited. Due to mode coupling, one mode is excited at a critical speed and energy is

transferred to the other mode. On one hand, the maximum amplitude at the first critical

speed is decreased due the highly damped second mode. On the other hand, the maximum

amplitude at the second critical speed is increased due to the lightly damped first mode.

Note that the decrease of maximum amplitude is not only achieved at the disc position but

also at the stud positions (semi-active concept).

5. Conclusions

During run-up of a rotor, transient vibrations are introduced when passing through critical

speeds which excite the corresponding vibration mode. A mode interaction is artificially

achieved by employing a parametric anti-resonance via the bearing controller. Due to this

mode coupling, if one mode is excited at a critical speed then energy is transferred to

the other mode, too. On one hand, the maximum amplitude at the first critical speed is
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Figure 6. Passage through critical speeds at constant acceleration: (top) speed charac-

teristic, (centre) time histories at nominal, constant bearing characteristic, (bottom) time

histories for induced parametric anti-resonance at 170 rad/s and ε = 0.2. Disk deflection

(black) and bearing studs (gray) are shown.

decreased by modulation since some vibration energy is transferred to the highly damped

second mode where it is partly dissipated. On the other hand, the maximum amplitude at the

second critical speed is increased by modulation since some vibration energy is transferred

to the lightly damped first mode. It has to be highlighted that the decrease of maximum

amplitude is not only achieved at the disc position but also at the journal positions (semi-

active concept).
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Modelling of mechatronic systems using bond graphs

(MTR029-15) 
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Ján Kostka 

Abstract: The work shows the use of Bond Graph methodology of modeling electromechanical 

system consisting of DC motor and gearbox. As an example the electromechanical model is solved by 

this approach at the level of its physical behavior. This paper introduces a graphical, computer aided 

modeling methodology that is particularly suited for the concurrent design of multidisciplinary 

engineering systems with mechanical and electrical components, including interactions of physical 

effects from various energy domains. In contrast with the classical method, where the equations for 

individual components are created first and then the simulation scheme is derived on their basis, the 

described method uses the reverse procedure. In this paper the method of generation of system 

equations is discussed. From a bond graph diagram of the system, using a step-by-step procedure, 

system equations may be generated. As a starting point a model of electrical and mechanical is taken. 

The differential equations describing the dynamics of the system are obtained in terms of the states of 

the system.  

1. Introduction

The methodology of bond graphs and algorithmic progress of creation describing state equations 

is useful in analyzing dynamic systems with the transformation of various forms of energy (mixed 

energy systems) occurring in mechatronic systems. Principal advantages of the method are the ability 

to anticipate formulation properties before writing equations, the availability of a simple check 

for correctness of the initial system relations, and the specification of a systematic reduction 

procedure for obtaining state equations in terms of energy variables. Using a multi-energetic approach 

that allows the modeling of interdisciplinary models, it explores the theory and method to automate 

the process of the generation of the state equation. This paper explores the bond graph technique 

as a modeling tool to generate state models. Mechatronic design requires that a mechanical system 

and its control system be designed as an integrated system. This contribution covers the background 

and tools for modeling and simulation of physical systems and their controllers, with parameters that 

are directly related to the real-world system. The theory will be illustrated with example of typical 

mechatronic system such as electromechanical system. We will discuss a systematic method for 

deriving bond graphs from electromechanical system in this article. How to enhance bond graph 

models to generate the model state equations and for analysis is presented. The state equations 

generation and block diagram expansion of causal bond graphs is treated. 
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2. Electromechanical system

This chapter describes the procedure for compiling the bond graph, and then power equation of state 

of an electromechanical system. Electromechanical system (Fig. 1) is composed of a DC motor 

and gearbox. Formalism of bond graphs and algorithmic approach to generating differential equations 

describing is just useful in analyzing dynamic systems with the transformation of various forms 

of energy (mixed systems - mechanical, electrical and other) occurring in mechatronic systems. 

Furthermore, this analysis electromechanical system using the bond graphs proves it. 

The aim of the simulation using Bond Graph is for us to build the model of electromechanical 

system. The article describes to use graphical formulation of system modeling techniques 

for engineering systems involving power interactions which in English literature are named Bond 

Graphs to solve system with electrical and mechanical parts. In various parts of the contributions 

is given formalism making procedure for establishing performance graph electrical power 

and mechanical parts of system and subsequently derived an equation of state of the system. Solving 

electromechanical model consists of a voltage source, motor, gearbox, as shown in Fig. 1. 

Figure 1.   Model of the electromechanical system. 

At first the electric part of the model is simulated and secondly the mechanical part 

of the electromechanical system [1], [3].  

Figure 2.   Parameters of the electromechanical system with domain information. 

Scheme of model components is illustrated in the following figure (Fig. 2) where: uz - voltage 

source, ui - induced voltage, ω1 - angular velocity in the motor output,   Mh - drive torque at the output 

of the electric motor, IM – moment of inertia of the rotor engine, Rl1 - mechanical resistance of the 
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motor, Rl2 - gearbox mechanical resistance, ω2- angular velocity of the gearbox output, IZ - moment 

of inertia of the load. 

3. Electric domain of the motor 

In this subsection is shown the procedure for establishing bond graph from previous task. Description 

of the flow of current and voltage in the scheme of DC motor and schematic diagram of electric 

domain of the motor is shown in Fig. 2. The electrical part of the model and the description of voltage 

and current flow are shown in Fig. 3, [4]. The process of construction of the bond graph and 

consequently the equation of state is described in the steps below [1]: 

Step 1 - We identify the individual components of the system according to the first step 

of construction of the bond graph. This electrical system contains a source of effort SE 

with voltage uZ (SE: uZ), inertia element I with inductance L (I:L), the resistance R with resistor R 

(R:R) and gyrator GY – DC motor as the inverter electrical power to mechanical power of acting 

rotary motion. 

Step 2 – We indicate in the ideal-physical model per domain a reference source – effort voltage 

uref (reference voltage with positive direction) in Fig.3. The references are indicated in the ideal 

physical model: the ideal velocity uref=0. 

Step 3 – Identify all other efforts (voltages) and give them unique names u1, u2, u3 (Fig. 3). 

 

Figure 3.   Electrical system – efforts with unique names u1, u2, u3 and reference voltage uref. 

Step 4 – Draw these efforts (electrical: voltages), graphically by 0-junctions (Fig. 4), [5]. 

Step 5 – Identify all effort differences (electrical: voltage = effort) needed to connect the ports 

of all elements enumerated in step 1 to the junction structure. When checking all ports of the elements 

found in step 1 linear voltage differences, u12 and u23 are identified: u1-u2=u12, u2-u3=u23. 

Step 6 – Construct the voltage differences using a 1- junction and draw them such in the graph. 

We connect 1-junction with 0 - junction. After this step individual elements are connected to this 

structure. The result is the following bond graph of the electric motor in Fig. 4. 

Step 7 – Connect the port of all elements found at step 1 with the 0-junction of the corresponding 

voltages or voltages differences (Fig. 4). 
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Figure 4.  Connecting elements R, I, GY, SE with 0-junction and marking reduction at 0-junction 

applying the simplification rules. 

Step 8 – Simplify the resulting graph by applying the simplification rules (Fig. 4). A junction 

between two bonds can be left out, if the bonds have a through power direction (one bond incoming, 

the other outgoing). Two separately constructed identical effort or flow differences can join into one 

effort or flow difference. 
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Figure 5.  Complete bond graph of the electrical part of motor with signal direction and causality. 

Step 9 – Determine the signal direction and causality. Causality establishes the cause and effect 

relationships between the factors of power. If voltage ui = uR then applying the reduction in 1-junction 

and complete bond graph of the electrical part of motor with signal direction and causality as shown 

in Fig. 5. 

In bond graphs, the inputs and the outputs are characterized by the causal stroke. The causal 

stroke indicates the direction in which the effort signal is directed (by implication, the end of the bond 

that does not have a causal stroke is the end towards which the flow signal is directed). 

There are two ways of describing an element's behavior (e.g. effort in, flow out vs. flow in, effort 

out) as different causal forms. Note that the two alternative causal forms may, in general, require 

quite different mathematical operations. The causal form we use, i.e. which variable we select 

as input and which we select as output, can make a lot of difference. For example, the required 

mathematical operations may be well defined in one causal form, but not defined at all in the other. 
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The causal bond graph of this system can be derived, in which the inputs and the outputs 

are characterized by the causal stroke. This is the starting point, from which we continue toward 

the differential equations describing the dynamics of the system. 

4. Mechanical part of the motor and gearbox 

In this part we consider a model of mechanical part of the motor and gearbox (Fig. 6). Components 

of model is illustrated in Fig. 6 where: ω1- angular velocity of the motor output, Mh - drive torque 

at the output of the electric motor, IM – moment of inertia of the rotor engine, Rl1 - mechanical 

resistance of the motor, Rl2 - gearbox mechanical resistance, ω2 - angular velocity of the gearbox 

output, IZ - moment of inertia of the load. Weight of the gearbox is neglected. 

 

Figure 6.   Schematic diagram of the mechanic domain of the motor and gearbox. 

This part shows the procedure for establishing bond graphs step-by-step. We identify 

the individual components of the system according to the first step of construction of the bond graph: 

Step 1 - We identify the individual components of the system according to the first step 

of construction of the bond graph. This electrical system contains a source of effort SE with moment 

of drive torque at the output of the electric motor Mh (SE: Mh), inductor I with inductance L (I:L), 

mass m (I:m ), moment of inertia of the rotor engine IM (I:IM ), moment of inertia of the load IZ (I:IZ), 

the resistance R with resistor Rl1 , Rl2 ( R:Rl1 , R:Rl2 ), and transformer TF – in the electromechanical 

system it is gearbox (TF:r2/r1). 

Step 2 – We mark the reference angular velocity ωref in rotational movement and the reference 

velocity vref in translational motion (Fig. 7). The references are indicated in the ideal physical model: 

the ideal velocity ωref =0 and vref =0. 

Step 3 – In the model of the mechanical system to identify and select all junctions with different 

velocity (flows) and give them a unique name. In the solution model to name and mark velocity: ω1, 

ω2. 

Step 4 – Mark significant points with common speed (the velocity reference is not because 

it is zero) by the type of junctions. Velocity detected in step 3 draw using 1-junction as 
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in the mechanical system. The reference velocity is not rendered because it has zero velocity. 

Velocity marked using 1-junction. 

Step 5 – Differences in velocities are identified. These are used to connect the ports. We have 

no differences velocities in the system. 

Step 6 – Mark junction 0 and construct difference velocities using the junction 0. We have 

no difference velocities in the system and we have not connected 0-junction. Junction structure is now 

ready and can be connected to individual elements. Connect the transformer to the junction 1. Source 

of effort, SE: Mh , is connected. 

Step 7 – All elements are connected to the appropriate junctions, as shown in Fig. 7. 

Step 8 – Bond graph is simplified according to rules of simplification. 

Step 9 – Integral causality is marked in simplified bond graph (Fig. 7). 
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Figure 7.  The final bond graph of the electromechanical system with connecting the individual 

elements to the 1-junction and marked causality. 

The inertia characteristics of the load are contained in the moment of inertia IZ. This section 

derives the bond graph of reduced mechanical parts. We assemble to the signal diagram and then the 

state diagram. The results of bond graphs applications are shown in the bond graph diagram of the 

mechanical part of motor and mechanical part of gearbox (Fig. 7). In formulating the dynamic 

equations that describe the system, causality defines, for each modeling element, which variable is 

dependent and which is independent. By propagating the causation graphically from one modeling 

element to the other, analysis of large-scale models becomes easier. 

5. Model of the mechanical part- causality collision

In this part we derive the bond graph of a DC motor and of gearbox, from which we create block 

scheme. According to the rules for the compilation of bond graph of the electromechanical system 

designed bond graph marked with integral causality. The resulting graph of motor and a mechanical 

part of gear box is after editing in the form (Fig. 8). 

In this system the load is fixed at the end of a long shaft. At the end of the shaft is the same 

angular frequency ω2 as in output from the gearbox. Power bond is connected to junction 1 at the end 
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of the transformer. Final bond graph of the electromechanical system with conflict of the causality 

in 1-junction is shown in Fig. 8. 
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Figure 8.   The resulting bond graph of the electromechanical system with designating the conflict 

of the causality. 

There are two ways to resolve this problem of conflict of causality. The first method assumes 

a certain torsion flexibility of a long shaft to the gearbox output. This is physically justified because 

it is a perfectly rigid body. The second way is used if we want to have a model with fewer equation 

of state. In this case we accept a derivative causality by drawing it in the state diagram. 

If in the first case of the solution causality collision problem is assumed a certain torsional 

flexibility of a long shaft gearbox output, then in Fig. 9, 

 

Figure 9.   Long shaft with torsion flexibility. 

where: k – is constant stiffness of the shaft, ω2 a ω3 – are the angular velocity of the long shaft. 
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Figure 10.   Bond graph of the electromechanical system assuming that we consider compliance 

torsionally long shaft gearbox output. 
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In the second method solving the problem of causality accepted the derivative causality, which 

is plotted in the block diagram. We get the model with fewer equations of state. Bond graph of motor 

and gear with consideration of the derivative causality in inductor I: IZ is written in the form (Fig. 11). 
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Figure 11.   Final bond graph of the electromechanical system with derivative causality. 

6. Expansion to block diagrams

The next section describes a three-step transition from the bond graph to the block diagram for the 

model of the electromechanical system consists only of the motor and gearbox (Fig. 3). Block 

diagram will be prepared for the bond graph in Fig. 11. We consider the ideal source effort SE:uz 

and derivative causality in integrator I: IZ. All symbols of nodes and elements of the bond graph shall 

be marked as shown in Fig. 12, [6]. 

Individual edge bond graph will be replaced by a pair of signal edges and circled symbols nodes 

shall be connected by these pairs of signal edges (Fig. 12). The orientation signal edge is done 

in accordance with the marked causality (Fig. 11). Where it is intended that the ideal source of effort 

is the voltage already is a bond graph with the pair of signal edges in the form shown in Fig. 12. 
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Figure 12.   Expansion of bonds to bilateral signal flows of the elevator model. 

All nodes are replaced by the block structure. Using the rules set out in the literature will be set 

up state diagram shown in Fig. 13, which serves as a basis for drawing up the equation of state. 
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Figure 13.   The resulting block diagram of the model in standard form. 

Drawing up models of dynamic systems is always based on certain assumptions. Any real system 

can be complicated. In engineering practice is an effort to assemble the simplest models as possible. 

But simplification must be to the extent that the model gave us the answer to the problem studied. 

Therefore, when compiling models it is necessary to decide whether some of inductors, capacitors 

and resistors can be neglected. Such a simplification, if bad, may lead to such a final model, 

that might be difficult in next applicaton. In bond graph it shows up as algebraic loops or we cannot 

avoid using a derivative causality. 

Collision of the causality is called situation, it can not be in one or more junctions defined 

integral causality and must be assigned the derivative causality, which is a non-preferred. 

This is a sign that the appropriate inductor and capacitor does not represent the state variable. Such 

elements are also called dependent energy storage as they are in a certain relationship with some 

algebraic stock positions. An example of such a situation with derivative causality is well designed 

system Fig.13. 

7. Transition from state scheme to state equation  

In the state diagram of Fig. 13 has the inductor IZ differential causality. Energy variable momentum 

L2 is not a state variable. State variable for this dynamic system are: inductance Φ and momentum L1. 

Energy variable L2 is with state variable in algebraic relationship. Therefore, before we write the 

equation of state, we must see this relationship. 

   
t

tL

In

I

t

tL

M

Z

d

d
.

.d

d 12   (5) 

From block diagram (Fig. 13) for state variables we write (marked IM=IM): 
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



d

d
, (6) 

 
IMM

t

tL


d

d 1 . (7) 

We obtain from block diagram: 

       tutututu iRZL  . (8) 

First state equation is in form: 

 
     tL

I

C
t

L

R
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t

t

M

Z 1..
d

d



. (9) 

From block diagram: 

       tMtMtMtM RlhIM 11  . (10) 

Second state equation is in form: 
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where:    













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M

Z

In

I
Q

2
1 . (15) 

The equation of state of the electromechanical system are in the matrix form: 
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. (15) 

The state variables for this dynamic system are the inductance Φ(t) and the momentum L1(t) 

and their another solution may be for example in Matlab/Simulink [2, 7]. 

172



8. Conclusions 

This article presents techniques for representing elements of combination systems mechanical 

and electrical in the abstract form of bond graphs instead of the schematic diagrams usually used 

to show electromechanical system. For some this may seem to be an unnecessary step away 

from physical reality, but it has useful consequences. Bond graph is a precise way to represent 

a mathematical model of the dynamic system. Often schematic diagrams are not entirely clear about 

whether certain effects are to be included or neglected in the model. For many systems involving two 

or more forms of energy, such as mechanical and electrical, there are no standard schematic diagrams 

that clearly indicate assumptions made in the modeling process. The methodology of bond graphs 

and algorithmic progress of creation describing state space equations is useful in analyzing dynamic 

systems with the transformation of various forms of energy (mixed energy systems) occurring 

in mechatronic systems [8, 9]. Principal advantages of the method are the ability to anticipate 

formulation properties before writing equations, the availability of a simple check for correctness of 

the initial system relations, and the specification of a systematic reduction procedure for obtaining 

state equations in terms of energy variables. Using a multi-energetic approach that allows the 

modeling of interdisciplinary models, it explores the theory and method to automate the process 

of the generation of the state equations. These are typical of mechatronic applications. This paper 

explores the bond graph technique as a modeling tool to generate state models. The theory will be 

illustrated with example of typical mechatronic system such as electromechanical system. We present 

a systematic method for deriving bond graphs from electromechanical system in this article. How 

to create bond graph models to generate the model state equations and for analysis is presented. The 

state equations generated from block diagram and causal bond graphs is treated. 
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Nonlinear transverse vibrations of a beam under an axial load
(VIB106-15)

Pawe l Fritzkowski, Krzysztof Magnucki, Szymon Milecki

Abstract: The paper is devoted to transverse in-plane vibrations of a beam
which is a part of a symmetrical triangular frame. A mathematical model
based on the Hamilton principle, formulated for large deflections of the beam
subjected to dynamic axial excitation is presented. A nonlinear ordinary differ-
ential equation for the vibration amplitude is derived by means of the Galerkin
method. Dynamics of the system is studied numerically for various values of
the system parameters, including the excitation amplitude and frequency. The
amplitude is taken to be below or above the static critical load. The effect of
the parameters on behaviour of the system is analyzed. Several tools are used
to specify the vibrations type, e.g. the Poincare maps and the Lyapunov ex-
ponents. The regions related to regular and chaotic vibrations are determined
in parameter planes. They are compared to the stable and unstable regions of
the abbreviated (linear) dynamical system.

1. Introduction

Behaviour of elastic structures like beams/columns under axial loads is a classical problem,

studied mainly in the context of static or dynamic stability. Timoshenko and Gere [7]

discussed elastic buckling of a wide variety of structural elements, including bars and frames.

An extensive review of stability problems was presented by Bažant and Cedolin [1]. Virgin

[9] focused attention on the interplay between vibrations and stability in axially loaded

structures. Parametrically excited systems of this type, described by linear or nonlinear

time-periodic models, were considered by McLachlan [6], Gutowski and Swietlicki [3], and

 Luczko [4]. The general theory of dynamic stability of elastic structures and its applications

were presented by Bolotin [2].

This paper is devoted to nonlinear vibrations of a beam which is a part of a symmetrical

triangular frame. Recently, Magnucki and Milecki [5] studied static buckling of such a

system. However, closed planar frames, including the triangular ones, are rarely analyzed

in the literature related to the field of dynamics. Moreover, vibrational problems for frame

structures are usually solved by using the finite element approach (e.g. see [8, 10]). In what

follows, the cross-beam of the triangular frame is appropriately isolated from the system,

which simplifies both the model and analysis.
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2. Mathematical model

Consider a symmetrical triangular frame (see Fig. 1a) whose arms (1) of length L1 are

connected via a cross-beam (2) of length L2. The arms have a rectangular cross-section

(b × c), whereas the cross-section of the latter member has the shape of a circular ring:

its outer and inner diameters are denoted by d1 and d0, respectively. The vertex C of the

frame is fixed while the others, A and B, are simply supported out-of-plane and subjected

to in-plane load.

a)

b)

Figure 1. The mechanical system to be considered: a) the full triangular frame, b) the

cross-beam isolated from the system

In paper by Magnucki and Milecki [5] one can find, among others, the relations between

the load F and the internal forces related to the cross-beam: the axial force N2 and the

bending moment M2. Now, in-plane vibrations of the system are considered, i.e. the load

is assumed to be a function of time, F = F (t). To simplify dynamic analysis, the beam

is isolated from the structure as can be seen in Fig. 1b. The beam is treated as simply

supported but subjected to the axial force N2(t) and opposite end moments MA2(t). For

simplicity energy dissipation is neglected.

In case of large deflections w(x, t) the normal strain is given by

εx =
∂u

∂x
+

1

2

(
∂w

∂x

)2

with u(x, z, t) = −z ∂w
∂x

, (1)

176



where u denotes the axial displacement. The elastic strain energy of the system has the form

U =
1

2
E

L2∫
0

∫
A2

ε2x dA2 dx =
1

2
E

L2∫
0

[
Jy2

(
∂2w

∂x2

)2

+
1

4
A2

(
∂w

∂x

)4
]

dx , (2)

in which E is Young’s modulus and A2 = π(d21 − d20)/4, Jy2 = π(d41 − d40)/64 are the area of

the cross-section and its moment of inertia. Kinetic energy of the beam and the work of the

load can be expressed as

T =
1

2
ρA2

L2∫
0

(
∂w

∂t

)2

dx , W = N2(t)

L2/2∫
0

(
∂w

∂x

)2

dx , (3)

where ρ denotes the material density. Note that the effect of the moments MA2 are not

included at this stage. Applying Hamilton’s principle

δ

t2∫
t1

(T − U +W ) dt = 0 (4)

leads to the following equation of motion:

ρA2
∂2w

∂t2
+ EJy2

∂4w

∂x4
− 3

2
EA2

(
∂w

∂x

)2
∂2w

∂x2
+N2(t)

∂2w

∂x2
= 0 (5)

We focus on the first mode of vibration and approximate the displacements by

w(x, t) = wa(t)ϕ(x) with ϕ(x) =
1

1 + α0

[
sin

(
πx

L2

)
− α0 sin

(
3πx

L2

)]
(6)

where α0 is a positive constant. Such a mode shape, ϕ(x), allows to incorporate (indirectly)

the effect of the end moments MA2 into the model. Using the Galerkin method we obtain

the approximate equation for the modal amplitude:

q̈ + c1
[
1− Ñ2(t)

]
q + c3q

3 = 0 , (7)

where q = wa/d1 and Ñ2 is the relative (dimensionless) axial force. The coefficients c1 and

c3 are dependent on the beam parameters, and can be determined by considering the static

case (q̈ = 0) and the relationships given in [5]:

c1 =
1 + 9α2

0

1 + α2
0

π2

ρA2L2
2

N2cr , c3 =
3

8

1− 4α0 + 36α2
0 + 81α4

0

(1 + α0)2(1 + α2
0)

π4Ed21
ρL4

2

, (8)

where

α0 =
1

3

√
κ− 1

9− κ , κ =
N2cr

NE
2cr

, NE
2cr =

π2EJy2
L2

2

. (9)
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Note that NE
2cr is the Euler critical axial load for a beam/column, while N2cr is the critical

force that corresponds to the static critical load Fcr calculated for the triangular frame

(see [5]). The quantity Ñ2 in (7) is related just to N2cr, that is, Ñ2(t) = N2(t)/N2cr.

In the example below we take Ñ2(t) = a sin(ωt). It is convenient to write Eq. (7) for

this particular case in the fully non-dimensional form:

q̈ + [1− a sin(Ωτ)] q + γq3 = 0 (10)

in which τ = ω1t, Ω = ω/ω1 where ω1 =
√
c1 is the first natural frequency of a load-free

beam and hence γ = c3/ω
2
1 = c3/c1. Now obviously, q = q(τ) and q̈ denotes the derivative

with respect to the dimensionless time τ . Without the nonlinear term (γ = 0) Eq. (10)

reduces to the well-known Hill’s equation.

3. Vibrations due to a harmonic load

We focus attention on a symmetrical triangular frame with the following parameter values:

L2 = 1352 mm, d0 = 50 mm, d1 = 60 mm, α = π/9, E = 2 · 105 MPa. The area of the arms’

cross-section is constant, A1 = 1000 mm2, while the dimension b (and c = A1/b) is altered.

This particular set of values is used in the railway industry. We assume that the structure is

subjected to harmonic load and the axial force on the cross-beam is Ñ2(t) = a sin(ωt) where

ω = 2πf . Equation (10) is solved for the initial conditions: q(0) = 10−3, q̇(0) = 0.

Figure 2. Regions of stable (white) and unstable (grey) motion of the beam (b = 20 mm)

and the stability boundaries of the linear system

First, the results obtained for b = 20 mm are thoroughly presented. Figure 2 shows

the parameter plane (Ω, a) with regions of stable and unstable motion of the system. More
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Figure 3. Maximal value of the quantity Xrel and the stability boundaries of the linear

system

precisely, the areas filled with grey relate to positive values of the maximal Lyapunov ex-

ponent (MLE), λ1. The map has been computed with steps ∆f = 1 Hz and ∆a = 0.1.

The Lyapunov exponents have been evaluated using the Gram-Schmidt orthogonalization

procedure and renormalization. Taking into account relatively slow convergence of the nu-

merical computations in the analyzed undamped case, vibrations are classified as chaotic if

λ1 ≥ 0.02.

For comparison purposes, stability boundaries for the abbreviated system (γ = 0) are

shown. The curves correspond to 1T -periodic (solid line) and 2T -periodic solutions (dashed

line) where T = 1/f [2, 3, 6]. Here, the dependencies a(Ω) have been determined by means

of the Rayleigh method, by assuming the solutions in the forms [3]:

q(τ) = B0 + C2 sin(Ωτ) +D2 cos(Ωτ) + C4 sin(2Ωτ) +D4 cos(2Ωτ) (11)

and

q(τ) = C1 sin

(
Ω

2
τ

)
+D1 cos

(
Ω

2
τ

)
+ C2 sin

(
3Ω

2
τ

)
+D2 cos

(
3Ω

2
τ

)
(12)

As can be seen, the curves coincide considerably with the numerical results based on the

nonlinear model. However, these two cases are not fully comparable. Unstable solutions

of the Hill equation (or the Mathieu equation) increase unboundedly with time, while the

nonlinear term γq3 causes amplitude limitation [6]. Thus, deflections of the beam become

very large but remain bounded.

This type of behaviour can be detected by analysis of the displacement and velocity

amplitudes. Let X = [q, q̇]T be the state vector of the system. Character of the system
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a)

b)

c)

Figure 4. Quasi-periodic and chaotic vibrations of the beam for f = 160 Hz: a) a = 0.5,

b) a = 1.2, c) a = 1.8
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a)

b)

Figure 5. Periodic vibrations of the beam: a) 8T -periodic motion (f = 160 Hz, a = 4),

b) 2T -periodic motion (f = 195 Hz, a = 4.5)

evolution can be assessed, for example, by the measure

Xrel(τ) =
‖X(τ)‖
‖X(0)‖ , (13)

where ‖ · ‖ denotes the Euclidean norm. The maximal values of Xrel(τ) found in the range

0 ≤ τ ≤ 5 · 104 are plotted in Fig. 3. The contour line corresponding to Xrel = 100 fits well

with the curves a(Ω), especially for lower a. As the load amplitude increases, Xrel grows

significantly but does not exceed 4 · 104.

Naturally, the beam exhibits a rich spectrum of behaviour. Selected responses of the

system for f = 160 Hz (Ω ≈ 1.48) are illustrated in Fig. 4 in the form of phase portraits
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a) b)

Figure 6. The effect of the dimension b on: a) the critical axial load, b) the coefficient γ

and the Poincaré maps. Similar to the linear case, the stable region is dominated by quasi-

periodic vibrations (Fig. 4a). This kind of motion can also be found for larger values of

the load amplitude a, however, the displacement and velocity are much higher (Fig. 4b).

An example of chaotic solution is depicted in Fig. 4c. Note that q > 1 means wa > d1,

i.e. large deflections of the beam, which definitely goes beyond the classical (linear) beam

theory.

As results from Fig. 2, there are scattered subregions of regular motion for a > 1, above

the curves corresponding to the linear system. In fact, subharmonic vibrations can be easily

found there. For instance, taking the same frequency as before and a = 4, one can obtain

quite complex 8T -periodic solution (see Fig. 5a). For f = 195 Hz (Ω ≈ 1.8) and a = 4.5, in

turn, 2T -periodic behaviour arises (Fig. 5b).

In engineering practice the width b of the arms is one of the most important parameters.

In the static case, for example, flat buckling of the triangular frame can occur for small values

of b (at the given data: b ≤ 18 mm); otherwise the system undergoes lateral buckling [5]. As

presented in Fig. 6, the static critical load of the beam, N2cr, increases with increasing b. At

the same time, such a strenghtening of the arms in respect of in-plane bending decreases the

coefficient of the cubic term, γ. The question is how it affects the dynamics of the beam.

By analogy to Fig. 2, the regions of regular and chaotic motion for b = 50 mm are

shown in Fig. 7. As in the previous case, the critical value of λ1 has been set to 0.02.

Again the lower boundary is quite well approximated by the curves determined analytically

for the linear system. Nevertheless, it seems that an increase of b gradually enlarges the
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Figure 7. Regions of stable (white) and unstable (grey) motion of the beam (b = 50 mm)

and the stability boundaries of the linear system

scattered regions indicating regular dynamics, and shifts them towards lower values of both

the load amplitude and frequency. More detailed studies of numerical solutions could show

an occurance of harmonic and subharmonic vibrations of large amplitude within these ranges.

4. Conclusions

The problem of dynamics of the symmetrical triangular frame has been reduced to the

problem of parametric vibrations of the cross-beam. The mathematical model of the sysstem

has been formulated by means of the Hamilton principle and the Galerkin method. The

regions of regular and chaotic vibrations have been determined in the ’load frequency –

amplitude’ plane. The lower boundaries of the chaotic regions are well approximated by the

curves specified for the abbreviated dynamical system. Within its stable region the vibration

amplitude of the beam increases significantly but remains bounded. Moreover, the scattered

regions of regular motion become larger as the width of the frame arms increases.

This kind of analysis, focused on both the vibration type and amplitude growth, is

crucial in the formulation of safety conditions for the structure, i.e. certain criteria for the

so called technical stability. However, from a practical viewpoint, the dynamic stability

problem is associated mainly with behaviour of a system under suddenly applied loads (e.g.

an impulse or step load). Since the problem is of great importance in the particular case of

brake triangles, it merits special attention in further studies of the mechanical system.
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Mathematical model of a multi-parameter oscillator based on a 

core-less three-phase linear motor with skewed magnets

(MTR070-15) 

Jakub Gajek, Radosław Kępiński, Jan Awrejcewicz 

Abstract: This paper uses the example of a three-phase core-less linear motor to create 

a mathematical model of single-dimension multi-parameter oscillator. The studied 

linear motor consists of: a stator, an U-shaped stationary guide-way with permanent 

magnets placed askew to the motor’s movement’s direction; and a forcer, a movable set 

of three rectangular coils subjected to alternating external electrical voltage. The 

system's parameters are both mechanical (number of magnets and coils, size of magnets, 

distances between magnets, size of coils) and electromagnetic (auxiliary magnetic field, 

permeability, coil’s resistance). Lorentz force allows for the transition from 

electromagnetic parameters to mechanical force and Faraday’s law of induction creates 

a feedback between the forcer’s speed and coils voltage. An Ampere’s model of 

permanent magnet is used to determine the simplified function of auxiliary magnetic 

field distribution throughout the stator. In the model the external voltage applied to each 

coil serves as the excitation while displacement of the forcer is the output parameter. 

The solution to the introduced mathematical model of the system is compared with the 

experimental results showing a good coincidence. 

1. Introduction

Over the years linear motors have been taking on bigger and bigger shares in the market for precise 

positioning systems. They provide a dynamically superior although costly alternative to standard drives 

such as feed screw conveyors. For a motor to correctly project a desired motion profile a specific 

close-looped controller should be introduced between the motor and mains. The quality of such system 

depends on, amongst other things, the precision of motor’s model used for building the controller. Most 

industrial controllers today use simplified models while this paper focuses on construction of a model 

for a simple core-less motor from scratch. 

A lab stand, with HIWIN's coreless linear motor and Copley-Controls' servo-drive, is used as both 

a physical base for constructing the model and a platform for its validation. The forcer (inductor) is 

capable of moving at speeds of up to 5 meters per second with a load of 45N. An analogue optical linear 

encoder can read the forcer's position with a resolution of 0,1 µm and the entire system's positioning 

error not trailing far behind. Three U-shaped stators with permanent magnets were used to create the 

motors magnetic guide-way giving the stand a theoretical maximum stroke of 830 mm and an actual 

stroke of 780 mm. Two high quality linear guide-way provide for a swift and quiet motion. The stand 
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program allows it to work with both manual input and automatically based on a signal from external 

devices, [1]. 

Figure 1. Lab stand’s diagram 

As the most interesting scientifically only the motor will be modeled in this paper. The stand will 

serve merely as a validation platform. 

2. Model construction

To construct the motor model a simple base model, consisting of a single winding and single magnet, 

was built first. The force acting on such a coil was calculated with respect to its position and of magnetic 

field strength. The field’s distribution for a single magnet and an infinitely long guide-way was then 

evaluated using Ampere’s model. The entire model for three windings inside the guide-way is then 

presented and encapsulated to a single ODE. 

2.1. Base model 

A single motor winding can be modeled as a perfectly rectangular conductor loop, with a certain voltage 

function Ug applied to it. The means and exact spot of this application is omitted as unimportant for the 

workings of the model. Let this loop be placed in the vicinity of a C-shaped magnet in a way depicted 

in Figure 2.  
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Figure 2. Model of a single winding 

 

Assuming that the loop cannot deform or rotate and can only move along the direction of y-axis it 

shall always remain a rectangle with a center placed on y-axis and with shorter sides parallel to the 

direction of motion. Every infinitely small slice of the coil is subjected to Lorentz force acting 

perpendicularly to its side (see Figure 3). 

 

 

Figure 3. Single loop overview: (a) - coordinate system; (b) - Lorentz force of the elemental slice 

 

The value of that force equals 

��� � ��� � ��, (1) 

��� � 
��� � ���, (2) 

187



where � and � are the vector of electric current and magnetic induction respectively. In every point of

a conductor loop the i vector's direction is parallel to the coil while its value can be treated as constant 

equal to �.

Since the model cannot move in any direction other than along y-axis, the only significant 

component of the Lorentz force is one parallel to that axis.  It is defined as 

��� = �� cos � = ����� cos �, (3) 

where � is the angle between ��	and the direction of motion. After integration, the equation takes the

form 

� = 	 ��� 
�� � ��
�

. (4) 

In equation (4) � is the y-component of total force acting on the coil, �′ is the z-component of magnetic

field acting on ��, and 
 is the conductor loop’s path. The above method can be used for calculating the

force working on any other closed loop conductor coils as well. For a specific case of rectangular shape 

the closed-loop integral can be rewritten as a sum of two definite integrals in the following form 

� = �
�
�� � � ��, �� −

��
2

� ��
���

����

− � � ��, �� +
��
2

� ��
���

���� �
��, (5) 

where �(�, �) is the function of the magnetic field’s z-component distribution, [2].

The electric current � is the result of the external voltage function ��(�) and the voltage �	 induced

in the loop due to Faraday’s law of induction. The second component can be calculated as 

�	 = −
��� � B�x, y�dS



, (6) 

where � is the area inside the conductor loop. For a rectangular coil (6) can be recast to the following

form 

�	 = −
��� � � ���, ������

���

����

��
�

����

. (7) 

Equation (5) can then be rewritten in the form 
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� =
1���
������	− 

� � � ��
,�	


�

���

����

��
�

���� �
��
�
�� � ��
,�� − ��

2
� 



���

����

− � � �
,�� + ��
2
� 



���

���� �
��, (8) 

where �� is the electric resistance of the coil. 

2.2. C-Shape magnets’ field distribution 

With accordance to [3] the value of magnetic field of a permanent magnet can be approximated by 

using Ampere’s model, that is by assuming that a magnet’s magnetic field is the same as that of a 

perfect, tightly wound solenoid. Then Biot-Savart’s law can be applied to calculate the exact value of 

magnetic field at any point P in the vicinity of the magnet via the following formula 

� !�"!� =
#�
4$ � �	 ��!× "′  !

%"�   !%��
, (9) 

where 

"�   ! = "! − �!, (10) 

and "! is the distance between point P and the center of the magnet, �! is the distance between the magnet’s 

center and the infinitely small solenoid length �� and #� is the magnetic permeability of the magnet’s 

environment. 

In case of a C-shaped magnet the field can be calculated as a resultant fields of two bar magnets 

placed perpendicular to each other with opposing poles facing each other. For a single bar magnet the 

field can be then calculated by solving the following integral equation 

����, ��,��� =
���
4	 
�����,��,��� + �����,��,��� + �����,��,��� + �����,��,����, (11) 

where 

�
&��, �� , '�( = � � &' − '�(�) + *�� −
+�
2

, '̂
.&�� − �(� + *�� −

+�
2

,� + &'� − '(�	�
���

����

���

����

���', (12) 

��&��, ��, '�( = − � � &' − '�(�) + *�� +
+�
2

, '̂
.&�� − �(� + *�� +

+�
2

,� + &'� − '(�	�
���

����

���

����

���', (13) 
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���
�, ��, ��� � � � �� � ���
� � �
� � ��2 � �̂
��
� � ��2 �� � ��� � ��� � ��� � ���

�

��

�

�
��

�

����
��
�

�
��
�

, (14) 

���
�, ��, ��� � � � � �� � ���
� � �
� � ��2 � �̂
��
� � ��2 �� � ��� � ��� � ��� � ���

�

��

�

�
��

�

����
��
�

�
��
�

, (15) 

and �
�, ��, ��� are the coordinates of point P, ��, �� , �	 are the bar magnet dimensions in their
respective axes, 
�, ��, �̂ are the unit vectors of axes x, y and z and i is the current density over the diameter
of wire of the solenoid. 

Figures 4-5 show the C-shaped magnet’s magnetic field’s z-component distribution in a yz-plane  

calculated with equations (11) - (15) for a sample magnet.  

Figure 4. Z-axis coefficient of magnetic field distribution of 

a C-shaped permanent magnet (in Teslas) 

Figure 5. Distribution of C-shaped permanent magnet’s magnetic field (z-axis coefficient) on a line 

ran parallel to y-axis in between the magnet’s poles, highlighted part marks 

the position of magnet’s poles 
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For the ease of use and because of the good coincidence with actual values, the magnetic field’s 

distribution on a xy-plane (coordinate system set as in Figure 3) will be approximated with 2D Gaussian 

function in the following form 

����, �
 = ����	

�����


�

����, 

(16) 

where �� is the given magnet’s constant. 

2.3. Magnetic guide-way field distribution 

An infinitely long magnetic guide-way can be modeled as a set of C-shape magnets placed in equal 

distance /� from one another along the y-axis. All of the magnets are placed askew from the x-axis by 

the angle � and each two neighboring ones have their poles set oppositely (see Figure 6). 

 

Figure 6. Magnetic guide-way modeled as infinite set of C-shaped magnets 

For such a guide-way the magnetic field distribution can be written as 

����, �
 = �����

������ � �−1
�����
�����

�

���� �
�
�����	�����	 ��

����
, (17) 

 

where 

1

 +��� =
+�� ��0���� + +�� 
������+��+�� , (18) 

1

 +��� =
+�� 
������ + +�� ��0����+��+�� , (19) 

1

+��� 
� =

��0�2�� (+�� + +��)+��+�� , 
(20) 

are the relative pole sizes for tilted magnets. 
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After introducing a correlation factor between the relative pole size in y (+��) and magnets’

displacement (/�) in the form

� =
���
�, (21) 

the equation (17) can be rewritten in the form 

�� = ������

�

������, �
,
(22) 

where 

1

�� = � �
�
4�

� −

1

�
�� , ��� =
��√	

2� , (23) 

and Θ(�, �) is the sum of two Jacobi theta functions of the third kind (1�(', 2)) in the form

���,�
 = ������
 + ��
, ��� − �� ���
 + ��
 −
1

2
, ���  �, (24) 

where 

'� =
$+��

4+���� , '� =
$

23+�� , 2� = 4� ��

��� . (25) 

2.4. Three-phase motor model 

For a set of three same size, stiffly connected, rectangular conductor loops inside the magnetic guide-

way the total force acting on this set can be calculated as a sum of forces acting on each coil. That is 

�� = 5 ��
�

��

, (26) 

where �� is calculated with (8) assuming the filed distribution is equal to (22). This single force can be

written as 

�� =
� 0��

&��	��� − �
	(
�
�� � �−�2

�2 �� 6
, �	 − �

2

7 − �6
, �	 + �

2

7� 


��
2

−
��
2 �

��, (27) 

where ��  is the position of individual coil and is equal to

�� = �� + 8�9 − 2�, (28) 

and �� is the position of the motor’s forcer and 8 is the displacement of coils in the forcer. The induced

voltage for j-coil &���( is equal to
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��� = −��'��: � � 4����

���;′��, ������
������

������

���

����

. (29) 

The Θ′(�, �) is the sum of two Jacobi theta prime functions of the third kind 

Θ���, �� = <1�′&�'� + �'� , 2�( − 1�′ 6�'� + �'� −
1

2
, 2�7  =. (30) 

The complete model’s ODE can be written as 

�>���� =
1? 5 ��

�

��

, (31) 

where ? is the mass of the forcer. (31) can also be written in developed form 

���(�) = 1���
���

��
����(�) − ������� � � �����������
,�� +  �! − 2	"


�

������

������

���

���� #$
$$
%�

���
 

���
�� � ����

�� &� �
,�� +  �! − 2	− ��
2
�− � �
,�� +  �! − 2	 + ��

2
�'

���

���� #$$
$%
. 

(32) 

As the integration of Jacobi theta functions Θ(�, �) and Jacobi theta prime functions Θ′(�, �) over 

x and y are analytically insolvable, it is likewise only possible to solve (32) using numerical methods. 

The nature of Jacobi theta function makes the equation highly non-linear. 

3. Validation 

Based on the equation (32) a computer simulation was created and conducted in Wolfram Mathematica. 

The external voltage functions ���(�) were used as excitation while the position of the forcer ��(�) 

was the output parameter. The size and displacement of magnets and coils, magnet’s skew angle and 

magnetic field constant and coils’ resistance, were treated as constant parameters. 

Mathematica gives a wide variety of possible excitation functions to be supplied to the model. 

Likewise the stand's servo-drive can be set in "maintenance mode" giving, amongst other options, a 

direct control over the motor from a PC desktop. This function function allows subjecting the coils to 

a given voltage function. The variety of functions available from the servo-drive manufacturers is scarce 

but sufficient. All of them have the form of 
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������ = ����� sin 6@� + �9 − 1� 2$
3

7, (33) 

with ��(�) (maximum voltage) and ω (angular frequency) changeable in time along a step, a sawtooth

or a sinusoidal function. For the purpose of validation a step function of maximum voltage was used. 

The computer model was supplied with the following set of parameters, taken from the motor's 

documentation as well as from direct measurement, so that they resemble the actual motor as closely 

as possible. 

Table 1 - Parameters used  for the model 

Parameter Symbol Value 

Coils’ width �� 5,2 [mm] 

Coils’ length �� 49 [mm] 

Coils’ displacement 8 7,36 [mm] 

Magnets' field strength �� 1,5 [T] 

Magnets' width (x-axis) +� 4,7 [mm] 

Magnets’ length (y-axis) +� 53 [mm] 

Electrical resistance �� 6,7 [Ω] 

Magnets' displacement correlation 3 2,35 [-] 

Forcer’s mass ? 0,31 [kg] 

Maximum voltage ��� 1,5 [V] 

Voltage frequency @ 20 [rad/s] 

Voltage step function frequency A 1 [Hz] 

Figure 6 displays the function of maximum voltage and the resulting voltage on one of the coils 

taken from the simulation. 
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Figure 7. Function of maximum voltage (top most graph) and voltage 
 on the first coil (bottom most graph) 

Exactly the same function of voltage was applied to actual motor coils. The result of both the experiment 

and simulation are presented below. 

 

Figure 8. Response of computer simulation: 
 the position and velocity of inductor 
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Figure 9. Response of the actual motor 

In light of the result above further validation was abandoned. 

4. Conclusions 

The prepared and studied model does not yet reassemble actual motor with satisfactory precision. Most 

likely cause of this is the usage of documentation data for parameter identification. Instead the 

parameters should be identified with numerical methods. The model clearly expresses interesting 

chaotic behaviors, however the complexity of Jacobi theta functions necessitate a largely time 

consuming simulations. A further simplification of the model might be required to better study it. 
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Power consumption analysis of different hexapod robot gaits

 (MTR308-15)

Dariusz Grzelczyk, Bartosz Stańczyk, Jan Awrejcewicz 

Abstract: The paper is focused on the power consumption analysis of different gaits of 

our constructed hexapod robot controlled by different Central Pattern Generator 

(CPG) models. There are a lot of gait patterns in the literature constructed either by 

different CPG models or using a series of oscillations with adjustable phase lag. The 

mentioned models, as well as those proposed in our previous paper are used and 

compared from the viewpoint of energy demand. In general, power consumption of 

the constructed hexapod robot is experimentally analyzed based on the current 

consumption in the applied servo motors, which drive the robot limbs. For this 

purpose the suitable drivers allowing a simple measurement of electric energy 

consumption of servo motors are used. The obtained experimental results show 

different energy demand for different robot gaits. Because power consumption is one 

of the main operational restrictions imposed on autonomous walking robots, we show 

that the performed energy efficiency analysis and the choice of the appropriate robot 

gaits depending on the actual situation can reduce the energy costs. 

1. Introduction

From the point of view of engineering applications various kinds of mobile six-legged robots 

(hexapod robots) are suitable for exploration of unknown, broken and unstable places [1]. The legged 

robots can go where it is impossible for the wheeled robots, however they require extra effort for their 

locomotion control. As the electric power is a limited resource in autonomous systems, the power 

consumption in autonomous walking robots is one of the main operational restrictions. This is why 

during the last few decades various types of hexapod walking robots (and other multi-legged 

machines) have been manufactured, modified and analytically/experimentally investigated in order to 

reduce their energy demand. Energy costs analysis and power consumption optimization in hexapod 

robots are analyzed in detail, for instance, in papers [2,3]. In paper [2] authors assume that the 

energetic cost during locomotion is given by the sum of positive mechanical work and the heat energy 

loss, which is proportional to the square of joint torque. Next, they examined the optimal locomotor 

robot gait by the energetic cost using computer simulations of simple dynamical model of the 

analyzed hexapod robot. In turn, in recent paper [3] an energy efficiency analysis (including the 

effects of the gait patterns and the mechanical structure of the robot) were performed for a hexapod 

walking robot to reduce these energy costs. In order to meet the power saving demands of the 

analyzed robot, the appropriate torque distribution algorithm was established with a formulated 
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energy-consumption model. The presented in the mentioned paper numerical results show that the 

proposed method can be applied for reduction of the energy costs during walking of the robot. 

There are also numerous other papers devoted to optimization of the energy demand in the 

walking robot through adjustment other gait parameters [3]. For instance, in order to optimize 

(minimize) energy demand, in [4] the author optimized the protraction movement trajectory of the 

robot leg using a modified version of the gradient descent based optimal algorithm of control. 

Moreover, in this paper the results of optimization were compared with the observations of 

protraction of stick insects, and it was concluded that a direct biological imitation of protraction is not 

energy efficient. In papers [2,5] a simulation model of a two-joint six-legged robot is considered. 

Energy cost analysis is performed with respect to the stride and stance length, the walking velocities, 

and duty factor of the wave gaits. The paper [6] is focused on the structural parameter analysis, where 

the foot force distribution for a six-legged walking machine is obtained for minimum energy 

consumption over a full cycle for regular wave gaits. In addition, in the mentioned paper geometric 

work loss for a walking machine with articulated legs is minimized by controlling interaction forces 

at the foot-ground interface. Minimum energy foot forces are also studied for various duty factors, 

lateral offsets, link proportions, as well as friction between the ground and the robot leg tip. Authors 

of the paper [7] proposed an energetic model for walking robots based on dynamic and actuator 

models, which allows the evaluation of the influence of the leg configuration, body weight, or gait 

parameters on power consumption. The presented in this paper technique is used to find the optimum 

stride length for the minimum energy expenditure of a biped prototype depending on the speed and 

payload, taking into account level and slope walking. Various parameters (defining the trajectories of 

the robot limb tip) aimed on optimizing energy costs of the robot during walking on non-regular 

terrain are also tested in paper [8]. In turn, the paper [9] is focused on the analysis of the torque 

contributions of different dynamic components in real leg trajectories taking into account backlash, 

friction and elasticity effects in the gear reduction system. The authors of this paper propose a new 

method to derive the dynamics of a robot leg as a function of parameters of the leg-trajectory. The 

experimentally found simplified equations of motion reflect the reality of the physical system and can 

be used in a real-time dynamic-control system. 

In this paper experimental investigations regarding an energy consumption of our constructed 

hexapod robot as the sum of the energy consumed in all of the joints are considered. The DC motors 

of applied servomechanisms in the joint of the leg are used for obtaining the power consumption 

experimental data from the required voltage and current values. It should be noted that experimental 

studies of motor mechanisms are especially challenging - they are characterized by a high degree the 

task of integrating influences from the surrounding environment. Our investigations involve various 

trajectories of the robot leg generating via different central pattern generator (CPG) signals, namely 
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Hopf oscillator, van der Pol oscillator, Rayleigh oscillator, and stick-slip induced vibrations. Both 

direct and inverse kinematics of the robot leg, as well as the mentioned CPGs are considered in detail 

in our previous paper [10]. 

The rest of the paper is organized as follows. First biologically inspiration and constructed 

prototype of the hexapod robot are briefly introduced. Both direct and inverse kinematics of the 

hexapod robot leg, as well as chosen oscillators as a CPGs signals are presented based on our 

previous paper [10]. Next, the experimental stand, including the electronic system for measuring 

energy consumption (taking experimental data from the voltage and current values of the supply) is 

briefly described. In result, experimental energy consumptions for the mentioned above CPG signals 

are compared and discussed. The last section contains conclusions of the performed investigations 

and possible outlook for future investigations. 

2. Prototype of the hexapod robot and modeling of the leg tip movements 

Construction of the entire body and its six limbs of our hexapod robot was motivated by the 

morphology scheme of the stick insect presented in Fig. 1. On the basis of the mentioned morphology 

scheme we consider first a kinematic model (Fig. 2) and finally construct the prototype of the robot 

(Fig. 3). All six identical limbs are manufactured by aluminum, whereas as the actuators standard 

servomechanisms are used and applied. The actuators are independently controlled via Pulse Width 

Modulation (PWM) technique described in [11]. The most important details of the constructed robot 

legs are presented in Tab. 1. 

 

Figure 1.   A morphology scheme of a leg of stick insect with coxa (cx), femur (fe) and tibia (ti) as three functional 

segments. Three mentioned segments are connected through hinge joints: the thorax-coxa joint ( ), 

the coxa-femur joint (  ), and femur-tibia joint (  ). The dashed lines denote swing movement and 

stance movement. PEP (AEP) denotes the posterior (anterior) extreme position, respectively [12]. 
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a) b) 

Figure 2.   Kinematic structure (a) and location of the hexapod leg in the global base coordinate system (b). 

Figure 3.   Constructed prototype of the hexapod robot. 

Table 1. Parameters of the hexapod robot legs. 

Name Symbol Value 

coxa 1l 27 mm 

femur 2l 70 mm 

tibia 3l 120 mm 

thorax-coxa joint 1 0 -   

coxa-trochanterofemur joint 2
2

... 2  

femur-tibia 3
0... 

65

Direct kinematics of the robot leg can be expressed as follows (see [10]) 

1 1 2 2 3 2 3 3 2 3

1 1 2 2 3 2 3 3 2 3

2 2 3 2 3 3 2 3

cos ( cos cos cos sin sin ),

sin ( cos cos cos sin sin ),

sin cos sin sin cos ,

x l l l l

y l l l l

z l l l
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while the inverse kinematics has the form 
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where: 
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In our studies we use the method to control the hexapod robot’s leg by planning out the leg tip 

trajectory and the velocity for transfer phase and support phase. The shape of the trajectory of the 

robot leg tip is generated by CPG. The appropriate positions of the phase trajectories of individual 

points are converted into joint space by the inverse kinematics relationships. The corresponding joint 

angles finally give a predetermined shape of the trajectory of the robot leg tip by employed direct 

kinematics. There are numerous models to generate the central oscillation presented in the literature 

[13]. In our investigations we use four different oscillators, namely: Hopf oscillator, van der Pol 

oscillator, Rayleigh oscillator and stick-slip oscillator. Both equations and system parameters 

governing the mentioned oscillators are presented in Tab. 2. Moreover, time series of angles in the 

appropriate leg joints and trajectories of the robot leg tip are presented in Tab. 2. The presented 

results are used in our experimental investigations in order to comparison different energy demand for 

various robots gaits. 

 

Table 2. CPG models applied to the control of the hexapod leg movements, time series of joint angles and leg 

configurations with the stable trajectory regarding the leg tip of the robot. 

 

a) Hopf oscillator: 
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b) van der Pol oscillator:
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c) Rayleigh oscillator:
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d) Stick-slip oscillator:
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3. Experimental results 

Power electric energy demand in servomechanisms of the robot has been performer using computer 

program created in LabView environment. Figures 4-7 show time series of angular positions and 

electric power consumption of the appropriate servomechanisms of single hexapod leg. Experimental 

results are performed for four mentioned earlier different CPG models, namely: Hopf oscillator, van 

der Pol oscillator, Rayleigh oscillator, as well as stick-slip oscillator. In all cases the stride length of 

the robot and number of stride lengths are the same. During experimental measurement the obtained 

total length of the road is 80 cm during time equal 22 s. 

 

Servo 1 (Joint 1)  Servo 2 (Joint 2)  Servo 3 (Joint 3) 

   

Figure 4.   Power consumption analysis of the hexapod movement generated via Hopf oscillator. 

 

Servo 1 (Joint 1) Servo 2 (Joint 2)  Servo 3 (Joint 3) 

   

Figure 5.   Power consumption analysis of the hexapod movement generated via van der Pol oscillator. 

 

Servo 1 (Joint 1) Servo 2 (Joint 2) Servo 3 (Joint 3) 

   

Figure 6.   Power consumption analysis of the hexapod movement generated via Rayleigh oscillator. 
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Servo 1 (Joint 1) Servo 2 (Joint 2) Servo 3 (Joint 3) 

Figure 7.   Power consumption analysis of the hexapod movement generated via stick-slip oscillator. 

A comparison of the total energy demand of all servomechanisms of the robot, which obtain the same 

road length in the same time using different CPG models, are presented in Fig. 8. 

Figure 8.   Comparison of the total energy demand of the hexapod robot for different CPG models. 

4. Conclusions

In this paper the power consumption analysis of different gaits of our constructed hexapod robot 

controlled by different CPG models is experimentally investigated. Although there are a lot of gait 

patterns in the literature constructed via different CPG models, in our investigations we consider three 

well known CPG models (Hopf, van der Pol and Rayleigh oscillators), as well as proposed in our 

previous paper CPG model (mechanical stick-slip oscillator). In order to compare electric energy 
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consumption of the robot for various gaits (based on the electric current consumption in all hexapod 

servo motors), the appropriate electronic and computer system is proposed and used. The relatively 

simple experimental measurements of electric power consumption show different energy demand for 

different robot gaits. Investigations of motor mechanisms are especially challenging because they are 

characterized by a high degree the task of integrating influences from the environment. As can be 

seen, from the energy demand point of view the proposed mechanical stick-slip CPG model is more 

efficient in comparison to other applied CPG models. In this CPG model in the stance movement the 

distance between the leg tip of the robot and center of the robot coordinate system positioned on the 

body of the robot at the point of attachment leg is constant. This is a result of keeping the center of 

gravity of the robot at a constant level, and finally the servo motors placed in leg joints robot do not 

have to perform extra electric energy, which significantly decreases the energy demand. It should be 

noted, that the development of multi-legged robots was always restricted by the problem of their high 

power consumption. This is why the proposed movements of the legs of the hexapod robot can be 

used to overcome long distances, particularly in the regular terrains in a more efficient way. Power 

efficiency optimization is this field without improving the power supply unit allow to increase of 

mission time of the robot. 
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Towards the exploitation of local resonances for novel MEMS 
devices 

(VIB028-15)

Thomas H. Hanley, Barry Gallacher, Harry Grigg 

Abstract: An investigation into potential exploitable behaviour of localised modes and 

local resonances in linear periodic structures is presented. This behaviour lends itself 

towards functionalization as the basis for a MEMS transistor or sensor. The particular 

device described herein operates via excitation of a local resonance. A phenomenon 

that occurs due to localised forcing of a periodic array at a frequency within the stop 

band. The resonant region is bordered on one side by an array with tuneable 

transmission properties. This array couples the forcing region to a sense region. The 

transmitted wave amplitude through the ‘coupling array’ is used as the output of the 

system. Methods of operation and functionalization of the device are described in 

detail. A continuous model of the system is presented and the forced response found. 

The subsequent insight into the wave dynamics is used to inform device design and 

assess the potential performance. 

1. Introduction

The proposed configuration for investigation consists of two surface acoustic wave (SAW) 

resonators, separated by an N-period grating. A local resonance is excited by forcing a region of a 

periodic array at a frequency within its stop band. The resonance is maximised if both the length of 

the forced cavity and the wavelength of the surrounding arrays are equal to 
   

 
, where    is the 

wavelength of the excited wave and n is an integer.  N-periods away from the excitation region is a 

sense IDT, enclosed on one side by the coupling array and on the other side by an enclosing array. 

The basic arrangement is depicted in figure 1. 

Figure 1.   Schematic of the proposed device. 

The theory of operation is that the wave-speed within the coupling array is perturbed by some 

external influence. Therefore, at fixed frequency operation, the wavelength is also perturbed. This 
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mistunes the coupling array from the Bragg condition, allowing a signal in proportion to the external 

influence to pass to the sense IDT. In the limit, the array is moved into the pass-band, and the cavity 

enclosing both IDTs becomes resonant.  

Two envisaged exploitation routes are proposed: functionalization as a MEMS transistor, and as 

a magnetic field sensor. Functionalization depends entirely upon the means in which the wave-speed 

within the coupling region is perturbed. The transistor will utilise the effect of piezoelectric stiffening 

to alter the wave-speed. Whereas the magnetometer utilises the change in wave-speed induced by a 

magnetostrictive thin-film in the presence of a static magnetic field. Both of these effects are known 

to be small, with reported Rayleigh wave-speed alterations of 1.5% [1] and 0.8% [2] for piezoelectric 

stiffening and magnetostriction, respectively. It is shown in the sequel that the properties of periodic 

arrays can be used to enhance the performance of such devices. 

2. Mathematical model

Within this section some general expressions will be derived for the ratio of the displacement 

amplitudes within each cavity, as a function of the device parameters. 

It can be seen in fig.1 that the device has been divided into five sections. The solutions within each 

section will be gained separately and then combined using a ray-tracing method. The reflection and 

transmission properties of each array are all independent of one another with the exception of the 

coupling array. It is asserted that the proportion of reflection and transmission across the array is not 

dependent on the direction of wave travel, due to the symmetry of the coupling array.  

In order to analyse the performance of the device, the displacement field arising from a localised 

forcing is required. More specifically, the displacement amplitude within the forcing and sense 

cavities are sought for varying parameters in the coupling array. The derivation of the model will 

follow a similar procedure to that conducted in reference [3], with the added complication of the 

transmission of waves between the two cavities. The forcing and sense cavities will be considered 

separately to begin with, and their connection through the coupling array modelled using the transfer 

matrix approach as described in reference [4]. 

The two-dimensional elastodynamic equations [3-6] (equations 1.1,1.2) govern the wave motion 

in every section. The differences between each section arise in the boundary conditions, which are 

defined by the shear, and normal, stresses at the free surface. For the forcing cavity, this incorporates 

the inhomogeneous equations 1.3 and 1.4. The sense cavity boundary conditions are that of a free 

surface, given in equations 1.5 and 1.6. 
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(1.3) 

(1.4) 

(1.5) 

(1.6) 

The solutions sought are the steady-state Rayleigh wave solutions, assuming a harmonic solution 

at the forcing frequency. The forced solution has been presented in references [3] and [5]. The sense 

cavity does not undergo direct forcing and therefore the free wave solutions are applicable. The free 

Rayleigh wave solutions are well known, and presented in references [5] and [6]. However, the 

transfer matrix method applies rigorously only to one-dimensional solutions [7]. As the majority of 

the displacement field is confined to the surface, a one-dimensional approximate solution, achieved 

by assuming depth behaviour and relating the two orthogonal displacements by a phase operator,     

has been shown to provide accurate results [4]. The depth behavior,        is found from the free 

wave solutions in the plated and un-plated substrate. The obvious limitation of this is that bulk waves 

generated from the forcing, or scattered from the discontinuities, are neglected. However, for plated 

regions whose thickness is small in comparison to the incident wavelength, the bulk scattering is 

minimal. The one-dimensional approximation is given in equation 2. Where a single surface 

displacement variable,     , is introduced, that will be used in the transfer matrix method. 

                          (2) 

The displacement fields in the forcing cavity and sense cavity, neglecting reflections, are now 

defined in equations 3.1-3, where the convention that the physical wave is the real part of the 

expression is adopted. 

            
     

                

                   

(3.1) 

(3.2) 

(3.3) 
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It can be seen that the field within the sense and forcing cavities is described by the sum of a 

leftwards and a rightwards propagating wave. The amplitudes of each, the constants A and B, are to 

be determined. This is achieved by a ray-tracing method and consideration of the physics of the 

problem. For brevity a highly condensed version of the method is presented here, highlighting the 

important steps in the reasoning. 

Consider a wave originating at the coupling array boundary. Each route that this wave can take 

before arriving back at its starting point can be made up of three fundamental paths, depicted in figure 

2. 

Figure 2.   Diagram detailing the routes of the fundamental reflection paths. 

Any future wave originating at the coupling boundary is made up of the original wave multiplied 

by some amount of any, or all, of these paths. Each path is represented mathematically by a phase 

change due to distance travelled, and an amplitude coefficient due to the partial reflections and 

transmissions. Note that the phase and amplitude change due to the wave traversing the coupling 

array is accounted for in the transmission coefficient   , to be determined from the transfer matrix 

solution. The expressions for the paths are given in equations 4.1-3, each path expression will be 

denoted as   . 

                        

               
              

                        

(4.1) 

(4.2) 

(4.3) 

Where     and     are the reflection coefficients for the left- and right-hand enclosing arrays 

respectively. 

Repeating this reasoning for a wave originating at the other boundaries leads to the same 

conclusion, with identical path expressions. The solution within each cavity can therefore be said to 

be some product of some initial waves at each boundary and a combination of the path expressions. 
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The path expression products in the forcing and sense cavities are found to take the forms shown in 

equations 5.1 and 5.2 respectively. 

        
 

 

   

     
 

 

   

      
 

 

   

     
 

 

   

     
 

 

   

   

        
 

 

   

     
 

 

   

      
 

 

   

     
 

 

   

     
 

 

   

   

(5.1) 

(5.2) 

It is of note that the path expressions have all been placed within an infinite sum. This is due to 

the fact that, neglecting damping effects, the waves will repeat each reflection and transmission 

pattern indefinitely. Some simplifications of the expressions can be made to aid with interpretation. 

As the summations are infinite geometric progressions, it is well known that these can be evaluated as 

below. 

   

 

   

 
 

   
 (6) 

Therefore, equations 5.1 and 5.2 simplify to equations 7.1 and 7.2. 

                                      

                                      

(7.1) 

(7.2) 

 The path expressions have been derived to represent the cycle a wave undergoes before arriving 

back at its starting position. The initial waves, however, are defined as the forcing waves, plus the 

initial reflections that occur before one full cycle of the paths has been completed. These waves can 

be found to be those given in equations 8.1 and 8.2 for the forcing and sense cavities respectively. 

     

  
              

                        
                     

      
                              

                       
  

                    
                                    

            

(8.1) 

(8.2) 

 The path expression products and the initial waves can now be combined to provide the 

displacements within the forcing and sense cavities. These are given by equations 9.1 and 9.2. 

              

              

(9.1) 

(9.2) 
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3. Device design and analysis

In order to use the model derived in the preceding section, the transmission and reflection coefficients 

of the arrays are required. These have been found from the transfer matrix method presented in 

references [1] and [4]. The derivation is, however, too extensive to be repeated here. The closed form, 

non-dimensionalised expression for the transmission amplitude across an N-cell array,    
   is however 

shown in equations 10.1-3. 

  
   

 

                            
      

  

        
     

   
         

     

   
         

                                 

   
 

 
     

 

   
  

(10.1) 

(10.2) 

(10.3) 

(10.4) 

 Where        is the Nth Chebyshev polynomial of the second kind and    is the non-

dimensional form of the upper left component of the single cell transfer matrix. For further detail the 

reader is encouraged towards the aforementioned references. 

The simplest way to find the design parameters, such as operating frequency and dimensions, are 

to reason them from the transmission amplitude plots of the different arrays and cavities that 

constitute the devices. There are 5 independent non-dimensional parameters to describe each array, 

these are listed in table 1 for the example of the coupling array.  

Table 1. 

Original 
Parameter 

Description and Dimensions Non-Dimensional Symbol Relationship 

    Device operating frequency (rad s
-1

/Hz)    
    

  

  
Wave-speed in the perturbed regions 

within the coupling array (m/s) 
   

  

  

  Period in the coupling array (m)    
   

  

  

  
Plating ratio in the coupling array   

  

  

  
Number of periods in the coupling 

array 
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The device is operated at a fixed frequency and the amplitude ratio is altered by a change in the 

transmission amplitude across the coupling array,   
 , due to a change in     by some external 

stimulus. There are several ways in which the design parameters could be specified. However, it is 

likely in a SAW device that the starting point will be a known substrate Rayleigh wave velocity and a 

known perturbed velocity within plated regions. For this reason, the parameters have been normalized 

to the unperturbed (substrate) wave-speed   . The maximum wave-speed perturbation within the 

coupling array is set arbitrarily following guideline values from references [1] and [2] at -1%.  

The Rayleigh wave-velocity in Y-Z Lithium-Niobate is widely reported [9] and given in eq.11.  

            (11) 

The values of    for 200nm thick Aluminium strips on YZ-LiNb03 is approximately 95% of the 

free wave velocity [4]. With a wave-speed change of -1% this gives the range of     as shown in 

eq,12.  

              (12) 

It can be seen from equations 10.1-3 that in order to plot the transmission amplitude across the 

coupling array for a given range of   , it is necessary to specify the additional parameters    and   . 

These are the plating fraction and number of periods respectively.  Initial trial values of these 

parameters are specified below for all arrays, to be refined with the aid of the transmission plots.  

           
            

     

                            

(13.1) 

(13.2) 

 

Figure 3.   Reflection spectrum plots with initial parameter choices for increasing   . Plotted for 

      (light-dashed),       (dashed) and        (full).  
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The iterative design adjustments are exemplified in figure 3. These detail the frequency 

dependence of the reflection amplitude for the enclosing arrays. It is shown that the desired non-

dimensional operating frequency is         , this can be tuned by altering frequency, or period 

length and therefore can be different in the coupling and enclosing arrays. In addition, sufficiently 

increasing    enforces the reflection coefficient to be equal to unity. This enforces the assumption 

used in the model derivation that there is zero transmission from the cavity through the enclosing 

arrays. 

It is implicit in the results of the mathematical model and the initial assumptions that the device 

sensitivity is proportional to the transmission amplitude across the coupling array,    
 . The final 

parameters to be found are    and   . These parameters will be selected using a plot of transmission 

across the array for the range of    values that will be encountered in operation (fig 4.). 

Figure 4.   Transmission coefficient plotted against the wave-speed in the plated region expanded 

around the range of interest. Plotted for         ;       (light-dashed),        

(dashed) and        (full). 

The proposed operating region is located at an edge of the stop-band seen in fig.4. It can be seen 

that the upper edge of the stop-band responds more uniformly to an increase in   . This plot can be 

used iteratively to choose the parameters that locate the operating region in the desired location in 

wave-speed space. It can be seen that increasing the number of periods (  ), increases the gradient of 

the transmission coefficient change, and reduces the range of the operating region. The operating 

region is indicated on the        plot in figure 5. 
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Figure 5.   Representation of predicted device operation. The iteratively selected non-dimensional 

operating frequency is        . The proposed operating region is shown for the        

(full-line) case. Values of    are displayed as in fig. 4. 

4. Conclusions 

The design for a novel surface acoustic wave MEMS device has been presented and potential 

functionalization routes discussed. It has been shown that the number of periods in the coupling array 

can be used to enhance the sensitivity of the device, at the sacrifice of device range. The analysis has 

provided dimensions for an initial design to be further explored using numerical, or experimental, 

methods. In addition, the work provides a reasoned design route that could be applied to find 

dimensions for different choices of materials, plating thickness or operating frequency.  

The effect of bulk wave generation on device operation is not accounted for in the design 

method. It has been shown in the literature [4] that the effect is negligible if the plating thickness is 

small in comparison to the wavelength; this constitutes a stipulation on device design. This stipulation 

necessitates the use of long periodic arrays; the length of these arrays in conjunction with 

manufacturing tolerances will inevitably determine minimum device size.  
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Deformation work of Zona Pelucida in process of fertilization

(LIF223-15) 

Andjelka N. Hedrih, Katica R. (Stevanovic) Hedrih 

Abstract: Zona pelucida (ZP) is an extracellular mantel that surrounds mammalian 

oocytes. This structure is important for fertilization, especially for gamete recognition 

and integrity of the embryo. ZP is highly sulfated and glycosylated polymer gel that 

exhibit visco-elastic properties and changing in diameter in different maturation 

stages. In the process of fertilization numerous spermatozoa impact its external 

surface giving some energy to the structure. The aim of this paper is to present a 

possible approximate mechanical model of the ZP in the form of elastic body bound 

by two concentric spherical surfaces loaded by discrete continuum distribution of 

spermatozoa impacts in radial directions. Using theory of elasticity for this 

approximate model, expressions for component stresses and strains are presented, as 

well as expressions for specific and total deformation work of the model deformation 

under external constant pressure. On the basis of obtained expressions an analysis of 

possible stress and strain state and a model of ZP deformation work some conclusions 

are derived. A specific deformation work as criteria for determination area of possible 

open put for passing spermatozoa through ZP is proposed. 

1. Introduction

Zona pelucida (ZP) is an extracellular, 3D mash –like structure that surrounds mammalian oocytes. It 

is highly sulfatated glikoprotein gel 2-6% (w/v) where the glikoproteins are interconnected with non-

covalent bounds [1]. The structure is important for fertilization, gamete recognition and integrity of 

the embryo. It is formed during the process of oocyte maturation [2] and change mechanical and 

structural properties during oocyte maturation and fertilization process [3]. During these processes it 

change its diameter. In fully-grown oocyte ZP is the thickest. This structure exists till the early 

blastocyst stage of an embryo. ZP is mechanically responsive structure [3, 4]. Using atomic force 

microscope and Arruda–Boyce eight-chain model visco-elastic properties of ZP could be modeled 

[4]. A computational model of impact of one sperm to the ZP was done in [5]. The ZP can be 

considered as an oscillatory structure that exhibits transition in oscillatory behavior before and after 

fertilization [6, 7]. Dissipation of its oscillatory energy occurs when it exhibits visco-elastic properties 

[7].  

1.1. Effect of sperm velocity and its arrangement on mouse ZP oscillatory behavior 

During the process of fertilization many spermatozoa will influence the surface of ZP. Spermatozoa 

are motile cells and in ejaculate there are many spermatozoa (in range of 106) with different velocities 
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and morphological characteristics. Only 10% are functionally capable of fertilizing the oocyte. 

Number of progressively motile spermatozoa is crucial for fertilization success. "Different 

distributions of spermatozoa with same/different kinetic parameters result in different distributions of 

external forces acting on the ZP surface. Each individual spermatozoid generates certain force that 

acts upon the ZP surface [8] and their joint action will give specific distribution of force on the ZP 

surface"[9]. Currently valid opinion in science is that distribution of spermatozoa upon ZP surface is 

stochastic process. The schematic representation of hypothetical sperm distribution upon the ZP 

surface is presented in figure 1. "A symmetric or asymmetric distribution of forces produced by 

action of spermatozoa upon ZP surface will cause different oscillatory states of the ZP."[9]. Impact of 

spermatozoa upon ZP surface is not only mechanical but also involved receptor-recognition 

mechanism. 

Figure 1. Hypothetical arrangement of spermatozoa on ZP surface. a. Symmetrical arrangement 

of spermatozoa having two different swimming velocities and same impact angles. b. Symmetrical 

distribution of areas with same mechano-chemical impact on ZP surface. c. Asymmetrical 

arrangement of spermatozoa having three different swimming velocities and different impact angles 

arbitrary arranged. d. Asymmetrical distribution of areas with same mechano-chemical impact on ZP 

surface. Different colors of spermatozoa (pink, blue or green) on a and c. denote their different 

swimming velocities. Different colors on b and d denote areas with different mechano-chemical 

influence of corresponding spermatozoa. 

During the external impact of spermatozoa certain amount of kinetic energy is transfer to ZP. 
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The aim of this paper is to present a possible approximate mechanical model of the ZP in the form of 

elastic body bound by two concentric spherical surfaces loaded by discrete continuum distribution of 

spermatozoa impacts in radial directions. Using theory of elasticity for this approximate model, 

expressions for component stresses and strains are presented, as well as expressions for specific and 

total deformation work of the model deformation under external constant pressure. On the basic 

obtained expressions an analysis of possible stress and strain state as well as model of ZP deformation 

work some conclusions are derived. 

2. Stress and strain in mechanical model of ZP as a elastic body  

Determining the Young modulus of mouse oocyte and embryo, using micropipette aspiration 

technique, Khalilian et al modeled the oocyte as an elastic shell of defined thickness. [10]  

 

a*                                           b*                                           c* 

Figure 2. Mechanical model of ZP loaded by central symmetric pressure.  

 

To determine the deformation work of ZP in the state before starting of the process of 

fertilization with impact of numerous spermatozoa ZP was considered as deformable ideal elastic 

body, bounded by two spheres with radiuses uR and sR with thickness us RR   in natural and 

no loaded state. 

 We made some assumptions of the model: spermatozoa form uniform arrangement on ZP 

surface. All spermatozoa have same velocities and sperm impact angles, which result in uniform 

arrangement of external pressure upon the ZP surface. In definite time moment sperm impact is in 
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form of constant external pressure 0rp
r

r
pp sss





  in radial direction on the outer surface of 

ZP external contour. Pressure on the inner spherical surface of the ZP we can use in the form: 

0rp
r

r
pp uuu





 , (see Figure 2.a* and b*). For special case we can use that this pressure on 

other sphere is equal to zero, 0up . The thickness of the ZP us RR   in unperturbed state

is uniform. The model and the external discrete continually distributed pressures are centrally 

symmetric. After deformation the ZP remains symmetric. Displacements of material particles of ZP 

and on inner and outer ZP surface are central symmetrical and only in radial direction. There is no 

shearing stress. In this model we take into account only two static configurations: one in natural 

stationary case before actions of numerous spermatozoa impacts and final deformed configuration of 

the ZP under static centrally symmetric pressures. Similar model is presented in Figure 2. 

 Taking into account previous assumptions and determinations the problem could be treated as 

kvasistatic and according to the model from Theory of elasticity solved in the books [11], [12] as 

model presented in Figure 2 with an element of the ZP in the form of element in spherical coordinate 

system, with three main normal stresses in radial circular and meridian directions, we can present 

there expressions for these elements of stress tensor of stress state in the points of zona pelucida, in 

the form (see References [11] and [12]): 
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where 

s

u

R

R
 , Sp -pressure on the outer contour surface of the sphere. Up - pressure of the

inner contour surface of the sphere. Tangential components of the stresses are equal to zero. 

For the case when specific shear deformations are equal to zero 0rc , 0rm

and 0cm , strain-dilatation of line elements in radial, circular and meridian directions are defined 

by following expressions (see References [11] and [12]): 
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where G  - is shear modulus  - Poisson ratio of lateral contractions, 
21

1


k . Previous 

component present approximate elements of the strain tensor of specific deformation line element in 

the point of the zona pelucida in defined model. 

Volume dilatation V of material element around material particles of the ZP on distance r  

from the center of the sphere is expressed in the form: 
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Volume of an elementary part of ZP (Figure 2c) in spherical coordinates is with sides: dr , 

dr cos  and rd  is:  ddrdrdV cos2 .  

By previous expressions (1)-(2) and (3)-(4)-(5) is possible to analyze quazi static stress and 

strain around each point inside of ZP including points along the boundary contours inner and outer 

sphere of the model of ZP in proposed deformed configuration loaded by discrete continuum 

distribution of spermatozoid impacts.   

3. Deformation work of deformed configuration of defined mechanical ZP model 

Deformation work of volume unit of ZP could be determined through component stress and 

component strain. The specific deformation work (elastic potential) of volume element of the defined 

mechanical model of ZP in deformed configuration should be determined first. It is in the form: 

    ,
2

1 2222222
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






cmrmrcrmcrdef k GA  (6) 

expressed by elements of strain tensor. Taking into account that for considered case of stress and 

strain are 0rc , 0rm  and 0cm , specific deformation work is possible present in the 

form:   2222

rmcrdef μkεεεεGA  . If we introduce the following notations: 
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the specific deformation work of defined model of ZP could has the following form: 
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and its final form is: 
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Previous expression of specific deformation work of produced under model of ZP up to deformed 

configuration explicitly expressed by pressures applied along boundary contour surfaces is in the 

following form:  
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We can see that specific deformation work - elastic potential of the deformed configuration of the 

model of ZP is function of radiuses of boundary contour spherical surfaces, inner and outer spherical 

surfaces; inner and outer continually distributed pressures, with quadratic. Also depend of point 

position in model depending of distance r  from centre of spherical surfaces in opposite

proportionality with sixth step 
6r . Also with ratio of the radiuses of inner and outer spherical

radiuses 
6 . Taking into account that this considered model is static, and that real system of ZP

dynamic under the action of spermatozoa impacts specific deformation work in the corresponding 

point can be consider as a elastic potential for rejecting some of next spermatozoa impact or for 

passing through ZP one of these spermatozoa through zone with point with minimal specific 

deformation work - elastic potential.  One of the aidea in analogy with plastic deformation to 

introduce hypothesis of minimal or maximal value of specific deformation work for destruction od 

some zone of ZP for put of passing one spermatozoa after deformation ZP bay invasion of numerous 

discrete continuum distribution numerous spermatozoa impacts.  This is open ida for discussion and 

evaluations! 
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To obtain expression for total deformation work for whole mechanical model of ZP the 

deformation work for all volume units should be summed and present by following volume integral 

along all volume of the proposed mechanical model in the following form: 
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and its final form is: 
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The total deformation work – elastic potential of the whole model of ZP explicate expressed by 

all geometrical and material influent parameters, and in the case that model of ZP is loaded by 

discrete continuum distribute pressures along inner and outer boundary contour spherical surface, is:  
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The total deformation work – elastic potential of the whole model of ZP explicate expressed by 

all geometrical and material influent parameters, and in the case that model of ZP is loaded by 

discrete continuum distributed pressures along only outer boundary contour spherical surface, is: 
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4. Dynamical model of ZP 

 Let consider a oscillatory model of ZP presented in Figure 2, and loaded by continually 

distributed pressures along boundary contour surfaces, inner and outer  surfaces in radial direction in 

the case that pressures are function of time, it is visible to conclude that mass particle of ZP oscillate 

central symmetrically in radial direction,  Partial differential equation of radial oscillation of mass 

particle of a model of ZP shell is: 
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where    
r

r
trstrs


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,,   is displacement in radial direction of material particles of the model of 

ZP, G  is shear modulus, vF 


 specific volume force that could be neglected, 
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k ,   is Poisson ratio, grad -gradient differential vector operator, div  - scalar

differential operator, while  -Laplace-differential operator in spherical coordinate system has a form
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We suppose that displacement of the mass particle of the model of ZP is in the form of product 

of two functions  rs~  and  tT  and that solution of the partial differential equation (15) is possible

to suppose in the form: 
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and after introducing (17) in (15) we obtain: 
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or in the form: 
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in which we introduce unknown parameter 
2 which is constant. After introducing that
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from equation (20) we obtain the following two ordinary differential equation, each along only one 

variable – coordinate and time in the following form: 
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or in the form: 
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First ordinary differential equation (24) is known and with solution in the form: 

  ,sincos tBtAtT    (25) 

in which   is eigen circular frequency of free vibrations, and A and B  are integral constant defied 

by initial conditions.  

 Problem is to solve second, nonlinear differential equation (25). Solution  rs~  present eigen 

amplitude function, which must to satisfy boundary condition on the boundary contour spherical 

surface. This ordinary differential equation (25) is similar to Bessel differential equation, and it is 

necessary to find some change of variable if possible to solve this nonlinear differential equation.  

At this moment, the question how to solve this differential equation analytically is open or it 

could be solved by using some numerical method and computer software tools. 

5. Conclusions 

In conclusion, we can point out, that specific deformation work - elastic potential of the deformed 

configuration of the model of ZP is function of radiuses of boundary contour spherical surfaces, inner 

and outer continually distributed pressures, with quadratic, depend of distance r  from centre of 

spherical surfaces with proportion 
6r , with ratio of the radiuses of inner and outer spherical radius 

6 . The total deformation work of the whole ZP model is inversely proportional to the shear 

modulus. Taking into account that the considered model is static, specific deformation work of ZP in 

the corresponding point, during fertilization process, can be consider as an elastic potential for 

rejecting some of incoming spermatozoa or for penetration through ZP at the point with minimal 

specific deformation work. The idea is the analogy between plastic deformation and minimal or 

maximal value of specific deformation work needed for destruction of some zone of ZP. This critical 

deformation work in certain point of ZP could lead to weakening of the material (ZP) and its plastic 

flow. It is possible that this local plastic flow of ZP could initiate the process of sperm penetration.  
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Dynamics model of the four-wheeled mobile platform

(MTR033-15) 

Anna Jaskot, Bogdan Posiadała, Szczepan Śpiewak 

Abstract: The dynamics model of the prototype of four-wheeled mobile platform has 

been presented. The problem has been formulated with consideration of the contact 

phenomenon between foundation and drive wheels and the possibility of slippage is 

also included. The model enables to analyze the forced and free motions of the 

platform with consideration of the changes of drive module positions during the 

platform motion. The formulated problem has been solved numerically with the use of 

Runge-Kutta method of the fourth order. 

1. Introduction

Analysis of the issue of dynamics of the mobile platforms consists on the motion studies taking

into account the forces which are causing this movement and to study the causes and effects of the 

motion. Considerations about the trajectory tracking and path generation both for kinematics and 

dynamics of the robots for two-wheeled [3], three-wheeled [1][2][5], or one-sphere [9] are the subject 

of widely described in the literature. The solutions for the different possible configurations of the 

wheeled platforms in terms to dynamics is considered and solved in [4].  

The aim to know the conditioning of platforms work, the solution of the description of the 

dynamics of the mobile platform is proposed. The trajectory tracking problem for a 4-wheel 

differentially driven mobile robot moving on an outdoor terrain is considered in [6]. The design of 

a four-wheeled mobile platform for a indoor terrain (production halls, factories), which model allows 

for an analysis of the planar motion, including a progressive and rotational motion of the platform is 

presented in this paper. A constructional model allows to the  change the length between the wheels 

along the longer side of the platform. Description of the dynamics of the platform in the classical 

approach ultimately allow to provide the velocity and acceleration, taking into account the cause of 

the motion and allow to know the position of the platform at a particular point in time. 

Solving the problem of the dynamics is based on knowing the relevant motion equations, in the 

purpose of the studies of the motion trajectory. Knowing the differential equations of motion the 

simple or inverse task of the dynamics can be solved. Due to the complex form of the equations 

describing the motion of the system in the inverse task of the dynamics, the solution of it can make 

a problem. This paper presents a solution to the inverse problem of dynamics. Knowing the 

differential equations of motion the motion parameters can be determined by using the Eulers 
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parameters and Kane’s method [1],  Maggie equations [5], Langrange method [4][7][9]. In this work, 

the appropriate calculations were made by using the Runge – Kutta method of the four order. The 

effect of this is generating and implementing the trajectory of the platforms motion. 

The examples of the results of platforms motion simulation due to the driving torque applied to 

the wheel of the platform and simulation of position changes of the platform while in motion are also 

presented in this work. 

2. Model of the prototype of the platform

Figure 1.   Scheme of the prototype of the mobile platform 

The system of the chassis of proposed solution of the mobile platform is pictorially presented in 

Fig. 1. The modular construction of the design solution has been adopted. Creating configurations of 

selected positioning of the platform wheels is possible by the using the drive member with electric 

drive. This allows the realization of the preset trajectories of vehicular transporter. 

Body chassis is mounted to the chassis frame. The torsion system of the platform, according to 

the initial assumption, is dependent in pairs, and is realized through an electric motor conjugated to 

the worm gear (2), a rod system (9) and a rack and pinion gearing (8). The presented version of a bare 

chassis of the platform is constructed from a rigid frame (5) on the sides of which the main hitches (4) 

of stub axle (7) are attached in a clamping method. 

 Changing the distance between the axis of the driving wheels (6) along the longer side of the 

frame is possible by the configuration of hitches. Each wheel has an independent drive system 

constituting the coupling of the electric engine (3) with a planetary gear in co-axial system (3). The 

symmetry axis of the stub axle (7) passes through the center of gravity of the motor assembly, the 

planetary gear, driving road wheel, and a driver (1), through which the torque is transmitted. 
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Additionally, it is possible to embed an independent stub axle drives on hitches (2) in order to 

study a tracking motion trajectory, when the stub axles are immobilized. The provision of possibility 

to separate the selected wheel drives has been made. To prepare a model of prototype Autodesk 

Inventor has been used. The possibility of rotating the wheels of the 360 deg is a big advantage of the 

system, since it enables the execution of all of the possible maneuvers of the mobile platform.  

3. Geometric model of the mobile platform 

 In this work the description of the dynamics, which includes the determination of the motion 

equations have been resolved. 

In order to describe the dynamics of the mobile platform in a coordinate space the model shown 

schematically in Fig. 2 is adopted. 

  

Figure 2.   The geometric scheme of the mobile platform 

The motion parameters are determined with respect to the global reference frame OXY, according 

to designations: 

A, B, C, D – the points corresponding to a position of the center of rotation for each wheel, 

 xi, yi – coordinates of the i-th point (respectively for points: A, B, C, D), 
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S – the point corresponding to the centre of gravity and the centre of mass of the platform, 

Li – the lengths of sections from the centre of gravity (point S) to following points A, B, C, D. 

β – the platform inclination angle relative to the X axis of the global reference system. 

The global and local coordinate systems, and the geometric relations between the position of the 

respective drive modules are shown in the model scheme. 

The motion of the robot occurs in one plane in a planar surface. Instantaneous motion is 

composed of the progressive motion with the velocity of the centre of the mass and the rotational 

motion with the velocity around the center of mass of the mobile platform. To determine the sample 

motion parameters based on the forces that cause the motion the following assumptions have been 

taken into the account: 

  the platform moves on a flat surface, 

  during the movement does not occur the phenomenon of detachment of wheels from the ground, 

  during motion, the mass of the platform is not changed. 

In Fig. 3 the forces occurring in the wheels of platform during the movement are presented. The 

force Ni, as a reaction on the weight of the platform wheels are considered. In the figure the driving 

torque Mi which later is a base to determine the active force Fci are also shown. 

Figure 3.   Distribution of forces acting on each wheel of the platform 

In Fig. 3 the following forces are presented: 

Mi – the drive torque, 

Fci – the active driving force, 

Twi – the friction force in the longitudinal direction, 

Tpi – the friction force in the transverse direction,  

Ni – the reaction force of the i-th wheel, 

ωi – the angular velocity of the i-th wheel.  
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4. Description of the dynamics of mobile platform 

In determining the forces occurring during the motion there is a need to take into account the 

drive torque and the friction, which is consequent from the contact of the wheel from the roadway. It 

is necessary to determine the values of wheel loads on the roadway, Wi force vectors and Mi moments 

to the points A, B, C, D.  

 

Figure 4.   Distribution of forces in the platform wheels 

The scheme of the calculation model is presented in Fig. 4. The values of the resultant forces Wi 

have been calculated as follows: 

,1p1w1c1 TTFW 
 (1) 

,2p2w2c2 TTFW 
 (2) 

,3p3w3c3 TTFW   (3) 

4444 pwc TTFW   (4) 

 The active forces acting on each one of the wheel were calculated by the formula: 

r

M
F ni

ci   (5) 

where: Mni – the drive torque of an i-th wheel, 

 r – radius of a driver wheel. 
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It is necessary to establish the value of the force Ni, which is a reaction to the weight of the i-th 

wheel (Figure 3). 

In addition to the active forces which cause motion of the system, the passive forces should be 

determined. The passive forces are the resistance forces such as friction forces Twi in the longitudinal 

direction, and the friction forces Tpi in the transverse direction. The friction force values are different 

from zero during the platform motion, because the active force Fci is different from zero. The whole 

values of those forces are described below: 

)( wiwwi vsignNT   (6) 

)( pippi vsignNT   (7) 

where: μw – coefficient of friction for the longitudinal direction, 

μp – coefficient of friction for the transverse direction. 

Considering the formulated formulas (1-7) representing the active and passive forces the 

translational motion equation can be formulated in the form: 





4

1i

iWma (8) 

where:  m – the mass of the whole object, 

a – the acceleration of the centre of mass of the platform, 

Wi – the i-th resultant force. 

This equation enables to determine the motion of the center of mass under the influence of 

known external forces. The progressive motion of the center of mass is described by Eq. (8) and the 

rotational motion around the center of mass for the platform should be also described.  

The equation of the rotational motion around the center of mass for the platform can be written in 

the form:  

 
 


4

1

4

1i i

iii MWs
dt

dK
(9) 

where:  K – the angular momentum vector of the whole platform, 

si – the location vector of points: A, B, C, D in the global coordinate system. 
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By using the derived equations of motion, written in the form of differential equations, the rate of 

change certain physical quantities (ex. velocity, positioning) can be defined. The dynamic equations 

of motion can be written in case of the planar motion in the form: 

ixWXm   (10) 

iyWXm   (11) 

z

i

ixiyiyix

I

WsWs )(
4

1






  (12) 

The set of equations (10-12) can be used to formulate the initial problem by adding the initial 

conditions according to the starting values of the motion parameters. The formulated initial problem 

has been solved by using the Runge - Kutta method of the fourth order. 

5. The exemplary simulation results of platform motion 

 The description of the dynamics has been drawn up with assumption that the drive torque is 

given as a trapezoidal function as shown in Fig. 5. 

 

Figure 5.   Drive torque as a trapezoidal function (Mi_max = 1 kNm) 

The movement should be considered in three time periods: starting = 2s, established= 6s, 

braking = 2s. 

 Solutions for the straight line trajectory according to the principles is presented in Fig. 6. The 

considered results have been obtained for such values of active forces that no slippage of any wheel 

has been observed. 
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Figure 6.   The starting position of the platform in relation to the global coordinate system 

Figure 7.   The motion parameters of the centre of the mass of the mobile platform 

Figure 8.   The motion trajectory of the mobile platform 
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6. Conclusions 

 The proposed dynamical model of mobile platform motion is useful to examine the different 

implementation of the active forces and the realization of motion in different configurations of the 

drive wheels. 

 Built on the basis of the description of dynamics the calculation model enables understanding of 

the determinants of platforms work, which in turn allowed the determination of the parameters 

affecting the movement of both the platform and its components.  

 The presented in the work the design solution of the mobile platform is designed to enable 

further research, both experimental and theoretical of the dynamic phenomena that can occur during 

movement of such facilities, particularly in an effort to investigate the behavior of the platform while 

slippage and to refrain from falling into the skid.  
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Free vibration of cantilever beams of various cross-section

(VIB042-15) 

Jacek Jaworski, Olga Szlachetka 

Abstract: The topic of this study is the first mode of natural transverse vibrations of 

isotropic, homogeneous and elastic columns (or beams) with clamped bottom and free 

head. The columns are shaped as tubes with linearly variable wall thickness and with 

different inclination of lateral faces, from cylinder to cone. The first frequency of free 

vibrations was determined using the energy method. The deflection line of the column 

axis during the vibration was assumed in form of the bending line of the column axis 

subjected to a uniform load. Resulting frequencies (or periods) were compared with 

these obtained with the use of FEM (ANSYS) and a good compliance of results was 

observed. As the expression for the energy of an elementary slice of material was 

integrated over the length of the beam, the formula for the frequency was obtained in 

form of an integral equation. In the case of a truncated-cone column, an exact solution 

of integral equation was obtained, however for a tubular column with variable cross-

section only a numerical solution was possible. 

1. Introduction

The frequencies of subsequent modes of free vibrations of a beam can be obtained by solving the 

equation of a Bernoulli-Euler beam for specific boundary conditions. The way of proceeding which 

enables to obtain a numerical solution for a beam having the shape of truncated cone and wedge is 

presented in [1]. Other methods and further results for bars (beams or posts) with variable cross 

sections are discussed and presented in [2]. 

Authors of this paper have set themselves a target to derive, using the Rayleigh method, formulas 

for the first frequency of natural (transverse) vibrations of cantilever bars having the shape of conical 

tube, i.e. hollow truncated cone. It has been assumed that the vibration amplitude is small, the 

material is homogeneous, isotropic and ideally elastic, and the mass is continuously distributed. 

In the Rayleigh method, the shape of deflection line of the oscillating bar axis is being assumed. 

If the shape is assumed in a form of parabola, trigonometric function or a static deflection line being 

a result of action of an external transversal force applied in its top, the obtained results for cantilever 

bars with circular cross section are not proper, especially for the bars having the shape close to cone 

[3]. The results consistent with the FEM calculations and with the solution according to [1] have been 

obtained with the assumption that the axis of an oscillating post assumes a form of the line of static 

deflection evoked by a continuous load [4]. The assumption of a continuous mass distribution 
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sometimes leads to serious difficulties in integration. However, if an exact solution can be found, as it 

is for example in case of a truncated cone cantilever bar [4], the obtained formula is so simple that a 

pocket calculator is enough to calculate the first frequency (or period) of free vibrations. 

2. Derivation of formulas

2.1. Bar scheme and basic dependences 

Free vibrations of a conical tube cantilever bar have been considered. The bar is loaded with 

a continuous load of a constant value q (Fig. 1). There are introduced the denotations: 

d

D
n  , (1) 

D


 , (2) 

d


 . (3) 

Figure 1.   Cantilever beam in form of a uniformly loaded hollow cone tube. 

The external and internal diameter of the bar as well as the second area moment in any cross 

section, given by a coordinate x, are equal respectively: 

  x
L

dD
DxD


 , (4) 

  x
L

x


 , (5) 

      xxDxJ 44

64



 (6) 

where 

x , y  – coordinate axes, 

D , d  – bigger and smaller external diameter of the bar, 

 ,    – bigger and smaller internal diameter of the bar, 

D(x)

dx

D

L

d

y

x
x

 

q
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n – quotient of the diameters describing a convergence ratio of external walls of the truncated cone, 

L  – bar length, 

J  – second area moment of the bar cross section. 

2.2. Bar deflection 

A deflection has been calculated by integration of the differential equation of bar elastic deflection 

curve: 

   
22

22

2

2 qx
qLx

qL
xM

dx

ud
xEJ   (7)  

where 

u  – deflection, 

E  – longitudinal modulus of elasticity, 

M – bending moment in the bar section given by a coordinate x , 

q  – continuous load of a constant value. 

The above equation can be transformed to the form which is convenient to integrate: 

    hgxfx

x

ecxbaxhgxfxecxbax

xLxL

dx

ud
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where a , b , c , e , f , g , h  are equal: 
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 (9) 

The symbols 1 , 2 , 1 , 2  are the quotients of the determinants: 
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resulting from the application of the Cramer method for the set of linear equations: 
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 (11) 

After two integrations of Eq. (8), the bar deflection is obtained in the following form: 
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where: 
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and the integration constants 1C  and 2C  are equal: 
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2.3. First natural frequency 

With the assumption that the bar axis (Fig. 1) deflected during vibrations has a shape described by 

(12), the potential energy for the deflected bar and the kinetic energy for the non-deformed bar have 

been calculated. The potential energy is equal: 
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If the mass of a material slice with a thickness dx is denoted as  xm , i.e. 
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then the kinetic energy of the post is determined as: 
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The energy comparison enables to determine the frequency. The period is equal: 
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where 

T – vibration period, 

  – vibration frequency, 

  – mass density, 

E – longitudinal modulus of elasticity, 

D – diameter in the clamp, 

L – bar length. 

Remaining quantities are described with Eqs. (9), (10) and (13). Expansion of the terms in the 

integrations in the root in Eq. (18) allows to note that the integrated terms take i.a. the form: 

   
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These functions are not integrable analytically, therefore the values under the root in Eq. (18) 

have been calculated numerically using the program MATHEMATICA 9.0. In this aim, the command 

 },,{,NIntegrate 10 xxxf  has been applied, which gives the numerical value of an integral  dxxf

x

x


1

0

, 

[5]. 

3. Special cases

As the denominators in the Eqs. (8), (10) and (13) cannot be equal zero, the four special cases 

presented in Fig. 2 must be considered individually. The proper formulas for calculation of the 

vibration period for them are presented below. 

Figure 2.   Special cases: a) cylindrical tube, b) conical tube,  , c) hollow cone, d) conical tube with 

constant wall thickness. 

A) Cylindrical tube Dd  ,   (Fig. 2a). It is a simple case where:
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B) Conical tube where the generatrices of the internal and external cone cross in the point placed

on the longitudinal axis of the bar,   (Fig. 2b). This case can be described by the 

vibration period formula for a truncated cone derived in [4]: 
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The vibration period formula is obtained after multiplication of the term (21) by a correcting 

factor [4], taking into consideration the hollow of such type that  : 
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C) The external surface creates a cone, 0d  (Fig. 2c). If this case is considered as a cone [4] 

with a hole and  , then the vibration period formula takes a form: 
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D) Conical tube with the constant wall thickness (Fig. 2d). The projection of the wall thickness g 

on the transversal surface is denoted as t: 

 
L

dDL
gt

2

4
22 

 . (25) 

Further procedure is analogical to that in Section 2. The second area moment is determined as 

a function of t: 
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After substitution to the differential equation of bar elastic deflection curve (7) and two 

integrations, it has been obtained: 
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where: 
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and the integration constants are equal: 

   

    .

4

arctan

4

2
ln

2
ln

,

4

arctan

4

2
ln

2
ln

222

33
2

2

3
322

22

333
1



















































BAC

B

BACA

ACABB
C

A

AB
tD

s

tD
C

BAC

B

BACA

BA
C

A
tD

s
C

(30) 

If the mass of a material slice with a thickness dx is determined as: 

   dxtsxDtxm   (31) 

then the energies can be compared and the dependence is obtained which enables – similarly as from 

Eq. (18) – to calculate the vibration period in a numerical way: 

   
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L

L

dxxR

dxxRtsxD

E
T

0

0

2

4 . (32) 

4. Examples of calculation and comparison of results

The examples of dependences of vibration period on the geometrical parameters of a cantilever bar 

with the shape of conical tube are presented in Fig. 3.  

The following data have been assumed: m 2L , m 60,0D , -1-4 ms 107  E  (plastic). 

The convergence ratio of the bar walls varies within the range between the value for a cone ( n , 

0d ) to the value for a cylinder ( 1n , Dd  ), the values of the parameters   and   are 

diversified. 
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Figure 3.   Vibration period for conical tube: a) 0,5  b) 0,7 c) 0,9 . The cases are considered 

for  0,9 ,  01, ,  1,1 . 
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The curves for   concern such a conical tube (considered in Section 3) where the 

generatrices of the internal and external cone cross in the point placed on the longitudinal axis of the 

bar. The points of these curves have been calculated from the formula (23) which presents the 

concordance with the results according [1] and with the FEM results what was proved in [4]. It has 

been also checked that the obtained results exactly correspond to the vibration periods calculated 

according to Eq. (18) if instead   it has been taken  , where   is a quantity much 

smaller than  . For the tube ( 1n ) and for the cone ( n ), the values of vibration period have 

been calculated from the Eqs. (20) and (24), respectively. In this case, the approximated solution can 

also be obtained from Eq. (18) if there are placed the convergence ratios close to 1n  and n , 

respectively. 

Figure 4.   Vibration periods of a ferroconcrete sheet construction calculated: 1 – acc. (18), 2 – with FEM. 

Fig. 4 presents the results of calculations of a vibration period of a ferroconcrete stress-skin 

construction (assumed -1-4 ms 1053  ,E ) with the height m 48L , convergence ratio 2n

and wall thickness in the base m 270,  and in the head m 060, . Five diameters in the base have been 

considered, from m 2D  to m 01D . In this range of diameters, the first natural frequency 

corresponds to bending vibrations. For the diameters m 12D , the first natural frequency 

corresponds to other forms of vibrations. The results of calculations according Eq. (18) have been 

compared to the results obtained with use of FEM (ANSYS). The great concordance of results is 

visible. For the diameters m 4D  – what corresponds to the slenderness ratio (understood here as 
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DL ) greater or equal 12 – the differences between these results are lower than 1%. As the 

slenderness ratio diminishes, this difference increases and e.g. for m 10D  ( 84, ) is equal 5,6%.  

  

Figure 5.   Vibration periods of a steel post with a constant thickness 

Fig. 5 presents the results for a post made of steel sheet – such solution is very widely applied in 

practice. It has been assumed: -1-4 ms 104,91  E , height m 6L , diameters by the base D  

from 20,1  to 0,18m , convergence ratio 2n . Various thicknesses g of the sheet have been 

considered, from 1 to 6 mm. The calculations have been performed using Eq. (32). 

5. Conclusions 

The formulas for the first natural frequency of bending vibrations of conical tube cantilever bars, 

derived from the Rayleigh method with the assumption that the axis of the bar deflected during 

oscillations assumes a shape of a static deflection evoked by a constant continuous load, show high 

concordance with the FEM solution. Full concordance between the results for a tube having the shape 

of cone and truncated cone has been also stated. 

In the case of truncated cone, an analytical solution of integrals has been found, thus the formula 

for vibration period (21) is so simple that a pocket calculator is enough for calculations. For the 

conical tube, the formulas (18) and (34) demand to calculate the integrals in a numerical way. 
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The scheme of derivation of the formulas for natural frequencies for conical tubes and for hollow 

regular truncated pyramids is analogical. The analysis of quotients of areas and second area moments 

of the figures under consideration, which quotients are functions of a diameters or a side length, 

enables to determine correcting factors which allow to apply the formulas, derived in this paper, for 

the regular truncated pyramids as well. 
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The dynamics of vertical transportation systems: from deep mine 

operations to modern high-rise applications 

(VIB240-15)

Stefan Kaczmarczyk 

Abstract: High speed and high capacity lifting installations move heavy payloads and 

passengers from depths in excess of 3000 m to heights of nearly 1000 m. This paper 

discusses mathematical models to predict transient and steady-state resonant 

vibrations taking place in deep mine and high-rise applications. In these systems long 

slender continua (LSC) such as steel wire ropes and composite belts play pivotal roles 

as suspension means and weight-compensation members. The natural frequencies of 

these systems are slowly varying, rendering them non-stationary. The nonlinear 

dynamic interactions involve exchanges of energy between various modes of 

vibration. An adverse situation arises when the host structure is excited near its 

natural frequency and one of the slowly varying frequencies of LSC approaches the 

natural frequency of the structure. The models are represented by a system of 

nonlinear partial differential equations defined in a slowly time-variant space domain. 

The nature of loads acting upon the lifting systems is often nondeterministic 

(stochastic) so that the methods of stochastic dynamics need to be employed to predict 

the dynamic behaviour of the system. The results and conclusions presented in this 

paper demonstrate that a good understanding and prediction of the dynamic behaviour 

of vertical transportation systems are essential for developing vibration suppression 

and control strategies to minimize the effects of adverse dynamic responses so that the 

installation will operate without compromising the structural integrity and safety 

standards. 

1. Introduction

The design and operation of high-performance systems for passenger transportation in the modern 

built environment and haulage operations in deep underground mining present many technical 

challenges due to adverse dynamic responses that often arise due to various sources of excitation 

present in these systems. 

Typically, in deep-mine applications drum winding systems are deployed. The most significant 

sources of excitation are load due to the winding cycle acceleration/deceleration profile and a 

mechanism applied on the winder drum surface in order to achieve a uniform coiling pattern. In a 

deep-mine installation a hoist rope passes from the drum over the headsheave, forming an inclined 

catenary, to the conveyance forming a vertical (head) rope section. A rope storage mechanism on the 

drum (normally a Lebus drum liner) imparts a periodic three-dimensional excitation to the system due 
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to the cross-over motions of the rope on the drum. Often, this results in the catenary whirling motion 

(‘rope whip’) which is coupled with the longitudinal and lateral vibrations of the vertical rope and 

conveyance assembly [1,2].  

In the modern high-rise built environment traction drive lift (elevator) systems are used. The 

underlying causes of vibration in lift systems are varied, including poorly aligned guide rail joints, 

eccentric pulleys and sheaves, systematic resonance in the electronic control system, and gear and 

motor generated vibrations [3]. Tall towers and buildings can be substantially affected by adverse 

environmental phenomena. These include strong wind conditions and earthquakes that cause tall 

buildings to vibrate (sway) at low frequencies and large amplitudes. When the host (building) 

structure sways a broad range of resonance phenomena occur in the lift system with large whirling 

motions of ropes and cables being developed that often result in damage caused by the impact against 

the lift equipment located in the shaft and/or against the shaft walls [4]. 

This paper presents an overview of mathematical models developed to predict transient and 

steady-state resonant vibrations taking place in deep mine and high-rise VT installations. The models 

are discussed and results of numerical simulation tests are shown and analysed to demonstrate their 

applications.  

2. Vertical transportation systems dynamics

A vertical transport (VT) system may be considered as an assemblage of axially moving elastic one-

dimensional long slender continua (LSC) divided into 1,2, ,p P  sections of slowly varying length 

[5,6], constrained by discrete elements such as rigid-body masses and rotating inertia elements. Its 

response can be described by a system of nonlinear partial differential equations of the following 

form 

   , ,( ) [ ] [ ] [ ] , , ,   0 ( ) ,  0 ,p p p p p p p

s p tt t p p p p px x t x x L t          U C U L U N U F (1) 

with the boundary conditions given as 

   1 20 at 0,   0 at ( )p p p p

p p px x L    B U B U  (2) 

where xp denotes the spatial co-ordinate, 1 2 3( , ) ( , ), ( , ), ( , )p p p p

p p p px t U x t U x t U x t   U is a local

(component) dynamic displacement vector representing motion of the component p in the lateral and 

longitudinal directions, ( ),t designates partial derivatives with respect to time t, t   represents the 

slow time scale, where   is a small parameter [7], and 
pC  and p

L are local linear operators. 

Furthermore, 
pN  is an operator acting upon the global displacement vector U , and representing non-

linear couplings and inter-component constraints in the system. p
F  is a forcing function with 
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harmonic terms of frequency 
p p  , where the overdot indicates total differentiation with respect 

to time. The local (component) mass distribution function is defined as  

   
1

MN

p p p i p p

i

x m M x L 


    (3) 

In the model given by Eq. 1 the Lagrangian coordinates or Eulerian coordinates may be applied 

as the spatial coordinate xp. If the Lagrangian formulation is applied then it is convenient to refer the 

dynamic elastic deformations of LSC to a moving frame associated with the overall axial transport 

motion of the system. Otherwise, a fixed (inertial) frame is used to describe the deformations. In order 

to discretize the continous slowly varying nonlinear system (1) the following expansion can be used 

      
1

, ;
pN

p k p

k p n p p n

n

U x t Y x L q t


  (4) 

where   ;k

n p pY x L   is the nth eigenfunction of the corresponding linear system and  p

nq t  

represent the nth modal coordinate. This expansion leads to the following first-order ordinary 

differential equation (ODE) system given as 

( ) ( , ) ( ) ( , ) ( , )t t t t    y A y N y F  (5) 

where y  is the system state vector, A is a slowly varying linear coefficient matrix, N  is a vector 

function which represents the non-linear coupling terms, and F  is the external excitation vector. This 

system cannot be solved exactly. An approximate solution can be sought using asymptotic 

(perturbation) methods and/or numerical techniques. Alternatively, in some cases, the system of 

partial differential equations Eq. 1 can be treated directly without discretization and perturbations 

methods (such as the method of multiple scales) can be applied to investigate the non-stationary 

behaviour of the system [8,9]. 

3. Deep mine environment 

Figure 1 shows a typical configuration and vibration model of a drum drive hoist system used to carry 

payloads in deep-mine haulage operations. A LSC member, typically a steel wire cable, of mass per 

unit length m, modulus of elasticity E and effective cross-sectional area A passes from the drum over 

the sheave, forming a horizontal or inclined catenary of length Lc, to the conveyance of mass M 

constrained to move in a vertical shaft, forming the vertical rope of length Lv hanging below the 

headsheave. The end O₁ of the cable is moving with a prescribed winding velocity V(t) so that the 

length of the cable coiled onto the drum is given as      
0

0
t

l t l V d     where signs   
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correspond to ascending and descending respectively, and l(0) is the initial length. A cable storage 

mechanism on the winder drum is applied in order to facilitate a uniform coiling pattern. This system 

can be treated as an assemblage of two connected, continuous substructures, namely the catenary 

cable and of the vertical rope, with the sheave acting as a coupling member, and with the winder drum 

regarded as an ideal energy source. An important feature of this system is that the hoisting cable is of 

time-varying length. However, the rate of change is small and the length is said to vary slowly. 

Consequently, the dynamic characteristics of the system vary slowly during the wind, rendering the 

system nonstationary [1,2]. 

The mathematical model of the system is developed by applying two frames of reference: a 

moving frame attached to, and moving with the drum end of the cable, and a stationary inertial system 

(see the diagram shown in figure 1 [1]). The dynamic response of the system is then described by Eq. 

6, in terms of the in-plane and out-of-plane displacements of the catenary cable, denoted as 

   ,  and  ,v s t w s t , respectively, measured relative to the rigid-body cross-over motions at the drum,

and the longitudinal displacements  ,u s t  of the vertical system comprising the headsheave, vertical

rope and conveyance, where s is the Lagrangian coordinate of the cable section in its undeformed 

configuration. 

1 2

1 2

1 2

( ) (1 ) 2 , ,

( ) (1 ) 2 ,

[ ( ) (

i i

tt c sst t c ss ss l l l

c c c

i i

tt c sst t c ss ss l l l

c c c

vtt vsst vt vss c l c

s l l l
mv T v mv T v EAe t v m v v v

L L L

s l l l
mw T w mw T w EAe t w m w w w

L L L

u EAu u EAu l k u t f

 

 

    

 
        

 

 
        

 

      , 1)] ( ),S v stt M u l s L 

(6) 

In Eq. 6 
lu , 

lv  and 
lw  are the boundary excitation time functions, prescribed by the geometry of 

two diametrically opposed cross-over zones on winder drum circumference. The parameters λ₁ and λ₂ 

are the coefficients of lateral damping and μ₁ and μ₂ denote the coefficients of longitudinal damping. 

It is assumed that the catenary cable stretches in a quasi-static manner and e(t) represents the spatially 

uniform catenary strain. The catenary slowly varying mean tension is denoted by 
i

cT , the elastic 

effects of the catenary on the longitudinal system are represented by the equivalent coefficient of 

stiffness kc and function fc (l), respectively. The mass distribution function in the vertical substructure 

is given as 
1 0( ) ( )Sm M s L M s L        where  

1 0L l L   (see figure 1), MS denotes the 

headsheave effective mass, and δ is the Dirac delta function. 

Figure 2 shows the slowly varying vertical (longitudinal) and lateral natural frequencies of two 

catenary-vertical rope systems. The first system (figure 2a) is a double-drum Blair Multi-Rope (BMR) 

rock winder of maximum depth of winding 2100 m, nominal winding speed 15 m/s, equipped with a 
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conveyance of total mass (with rated load) M = 17,600 kg. The second system (figure 2b) is a single-

rope double-drum rock winder of maximum depth of winding 2200 m, nominal winding speed 16 

m/s, equipped with a conveyance of total mass M =  23,650 kg.  

 

Figure 1.   Drum drive hoist system and the catenary – vertical rope model [1]. 

 

Figure 2.   Slowly varying frequencies of the catenary – vertical rope systems: vertical () 

and lateral (), (a) V = 15 m/s M = 17,600 kg; (b) V = 16 m/s M = 23,650 kg.  
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The first four longitudinal and four lateral natural frequencies of the system are plotted versus the 

vertical rope length. The horizontal dashed lines denote the first and the second harmonics of the 

excitation frequency corresponding to the nominal winding velocity and vertical dotted lines indicate 

the layer change locations. During the ascending cycle the longitudinal frequencies increase, and the 

lateral frequencies decrease, with the decreasing length of the rope. A number of resonance conditions 

may arise during the wind. They include resonance phenomena due to the non-linear interactions 

among different modes of vibration.  

The resonance and dynamic interactions are demonstrated by the simulation response plots 

shown in figure 3 and figure 4, respectively. One-to-one (1:1) lateral internal resonances occur 

throughout the wind in both systems, since the in- and out-of-plane lateral natural frequencies are the 

same. It is evident that the large in-plane response is a direct consequence of this autoparametric 

resonance and of the energy exchange between the lateral modes, with the out-of-plane motion being 

a parametric excitation for the in-plane motion. One could note that the response plots in figure 3(a) 

and 3(b) show that the lateral response remains large beyond the 600 m length level, due to cascading 

energy exchanges among the modes, and consequently a full ballooning motion is developed, which 

persists till the end of the wind. 

Furthermore, upon close examination of the frequency curves for the first system, one can notice 

that interesting frequency tunings occur in the region Lv = 900-700 m. For example, when the vertical 

length is about 900 m the fourth longitudinal and the second lateral natural frequencies are in the ratio 

2:1, and a two-to-one internal resonance condition takes place. A primary external resonance exists 

simultaneously with this condition, since at this level the second harmonic of the cross-over motion at 

the drum directly excites the fourth longitudinal mode. Considering the frequency plots of the second 

system, they reveal that the second harmonic of the excitation is near the third lateral frequency at 

approximately Lv ≈ 800 m. At this depth the third longitudinal frequency is tuned closely to the third 

lateral frequency, implicating also a one-to-one internal resonance. Also, at the beginning of the wind 

a passage through the fundamental longitudinal resonance takes place.  

The plots shown in figure 3(c) and figure 4(c) demonstrate that the catenary lateral motions result 

in adverse behavior of the headsheave. However, due to damping in the system the conveyance 

response, illustrated by plots in figure 3(d) and figure 4(d), respectively, is largely unaffected by the 

dynamic behavior of the headsheave. 

4. Modern built environment

In the modern high-rise built environment high-speed high-capacity traction drive lift systems are

used. In these systems the lift car/ counterweight system is driven by tractive forces developed 
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between the traction shave and the suspension means, such as steel wire ropes (SWR) or composite 

LSC [3]. 

 

Figure 3.   Displacement response V = 15 m/s M = 17,600 kg: lateral (a) in-plane and (b) out-

of-plane motions at the first quarter of the catenary; longitudinal responses (c) at 

the headsheave and (d) at the conveyance [2]. 

 

Figure 4.   Displacement response V = 16 m/s M = 23,650 kg: lateral (a) in-plane and (b) out-

of-plane motions at the first quarter of the catenary; longitudinal responses (c) at 

the headsheave and (d) at the conveyance. 
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SWRs or composite cables/ belts, tensioned by the weight of the compensating sheave, are then 

used for the compensation of tensile forces over the traction sheave. A schematic diagram of the 

dynamic model of the lift system is shown in figure 5. The modulus elasticity, cross-sectional metallic 

area and mass per unit length are denoted as E1, A1, m1 and E2, A2, m2 for the compensating ropes and 

the suspension ropes, respectively. The compensating ropes are of length L1 at the car side and the 

suspension ropes are of length L2 at the counterweight side, respectively. The length of the suspension 

rope at the car side and the compensating rope at the counterweight side are denoted as L3 and L4, 

respectively. The lengths of suspension ropes and compensating cables are slowly varying 

 ,  1, ,4i iL L i  [10,11]. The masses and dynamic displacements of the car, counterweight and

the compensating sheave assembly are represented by Mcar, Mcwt and Mcomp, qM1, qM2 and qM3, 

respectively. The acceleration/ deceleration of the car is denoted by acar. 

When the building structure sways at low frequency due environmental phenomena such as 

strong wind conditions the suspension ropes and compensating cables suffer from large dynamic 

displacements [4]. Due to the slow variation of their lenghths the natural frequencies vary during 

travel, rendering the system nonstationary. An adverse situation arises when the building is excited by 

wind near its natural frequency and vibrates periodically. This in turn may result in a passage through 

external, parametric and internal resonances in the lift system [12]. The nature of loading caused by 

wind is usually nondeterministic (stochastic). The excitation is then represented by a stochastic 

process so that the methods of stochastic dynamics could be employed to predict the dynamic 

behaviour of the lift system. The motion of the structure can then be expressed as a narrow-band 

process mean-square equivalent to a harmonic process [10]. However, deterministic models yield 

results that that can be used to gain an understanding of the behaviour and to predict the fundamental 

dynamic phenomena that occcur in the system. 

Eqs (7) represent the mathematical model, based on the diagram in figure 5, with the excitation 

mechanism expressed by deterministic functions given in terms of the structure deformations due to 

the tower sway defined in terms of the shape function  0z Z [13]. Consequently the response of 

the system is treated as a deterministic. In this model    i i i iv x ,t ,w x ,t , i = 1,2,…, 4 represent the

dynamic displacements of the ropes and cables, Ti, i = 1,2,…, 4, denote the rope quasi-static tension 

terms, V is the speed of the lift, and ai i = 1,2,…, 4, are the acceleration / deceleration rates of the car 

/counterweight. The continous slowly varying nonlinear system (7) is discretized by using expansion 

(4) and the resulting ODE set of nonlinear equations is solved numerically.  
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where 
3 2 4 1 1 car 2 1 3 1 4 2m m , m m , a a , a a , a a , a a        and 

3 3 2 2 4 4 1 1E A E A , E A E A  . 

The curves presented in figure 6 (a), (b) shows the variation of the first two natural frequencies (

1 2,  ) of the compensating cables at the car side and counterweight side, respectively, in a lift 

installation servicing a 250 m tall building structure. The frequencies are plotted against the cable 

length, with the in-plane and out-of-plane excitation frequencies (denoted as 
1 2,  , respectively) 

represented by red horizontal lines. It can be seen that in the length region of about 130 – 170 m 

passages through the fundamental resonance take place in the system. The displacements of the cables 

are shown in figures 7 and 8, respectively. The scenario is that the car travels upwards from the 

bottom level stopping at the highest landing level. It is evident that at the car side the displacements 

of the cables grow after the passage through resonance, when the cables become fully stretched. On 

the other hand, the cable displacements at the counterweight side decrease with the shortening length. 

The lateral responses of the cables are coupled with the vertical motions of the car, counterweight and 

the compensating sheave assembly. These motions are shown in figure 9 vs time. It is evident that due 

to autoparametric couplings substantial motions of the vertical masses occur. 

5. Conclusions 

Dynamic interactions that take place in VT systems deployed in deep-mine hoist systems and high-

rise built environment result in adverse behaviour of their components compromising the structural 

integrity and safety of the entire installation. A VT installation is a slowly varying nonstationary 

dynamic system. When one of the slowly varying natural frequencies becomes near the frequency of 

the excitation a passage through resonance takes place. 
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Figure 5.   Dynamic model of a lift system. 

Figure 6.   The lateral frequencies of the compensating ropes (a) car side, (b) counterweight 

side. 
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Figure 7.   Displacements of the compensating ropes at the car side. 

 

Figure 8.   Displacements of the compensating ropes at the counterweight side. 

 

Figure 9.   Displacements of the car, counterweight and compensating mass. 

Vibration models and simulation techniques can be used to predict a range of dynamic interaction and 

resonance phenomena. Then, suitable strategies, such as the active stiffness method [14], can be 

developed to minimize the effects of adverse dynamic responses of the system. 
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Nonlinear inverted pendulum model with time delay control for postural sway 

in humans

(VIB241-15)

Natalya Kizilova 

Abstract   A model of human body as multi link inverted pendulum with nonlinear 

viscoelastic springs in the joints is proposed. The control function is introduced as 

torque in each joint produced by synergy of groups of flexors and extensors with dif-

ferent time delays provided by neurological diseases or age-related degenerative 

changes in the neuromuscular coupling. The system of nonlinear ODEs for deflection 

of each segment of the pendulum from the vertical line is obtaines. Its solution is 

found via non-linear normal modes. The influence of geometry of the pendulum, vis-

coelastic parameters of the springs, torques in the joints and time delay on the trajec-

tory of the centre of mass of the pendulum is studied. The results are applied for bio-

mechanical explanation of the differences between the postural sway in young healthy 

volunteers and elderly patients with spine, joint and neurological problems.  

1. Introduction

Posturography is widely used in medicine for diagnostics of the locomotory system and balance con-

trol. The quantitative assesses the ability of an individual to produce muscular torques in joints ac-

cording to the balance control and nervous systems is important for prediction sudden fall and trauma 

in elderly. Steady stance is supported by somatosensory, vestibular and visual information relevant 

for balance control. Improper changes in sensory integration determined by age-related degenerative 

processes, congenital impairments or diseases lead to the lost of control which might be detected by 

increased and asymmetric postural sway. Stabilography has gained wide-spread acceptance in reha-

bilitation of the patients with sclerosis, Parkinson disease, for recovery of the locomotor function and 

speech after the stroke, for development of the individual training regimes and sport positions of 

weight-lifters, figure skaters and shoots. Progressive decrease in sway amplitude is observed in the 

course of training of the sportsmen and the patients with balance impairments on the force platform.  

The test is carried out by the force platform that measures the components of the ground reaction 

forces  
1

n

i i
R


 produced by the front and rare parts of the left and right feet. Using the measured

ground reaction forces coordinates ( , )p px y  of the centre of pressure and the centre of mass COM of

the body ( , )c cx y  can be calculated. Since the physiological mechanisms with different characteris-

tic times are involved into the balance control, the curves ( ( ), ( ))c cx t y t  exhibit quite complex be-

haviour [1]. The maximal amplitudes of the sway in the saggital and frontal planes and asymmetries 
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of the amplitudes are used for primary medical diagnostics. The more detailed studies include tests 

with different two-leg postures, one-lag balancing, and tests with closed eyes, moving walls, addi-

tional support, sudden hits or acute sounds are used for diagnostics of vestibular apparatus, nervous, 

visual acoustical, tactile and other mechanisms of the balance control [2-8].  

In the present paper the mathematical model of the human body as a complex inverted pendulum 

developed in [7,8] and validated by the posturographic studies [5,6] is modified accounting for 

nonlinear properties of the muscles and time delay in the physiological functions controlling the pos-

ture.  

2. Materials and methods

The posturographic studies was carried out on a control group of young healthy volunteers (20 male, 

20 female, age=24  3 years, body mass 67.3±19.2 kg, height 1.72±0.2 m) without neuromuscular 

disorders were asked to keep a quiet vertical stance on the force platform during 30 s (fig.1a). The 

force platform “Statograph-67’ of the laboratory of biomechanics Kharkov institute of spine and joint 

pathology has been used. The components of the reaction forces  
4

1i i
R


 were measured for each 

foot and COP trajectories ( ( ), ( ))c cx t y t  were automatically computed. The second test were based

on the relaxed two-leg stance with transfer of the body weight onto the right and then on the left leg 

(30 s each). The third test was a step forward off from the force platform on a support of the same 

thickness starting with left and then with right leg (fig.1b). The same set of tests was repeated after 15 

min rest with standard orthopaedic holders was fastened at the knee or/and ankle joints of one of the 

leg or both. The holders are marked by ‘f’ in fig.1. The presence of the holders allows decrease the 

number of degrees of freedom (DOF) of the body. Fixation of the joint is a good opportunity to model 

the pathologies connected with restriction of movement in separate joints. The corresponding data-

base of the patients with different impairments of the low extremities, joint pathology and trauma has 

been collected and analyzed using the same force platform [5,6].  

As an illustration the time series ( ( ), ( ))c cx t y t  obtained for one of the volunteers are presented

in fig.2. Oscillations of the centre of mass for the normal vertical two-legged stance (fig.2a, central 

rectangle), for the two-legged stance when the body weight is transferred onto the right (fig.2a, right 

rectangle) and left leg (fig.2b, left rectangle) and for the step off from the platform (fib.2b) exhibit 

variations in asymmetry and sway amplitudes in different healthy individuals, but the common feature 

is location of the centres of the three rectangles almost at the same horizontal line. The sway ampli-

tudes in the frontal and saggital planes were determined as the X and Y dimensions of the correspond-

ing rectangles. Fir instance, in the case presented in fig.1a the sway amplitude in the saggital plane 

becomes bigger in the relaxed two-leg stays with noticeable asymmetry with bigger oscillations when 
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the right leg was used as the main support. The sway amplitude in the frontal plane was slightly 

smaller for the left and right legs, which is normal for young individuals. 

Analysis of the results of the same set of tests with holds applied to the joints revealed different 

types of behaviour. Most volunteers with one leg locked by the holders exhibited significant asymme-

try in the COM location (fig.2c). The sway amplitudes in the frontal plane were almost the same as 

without the holders, but in the saggital plane the sway amplitudes were either noticeable bigger 

(fig.2c) or smaller. The step off trajectories were asymmetrical and significantly changed when both 

knee and ankle joints were locked. In the case of the two legs locked the same differences were more 

clear (fig.3e and 3f accordingly. 

 

 

              a                                   b                             c                               d          

Figure 1.   Position of the body during a series of tests: symmetric two-leg (a); two-leg stances with 

body weight shifted onto the left (b) and right (c) foot; a step forward off from the force 

platform on the plate of the same thickness (d) 
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a b 

c d 

e f 

Figure 2.   Trajectories of the COM of a healthy person without any holds (a,b), with the hold on the 

right leg (c,d) and both legs (e,f) joints at 3 two-leg stances (a,c,e) and steps off towards 

from the force platform (b,d,f)  

3. Mathematical model of the inverted pendulum

The is considered as inverted three-link (fig.3a) and 2-link (fig.3b,c) pendulums. The lengths and 

masses of the segments 1 3L   и 1 3m   are known from the measurements on the volunteers. Position
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of the centre of mass of segments 1 3C   is determined by distances 1 3d   from the beginning of the 

segment along z-axis. The upper extremities are tightly pressed against the trunk so that the trunk to-

gether with the head and extremities may be considered as a single segment with composed mass and 

inertia parameters. Supposing that the bearing area (feet position) is unchangeable, we describe con-

figuration of the pendulum by angles 1 3   between the segments and the vertical line (z axis). Then 

the motion of the pendulum is determined by Lagrange’s equations of the second kind.  

 

 

a                                    b                                 c 

Figure 3.   Model of the body sway in the saggital plane for the unlocked joints (a), the ankle (b) and 

the knee (c) joints with holders.  

 
 

The first body segment (shank) participates in the rotational motional round the fixed point (an-

kle-joint). The second (thigh) and third (trunk) segments are involved into the rotational motion round 

their  of mass and transportation motion of the  of mass caused by motion of the previous segments. 

For the case expressions for the corresponding energies ,j jT   of the separate segments can be writ-

ten in the form: 
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2 2
1 1 1 1 10.5 ( )T J m d  , 

2 2
2,3 2,3 2,3 1 2,30.5 0.5cT J m V  , 

1 1 1 1(1 cos )m gd    , 2 1 1 1 2 2 2(1 cos ) (1 cos )m gL m gd      ,        (1) 

3 1 1 1 2 2 2 3 3 3(1 cos ) (1 cos ) (1 cos ),m gL m gL m gd        

where jJ  is the moment of inertia of the j-th segment, jV  is the velocity of the j-th segment rela-

tively its  of mass. The expressions for the velocities may be easily found from geometrical considera-

tions as 

2 2 2 2 2
2 1 1 2 2 1 2 1 2 1 2

2 2 2 2 2 2 2
3 1 1 2 2 3 3 1 2 1 2 1 2

1 3 1 3 1 3 2 3 2 3 2 3

2 cos( ),

2 cos( )

2 cos( ) 2 cos( ).

V L d L d

V L L d L L

L d L d

     

      

       

   

      

   

 (2) 

      After substitution (1), (2) into Lagrange’s equations of the second kind, using power expan-

sions of the trigonometric functions in the small angles i   and neglecting the terms smaller than

2
i , we obtain the following system of linear differential equations in the matrix form:

2

2
0

d
M N

dt
       (3) 

where 1 2 3( , , )T    , sing Т denotes transposition,
2 2

11 1 1 1 2 3 1( )M J m d m m L    ,

2 2
22 2 2 2 3 2M J m d m L   ,

2
33 3 3 3M J m d  , 12 2 1 2 3 1 2M m L d m L L  ,

13 31 3 1 3M M m L d  , 21 2 1 2 3 1 3M m L d m L L  ,   23 32 3 3 3M M m L d  ,

1 1 2

2 2 2

3 3

( 2 ) 0 0

0 ( ) 0

0 0

m g d L

N m g d L

m gd

 


  
 
 

      

Let us investigate the system (3) and determine the own frequencies of the pendulum substituting 

sin( )j j t      in (3), where , ,j    are amplitude, frequency and phase of the oscillations.

Then we obtain the system of linear equations for the frequencies 1 2 3( , , )T     in the matrix 

form: 

2( ) 0M N    .  (4) 
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The solvability condition of the system (4) is  
2det 0M N    which leads to a polynomial 

equation for computation of the own frequencies  . Solution of the equation may be easily obtained 

by numerical methods when all the parameters of the model are determined.   

For the locked joints (fig.3b,c) similar computations give the following results 

2 2
2,3 2,3 2,3 1 2,3

2 1 1 1 2 1 1

3 3 1 3 3 3 1 1

2 2 2 2 2
2 1 1 1 2 1 1 1 2 1 2

2 2 2 2 2
3 1 1 3 3 1 3 1 3 1 3

0.5 0.5 ,

( cos cos ),

( cos cos ),

2 cos( ) ,

2 cos( ) .

cT J m V

m g d d L

m g L d d L

V L d L d

V L d L d



 

 

     

     

 

   

    

   

   

  (5) 

Substituting expressions (5) into Lagrange’s equations of the second kind, making power expan-

sions of the trigonometric functions and neglecting the small terms of the same order of magnitude as 

in the previous case, we obtain the system of differential equations in the form (3) where  

2 2
11 1 1 1 1 3 1( )M J m d m m L    , 

2
22 2 1 1M J m d  , 

2
33 3 3 3M J m d  , 

12 21 1 1 1M M m L d  , 13 31 3 1 3M M m L d  , 23 32 0M M  ,  

1 1 1 3 1

1 1

3 3

( ) 0 0

0 0

0 0

m g d L m gL

N m gd

m gd

  


 
 
 

 

In the case it is also worth to investigate the free oscillations of the pendulum and compare the re-

sults for the one-legged and two-legged stance.  Solution of the system can be obtained by the same 

numerical procedure.  

 

4. Results of numerical computations and discussions 

Investigation of the free oscillations of the models has been carried out by numerical methods. The 

lengths of the segments have been obtained during the measurements on the volunteers and mass, 

moments of inertia and position of the centre of mass of the segments have been calculated basing on 

the statistical data [1,7]. Mass and inertia of the segments are considered as an association of the sepa-

rate segments basing on the  of mass theorem and using the measured values of the height and weight 

of the body of an individual [7,8]. The same calculations have been made for the one-legged stance 

when the low extremities have been considered as single links consisted of two separate segments. 

The computational results of the own frequencies are presented in table.1. Comparison of the com-

puted values to the measured posturography data and the data presented in literature has revealed that 

the calculated own frequencies f1-3 correspond to three main oscillation ranges I-III of PSD  (fig.4) 

279



that for the averaged posturography data gives [0.2;0.4]f   (I), [0.4;1]f   (II), and [1;1.4]f   

(III) for sway in 0y direction, and [0.2;0.3]f   (I), [0.3;0.9]f   (II), and [0.9;1.3]f   (III) for 

sway in direction of 0x axis. The low frequency component corresponds to mechanical oscillations 

and the high frequency component corresponds to the physiological tremor [1].  

      Numerical results for the model of the one-legged stance give the values for the own frequen-

cies which are slightly bigger then the corresponding frequencies for the two-legged stance and relate 

to the same frequency ranges I-III.  The computation results on variations of the own frequencies in 

the two-legged to the one-legged stance are in agreement with posturography data.  

Table.1. Own frequencies of the human body oscillations for the two-legged stance. 

N Height 

(m) 

Weight 

(kg) 

f1 f2 f3 

1 1.82 80.75 1.51 1.88 4.95 

2 1.56 52.45 1.35 1.83 4.98 

3 1.72 60.95 1.38 1.83 4.98 

4 1.80 61.1 1.41 1.88 5.63 

5 1.69 55.7 1.35 1.91 5.57 

6 1.90 84.75 1.51 1.98 6.65 

7 1.74 61.5 1.41 1.89 5.65 

8 1.82 82.5 1.41 1.81 4.52 

9 1.56 50. 5 1.34 1.82 4.82 

10 1.74 68.9 1.39 1.83 4.88 

11 1.83 81.2 1.42 1.86 5.33 

12 1.59 54.9 1.55 1.92 5.59 

13 1.62 66.5 1.28 1.89 4.92 

14 1.90 79.3 1.61 1.92 5.66 

15 1.59 58.7 1.65 1.94 5.47 

16 1.81 83.5 1.58 1.93 6.65 

17 1.73 67.5 1.49 1.88 5.75 

18 1.86 81.7 1.54 1.87 4.92 

19 1.64 56.5 1.45 1.85 4.94 

20 1.79 62.5 1.27 1.89 4.28 

Mean 

value 
1.75 65.3 1.42 1.89 5.49 
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      The computed data conforms with the mentioned hypothesis that any decrease in the support 

area in both longitudinal and transverse directions leads to an increase in instability of the posture [6]. 

At definite critical values of the supporting area an individual may lose the posture stability. In that 

case the sway amplitude increases in both sagittal and coronal planes and the low frequency rambling 

component changes its behaviour, namely the average “free path length” increases that leads to sig-

nificant increase in maximal sway amplitude. The pattern of the trembling component is changed in a 

different way.  

 

4. Conclusions 

Results of the posturography study of several sorts of two-legged and one-legged stances revealed 

that the patterns of oscillations of the  of mass and the corresponding trajectories ( )cy x  are different 

for different healthy volunteers. Since some relationships in displacement of positions of the  of mass 

for the vertical stance and for the first step off the force platform are the same as have been obtained 

during the 20 year experience of measurements of posturography data for the patients in the Institute 

of Spine and Joints Pathology, it implies the state of the even young volunteers (students, schoolchil-

dren) is far from the real healthy and the stealthy spine and joint chronic pathologies have been ob-

served in many cases.  

Single-meaning visual interpretation of the posturography data is usually impossible so the 

mathematical models and biomechanical analysis and interpretation of the data  are extremely impor-

tant in the field. Maximal and mean sway amplitudes may be proposed as separate diagnostic indexes 

for the two-legged and one-legged vertical stance. Spectral power density is an important characteris-

tic of the own and forced sway frequencies.  

 Mathematical model of the human body as an inverted pendulum allows computation of the own 

frequencies and describes correctly the increase in frequency values when an individual transfers 

from the two-legged to the one-legged stance. The model can be generalized for different joint pa-

thology and for incorporation the feedback control mechanisms.   

      A comparative study of the posturographic data for the two-legged and one-legged models is a 

promising way of medical diagnostics, because one-legged stance allows stimulation of the neuro-

muscular system controlling the body balance that may be significantly changed in entirely  different 

ways at the expense of the age-related and pathological processes.  

The obtained results may be useful for biomechanical explanation of the differences between the 

postural sway in young healthy volunteers and elderly patients with spine, joint and neurological 

problems. 
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The subharmonic Melnikov method for a class of planar 
piecewise-smooth systems

(NON108-15)

Shuangbao Li, Xiaoli Bian

Abstract: In this paper, the well-known Melnikov method of subharmonic or-
bits for smooth systems is extended to a class of periodic perturbed planar
hybrid piecewise-smooth systems. In this class, the switching manifold is a
straight line x = 0 and divides the plane into two zones, the dynamics in
each zone is governed by a smooth system. When a trajectory reaches the
switching manifold, then a reset map describing an impacting rule applies in-
stantaneously before entering the trajectory in the other zone. We assume
that the unperturbed system is a piecewise-defined Hamiltonian system which
possesses two heteroclinic orbits connecting two saddle points on each side of
the switching manifold. Furthermore, we assume that the region closed by
these heteroclinic orbits is fully covered by a continuum of piecewise-smooth
periodic orbits, which cross the switching manifold transversally and whose
periods monotonically increase as they approach the heteroclinic orbit. Then,
we study the persistence of the continuum of periodic orbits under a nonau-
tonomous periodic perturbation and the reset map. To achieve this objective,
we obtain the Melnikov function of subharmonic orbits for the planar hybrid
piecewise-smooth systems.

1. Introduction

In recent years, there has been considerable interest in the study of piecewise-smooth dy-

namical systems. Such systems are widely used in applied science such as switching circuits

in power electronics [2], impact and dry frictions in mechanical engineering [8, 9], walking

machines [13], relay feedback systems in control theory [7], etc. The study of bifurcations and

chaotic dynamics for piecewise-smooth dynamical systems has become very active in recent

decades. There is an enormous literature on this subject, in addition to the aforementioned

works, see, for example, the monographs [1, 6, 17] and the references therein for more on

this issues. The systematic discussion on bifurcations of fixed points and periodic solutions

in nonlinear discontinuous systems has been given in [18]. A survey about dynamics and

bifurcations of non-smooth systems was presented in [20]. However, there is a large disparity

to understand subharmonic bifurcations, homoclinic bifurcations and chaotic dynamics for

non-smooth dynamical systems.

283



For smooth dynamical systems, the Melnikov method is a very powerful tool to study

the persistence of periodic orbits and homoclinic orbits for planar regular systems under non-

autonomous periodic perturbations [15,21,22]. This persistence is studied by the existence of

simple zeros of the subharmonic Melnikov function and the Melnikov function, respectively.

In recent years, a lot of efforts have been made to extend the Melnikov method to piecewise-

smooth dynamical systems, see [3–5,10–12,14,16,17,19].

In this paper, we want to study the subharmonic orbits of a class of periodic perturbed

planar hybrid piecewise-smooth systems. We assume that the switching manifold is a s-

traight line x = 0 which divides the plane into two zones and the dynamics in each zone

is governed by a smooth system. When a trajectory reaches the switching manifold, then

an reset map describing an impacting rule applies instantaneously before entering the tra-

jectory in the other zone. We assume that the unperturbed system is a piecewise-defined

Hamiltonian system, and possesses one saddle point on either side of the switching mani-

fold. Furthermore, we assume that two heteroclinic orbits connect both saddle points and

surround a region fully covered by a continuum of piecewise-smooth periodic orbits, which

transversally cross the switching manifold and whose periods monotonically increase as they

approach the heteroclinic orbit. Under a non-autonomous periodic perturbation and the

reset map, the persistence of the periodic orbits can be solved by obtaining the non-smooth

subharmonic Melnikov function for the planar hybrid piecewise-smooth systems. The key

technique in this paper is to choose the switching manifold x = 0 as a Poincaré section and

define an appropriate Poincaré impact map. The results presented in the paper are original

and interesting for the scientific community.

2. Statement of the problem

We divide the plane into two zones,

V− = {(x, y) ∈ R2 | x < 0},

V+ = {(x, y) ∈ R2 | x > 0},
(1)

which are separated by the switching manifold

Σ = Σ̂+ ∪ Σ̂− ∪ (0, 0), (2)

where

Σ̂+ = {(x, y) ∈ R2 | x = 0, y > 0},

Σ̂− = {(x, y) ∈ R2 | x = 0, y < 0}.
(3)

The normal of Σ is given by

n = (1, 0), at any (0, y) ∈ Σ. (4)
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We consider the planar piecewise-smooth system ẋ

ẏ

 = f(x, y) + εg(x, y, t) =

 JDH−(x, y) + εg−(x, y, t), (x, y) ∈ V−,

JDH+(x, y) + εg+(x, y, t), (x, y) ∈ V+,
(5)

where (x, y) ∈ R2 and ε(0 < ε � 1) is a small parameter. We also assume the Hamiltonian

functions H± : R2 → R are Cr+1 and satisfy H−(0, y) = H+(0, y) for any (0, y) ∈ Σ, and

g± : R2 × R → R2 are Cr with r ≥ 2 and T̂−periodic in t. We note that D ≡ ( ∂
∂x
, ∂
∂y

)

denotes the gradient operator and the matrix J is the usual symplectic matrix 0 1

−1 0

 .

On the switching manifold Σ, we also consider a reset map to describe an impacting rule

on the switching manifold for system (5) given as follows:

η̃ : Σ× R→ Σ

(0, y, ε) 7→ (0, ηε(y))
(6)

satisfying y · ηε(y) > 0 for y 6= 0 and 0 < ε� 1, η0(y) = y ∈ R and ηε ∈ Cr(R) with r ≥ 1.

We also denote η̃−1(0, y, ε) = (0, η−1
ε (y)) for any y ∈ R and 0 < ε � 1, where η−1

ε (y) is the

inverse mapping of ηε(y).

Next, we give some notations which will be used in the following analysis. Πx : R2 → R
is a projection defined by Πx(x, y) = x. Similarly, we define Πy(x, y) = y. The wedge

product of two vectors a = (x1, y1) and b = (x2, y2) is given by a ∧ b = x1y2 − x2y1.

In the aforementioned description, the switching manifold is a straight line x = 0 which

divides the plane into two zones, and the dynamics in each zone is governed by a smooth

system. We hope that if a trajectory crosses the switching manifold Σ transversally at some

point (0, y) at t = t∗, then before entering the trajectory in the other zone, the reset map

(6) will be applied and the trajectory jumps from (0, y) to (0, ηε(y)) instantaneously. We

also assume that the trajectories are clockwise oriented without loss of generality. In order

to achieve this objective, the following assumption is necessary and presented as follows:

(H1) For any (0, y) ∈ Σ+∪Σ−, [n·JDH−(0, y)]·[n·JDH+(0, y)] > 0, and [n·JDH−(0, y)]·y >
0 for y 6= 0.

In this work, we focus on the persistence of subharmonic orbits for the system (5)-(6).

It is natural to extend the classical Melnikov method of subharmonic orbits to the planar

hybrid piecewise-smooth systems. Hence, we make the assumptions about the unperturbed

system of system (5)-(6) as follows:

(H2) For ε = 0, Eq.(5) has two hyperbolic equilibria z− ≡ (x−, y−) ∈ V− and z+ ≡
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(x+, y+) ∈ V+ of saddle type. There exist a pair of heteroclinic orbits given by Wu(z−) =

W s(z+) and Wu(z+) = W s(z−) connecting the equilibria z− and z+ on either side of x = 0

and belonging to the same energy level

{(x, y)|H−(x, y) = H−(z−) = H+(x, y) = H+(z+) = c1 > 0}. (7)

(H3) The region enclosed by the pair of heteroclinic orbits is fully filled with a continuous

family of periodic orbits given by

Υc = {(x, y)|H−(x, y) = H+(x, y) = c > 0} (8)

with 0 < c < c1, and Υc intersects Σ transversally exactly twice.

(H4) The periodic Tc of Υc is a regular function of c with strictly positive derivative for

0 < c < c1.

The phase portrait of the unperturbed system (5)-(6) is topological equivalent to the

one shown in Figure 1

Figure 1. The phase portrait of the system (5)-(6) for ε = 0.

We want to determine the persistence of periodic orbits. In the smooth case, the Mel-

nikov method of subharmonic orbits [15] is a classical tool to solve this problem. Hence, it is

natural to check whether the classical method is still valid for the planar hybrid piecewise-

smooth systems described above and if any changes to the method are necessary.

2.1. Poincaré impact map

We let q−(t; t0, x0, y0, ε) be the flow associated with system (5) restricted to V−, and t1 > t0

is the smallest value of t such that Πx(q−(t1; t0, x0, y0, ε)) = 0. Similarly, q+(t; t0, x1, y1, ε)

be the flow associated with system (5) restricted to V+, and t2 > t0 is the smallest value of t

satisfying the condition Πx(q+(t2; t0, x1, y1, ε)) = 0. Hence, one can extend the definition of

a solution, q(t; t0, x0, y0, ε), of system (5)-(6) for all t ≥ t0 by properly concatenating q+ or
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q− whenever the flow crosses Σ transversally. Depending on the sign of x0, one applies either

q−(t; t0, x0, y0, ε) or q+(t; t0, x0, y0, ε) until the trajectory reaches Σ, and then one applies (6).

In order to describe the dynamics and study the periodic motions of system (5)-(6) more

clarity, we need to build the Poincaré impact map of the system (5)-(6). We first consider

time as a system variable and add equation ṫ = 1 to system (5)-(6), and then we choose the

sections in the extended phase-space R2 × R as follows:

Σ+ = {(0, y, t) ∈ R2 × R | y > 0, 0 < H+(0, y) < c1}, (9)

and

Σ− = {(0, y, t) ∈ R2 × R | y < 0, 0 < H+(0, y) < c1}. (10)

Here we note that the first coordinate of points in Σ+ and Σ− is always zero, so we will omit

its repetition in the following analysis without leading to confusion.

We firstly define a map

P+
ε : U ⊂ Σ+ → Σ−

such that for (0, y0, t0) ∈ U ⊂ Σ+

P+
ε (y0, t0) = (Πy(q+(t1; t0, 0, y0, ε)), t1) := (y1, t1) ∈ Σ−, (11)

where t1 > t0 is the smallest value of t satisfying the condition Πx(q+(t1; t0, 0, y0, ε)) = 0.

Based on the assumptions aforementioned, we know that a trajectory crossing Σ transver-

sally at the point (0, y1) will jump from (0, y1) to (0, ηε(y1)) instantaneously. Hence we can

introduce the following map

Rε : R× R→ R× R

such that

Rε(y, t) = (ηε(y), t) (12)

with R−1
ε (y, t) = (η−1

ε (y), t).

Similarly, we define a map

P−
ε : V ⊂ Σ− → Σ+

such that for (0, y1, t1) ∈ V ⊂ Σ−

P−
ε (y1, t1) = (Πy(q−(t2; t1, 0, y1, ε)), t2) := (y2, t2) ∈ Σ+, (13)

where t2 > t1 is the smallest value of t satisfying the condition Πx(q−(t2; t1, 0, y1, ε)) = 0.
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Hence, we choose Σ+ as the Poincaré section and define the Poincaré map as the com-

position (see Figure 2)

Pε : U ⊂ Σ+ → Σ+

such that

Pε(y0, t0) = Rε ◦ P−
ε ◦Rε ◦ P+

ε (y0, t0). (14)

Figure 2. Poincaré impact map (14) represented schematically.

In the unperturbed case, R0(y, t) = (y, t) and the Poincaré map becomes

P0(y0, t0) = P−
0 ◦ P

+
0 (y0, t0) = P−

0 (ŷ0, t0 + T+(y0))

= (y0, t0 + T+(y0) + T−(ŷ0)) = (y0, t0 + Tc(y0)).
(15)

where T+(y0) is denoted as the time that an orbit of the unperturbed system with initial

condition (0, y0, t0) spends going from point (0, y0) to point (0, ŷ0), and T−(ŷ0) is the time

that the orbit spends going from point (0, ŷ0) to point (0, y0). Let us denote Tc(y0) as the

period of a periodic orbit with the initial condition (0, y0, t0) such that H+(0, y0) = c with

0 < c < c1, i.e.,

Tc(y0) = T+(y0) + T−(ŷ0). (16)

Up to now, we have defined the Poincaré impact map of system (5)-(6). We now use

solutions of system (5)-(6) with initial conditions (0, y0, t0) ∈ Σ+ to define the sequence of

impacts (0, yiε, t
i
ε) (see Figure 3), if they exists, as

(yiε, t
i
ε) =

 Rε ◦ P+
ε (yi−1

ε , ti−1
ε ), if yi−1

ε > 0

Rε ◦ P−
ε (yi−1

ε , ti−1
ε ), if yi−1

ε < 0
, i ≥ 1, (17)

where (y0ε , t
0
ε) = (y0, t0) and P±

ε and Rε are defined in (11)-(13), respectively.
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Figure 3. Sequence of impacts defined by the Poincaré for system (5)-(6).

For the unperturbed case, for any point (0, y0, t0) ∈ Σ+, the impact sequence (17)

becomes

(yi0, t
i
0) :=

 (y0, t
i−1
0 + T−(ŷ0)) = (y0, t0 + i

2
Tc(y0)), if i ≥ 2 even

(ŷ0, t
i−1
0 + T+(y0)) = (ŷ0, t0 + i−1

2
Tc(y0) + T+(y0)), if i ≥ 1 odd

, (18)

where ŷ0, T−(ŷ0) and T+(y0) are aforementioned.

Once the impact sequence (yiε, t
i
ε) are defined , the solution of the non-autonomous

system (5)-(6) with the initial condition (0, y0, t0) ∈ Σ+ is given as

q(t; t0, 0, y0, ε) =

 q+(t; t2iε , 0, y
2i
ε , ε), if t2iε ≤ t < t2i+1

ε

q−(t; t2i+1
ε , 0, y2i+1

ε , ε), if t2i+1
ε ≤ t < t2i+2

ε

, i ≥ 0. (19)

The periodic solution for the unperturbed system of (5)-(6) satisfying the initial condition

(0, y0, t0) ∈ Σ+ with H−(0, y0) = H+(0, y0) = c is given as

q(t; t0, 0, y0, 0) =

 q+(t; t2i0 , 0, y
2i
0 , 0) := q+c (t), if t2i0 ≤ t < t2i+1

0

q−(t; t2i+1
0 , 0, y2i+1

0 , 0) := q−c (t), if t2i+1
0 ≤ t < t2i+2

0

, i ≥ 0. (20)

2.2. Existence of subharmonic orbits

Next, we will employ the impact map defined in (14) to find periodic orbits. In term of this

map, a point in U ⊂ Σ+ will lead to a periodic orbit of period nT̂ if it is a solution of the

equation

Pmε (y0, t0) = (y0, t0 + nT̂ ) (21)

for some m. We take m to be the smallest integer such that (21) is satisfied. In that case,

q(t; t0, 0, y0, ε) will be a periodic orbit of period nT̂ , which crosses the switching manifold Σ

exactly 2m times. This periodic orbit is called an (n,m)− periodic orbit.
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In order to study the existence of periodic orbits, we use the Hamiltonian function H+

to measure the distance between the points (0, y2mε ) and (0, y0) for m ≥ 1. We first give a

notation which will be used below.∫ t2mε

t0

f(q(t; t0, 0, y0, ε)) ∧ g(q(t; t0, 0, y0, ε), t)dt

:=

m−1∑
i=0

∫ t2i+1
ε

t2iε

JDH+(q+(t; t2iε , 0, y
2i
ε , ε)) ∧ g+(q+(t; t2iε , 0, y

2i
ε , ε), t))dt

+

m−1∑
i=0

∫ t2i+2
ε

t2i+1
ε

JDH−(q−(t; t2i+1
ε , 0, y2i+1

ε , ε)) ∧ g−(q−(t; t2i+1
ε , 0, y2i+1

ε , ε), t))dt.

(22)

Hence we have the following lemmas.

Lemma 1. Let m ≥ 1 and (0, y0, t0) ∈ Σ+, and let (0, yiε, t
i
ε), i = 0, 1, . . . , 2m, be the

associated impact sequence as defined in (17). Then,

H+(0, y2mε )−H+(0, y0)

=ε

∫ t2mε

t0

f(q(t; t0, 0, y0, ε)) ∧ g(q(t; t0, 0, y0, ε), t)dt

+

m∑
i=1

[H+(0, y2iε )−H−(q−(t2iε ; t2i−1
ε , 0, y2i−1

ε , ε))]

+

m−1∑
i=0

[H−(0, y2i+1
ε )−H+(q+(t2i+1

ε ; t2iε , 0, y
2i
ε , ε))].

(23)

Lemma 2. Let m ≥ 1 and (0, y0, t0) ∈ Σ+, and let (0, yiε, t
i
ε), i = 0, 1, . . . , 2m, be the

associated impact sequence as defined in (17). Then,

H+(0, y2iε )−H−(q−(t2iε ; t2i−1
ε , 0, y2i−1

ε , ε))

=ε[∆+
2i −∆−

2i] + o(ε), (1 ≤ i ≤ m),
(24)

H−(0, y2i+1
ε )−H+(q+(t2i+1

ε ; t2iε , 0, y
2i
ε , ε))

=ε[∆−
2i+1 −∆+

2i+1] + o(ε), (0 ≤ i ≤ m− 1),
(25)

where

∆+
2i =JDH+(0, y0) ∧ ∂η̃(0, y0, 0)

∂ε

+
n(0, y0) ·D∗η̃(0, y0, 0)JDH+(0, y0)

n(0, y0) · JDH−(0, y0)
∆−

2i, (1 ≤ i ≤ m),
(26)

∆−
2i+1 =JDH−(0, ŷ0) ∧ ∂η̃(0, ŷ0, 0)

∂ε

+
n(0, ŷ0) ·D∗η̃(0, ŷ0, 0)JDH−(0, ŷ0)

n(0, ŷ0) · JDH+(0, ŷ0)
∆+

2i+1, (0 ≤ i ≤ m− 1),
(27)
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∆−
2i = ∆−

2i−1 +

∫ iTc(y0)

(i−1)Tc(y0)+T+(y0)

(JDH− ∧ g−)(q−c (t), t+ t0)dt, (1 ≤ i ≤ m), (28)

∆+
2i+1 = ∆+

2i +

∫ iTc(y0)+T
+(y0)

iTc(y0)

(JDH+ ∧ g+)(q+c (t), t+ t0)dt, (0 ≤ i ≤ m− 1), (29)

where ∆+
0 = 0 and D∗η̃(0, y, 0) denote the adjoint of Dη̃(0, y, 0).

Lemma 3. Let m ≥ 1 and (0, y0, t0) ∈ Σ+, and let (0, yiε, t
i
ε), i = 0, 1, . . . , 2m, be the

associated impact sequence as defined in (17). Then,

H+(0, y2mε )−H+(0, y0)

=ε

∫ t0+mTc(y0)

t0

f(q(t; t0, 0, y0, 0)) ∧ g(q(t; t0, 0, y0, 0), t)dt

+ ε[

m∑
i=1

(∆+
2i −∆−

2i) +

m−1∑
i=0

(∆−
2i+1 −∆+

2i+1)] + o(ε)

=ε

∫ mTc(y0)

0

f(q(t; 0, 0, y0, 0)) ∧ g(q(t; 0, 0, y0, 0), t+ t0)dt

+ ε[

m∑
i=1

(∆+
2i −∆−

2i) +

m−1∑
i=0

(∆−
2i+1 −∆+

2i+1)] + o(ε)

(30)

where ∆±
i , i = 1, . . . , 2m can be obtained by the iterative algorithm presented in (25)-(28).

Next, we will give a simplified form of (29) in a special case.

Lemma 4. Let m ≥ 1 and (0, y0, t0) ∈ Σ+, and let (0, yiε, t
i
ε), i = 0, 1, . . . , 2m, be the

associated impact sequence as defined in (17). Furthermore, we assume that

n(0, y0) ·D∗η̃(0, y0, 0)JDH+(0, y0)

n(0, y0) · JDH−(0, y0)
=

n(0, ŷ0) ·D∗η̃(0, ŷ0, 0)JDH−(0, ŷ0)

n(0, ŷ0) · JDH+(0, ŷ0)
= 1, (31)

then,

H+(0, y2mε )−H+(0, y0)

=ε

{∫ mTc(y0)

0

f(q(t; t0, 0, y0, 0)) ∧ g(q(t; t0, 0, y0, 0), t+ t0)dt

+m(JDH+(0, y0) ∧ ∂η̃(0, y0, 0)

∂ε
+ JDH−(0, ŷ0) ∧ ∂η̃(0, ŷ0, 0)

∂ε
)

}
+ o(ε)

(32)

Theorem 1. Consider a system which is defined in (5)-(6) satisfying the assumptions (H1)-

(H4), and let Tc(y0) be the function defined in (16). Assume that the point (0, ȳ0, t̄0) ∈ Σ+

satisfies

A.1 Tc(ȳ0) = nT̂
m

, with n,m ∈ Z relatively prime,
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A.2 t̄0 ∈ [0, T̂ ] is a simple zero of

Mn,m(t0) :=

∫ nT̂

0

f(q(t; 0, 0, y0, 0)) ∧ g(q(t; 0, 0, y0, 0), t+ t0)dt

+ [

m∑
i=1

(∆+
2i −∆−

2i) +

m−1∑
i=0

(∆−
2i+1 −∆+

2i+1)],

(33)

where qc(t) = q(t; 0, 0, ȳ0) is the periodic orbit such that Tc(ȳ0) = nT̂
m

with c = H−(0, ȳ0) =

H+(0, ȳ0). Then, there exists ε0 such that for every 0 < ε < ε0, one can find y∗0 and t∗0 such

that q(t; t∗0, 0, y
∗
0) is an (n,m)− periodic orbit.

3. Conclusions

In this paper, we have obtained the Melnikov function for a class of periodic perturbed

planar hybrid piecewise-smooth systems. Theorem 1 can be used to study the existence

of subharmonic orbits. The Melnikov function defined in (33) has a simple form but with

complicated iterative algorithm presented in (25)-(28). So if the condition in Lemma 4

n(0, y0) ·D∗η̃(0, y0, 0)JDH+(0, y0)

n(0, y0) · JDH−(0, y0)
=

n(0, ŷ0) ·D∗η̃(0, ŷ0, 0)JDH−(0, ŷ0)

n(0, ŷ0) · JDH+(0, ŷ0)
= 1

satisfies, then we can obtain a simple form of the Melnikov function

M(y0, t0) :=

∫ mTc(y0)

0

f(q(t; t0, 0, y0, 0)) ∧ g(q(t; t0, 0, y0, 0), t+ t0)dt

+m

(
JDH+(0, y0) ∧ ∂η̃(0, y0, 0)

∂ε
+ JDH−(0, ŷ0) ∧ ∂η̃(0, ŷ0, 0)

∂ε

)
,

(34)

which is understood easily with great advantage for calculation and engineering applications.

The existence of an (n,m)− periodic orbit can also be given by using the Melnikov function

(34).
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Switched Reluctance Motor (SRM) mechanical faults and their 

identification in frequency domain

(MTR297-15)

Jakub Lorencki, Stanisław Radkowski 

Abstract: In the paper the authors describe mechanical faults of SRM (rotor imbalance 

and dynamic eccentricity) that were carried out on the test bench as experiments. The 

SRM is a brushless electric motor with electronic commutation and due to its qualities 

it can be applied in locations where reliability is highly important. The measured 

signals were taken from the motor current sensor and from accelerometers from three 

different axes. The results of these faults are mainly scrutinized as spectra, however, 

time domain analysis is also possible. The concept of the research is to capture the 

exact fault phenomena in the spectrum and its identification and distinction between 

the eccentricity and load imbalance faults. Subsequently, the impact of these faults 

onto the overall performance and efficiency of the motor will be observed. The results 

can be compared to similar measurements taken from another electric motors (as 

BLDC)  and the comprehensive comparison can be made. 

1. Introduction

The world economy and environment have experienced significant degradation in recent years. 

Among those phenomena were global warming and greenhouse effect, depletion and price increase of 

fossil fuels and strong accumulation of carbon dioxide in the atmosphere[1]. These facts resulted in 

the idea of return to electric drive in motor vehicles since the 1990s. American and Japanese 

manufacturers decided to resurrect electric and hybrid electric vehicles for everyday use (e.g. General 

Motors EV1, Toyota Prius, Nissan Leaf, Tesla Roadster). Until now this technology is being 

upgraded and every year new models of electric and hybrid electric cars have their own 

premiere[2][11]. 

There are many different types of energy sources to supersede diesel oil or gasoline by 

alternative fuels, however the most applied ones are hybrid electric (i.e. electric motor and engine) 

and electric drive. For the electric drive almost every type of motor can be used, nevertheless, the 

most common are induction motor and brushless permanent magnet motor. The induction motor (with 

inverter) is applied rather for bigger vehicles (e.g. trams and trains). The permanent magnet (BLDC) 

motors are generally used for electric cars and minor vehicles, but certainly there are higher energy 

consumption applications for this motor. The BLDC motor has the great advantage of highest energy 

density because of strong neodymium magnets. This motor has however some drawbacks as well: 

high cost of magnets, its weight, peril of strong attracting metal force, possible demagnetization (e.g. 

by high temperature in the close vicinity to combustion engine in hybrid cars). The availability on 

Earth (especially outside China) of rare earth materials is also somewhat smaller than iron[3][4]. 
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There is however another modern electric motor used for different electric drive applications for 

vehicles. The motor described in this study is Switched Reluctance Motor (SRM) (Fig.1). Like BLDC 

motor, the SRM is also brushless and electronically commutated. The difference is that it is entirely 

built from iron (rotor and stator). It has characteristic salient poles on stator and rotor with windings 

only on the stator. It has less poles on the rotor than on the stator, the typical configuration of poles 

ratio (stator to rotor) is 8/6 or 6/4. Because of its characteristic geometry the reluctance of the flux 

path from a phase winding varies with the position of the rotor.  

Figure 1.   SRM construction [5] 

From the scientific point of view it is important to find the influence of the specific faults on the 

motor’s efficiency and on the measurement signals which will be useful for motor diagnosis. Special 

test bed was designed and built in order to examine the interrelation between those phenomena. 

1.1. Purpose of the study 

The switched reluctance motor can experience several types of faults during its operating period in 

the same way as another types of electric motors. There are different motor faults and they are 

generally divided into electrical and mechanical ones.  

From the electrical faults one can distinguish the short-circuit of inter-turn phases due to 

deterioration of winding insulation which is a severe problem and can occur frequently. The damages 

of power converter, controller or encoder can certainly also exist but all of these cases are beyond the 

scope of this study. 

The most common mechanical damages that can occur in almost all electric motors are: 

misalignment, imbalance, looseness, bent shaft, cocked bearing on a shaft and bearing defects[7][8].  

The area of this research is the profound study of various aforementioned mechanical faults in 

the switched reluctance motor. The test bed designed for this study has mechanical elements that will 

cause these faults. 
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The purpose of the research is to determine which characteristics of measurement signal can be 

associated with specific faults. These results can be compared with the similar experiments performed 

on the permanent magnet motor - another DC motor with electronic commutation. The mechanical 

faults can have negative effects on the overall efficiency of the electrical drive. Certainly the sooner 

the problem is detected the better it is for the machinery because its downtime is reduced[8]. 

The diagnostics of this type of motors is usually made in two ways: by measuring the current 

signal in the motor’s stator or by measurement of vibrations by means of the accelerometer. It is also 

possible to measure the voltage on stator phases, the speed and angle by means of the encoder and the 

temperature on the frame of the motor, but these methods are extremely rare and they will be omitted 

in the scope of this study. 

2. SRM mechanical faults

As it was mentioned before the faults that can exist in electric motor generally can be divided into 

mechanical and electrical ones. The scope of the work are mechanical faults in switched reluctance 

motor which are: bearing damage, eccentricity/misalignment (static and dynamic) of the air gap, rotor 

and load imbalance. These are the damages that occur in any type of electric motor and can be found 

commonly in everyday life of the machines. Each type of electric motor fault cause detrimental 

symptoms that can be observed as higher vibration and thus noise, stronger torque pulsations, higher 

losses, unbalanced currents and voltages within the machine circuit[9][10]. 

2.1 Eccentricity (misalignment) 

Eccentricity is a very common mechanical fault that occurs often in all of the types of electrical 

machines. Basically it causes the non-uniform air-gap between rotor and stator. This phenomenon can 

be identified in the current spectrum as fault harmonics caused by varying inductances making 

unbalanced magnetic flux in the air-gap. Should this problem be severe the stator can touch the rotor 

causing the damage of both of them. There are two types of eccentricity: the static and dynamic (Fig. 

2 and 3) 

Figure 2.   Static eccentricity 
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Figure 3.   Dynamic eccentricity 

 In the static eccentricity the centerline of the shaft is at constant offset from the center of the 

stator, thus non-uniform air-gap is also constant. In the dynamic eccentricity the offset between the 

shaft’s centerline and stator varies in time changing the air-gap length in time. Because of irregularity 

of the air-gap, magnetic flux changes values there and it results in the unbalanced currents which can 

be found in the current spectrum. In reality, both static and dynamic eccentricity occur 

simultaneously. The causes of eccentricity can be numerous as the faults of rotor construction 

(noncircularity, imbalance), missing or damaged elements in its construction (e.g. bolts), bad 

mounting or bearing damage.  

The eccentricity can be easily detected in the line current spectrum because of its much higher 

amplitudes in comparison to the signal noise.  

2.2 Imbalance 

Imbalance is a very common fault. It causes almost half of the machine problems directly or 

indirectly. When the mass centerline and geometric centerline do not coincide then imbalance takes 

place. The static, dynamic and coupled imbalance can be distinguished but in real life only coupled 

imbalance exists with the majority of either static or dynamic imbalance.  

The reason of the formation of this kind of failure is similar to the other types of faults, mostly by 

manufacture defects, debris on the parts of machinery or additional unbalanced shaft fittings.  

Because the imbalance produces dynamic loads, the bearing experiences fatigue from excessive 

stresses.  

3. Results

The experiments performed in this study were the dynamic eccentricity and rotor imbalance. The 1st 

one delivered more sophisticated results, thus is described more thoroughly.  

3.1 Eccentricity 

Dynamic eccentricity was performed on the test bench. It was possible to test 0.25 mm of 

misalignment. The other parameters chosen to the studies were load of 1 and 2 Nm and rotational 

speed 400, 1000 and 1500 rpm.  
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Figure 4.   Comparison between the current frequency from healthy motor and with misalignment 

(with 1 Nm load and 400 rpm). 

In fig. 4 we can observe the current in the healthy motor and motor with 0.25 eccentricity. The 

peculiar thing to these measurements was the highest peak of 40 Hz clearly visible in the healthy 

motor and the motor with eccentricity results. This is due to fact of the thing that motor has 6 rotor 

salient poles and the speed frequency of 6.67 Hz, thus 6.67x6=40Hz. Beside that this frequency is 

multiplied as odd harmonics, 3th (120Hz), 5th(200Hz) and 7th(280Hz). The motor with eccentricity 

however, can be clearly characterized with strong 4 and 5th harmonic, with 1st, 2nd and 3rd also visible 

to some extent. This is due to the fact that in the healthy motor there is only a function of the speed of 

the salient poles of the rotor. However, in the dynamic eccentricity phenomenon there is a rotor which 

does another form of rotation that modulates the current output with another variable.  

In fig. 5 we can see the similar experiment as in previous figure but here the measurement is the 

vibration in X-axis. The results are significantly more vague than the data from the current. Because 

of test bench characteristics there are numerous frequency harmonics with nearly no trend.  

In fig. 6 we can see the comparison between different loads from the motor with 0.25 

eccentricity. Since the motor has load, the differences between the 1 and 2 Nm are very minor, thus 

increasing the load (once the motor has some) does not influence the overall output.  

In figure 7 we can see the current from three different motor speeds with eccentricity. There are 

only minor changes. However, increasing speed of the motor has only observable impact between 400 

and 1000 rpm. At higher speeds the difference becomes insignificant.  
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4.2 Rotor imbalance 

The latter experiment executed on the test bench was simulation of rotor imbalance. This was 

done by applying special shield with a screw bolt in one of two holes.  

What can be observed from fig. 8 applying the shield  has almost none effect of imbalance due to 

the rigidity of the mechanical collar. The imbalance obviously did not manifest itself as strong as 

dynamic eccentricity.  

Figure 5.   Comparison between the acceleration from healthy motor and with misalignment (with 1 

Nm load and 1000 rpm). 

Figure 6.   Comparison between the current from 3 different loads from motor with eccentricity with 

1000 rpm. 
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Figure 7.   Comparison between the current from 3 different motor speed with eccentricity with 1000 

rpm 

 

Figure 8.   Comparison between the current from 3 different rotor imbalances 

 

4. THE EXPECTED RESULTS AND DISCUSSION 

Switched Reluctance Motor might be a reliable candidate for the electric drive for vehicles. It 

contains of numerous advantages that excel in performance. However, every electric motor has its 

own disadvantages, they are prone to numerous faults: electrical and mechanical what can 
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significantly reduce the lifetime of the machine. Fortunately, the modern methods of motor 

diagnostics can detect the specific fault and alert the machine operator. He can anticipate the 

downtime of machinery and repair or replace the motor without sudden accidents. 

The results from all of the performed tests can be measured in non-invasive way in the line-

current signal and by accelerometers. The idea of this research is to compare those signals especially 

in frequency domain. After that it is possible to determine how these faults affect the motor 

performance and the efficiency of all drive. Results depict that even minor mechanical faults can have 

significant effect on overall motor performance.  
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Parametric study on implementation of viscous dampers 

for adjacent buildings

(VIB073-15) 

Elif Cagda Kandemir-Mazanoglu, Kemal Mazanoglu 

Abstract: Adjacent buildings are under risk of damages during an earthquake due to 

structural pounding. Viscous dampers are one of the energy dissipation devices which 

can be implemented between two buildings to make them coupled or at the same 

building to reduce interstorey displacements. In this paper, a parametric study is 

presented by changing storey height of buildings and the parameters of the viscous 

dampers such as the location and capacity so that the one-sided structural pounding 

under severe earthquake vanishes. The buildings are considered as lumped mass 

model whereas the pounding force is assumed as nonlinear elastic spring at the 

contact point between the colliding structures. The vibration responses are obtained 

by central difference method. The results are compared to clarify the effective 

capacity and allocation of viscous dampers. 

1. Introduction

The structural pounding due to severe ground motions is one of the major problems of adjacent 

structures with insufficient gap between them. The impact force occurred on the surfaces of colliding 

parts can cause serious damages on structures or even collapse of the structure. There are many cases 

reported in the past that the major failure of structures were due to pounding such as 1985 Mexico 

City earthquake and 1989 Loma Prieta earthquake [1-4]. The main reason of earthquake-induced 

structural pounding is different dynamic characteristics of the neighbor buildings showing out-of-

phase behavior during an earthquake. To overcome this problem, there are a number of solutions 

applied in practice and also proposed in the related literature. The coupling of the buildings by linking 

with the impact preventing devices is one of them. Xu et al. introduces a parametric study about fluid 

viscous damper application between adjacent buildings with different number of storeys under 

earthquake excitation. The decrease in responses is identified as the notation for the effectiveness of 

dampers [5]. Bhaskararao et al. implements friction dampers to reduce seismic responses of adjacent 

buildings [6]. Raheem uses rubber shock absorber to prevent pounding [7]. Yang et al. performed an 

experimental seismic study of adjacent buildings with fluid dampers [8]. Basili et al. studied the 

optimal passive control of adjacent structures interconnected by Bouc-Wen model nonlinear 

hysteretic devices under seismic excitations of a Gaussian zero mean white noise and a filtered white 

noise [9]. Kim et al. analyzed the single degree-of-freedom (SDOF) systems connected by 
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viscoelastic dampers at their seismic joints, subjected to white noise and earthquake ground 

excitations in order to reduce earthquake-induced structural responses. They also performed dynamic 

analyses for 5-storey and 25-storey rigid frames connected to braced-frames [10].  

In this paper, the 15-storey adjacent buildings with floors in alignment are analyzed through 

severe ground motion, 1999 Duzce earthquake (PGA 0.754g), in terms of earthquake-induced 

structural pounding. The closure of the gap between buildings is concluded with the impact forces 

between colliding surfaces. The time-domain seismic responses such as displacement time response 

are obtained by using numerical integration method called central difference method to avoid 

expensive solution procedure of other methods. The impact forces between adjacent buildings 

modeled as nonlinear elastic spring are analyzed at first and then a study for prevention of pounding 

effect is conducted by installation of viscous dampers. The optimum capacity and location of linear 

viscous dampers are investigated. The capacity and location of viscous dampers are optimized so that 

required damping ratio is added to the coupled system to vanish impact force between buildings. The 

command of fmincon in Matlab Optimization Toolbox was used for optimization of viscous damper 

capacity and location. The boundary and equality constraints are constituted according to the 

supplemental damping ratio formulation proposed by Hwang et al. [11].  

2. Formulation

2.1. Viscous Dampers 

Viscous dampers are velocity-dependent passive energy dissipation devices which do not possess 

inherent rigidity. Figure 1 shows a typical viscous damper. The kinetic energy of structure is 

transformed into heat energy by the viscous fluid inside leading to dissipation of energy. The damper 

force depends on relative velocity between damper ends as shown in Eq.1 as follows, 

Figure 1.   Schematic view of viscous damper (Symans and Constantinou, [12]) 

     
              (1) 
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in which     is damping coefficient which depends on the dimensions of damper,   is velocity 

exponent and takes values between      . This constant value designates the damper type as; for 

    it is friction damper, for     it is linear viscous damper and for       it is called as 

nonlinear viscous damper. Linear viscous damper is addressed in this paper as viscous damper 

without linear term. In equation of motion of a single degree-of-freedom system with viscous damper 

subjected to ground motion is written as follows, 

                                                                                                                (2) 

in which   is mass,   is stiffness,   is inherent damping coefficient and     is acceleration of ground 

motion.      is displacement response at time   and overdots symbolize the differentiation with 

respect to time. The damping ratio added to the system by viscous dampers is given by Eq.3 [11], 

   
         

              
 

 

        
                                                                                                         (3) 

where    is fundamental natural period,    is inclination of damper,    is 1st mode modal 

displacement of      floor,       is modal displacement of          floor,    is mass of     floor,    

is the modal displacement of     floor.  , indicates all the floors while   is the floors with the dampers 

added. As for the adjacent structures linked by dampers, relative modal displacement           

should be those where the two ends of dampers are attached. For example, in the case of two adjacent 

buildings, formulation becomes              . In addition to this, the fundamental period of the 

coupled system is assigned as the largest one among the first natural periods of two buildings.  

2.2. Analytical Impact Model 

The impact force between adjacent structures can be modeled in various analytical models such as 

nonlinear elastic model, linear viscoelastic model and nonlinear viscoelastic model. In this paper 

nonlinear elastic model, i.e. the Hertz model, has been used. This model neglects the plastic 

deformations during pounding and assumes that the nonlinear elastic spring become active when the 

gap (a) between buildings is closed. The analytical impact model of adjacent SDOF systems is given 

in Figure 2.  
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Figure 2.   Analytical impact model 

    The equation of motion is written as in Eq. 4 including the impact force term,   . The force is 

simply calculated as restoring force of the elastic spring with an exponential expression of relative 

displacement value,  .   indicates constant stiffness coefficient of the spring. It takes between 

             and                     –                 according to experimental analyses on 

concrete surfaces done by Van Mier et al.  [13].  

                    (4) 

      
                  

                          
  (5) 

                    (6) 

  is mass matrix,   is stiffness matrix and   is damping matrix of the coupled structural system. 

In next section, the constitution of matrices is described in detail.  

2.3. Construction of structural matrices 

Building 1 and 2 are (m+n)-storey and (n)-storey adjacent buildings, respectively, and connected by 

viscous dampers at each floor level. Structural properties are given in Figure 1. To conduct time 

response analysis, the matrices should be constituted. The supplemental damper coefficient matrix in 

addition to coupled mass, stiffness and inherent damping coefficient matrices are constructed as 

follows; 
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In these equations    and    mention the mass matrices of building 1 and building 2, 

respectively.    and    indicate the stiffness matrices. The damping matrices for inherent damping     

and    are coupled in   matrix. The damping matrix provided by viscous dampers can be written in a 

separate matrix,   . In this matrix,              and                in which    is 

supplemental damper coefficient vector, i.e.                 ,   is number of storey of building 

2. The time response analysis was carried out on Eq.2 with the term of the impact force in Eq.5.  

 

 

Figure 3.   Building models 

2.4.  Optimization of Viscous Damper Capacity and Location 

The important task of installation of viscous dampers is to determine the capacity and location of 

viscous dampers which can prevent structural pounding. The optimization parameters were arranged 

to be compatible with the command of “fmincon” in the optimization toolbox in Matlab. In the 

optimization algorithm the objective function is, 

                 
 
                                                                                                                           (8) 

where   is the function that minimizes the total damper capacity. i is the floor number. Also the lower 

and upper bounds should be identified as                in which   , lower bound, is assigned zero to 
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represent the case of no damper attached between the floors. ub, upper bound, can take various 

values. Equality constraint is constructed based upon supplemental damping ratio equation (Eq.3) 

without damper coefficient term; 

       
  

       
  

   

  
 
-  

 - 
 
 

 (9) 

               (10) 

      is a vector including n terms in a row whereas      has also n terms in a column. Their 

multiplication should give     that is increased gradually in every step of minimization.  

In the location optimization, considering the maximum impact forces occurs at the top floor (top 

floor of the shorter building among adjacent buildings), the dampers should be located starting from 

top floors. In this sense, the damper coefficients,   , put in order from largest to lowest value and 

located in the correct places in the matrix of    .  

3. Results and discussion

In this paper to carry out analyses, some assumptions have been done. The buildings analyzed are 

assumed as symmetric in plan. The floors are in alignment and equal in height. The impact forces are 

assumed to occur on the floor levels. The mass, stiffness and inherent damping coefficient are equally 

distributed among floors. The buildings are linear multi-degree-of-freedom systems including lumped 

masses at each floor and stiffness of columns. The plastic deformations during pounding are 

neglected. Linear dynamic analysis is conducted. Building 1 and 2 are 15-storey buildings. In 

following sections, however, the number of storey of building 2 is changed in order to observe the 

effect of different natural periods on the impact force, supplemental damper capacity and location. 

The damping ratio is taken as        for both buildings and the gap is assigned as        . The 

spring constant in Hertz model for pounding force is assumed as            . 

3.1. Natural period variation on impact force and supplemental damping ratio 

Different vibration characteristics of closely located adjacent buildings result in out-of-phase behavior 

due to strong ground motions which is the main reason of earthquake-induced structural pounding. 

The impact force occurs when the gap between the buildings is closed. In this section two cases are 

investigated in order to observe the effect of natural frequency differences on the impact force. 

Firstly, natural frequencies obtained by only changing the number of stories of building 2 are 

analyzed as Case 1. Mass and stiffness values are taken as               and       

          , respectively. In Case 2, the stiffness of building 2 is altered to             

and the analyses were done again for the various number of storeys. The results were desired to be 
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given in a comparative scale for two cases. To do so, instead of natural frequency ratio         

which depends on the characteristics of each building, nondimensional frequency parameter     is 

defined as follows; 

              
 

 
                                                                                                                                  (11) 

in which   is natural frequency of building,   is storey number,   and   are mass and stiffness 

coefficient for one floor. Results are presented by the nondimensional natural frequency ratio, 

        . Indices 1 and 2 denote two buildings in consideration herein. The decrease in    

indicates that the number of storey of building 2 is reduced. In this sense,      indicates that the 

number of storeys of building 1 and building 2 are equal.  

Figure 4(a) shows the maximum impact force variation in accordance with the nondimensional 

frequency parameter ratio,    when there is no viscous damper attached to the system,     . 

Markers on lines can be identified as the floor numbers, i.e.      indicates activity at 15th floors of 

buildings. The floors in which maximum impact force observed are the top floor of building 2 and the 

same level of building 1. As seen from the figure, the impact force gets maximum value when the 

buildings are collided at 12th floors in case 1. Equal number of storey of adjacent buildings in case 1 

oscillates in-phase which results in no impact force. In case 2, even if the buildings have the same 

number of storey, the out-of-phase behavior is observed as expected. The maximum impact force 

occurs at the 13th floors in case 2.  

Figure 4(b) demonstrates the necessary supplemental damping ratio added by viscous damper for 

each nondimensional frequency parameter ratio. Viscous dampers between adjacent buildings reduce 

the displacement responses of coupled structure by means of increasing total damping ratio. This 

graph clarifies the required supplemental damping ratio to vanish the earthquake-induced pounding. 

With this knowledge in hand, the total viscous damper capacity can be found easily by Eq.3. As seen 

from the figure, for case 1, the largest supplemental damping ratio is needed when the pounding 

occurs at 10th and 11th floors. For case 2, the maximum impact force occurs at 13th floor also. Figure 

4(b) is the reference graph to obtain damper coefficients that shows required supplemental damping 

ratios which makes the impact force zero. There are various options to put damper between floors as 

long as the supplemental damping ratio is provided. However, for each option, the damper 

coefficients are varied. For example, the impact force occurs at 10th floor when the building 2 has 10 

storeys. In this case the supplemental damping ratio is 40% to prevent structural pounding. The 

damper can be implemented to all adjacent floors with the capacity of              and the total 

damper capacity becomes             . In another option, the dampers can be installed only to 

the top floor with the capacity of             . Adding dampers to all floors gives smaller 
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capacities for each damper however larger total damper capacity. In addition to this, adding only one 

damper in larger capacity to effective location prevents pounding as well. In the optimization 

algorithm, the relation between upper bound of damper capacity, total damper capacity and the 

number of dampers can be stated as: an increase in the upper bound decreases total damper capacity 

together with the number of dampers and vice versa. The decision about the amount of damper 

capacity and number should be given by the designer and the manufacturer together in the aspect of 

economical conditions.  

Figure 4.   (a) Relation between impact force and    for      (b) Relation between supplemental 

damping ratio and    for      

3.2. Installation of viscous dampers 

Installation of viscous dampers as a linking element between adjacent structures has advantage in 

terms of reducing seismic responses of both structures. Figure 5 shows the effect of viscous dampers 

on the seismic behavior of adjacent structures in terms of reduced displacement responses. Building 2 

locates at 0.03m-distance from Building 1. There is no pounding observed when the capacity of 

viscous damper is              installed at only 10th floor or each adjacent floors with the 

capacity of              . This figure also verifies no pounding case since the displacement 

responses do not intersect with each other. It can be observed that in addition to reduced displacement 

responses of both buildings, they start to vibrate together after linked by dampers. For case 2, the 

results are similar with case 1 with different damper capacities. Table 1 tabulates the damper 

capacities and the locations for different upper bounds of damper capacity for case 1. It is clear that 

reduction in upper bound gives smaller capacity for each damper; however, placing them to more 

adjacent floor gives larger total damper capacity. It should be noted that each option providing same 

supplemental damping ratio results in very close displacement responses. The results observed in case 
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2, that will not be given inhere, gives smaller damper capacities since the building 2 is stiffer than 

building 1.  

  

Figure 5.   Case 1 - Displacement time responses of building 1and 2 (a) before (b) after  installation of 

viscous dampers between adjacent 10th floors                             

Table 1.  Damper capacity and locations for different upper bound values of damper capacities 

Adjacent 

floor no. 

Upper bound for damper capacity      (          
                    

15 & 11 

storey 

15 & 10  

storey 

15 & 11 

storey 

15 & 10 

storey 

15 & 11 

storey 

15 & 10 

storey 

15 & 11 

storey 

15 & 10 

storey 

11      -   -   -      - 

10 -                           

9 - - -                    
8 - - - -               
7 - - - -                  
6 - - - - -                
5 - - - - - -           
4 - - - - - -           
3 - - - - - -           
2 - - - - - -           
1 - - - - - -           
                                          

4. Conclusion 

The optimization procedure for the damper capacity and location is explained in this paper for 

adjacent buildings. The estimation of supplemental damping ratio is essential task to control the 

displacement responses. In the optimization algorithm, the relation between upper bound of damper 

capacity, total damper capacity and the number of dampers is presented. The upper bound decreases 

total damper capacity together with the number of dampers and vice versa. For two adjacent buildings 

which have same mass and stiffness coefficient of each floor, the seismic responses are in-phase in 

the case of equal number of storeys. On the other hand decreasing floor number and/or changing the 

structural properties have a trend of increase in impact force until a peak value and then decrease to 
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zero when no impact force occurs. This means that the structures are in-phase until some threshold of 

natural frequency ratio. After exceeding this threshold, the out-of-phase behavior starts and continues. 

The similar trend can be observed in required supplemental damping ratio as well. The threshold 

values can be investigated in further studies. This paper contributes to related literature in terms of 

effective solutions for structural pounding problem. 
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Rayleigh–Ritz natural frequency analyses for centrifugally 

stiffened functionally graded and tapered beams

(VIB089-15) 

Kemal Mazanoglu, Ali Ceylan 

Abstract: In this paper, flap wise vibration analyses of centrifugally stiffened tapered 

and axially functionally graded beams are conducted by the Rayleigh–Ritz method 

that directly finds a solution using the energy expressions. Euler–Bernoulli beam 

model is used in calculations. Effects of taper ratio, hub radius and angular velocity 

are inspected for the beams with several classical boundary conditions. Results given 

as non-dimensional natural frequencies are compared to the results given in existing 

literature, and good agreements are obtained. Effects of changes in axial grading 

function for centrifugally stiffened Euler–Bernoulli beams are also reflected and 

discussed. 

1. Introduction

This paper is on the flexural vibration of tapered and axially functionally graded (AFG) beams 

rotating around a hub. Beam type elements can rotate around a hub in many applications such as 

turbine blades, wind turbines, propellers, crank and etc. Design of these components requires taking 

mechanic, dynamic, aerodynamic and thermal limitations into account to supply the most proper 

economic conditions and increase the energy efficiency. In order to do this, usage of functionally 

graded (FG) beams has attracted researchers’ attention in recent years. FG components preserve 

structural integrity by providing appropriate power and weight distributions. Smooth change of 

material properties removes stress loads, which occur in layered composites, and accordingly 

eliminates delamination faults. A centrifugally stiffened FG beam may be broken due to dynamic and 

aerodynamic effects leading resonance although it has sufficient mechanic and thermal resistance. FG 

beams should have appropriate modal characteristics to avoid resonance. Changes in modal 

characteristics are easily followed by the natural frequency parameters. Therefore, calculation of 

natural frequencies plays significant role in achievement of novel designs for rotating FG beams. 

Researchers have paid great attention to the flexural vibration of uniform or non-uniform beams 

rotating around a hub for three decades. Selected papers considering uniform Euler‒Bernoulli beam 

model are presented by Banerjee, Chung and Yoo, Yang et al., Yoo and Shin [1-4]. Beside this, 

vibration of rotating non-uniform Euler‒Bernoulli beams is analysed in some other research works 

[1,5-8]. Rotating beam vibrations are also studied by the Timoshenko beam model [9-11]. Most of 

these works use the finite element based analyses to reach approximate solution [2,3,6,8]. In addition, 
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dynamic stiffness matrix method [1], differential transform method [7], Galerkin’s method [9], and 

Rayleigh‒Ritz method [4,10] are some other solution methods used in current literature. 

Studies on vibration analysis of FG beams have tremendously increased in recent years. 

Vibration of AFG beams is inspected in some papers [12-14]. Huang et al. [12] define an additional 

function to obtain solution using power series method. Huang and Li [13] present a simple procedure 

to find natural frequencies by the transformation of governing equation with varying coefficients to 

Fredholm integral equations. Shahba et al. [14] introduce a new element type to reach solution using 

finite element analysis. There are several papers on vibration analyses of transversely FG beams 

[15,16]. In referred works, results are obtained by Rayleigh‒Ritz method [15] and Navier solution 

procedure [16]. 

In current literature, there are a few studies on vibration of rotating beams made of FG materials 

[17,18]. Rajasekaran [17] compares the differential transform and quadrature methods employed for 

the flexural vibration analyses of Euler‒Bernoulli AFG beams rotating around a hub. Ramesh and 

Rao [18] consider the vibration of transversely FG rotating beams using the Rayleigh‒Ritz method.  

To the best of author’s knowledge, usage of the Rayleigh‒Ritz method for the vibration analysis 

of AFG beams rotating around a hub is firstly investigated in this paper. Beams are modelled using 

the Euler‒Bernoulli beam theory. The Rayleigh‒Ritz solution method is applied using a simple and 

fast computation technique presented. Simple polynomial shape functions are used in the method. 

Comparative results are given for tapered and AFG beams rotating around a hub. 

2. Theoretical background

In this work, material and/or cross-sectional properties of rotating beam are assumed to vary along the 

length, L, of beam as shown in Figure 1. Cross-section changes of the tapered beams are expressed by 

following functions representing height, h, and width, b.  











L

x
chxh h1)( 0 (1) 











L

x
cbxb b1)( 0 (2) 

where 0h  and 0b  symbolize the dimensions at the root of beam. hc  and bc  are the taper ratios for 

the height and width respectively. Thus, for the rectangular beams, cross-sectional area, A(x), and area 

moment of inertia, I(x), variations are written as follow: 

)()()( xhxbxA   (3) 

12)()()( 3xhxbxI   (4) 
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Figure 1. Configuration of rectangular beam rotating around a hub. 

Similarly, material parameter, mp , which may be modulus of elasticity ( E ) or density (  ), is 

assumed to vary as: 

   221)( m
n

mmm pLxppxp  (5) 

where 1mp and 2mp denote the parameters of two different materials. n is the material non-

homogeneity factor. Within this framework, energy expressions for flap-wise vibration of 

centrifugally stiffened AFG beams and details of a technique implemented for the Rayleigh‒Ritz 

method are presented in following subsections. 

2.1. Energy expressions for centrifugally stiffened beams 

In this paper, vibration of centrifugally stiffened AFG and tapered beams is considered in only flap-

wise direction. It is assumed that bending-torsion and bending-bending coupling effects are negligible 

for the beam selected. Since the rotating speed of the hub,  , is constant, the beam has no angular 

acceleration. Hence, there is no tangential inertia force active on the beam. On the other hand, while 

the beam is rotating around a hub, centrifugal tension force, F(x), at a distance, x, from the origin is 

given by: 

  

L

x

dxxRxAxxF 2)()()(   (6) 

where R symbolizes the radius of hub. Under this centrifugal force, potential energy, U,  is given as 

follows [11]: 
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'W  and ''W  stand for the first and second derivatives of flap-wise displacement W with respect to x 

axis. The first term is the energy expression of the non-rotating Euler‒Bernoulli beam and the second 

term represents the effect of centrifugal stiffening. 
1C  is the constant that can be found as, 

   
L

dxxAxExF

0

2
)()()(

2

1
. 

Kinetic energy ( T ) of the centrifugally stiffened beams can be expressed as follows [11]: 

  2

0

22 )()()(
2

1
)( CdxxWxAxxT

L

   (8) 

where   is the natural frequency of flap-wise bending vibration. As is known, the first term is the 

kinetic energy of non-rotating bending beam. In addition, constant rotation velocity leads constant 

term as  

L

dxxrxAxC

0

22
2 )()()(

2

1
 . Note that the constant terms in Eqs. (7,8) are ineffective on 

results. In order to obtain results, flexural displacement, W, is represented in the form of function 

series given as follows: 





m

j

jj xxW
1

)()(  (9) 

Here   denotes the coefficient of terms that indexed by j with total number, m. )(x  is a series of 

terms that forms an admissible function satisfying the geometric boundaries at least. Table 1 shows 

general terms of admissible polynomial functions satisfying some classical boundaries and used in 

solution method detailed in following subsection. 

Table 1. General terms of flap-wise displacement polynomials for classical end conditions. 

End conditions )(xj  

Clamped-Clamped     12
1




j
LxLx

Pinned-Pinned     j
LxLx 1

1

Clamped-Free     12
1




j
LxLx

Clamped-Pinned     j
LxLx 1

2

Free-Free     10
1




j
LxLx
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2.2. A computation technique for the Rayleigh–Ritz method 

The Rayleigh‒Ritz method approximately finds modal parameters based upon the conservation of 

energy law. The energy difference is partially differentiated by the coefficients of shape functions to 

make the difference minimum. 

  0



TU

j
, mj ,,2,1   (10) 

The energies are expressed in discretised form as follow: 
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As a simple computation technique suggested in this paper, discretised form of the energy 

difference expression is partially differentiated with respect to coefficients i  and j . 
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This process leads to the elimination of the coefficients in resulting terms, jid , , that are located into 

the matrix, D, as follows: 
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Natural frequencies are found as a result of the singularity analysis carried out by equating the 

determinant of matrix to zero ( 0)det( D ). A remarkable point in this computation technique is the 

use of simple functions that allow one to do integration effortlessly and get results in considerably 

short duration. 

3. Results and discussions

Natural frequencies of centrifugally stiffened tapered and AFG beams are found by the Rayleigh‒Ritz 

method using simple computation technique presented. Results are given using following non-
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dimensional parameters expressing the hub radius, hub rotating speed, and beam natural frequencies 

respectively. 

LR , (15a) 

  5.0
0000

2 )()( IEAL   , (15b) 

  5.0
0000

2 )()( IEAL   . (15c) 

The subscript “0” represent the properties at 0x . AFG beams considered in current literature 

[17] are inspected to validate success of the method. Material properties of the beams made of 

Aluminium and Zirconia (ZrO2) are given as: 70alE GPa, 2702al kg/m3, 200zrE GPa, 

5700zr kg/m3. Figure 2 shows modulus of elasticity variation for different n values. In following 

analyses, the Rayleigh‒Ritz method is applied using admissible mode shape functions having 8 

polynomial terms. 

Figure 2. Modulus of elasticity variation for different n values. 

Variation of non-dimensional frequency parameters reflecting the effects of non-homogeneity 

parameter, n, is illustrated in Table 2. Parameters for hub radius, hub rotating speed and cross-section 

are taken as 0 , 5  and 0 bh cc  respectively. It is seen that present results very closely 

match with the results of Rajasekaran [17] who uses differential transformation and differential 

quadrature element methods (DQEM). As is known, convergence capability of the Rayleigh‒Ritz 

method decreases as the vibration mode wanted to be obtained increases. Accordingly, negligible 

error of the method can be easily eliminated by increasing the number of terms in mode shape 

function. Results also show that the frequency parameters of non-homogeneous beams are lower than 

those of homogeneous beams ( 0n ) for pinned-pinned and fixed-fixed boundaries. 
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Table 2. Effects of non-homogeneity parameter on natural frequency parameters of rotating AFG 

beam. ( 0 , 5 , 0 bh cc ) 

Boundary 

conditions 
n Method 

Natural frequency parameters 

μ1 μ2 μ3 μ4 

Fixed-Free 

0 
Rayleigh‒Ritz 6.4495 25.4461 65.2051 124.7605 

DQEM [17] 6.4494 25.4461 65.2050 124.5664 

1 
Rayleigh‒Ritz 6.9716 25.6519 63.3087 119.6292 

DQEM [17] 6.9717 25.6522 63.3094 119.5321 

2 
Rayleigh‒Ritz 6.9289 26.0436 64.6727 122.2474 

DQEM [17] 6.9289 26.0438 64.6733 122.1691 

Pinned-Pinned 

0 
Rayleigh‒Ritz 13.0953 43.3513 92.8744 162.2038 

DQEM [17] 13.0953 43.3513 92.8561 162.0019 

1 
Rayleigh‒Ritz 12.1032 40.6536 87.5369 153.4087 

DQEM [17] 12.1033 40.6541 87.5317 153.0331 

2 
Rayleigh‒Ritz 12.2333 41.3792 89.2306 156.2901 

DQEM [17] 12.2334 41.3794 89.2251 156.0663 

Fixed-Fixed 

0 
Rayleigh‒Ritz 24.5442 64.8012 124.3683 203.5234 

DQEM [17] 24.5442 64.8012 124.3667 203.4994 

1 
Rayleigh‒Ritz 22.7495 60.6390 116.9549 191.9138 

DQEM [17] 22.7497 60.6397 116.9560 191.8536 

2 
Rayleigh‒Ritz 22.3541 60.6608 117.9536 194.2948 

DQEM [17] 22.3542 60.6611 117.9543 194.2642 

Another analysis is performed to validate Rayleigh‒Ritz method for rotating AFG beams with 

different taper ratios. Table 3 demonstrates good agreement between present results and the results 

given by Rajasekaran [17]. It is obvious that natural frequency parameters decrease with increasing 

taper ratio except for the fundamental frequency parameters of cantilever beams.  

Success of the method is also investigated for tapered AFG beams with several hub rotating 

speeds and hub radius. Results shows good harmony with the results of Rajasekaran [17] as illustrated 

in Table 4. As may be expected, fundamental frequency parameters increase with increasing hub 

radius and rotating speed due to the augmentation of centrifugal force. 
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Table 3. Effects of taper ratios on natural frequency parameters of rotating AFG beams ( 0 , 

ccc bh  , 2 , 2n ). 

Boundary 

conditions 
μ Method 

Taper ratio (c) 

0 0.3 0.6 0.9 

Fixed-fixed 

μ1 
Rayleigh‒Ritz 20.8997 17.9485 14.7595 11.3024 

DQEM [17] 20.8998 17.9486 14.7595 11.1558 

μ2 
Rayleigh‒Ritz 58.5673 49.8115 40.1356 28.7144 

DQEM [17] 58.5677 49.8119 40.1354 28.1726 

μ3 
Rayleigh‒Ritz 115.6538 97.9304 78.1478 54.3656 

DQEM [17] 115.6545 97.9305 78.1470 52.9865 

μ4 
Rayleigh‒Ritz 191.8866 162.2092 128.7916 89.1723 

DQEM [17] 191.8569 162.1151 128.7647 85.8165 

Fixed-free 

μ1 
Rayleigh‒Ritz 4.8142 5.3933 6.3690 8.5415 

DQEM [17] 4.8142 5.3933 6.3691 8.5415 

μ2 
Rayleigh‒Ritz 23.6961 22.0868 20.4740 19.9850 

DQEM [17] 23.6964 22.0868 20.4739 19.9830 

μ3 
Rayleigh‒Ritz 62.2940 54.6112 46.3376 37.7093 

DQEM [17] 62.2946 56.6118 46.3284 37.6610 

μ4 
Rayleigh‒Ritz 119.8089 102.9809 84.8333 63.5064 

DQEM [17] 119.7205 102.9720 84.5343 62.8547 

Pinned-pinned 

μ1 
Rayleigh‒Ritz 10.0556 8.3229 6.1982 3.2721 

DQEM [17] 10.0557 8.3230 6.1979 3.2612 

μ2 
Rayleigh‒Ritz 38.8038 32.9243 26.6344 19.5282 

DQEM [17] 38.8040 32.9245 26.6332 19.4644 

μ3 
Rayleigh‒Ritz 86.5742 73.2563 58.7088 41.3334 

DQEM [17] 86.5673 73.2562 58.7092 41.0533 

μ4 
Rayleigh‒Ritz 153.5932 130.2473 103.2995 71.3854 

DQEM [17] 153.3792 129.5636 102.2202 70.3164 

4. Conclusion

In this work, natural frequency analyses of rotating tapered AFG Euler‒Bernoulli beams are carried 

out using the Rayleigh‒Ritz method with a simple and fast computation technique. The method 

successfully identifies the effects of changes in boundary conditions, cross-section, functional 
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grading, hub radius and rotating speed. These effects are clearly stated in the paper. Results can 

encourage the researchers to apply the method in different analyses of rotating FG beams. 

Table 4. Effects of hub rotating speed and hub radius on fundamental frequency parameter of tapered 

AFG beam. ( 5.0hc , 0bc , 2n ) 

  δ Method 
μ1 for several boundary conditions 

Fixed-free Fixed-fixed Pinned-pinned 

1 

0 
Rayleigh‒Ritz 4.7452 15.4096 6.8560 

DQEM [17] 4.7453 15.4096 6.8560 

0.1 
Rayleigh‒Ritz 4.7638 15.4219 6.8810 

DQEM [17] 4.7639 15.4220 6.8810 

1 
Rayleigh‒Ritz 4.9280 15.5323 7.1018 

DQEM [17] 4.9281 15.5324 7.1018 

5 

0 
Rayleigh‒Ritz 7.2580 17.1609 9.5239 

DQEM [17] 7.2580 17.1610 9.5239 

0.1 
Rayleigh‒Ritz 7.5504 17.4305 9.9482 

DQEM [17] 7.5505 17.4305 9.9481 

1 
Rayleigh‒Ritz 9.7875 19.6626 13.0630 

DQEM [17] 9.7875 19.6627 13.0628 

10 

0 
Rayleigh‒Ritz 11.8954 21.5971 14.8935 

DQEM [17] 11.8955 21.5971 14.8930 

0.1 
Rayleigh‒Ritz 12.5889 22.4077 15.8943 

DQEM [17] 12.5890 22.4077 15.8938 

1 
Rayleigh‒Ritz 17.6147 28.5078 22.6643 

DQEM [17] 17.6148 28.5077 22.6624 
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Anti-symmetric mode in-plane vibration analyses of several types 

of frame structures

(VIB075-15) 

Kemal Mazanoglu, Elif C. Kandemir-Mazanoglu 

Abstract: This paper presents an analytical method for the computation of anti-

symmetric mode shapes and corresponding natural frequencies of frame structures. 

Lumped mass-stiffness model is employed to define the effects of beam on equivalent 

column system. Equivalent lumped mass and moment of inertia of beam are 

determined using the principle of kinetic energy conservation. Rotational stiffness of 

the beam is calculated by the aid of beam element moment equations and the principle 

of superposition. Equivalent column, which is modelled using Euler–Bernoulli beam 

theory, is considered by the contribution of compatibility and continuity conditions 

stated at the beam locations. Applicability of the method is demonstrated on single 

storey (portal), H type, and double storey frame systems. Results are validated using 

the outputs of the finite element package and some results given in current literature. 

1. Introduction

The vibration characteristics of a frame contain important knowledge about how the structure will 

behave in vibrating environment such as vehicles, active fault zones, aircrafts and etc. The natural 

frequency and mode shapes of a frame structure are of importance to provide physical insight into the 

dynamic behaviour of mechanical and structural components. Especially, vibrations in anti-symmetric 

modes are crucial in terms of reflecting dynamic behaviour of the systems under the effects of 

horizontal loading. In view of theoretical aspect, simulating the frame structure into a simple model 

generally becomes significant process of free vibration analyses. Fundamentals on vibration of 

structures can be found in related books [1,2]. 

Numerous methods have been developed by the researchers to identify the natural vibration 

characteristics and model the frame system in a simple form. Basically, many researchers consider 

frame structures as multi-degree of freedom systems containing bending, linear or shear components 

[3,4]. These models allow rough estimation of the modal parameters due to assumptions and 

simplifications done for computing lumped parameters. It is for this reason that these models are 

beyond the scope of this work. However, most of the neglected parameters can be taken into 

consideration using continuous approaches. To the best of author’s knowledge, one of the earliest 

works including continuous approach for the vibration of simple frames is introduced by Bennon [5]. 

Gladwell [6] presents the use of assumed mode method in the Rayleigh–Ritz analysis for the vibration 
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of two-storey frame. Laura et al. [7] also use the Rayleigh–Ritz method to obtain fundamental mode 

planar vibration of single-storey frames carrying concentrated masses. In another work, single-storey 

frames are considered using differential quadrature element method [8]. Lee and Ng [9] introduce the 

use of artificial linear and torsional springs together with the Rayleigh–Ritz method in order to 

analyse in-plane vibrations of portal, T shaped and H shaped frames. These types of frames are also 

studied using a wave based analytical solution method [10] that is adopted for analysing multi-bay 

[11] and multi-storey [12] frames. A continuous-discrete model is presented by Zhang and Gargab 

[13] who consider the beam as shear element. Sakar et al. [14] use the finite element method to carry 

out vibration and stability analyses of simple and multi-bay frame systems. Finite element based 

analyses can also be employed to inspect the vibration of damaged frames [15,16]. Some other works 

include the vibration analysis of frames under the effects of additional rotational springs that supply 

flexible connection between frame components [17,18]. 

Following sections of this paper present the analytical solution for the anti-symmetric mode in-

plane vibration analysis of frame structures. Continuous solution for columns and lumped mass-

stiffness approach for beams have been combined to conduct vibration analysis of frames. Presented 

model and solution method are validated by using some results in current literature. 

2. Theoretical background

2.1. Free vibration of a column 

According to Euler–Bernoulli beam theory, following differential equation expresses the bending 

mode free vibration of a uniform column. 
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









t

tzw
A

z

tzw
EI cc  , (1) 

where, E, Ic, Ac, and   represent modulus of elasticity, area moment of inertia, cross-section area, 

and density of column respectively. Flexural displacement, which is symbolised by w, varies with the 

axial position z, and the time t. By the separation of the variables z and t, solution form of the mode 

shape, )(zW , is obtained as follows: 

zCzCzCzCzW  sinhcoshsincos)( 4321  , (2) 

where 1C , 2C , 3C , and 4C  are the coefficients of harmonic and hyperbolic terms. Frequency 

parameter,  , depends upon the natural frequency,  , as given below: 
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EI

A
  . (3) 

  An equation set is formed by using mode shape function and its derivatives satisfying the end 

conditions of the column. The equations appropriate for some general end conditions are given in 

Table 1. Singularity analysis for the matrix obtained by the harmonic and hyperbolic terms of 

functions is needed to find natural frequency parameters. 

Table 1. Equations for classical end conditions. 

Ends Equations 

Free 0'' W , 0''' W  

Fixed 0W , 0'W  

Pinned 0W , 0'' W  

2.2. Lumped mass-stiffness model for frame structures 

In this section, vibration of frame structures is explained by lumped mass-stiffness model as shown in 

Figure 1. First of all, equivalent column is considered to model antisymmetric mode vibrations of 

frames. Equivalent area, eA , and inertia moment, eI , of the columns are taken as follows: 

RLe AAA  ,    RLe III   (4) 

 

Figure 1. Lumped mass-stiffness model on equivalent column. 

Subscripts L and R are employed to distinguish the properties of the left and right columns 

respectively. Note that equivalent column model can be applicable for equal or very close sizes of left 

and right columns. Mass, inertia and stiffness effects of beam are simulated by adding lumped masses 

and rotational springs on corresponding locations of the equivalent column. Equivalent mass of the 

beam can be taken equal to exact mass of the beam since the movement is dominant in horizontal 

direction. 
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where, bA  and bL  symbolise cross-sectional area and length of the beam respectively. Estimation of 

vertical deformation form is necessary to calculate equivalent mass moment of inertia of the beam. It 

is intuitively expected that time independent deformation form of the beam, )(yU , resembles to one 

period of a sinusoidal function as follows: 

 bm LyUyU 2sin)(  (6) 

where, mU  denotes the maximum flexural deformation of the beam. It is known that the first 

derivative with respect to beam’s coordinate axis, y, gives the slope of )(yU . The maximum slope 

occurs at 0y , leading unit cosine. Thus, relation between the maximum displacement and the 

maximum slope is expressed as follows: 

b

m

L

U 


2
)0(  (7) 

Suppose that an equivalent beam having equivalent mass moment of inertia rotates in rigid body 

mode at the centre ( 0y ). In this case, expression for equivalent mass moment of inertia, eJ , is 

found by equating time independent form of kinetic energies as follows: 
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
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be dyyUAJ   (8) 

Eqs. (6, 7, and 8) results in the following expression for the equivalent mass moment of inertia. 

22

3 3

4 





 bxybbb
e

IhLA
J  (9) 

where bxyI  is the area moment of inertia for x-y cross-section of the beam ( 12/3
bbbxy LdI  ). bh  and 

bd  represent the thickness and depth of the beam respectively. 

 On the other hand, rotational stiffness of the beam is determined by using the moment equations 

and the superposition principle. In order to apply the principle, it is assumed that while right end of 

the beam is rotationally fixed, left end is flexible and vice versa. In each case, moments occur as 

bbxz LEI /4  at flexible side and bbxz LEI /2  at fixed side of the beam ( 12/3
bbbxz hdI  ). Thus, total 

moment affecting flexible column becomes bbxz LEI /6  [2]. Rotational stiffness can also be taken as 

bbxz LEI /6  under the assumption of unit angular displacement. When these calculations are repeated 
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for exchanged positon of fixed and flexible ends, equivalent rotational stiffness of a beam, tk , is 

found as total stiffness written as follows: 

bbxzt LEIk /12  (10) 

  As would be expected, longitudinal stiffness has very minor effects on lower vibration modes of 

frame and thus it can be neglected. All the effects mentioned above are contributed into equivalent 

column vibration to describe compatibility conditions at beam location. Resulting time independent 

equations to be satisfied are given as follow:  

  )('')(')(''   bbb zWzWzW   (11a) 

  )(''')()('''   bbb zWzWzW   (11b) 

where bz  denotes the location of beam and sign
bz  represents the locations just above or below the 

beam.   and   can be defined as follow: 

  
e

te

EI

kJ 


2
 , (12a) 

 
e

e

EI

m 2
  . (12b) 

Note that right hand sides of the Eqs. (11a, 11b) become zero if the beam is located at the end of 

the columns. Besides, continuity conditions should be satisfied by displacements and slopes that are 

assumed equal at just around the beam location. 

)()(   bb zWzW ,  (13a) 

)(')('   bb zWzW . (13b) 

In order to analyse the vibration of n sectioned equivalent column separated by the boundary 

effects of beams, Eq. (2) is rearranged with modified coefficients expressing vibration form of each 

section, )(zWi . 

  nizCzCzCzCzW iiiii ,...,1,sinhcoshsincos)( 4142434     (14) 

3. Results and discussions 

In this section, present lumped mass-stiffness model is verified on several frame structures taken into 

consideration. This model is easily validated by the results given in current literature in terms of anti-

symmetric mode shapes and corresponding natural frequencies. In addition, the finite element 

337



package called ANSYS© is used for validating the results of double-storey frame. In the program, 

frame components are modelled as volume using solid meshing element called “Solid95”. Beam and 

column blocks are attached together by using “vadd” command to shape frame. It is worth noting that 

solid finite element model allows the area connection of columns and beams in contrast to the 

continuous model considering beam effects concentrated on a point. Good convergence is provided 

by using the “smrtsize1” command that is the most refined mesh option of the free meshing 

procedure. Default edge length of the element is taken equal to the half of minimum edge size of the 

frame. It is set using the “esize” command. At result, natural frequencies are obtained by using 

“modal analysis” as the analysis type. 

Table 2. Non-dimensional natural frequency parameters for the first anti-symmetric in-plane modes 

of several single-storey frames. 

Frame 

figures 

Frame properties 
Non-dimensional natural frequency parameter 
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Success of presented theoretical model is inspected for following cases of the frames. 

Case 1 – Single-storey frame: Fundamental modal characteristics of single-storey frames are 

reflected with different dimensional properties of beams and columns. Frames with simply supported 
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and fixed boundaries are both considered. Table 2, which includes the properties of the beams 

considered, demonstrates the agreement between the fundamental non-dimensional frequency 

parameters obtained by present method and those given in literature [1,7,14]. Besides, Figure 2 shows 

equivalent column mode shapes when the column/beam length ratio is 5.1bc LL . Effects of 

changes in depth of beam and base boundaries can be clearly observed. As would be expected, slope 

of column mode shape approaches to the slope near the fixed end as the area and inertia moment of 

beam increase. 

 

Figure 2. First anti-symmetric mode shapes of equivalent columns for single-storey frames (a) fixed 

and (b) pinned to the base.  5.1bc LL , bc AA  and bc II  ratios: (—) 0.25, (– –) 1.5, (˗ ˗ ˗) 6. 

Case 2 – H shaped frame: In this example, first two anti-symmetric mode natural frequencies 

and equivalent column mode shapes are found for the H shaped frame considered by Lee and Ng [9] 

and Mei [10]. The frame is bounded from the base using simple supports. Non-dimensional properties 

and frequencies of frame are given in Table 3 which exhibits the accuracy of present model. 

Equivalent column mode shapes are also shown in Figure 3. 

Table 3. Non-dimensional natural frequency parameters for the first two anti-symmetric in-plane 

modes of the H shaped frame. 
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figure 
Frame properties 

Non-dimensional natural frequency parameter 

    5.02
2 ccccc IEAL   

 

b

c

EI

EI
 

b

c

A

A




 

b

c

L

L
 Mode 

number 
Mei [10] 

Lee and 

Ng. [9] 

Present 

work 

1 1 2 
1 

2 

0.9 

3.8 

0.92059 

3.82212 

0.9122 

3.8069 

(a) (b) 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Normalised amplitude

N
o
rm

al
is

ed
 c

o
lu

m
n
 a

x
is

 (
 z

 /
 L

c )

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Normalised amplitude

N
o
rm

al
is

ed
 c

o
lu

m
n
 a

x
is

 (
 z

 /
 L

c )

339



Figure 3. (a) The first and (b) second anti-symmetric in-plane mode shapes of equivalent column 

for the H shape frame. 

Case 3 – Double-storey frame: Present method is also applied for analysing the vibration of 

double-storey frame fixed to the base. Shape of frame, non-dimensional properties and resulting 

natural frequencies are seen in Table 4.  Results are validated by the natural frequencies obtained by 

Brasiliano et al.[13] and the finite element package. Material properties are given as the modulus of 

elasticity 35E GPa and the density 2500 kg/m3. Columns and beams have the same cross-

section as 24.014.0  m2 and their lengths are 6.5cL m and 4.2bL m respectively. Note that 

Brasiliano et al. [15] take the shear effects into account with the assumption of Timoshenko beam 

theory which is not considered in this work. On the other hand, point connection of columns and 

beams are assumed in theoretical model while solid finite element model takes the area connection 

into account. These are main reasons of admissible differences seen between the results. Equivalent 

column mode shapes corresponding to calculated natural frequencies are illustrated in Figure 4. 

Table 4. Natural frequencies for the first three anti-symmetric in-plane modes of the double-storey 

frame. 
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Figure 4. (a) The first (b) second and (c) third anti-symmetric in-plane mode shapes of 

equivalent column for the double-storey frame. 

4. Conclusions 

In this paper, analytical solution of frame systems is presented by defining lumped mass-stiffness 

parameters on equivalent columns. Continuous modelling allows using continuous solution method 

that is easily applied when the continuity and compatibility conditions are properly stated as 

represented in this work. Continuous solution presented needs matrices that have relatively small 

sizes varying with the number of storey. This is a significant advantage resulting in decrease of 

computational work load and processing duration. 

Introduced model and solution method also have some limitations in terms of their applicability. 

First of all, it should be noted that considered deflection form of the beam is valid only for low anti-

symmetric modes of frame structures. Secondly, columns should have close cross-sectional 

dimensions. Finally, presented model is validated for limited type of frame structures. However, 

model may be improved in future works by taking different beam deformation shapes into account for 

obtaining both symmetric and anti-symmetric vibration modes of multi-storey and/or multi-bay 

frames. 
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Numerical simulation of suspension system for autonomous 
tracked hybrid vehicle

(VIB183-15) 

Arkadiusz Mężyk, Wojciech Klein, Tomasz Czapla, Gabriel Mura 

Abstract: One of the most important components of high speed tracked vehicle is 

efficient and effective suspension system. The vehicle should be able to operate both 

in a rough terrain for performing engineering tasks as well as hardened road during 

high speed operation. This is especially important for autonomous platform with 

hybrid propulsion system which should not exposed to severe vibration. In this case 

critical electronic and electric parts must be protected to ensuring the reliability of the 

vehicle. The paper presents a methodology of determination dynamical parameters of 

suspension system of autonomous high speed tracked platform with total weight about 

5 tones and hybrid propulsion system. As an universal and cost-efficient, torsion-bar 

system was chosen. One of the most important issues was determining correct track 

tensioning – in this case an electromechanical system was applied. The selection of 

system parameters was performed with using numerical model based on multibody 

dynamic approach. The results of numerical analysis allow estimate the sensitivity of 

most defined system parameters in view of vibration absorption.. 

1. Introduction

The suspension system of tracked vehicle is a set of components and mechanisms joining the axis of 

one or interconnected wheels with a single spring element, the damping element (damper) and a 

stabilizer (wheel arm) to the hull. The main aim of suspension system is transfer the weight force of 

the vehicle through wheels or tracks to the ground and isolating the vehicle’s components of terrain in 

order to increase the safety of users, increase the viability of equipment and provide stability of 

vehicle construction [1]. 

From the time of establishment of the first tracked vehicle till this day designers developed many 

variants of the suspension. These can be divided into rigid, semi-rigid and flexible. In high speed 

track vehicles in particularly military combat machines are used different types of active or semi-

active flexible suspension. These systems providing electronically controlled suspension systems 

which are more and more often also applied in wheeled vehicles [2-5]. 

Depending on how the wheels are connected to each other and with the hull, the flexible 

suspension can be divided into individual, locked and mixed. Most modern combat tracked vehicles 

using variants of the suspension based on the elastic element in the form of the torsion bar or a coil 

spring with a hydraulic or friction damper or hydro-pneumatic suspension [1]. 
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In the figure 1 is presented a curve of comfort in function of safety, which refers to vehicle 

transporting people. Although, in this paper is analyzed unmanned vehicle but it is also important to 

select correct suspension system due to safety of electrical equipment. 

Figure 1.   Design conflict between comfort and safety [5]. 

In aim of multibody dynamics analysis the system was reduced to solving an equations of 

motion. They are second order ordinary differential equations (ODE), often connected with algebraic 

equations [6-8] 

From the kinematic constrains and driving components it is possible prepared global vector of 

constraints denoted as , presented below: 

  0q,tΦ  , (1) 

where: q is a vector of generalized coordinates and t stands for time. 

In the system of parts subject to motion constraints, the bodies are connected together by internal 

forces of the kinematic. The reaction that act in the joints and are rated to the forces that constrain 

movements are marked by the vector gΦ that is the sum of the active and passive forces, marked g that 

describes all the forces that act on the system and its motion is described Eulerian-Lagrange equation 

below [6-8]: 

344



ΦgghM  , (2) 

where: M is a global matrix of inertia that comprises masses and ma inertia parameter for all the 

bodies within the system, h  is the vector of accelerations and g represents the vector of generalized 

forces. 

For multibody system with constraints that is made up of n bodies, the motions equations for a 

single body can be repeated n times in order to find out equations for the whole system. It leads to 

equations of motion for a system with constrains, where the equations are written as [6-8]: 

gλBhM T  , (3) 

The above equation (3) represents a system of n differential equations with n+m unknown 

variables that correspond to h  vector, that represents acceleration, and the vector of Lagrange 

multipliers. To resolve the system of these equations it is necessary to prepare m additional equations. 

These additional equations should be obtained from the constraints equations so that in order to 

ensure that both equations of motion , and kinematic constraints are fulfilled. Unfortunately, in case 

of this procedure, it is very difficult to find a solution for a multibody system of n+m algebraic and 

differential equations. That’s why the second equations derivatives of constraints are substitutes with 

equations of constraints on the level of acceleration [6-8]: 

 γhB0Φ  , (4) 

The equations (4) are connected with the equations of motions, thus the equations for the 

constrained multibody system can be presented as a system of differential-algebraic equations (DAE): 
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where: B is the modified matrix of a Jacobian determinant that is expressed by the equation: 
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and γ* is a modified right–hand side of the equation of acceleration. Now, the total number of 

equations is the same as the total number of unknown variables that correspond to values of 

acceleration and Lagrange multipliers [4,6,8]. Moreover,λ can be obtained as an explicit function of 

(    ) and thenq is characterized by a second–order ODE. In this way standard ODE software can be 

applied directly for computing solutions of the DAE [9]. 
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In the market there are many CAE software offering tools to compute multibody dynamics 

analysis, but authors use only LMS Virtual.Lab to simulate mobility of tracked vehicle. 

2. Lay out of numerical model and analysis condition

The model of tracked platform was developed based on the identified mass-geometric parameters. 

The geometric model of vehicle was divided into elements that do not change their positions relative 

to the assumed coordinate system in the vehicle movement (hull and cabin), and the elements that 

change position relative to the hull during motion (wheels, torsion shafts and tracks).Torsion shafts 

that are linked with the holes in the hull were modelled as revolute joint. The constraints occurring 

between the individual elements of the suspension system and the characteristics of torsion shafts, 

modelled as elastic-damping elements (RSDA), their torsional stiffness determined on the basis of 

experimental investigations and estimated material damping were taken into account (see figure 3). 

To demonstrate contact forces in the numerical model there was used Sphere to Extruded surface 

Contact function, which is based on simple Hertzian contact. This type of contact was used between 

wheels and track links, and ground and track links. The representation of rubber track is a group of 

spheres. In particle each link is represented by 3 spheres and duplicate on rest of the track by module 

Discrete Track, what is shown in figure 3. Discrete Track allows only to simulate track divided to 

segments, and rubber track can be represented by group of rigid segment with flexible joints. 

Unfortunately flexible joint between every link increase time of computing of simulations. That’s 

why authors decide to simplify it to simple rotary joint between links, so the tracks in this case is 

inextensible.  

Figure 2.   Scheme of layout of numerical model and track link represented by spheres in contact. 
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Each body from multibody system is based on CAD model of prepared concepts. To each model 

of wheel, hull or segment of track is assigned material properties (e.g. density). This properties of 

material conform to material (steel, rubber, concrete)which are established to make from it elements 

of platform and ground. Based on volume and density of each element was automatically calculated 

mass and inertia properties, which were used in dynamics analysis. 

In each contact force there are defined real value of material properties. The material properties 

are suitable for material from which contacting parts were made. In the table below it can find contact 

parameters of all used material and main dynamic and kinematic parameter of multibody simulation 

of analysed vehicle (see table 1). 

 

Table 1.Parameter of multibody simulation. 

Suspension and hull parameter 

Total mass [kg] Velocity [km/h] 
Stiffness of sin-gle 

node [Nm/rad] 

Damping of single 

node [Nms/rad] 

5000 30 9615 200 

Contact parameters 

Material 
Where was 

used 

Young 

modulus [Pa] 

Poison 

ratio 

Coefficient of 

restitution 

Coefficient of 

friction 

steel sprocket, hull 2,1E11 0,3 with rubber: 0,5 with rubber: 0,6 

rubber wheels, track 1E8 0,5 

with concrete 0,5 

with rubber: 0,3 

with steel: 0,5 

with concrete 0,8 

with rubber: 1 

with steel: 0,6 

concrete ground 2,7E10 0,2 with rubber: 0,5 with rubber: 0,8 

 

In this paper authors assumed three simulations of mentioned tracked vehicle which passing four 

triangular obstacle with velocity equal 30 km/h. The arrangement and dimensions of this obstacle is 

presented in figure 3. 

 

Figure 3.   Arrangement and dimensions of triangular obstacles. 

3. Results of analyses 

In each of three simulations is different tension of track and authors of this paper compared the results 

to conclude how the tension of track affects on behaviourof tracked vehicle passing obstacle. The 

tension of track is realized by different position of idler wheel relative to hull of vehicle. Mentioned 
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three stages of position of idler wheel is 0 mm, 20mm and 50 mm. As a mine parameter which 

authors used to compare is a displacement and acceleration of centre of mass of the platform or 

angular displacement of hull. The comparison is shown in the figures 4-6. It is possible to notice that 

increasing the distance between hull and idler (increasing the tension of track) also increase amplitude 

of displacement (see figure 4) of hull. It is probably caused by increasing the suspension stiffness. 

Also curves with acceleration in z axis and angle displacement of hull confirms that the amplitude of 

vibration is the greater the greater is the tension of the track. This variation of suspension system 

gives possibilities to apply automatic tensioning system what change simple suspension system to 

suspension with variable characteristics. 

Figure 4.   The displacement of tracked vehicle mass centre for different set point of idler wheel. 

Figure 5.   The acceleration of tracked vehicle mass centre for different set point of idler wheel. 
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Figure 6.   The angle displacement of tracked vehicle hull for different set point of idler wheel. 

In the figure 7 is presented a screen shot of animation of results of analysis in the moment of 

passing the obstacle by the platform. It is possible to notice that platform ride on the first and second 

obstacle jump over the ground and land on the third and fourth obstacle, then bounce again. The 

arrangement of obstacle is targeted because authors assumed the most extremely drive of tracked 

platform. 

 

Figure 7.   Screenshots of animation of results. 

4. Idler wheel 

The simulation results indicates need of apply idler mechanism in the aim of the active vibration 

control systems. In order to achieve active vibration reduction and correct track tension, hydraulic 

track tensioning system was implemented. Furthermore, hydro-pneumatic accumulators are applied as 

energy storage and dissipation system in order to protect the track in case of high dynamic loads. 

Mechanical configuration of hydraulic track tensioning system is shown in figure 8. Hydraulic 
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cylinder is connected to the idler lever axis and as it extends, pushes the idler forward causing track 

tension.  

Figure 8.   The model of idler mechanism. 

Hydraulic connections diagram is shown in figure 9. Hydraulic pump is providing pressure for 

system operation. Proportional valve is used to generate demanded pressure for hydraulic cylinder 

responsible for applying the tension force. Another circuit contains hydro-pneumatic accumulator that 

allows to manage the energy consumed by tensioning system. While the idler absorbs the energy from 

the track caused by suspension operation, hydraulic cylinder is pressed down and the fluid is 

transferred via flow control valves to the accumulator. If the load exceeds the certain value, relief 

valve protects the system from failure. 
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Figure 9.   Hydraulic track suspension system – simplified connection diagram. 

5. Conclusions 

Multibody analysis is very useful to predict behavior of tracked vehicle before building costly 

prototype. Thanks to the multibody analysis of vehicle or device it can avoid more engineering 

mistakes than in simple CAD designing. 

Increasing the distance between idler wheel and hull, it also increase the total stiffness of vehicle 

suspension resulting in larger amplitude of displacement of centre of mass of platform during passing 

obstacle. With lower tension of track it can reach lower hull displacement. Moreover with adjustable 

idler wheel it is possible to affect to suspension parameter. 

Assumed suspension parameter is restrainedly correct in the context of safety of electrical 

equipment of platform. 

It important to remember that in performed simulations were used inextensible rubber track. If 

becomes an opportunity to perform analysis with extensible track, it is advisable to perform it. 

There is a need to perform a research on real vehicle to compare results of numerical analysis 

and real behavior of platform. 
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Research on vibrations in the train driver's cab in the course 

of shunting activity

(LIF274-15) 

Jakub Młyńczak, Rafał Burdzik, Ireneusz Celiński 

Abstract: Vibrations occurring in dynamic systems operated by men may exert 

negative impact on health. When considering means of transport and a man as the 

driver, the exposure to vibration proves even more important, since vibrations exert 

direct influence on safety in transport and comfort of passengers. The research on 

vibration in means of transport must entail many different dynamic forces which may 

occur while driving. Therefore the paper addresses research on locomotives in the 

course shunting. The scope of the experiments performed included measurement of 

vibrations in the SM42 locomotive cabin. The research method included application 

of proprietary mobile application installed on a mobile device. The acceleration of 

vibrations in the train driver ‘s cab was registered. Making use of a GSM mobile 

phone’s GPS module, the vibration characteristics recorded can be correlated with the 

current geographical position of the locomotive at the station. This enables assessing 

the impact of vibrations on the driver depending on the activities conducted during the 

shunting. Furthermore, the system is assessed based on the influence of the subgrade 

on the vibration characteristics. 

1. Introduction

Mechanical vibrations transferred in vibrating systems operated directly by a man may exert negative 

impact on the latter’s organism and, as a rule, it is exactly what happens after prolonged operation. 

Such a condition is often diagnosed too late. The vibration impact process frequently causes 

numerous and usually serious somatic disorders in the organism of the person operating the vibrating 

system [14,15]. The scale of pathological changes, which may be persistent or even irreversible, 

depends on vibration characteristics, exposure time and the contact area in a man-device system [6-9]. 

Conditions connected with the negative effect of accelerations are generally referred to as kinetosis 

[11,12]. One may also speak of vibration stress. It should be noted that these conditions are normal 

responses of the organism to selected motion stimulants [11].  

In this article, the authors have addressed and discussed selected aspects of analysis of the 

vibration impact on a shunting locomotive driver. In publications concerning this subject, problems of 

the vibration impact on people are mainly analysed with regard to manually operated machines and 

devices on account of the sale of the phenomenon. In cases when the phenomenon of vibration impact 

applies to the entire body, it may primarily cause dysfunctions of the abdominal cavity organs 
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(especially stomach), whereas it also affects the abdomen in women. Other effects observed in 

practice in a vibrating system include fatigue, often prolonged, headaches, sleep dysfunctions and the 

trembling limb symptom, typical of those who operate vibrating equipment. However, in the case 

discussed, i.e. the whole-body impact of vibrations, this problem may not only concern hands and 

arms [6-9,11,12].  

Prolonged exposure of the human organism to vibrations may trigger a spread of disorders to 

other internal organs. The fact that effects of vibrations may cause diseases of the cardiovascular, 

respiratory, digestive as well as musculoskeletal systems has been confirmed [6-9,11,12]. Vibrations 

affecting the entire body of a machine operator may also lead to changes in the pulse as well as in the 

vascular and urinary system. Besides the direct hazard to the health and life of a worker exposed to 

whole-body vibrations, one can also observe reduction of the latter’s immunity. Therefore, from the 

employer’s perspective, one which entails maintaining continuity and safety of operation, hazards 

connected with vibrations occurring in locomotives (or more broadly, in transport) can be divided into 

short-lasting, which may involve hazard to traffic safety under certain circumstances, and long-

lasting, causing deterioration of operating efficiency and loss of highly qualified workers for 

prolonged periods of time due to sick leaves [6]. In the recent years, absence of highly qualified and 

experienced drivers and operators has been particularly acute. 

Figure 1.   Site plan of the Chabówka (Poland) station where the measurement was conducted. Source: 

OSM [1,2]. 
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Figure 1 is a site plan of the Chabówka (Poland) station, i.e. the area where the studies in 

question were undertaken (49.595109N, 19.926443E). Pilot studies were performed using the SM42 

series diesel locomotive (Figure 2). 

 

Figure 2.   SM42 locomotive used in the studies. Source: authors’ photographs. 

In this article, the authors have proposed a useful method for measuring vibrations in a rail 

vehicle using a smartphone application they have developed. In the course of the measurement, a 

smart phone is placed on a locomotive in order to determine values of linear accelerations affecting 

the driver’s cab. It should be noted that the main difficulty in studying the impact of vibrations on the 

human body is that all these actions are performed by means of complicated measuring apparatus. 

Therefore, it is usually impossible to run such tests on a sufficiently large sample (of population) 

required to establish the correlations functioning in a system comprising the acceleration and 

biological parameters (health condition of machine operators). On account of simplicity and virtually 

non-existent financial and organisational expenditure, a method such as the one proposed in the 

article enables holistic studies to be conducted upon the entire population of interest from the 

perspective of the observation objective. Moreover, this method allows for the studies to be conducted 

on a continuous basis, which further makes it possible to correlate the impact of vibrations on the 

diesel locomotive operators’ health in a more reliable manner. When using SMS (Short Message 

Service) or GPRS (General Packet Radio Service) channels to transfer measurement data, this method 

may also be used in real time. 

2. Methodology 

In this article, the authors have focused on validating the simplified method proposed for purposes of 

vibration measurements in a vibrating system, namely a cabin of the SM42 series diesel locomotive 
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driver while the latter is performing shunting activity. The simplicity of the method consists in using 

an unattended mobile application developed by the authors and installed on a mobile phone placed 

inside the driver’s cab. The mobile phone to be used in the measurement should feature a standard 

accelerometer (MEMS) functionality and a GPS receiver [4,5]. Optionally, the measurement may be 

conducted using devices such as a tablet or a computer, in which case it does not allow for real-time 

recording and simultaneous analysis of events according to the holistic approach addressed in the 

article (since most such devices lack the GSM system).  

The method discussed requires virtually no financial or organisational expenditure. The cheap 

test mobile phone used in the studies, representing the value end segment of products, featured an 

accelerometer system used to record changes occurring in linear accelerations of the driver’s cab 

within a 10-millisecond interval assumed (the interval may vary within a wide range of values). 

Additionally, using the GPS system installed in the same mobile phone, vibration characteristics may 

be correlated with the physical position of the locomotive performing the shunting activity within the 

station’s track system (Figure 4). The locomotive trace recorded in the course of the studies has been 

illustrated in Figure 4. As an outcome of follow-up analyses (not discussed in this article), the 

locomotive trace measurement enables assessment of the vibration impact on the driver depending on 

the shunting operations performed.  

Figure 3.   Measuring application. Source: authors’ own materials. 

As shown in Figure 3, the mobile application installed on the phone measures linear acceleration 

in three axes (Figure 3). The phone is mounted inside the driver’s cab with the upper part of the body 

oriented towards the driving direction. With such a phone arrangement, the locomotive motion 

accelerations are designated as ACC_Y, lateral accelerations as ACC_X, and vertical accelerations as 
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ACC_Z. At the same time, using the GPS receiver installed in the phone, one reads the physical 

location of the locomotive within the range of the vehicle positions (latitude and longitude). If the 

mobile phone also features a gyroscope, the application can be used to measure angular accelerations 

as well (Figure 3). While the application is running in real time, in a window displayed on the left-

hand side of the application home page (actually referred to as activities), the measuring system’s 

geographical position is shown. The test application has been developed for the Android platform. 

3. Analysis 

Another aspect of assessment of the vibration impact on the driver in such a measuring system is the 

railway track subgrade condition, which may also be correlated with the use of the vehicle position 

measurement by means of GPS. The observations conducted in the course of the studies were 

compared with the traction characteristics of the test vehicle, namely the SM42 series diesel 

locomotive. The studies in question were exclusively aimed at validating the method proposed, and 

consequently, broad-scale follow-up statistical studies will be undertaken. In a longer time 

perspective, the authors are planning to conduct extended measurements using dedicated 

microcontrollers combined with tests of basic biometric parameters of the driver (in order to define 

biophysical profiles).  

 

Figure 4.   Trace of the SM42 locomotive performing shunting activity at the Chabówka station. 

Source: OSM/JSOM [1-3]. 
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Figure 4 illustrates the trace of the SM42 locomotive positions while it was performing shunting 

activity at the station. The trace of the locomotive performing the said operations has been marked in 

golden and celadon colours (the division is only due to technical and not subject related reasons). In 

Figure 4, one can clearly see certain inaccuracies in the GPS signal measurements, namely the 

deviations between the locomotive positions and those of the track infrastructure elements (ranging 

up to several metres). However, it is not an obstacle in assigning the locomotive position to major 

infrastructure elements as the vehicle was performing the shunting activity. In dubious cases, one may 

correct the relevant positions manually. 

Figure 5.   Visualisation of data from the output file containing linear accelerations – sample run in a 

straight section of the station track. Source: authors’ own materials. 

Figure 6.   Visualisation of data from the output file containing linear accelerations – sample shunting 

run in a track section featuring switches. Source: authors’ own materials. 

Figures 5 and 6 provide a comparison of linear accelerations recorded while running on different 

track sections at the station in the course of shunting activity. Figure 5 illustrates linear accelerations 

in a straight section of the station track. Figures 5 and 6 provide a collation of linear accelerations 
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recorded in a straight track (smaller fragment in the red frame) and in a section with switches. These 

graphs show how vibrations from different elements of the track infrastructure are reflected in the 

data recorded by measuring devices. As regards the travel to the railway siding, one can clearly notice 

that characteristic ACC_X increases across the entire measurement range. 

 

 

Figure 7.   Selected example of strong vibrations experienced in the course of shunting activity at the 

Chabówka station. Source: authors’ own materials. 

 

Figure 8.   Location of particularly strong vibrations observed in the course of shunting activity at the 

Chabówka station. Source: authors’ own materials. 

Figure 7 is a graph illustrating particularly strong vibrations occurring in the longitudinal and the 

transverse axis of the rail vehicle, as recorded in the course of tests. These vibrations were observed at 

a turnout located in a direct vicinity of the national road commonly referred to as “Zakopianka” 

(Figure 8). The figure demonstrates how the vibration frequency increases in a horizontal axis 

perpendicular to the rail vehicle travel direction. 
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Table 1. Base statistics 

Time [sec]/ 

parameters 

Mean [m/s2] Std [-] 

Acc_x Acc_y Acc_z Acc_x Acc_y Acc_z 

<0÷1)  0.073694 -0.00331 10.05646 0.134332918 0.571059435 0.761548707 

<1÷2)  
0.061601 

 

0.013521 
 

10.30152 0.140554178 0.581783612 0.750487929 

… … … … … … … 

<2,279÷2,280> 0.519932 2.359286 9.746554 0.28375766 0.140438405 0.784827188 

All 2.159828 0.138867 7.861463 4.061383536 1.036011861 3.918128238 

Source: authors’ own elaboration. 

Table 1 provides a sample analysis of measurement data obtained based on the accelerometer 

readouts taken within 38 minutes of the measuring device operation (ca. 200,000 single readouts). 

The data have been collated with reference to mean values and standard deviation for linear 

accelerations recorded in individual axes. The data have been computed for individual time intervals 

and globally for the entire testing period (only four intervals have been provided). The values 

indicated by the instrument can be compared in terms of the differences between them with reference 

to the measurement time and the locomotive position. In Table 1, one can clearly notice considerable 

deviations of individual values in the measurement time (they have been marked with different 

colours). Based on such an analysis, as demonstrated in Table 1, the shunting activity schedule can be 

adjusted in order to minimise negative effects occurring in the course of the shunting activity 

(considerable acceleration deviations observed).  

Figure 9.   Frequency distribution of linear accelerations. Source: authors’ own materials. 
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Figure 9 shows three frequency distribution graphs for linear accelerations recorded in all axes. 

The range of variability of each linear acceleration has been divided into twenty four class ranges 

from -12 [m/s2] to +12 [m/s2]. Such a graph may be referred to as a spectrum of vibrations for a 

measuring section in which the locomotive conducted the shunting activity. This graph demonstrates 

the relatively homogeneous characteristic of accelerations in the direction of the locomotive travel 

(positive aspect). At the same time, one may notice typical abrupt changes to the accelerations 

occurring in the vertical axis, which may be a consequence of the technical condition of the track 

subgrade at the given station facility where the measurement was taken. Similar changes are typical of 

accelerations in the rail vehicle lateral axis.  

The methods discussed above are some of the simplest chosen ways to measure the rail vehicle 

vibrations. The characteristic of the vibrations experienced inside the driver’s cab depends on a 

number of elements, such as the track geometry (longitudinal and transverse slope), the subgrade 

condition, the rail vehicle suspension condition, atmospheric conditions, the rolling stock load and 

many more: 

}...){,),(),(),(),(,)(()(_ 21 catwatswtsptgtgftiACC 
 (1) 

where: 

)(_ tiACC
- acceleration in the ith axis [m/s^2], 

)(,)( 21 tgtg
- track geometry parameters, 

}...{,),(),(),( catwatswtp
- characteristics of: subgrade condition, suspension condition, 

atmospheric conditions, rolling stock load and random factors.  

 It should be noted that one can normalise values of the vibration parameters as far as railway 

infrastructure elements are concerned.  Under such normalisation, it is possible to define an array of 

permissible vibrations for individual elements of known geometrical parameters and for known means 

of transport. Such an array may set the range of vibrations being permissible under typical track 

operating conditions: 

),(_);,(_);,(_ LtZACCLtYACCLtXACC 
 (2) 

where: 

),(_ LtXACC
- range of correct (permissible) accelerations, 

Lt, - age of track infrastructure elements,  

},{ LOWL 
- geographical location of infrastructure elements (W - latitude, LO - longitude). 

 Any anomalies revealed in the course of the measurement in terms of the values envisaged as 
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standard ones (2) should be considered as a premise for detailed analysis of railway traffic safety. 

Moreover, the fact of recording vibrations stronger than permissible should lead to reducing the time 

of locomotive driver shifts worked at track sections diagnosed as above.  

4. Conclusions

The intention of the authors of this article was to describe a concept of an extremely simple method 

enabling holistic studies of the process of vibration impact on drivers with reference to the entire 

population examined. Having satisfied specific requirements, one may conduct such a study in real 

time. Consequently, performing such a distributed type of study allows for statistically reliable 

conclusions to be formulated as regards the impact of the vibrations in question on the health 

condition of persons operating rail vehicles, and not only of them. Not until the vibration impact is 

measured based on studies conducted across the entire population (e.g. locomotive drivers) may one 

correlate linear acceleration characteristics with all health conditions observed (diagnosed) in the 

population of interest. A problem of secondary nature, yet particularly difficult to solve, is to link 

these cases with one another. However, it is not a matter of interest for the authors, as it requires 

advanced medical expertise.  

The authors would like to highlight yet another interesting aspect of the method proposed. While 

conducting studies, one can also measure basic biological parameters, thus making it easier to further 

correlate health conditions revealed in a group of locomotive drivers and to determine their aetiology 

(particularly for the conditions arising on grounds related to the vibrations exclusively). Such an 

examination may not only concern locomotive drivers, but also other members of train personnel, a 

high considerable of whom – especially in passenger lines – accounts for women. In this respect, one 

should particularly emphasise the danger of pregnant women being exposed to vibrations. Yet another 

interesting field of study is a group of railway workers exposed to vibrations and being unable to 

observe the field in front of the vehicle due to negative aspects of such a location on account of 

vibration stress.   

It should be noted that in cases when optimum efficiency of the train driver is required, e.g. while 

running in high-speed railways or in trains transporting hazardous substances, the acceleration 

tolerance of a human organism can be pharmacologically enhanced when one is exposed to vibration 

stress. In such cases, the golden mean should be sought, namely a compromise between ensuring 

traffic safety and increasing the driver’s resilience to vibration stress (most pharmacological 

substances, and these include promethazine, scopolamine, meclozine, cinnarizine etc., also cause 

effects considered adverse from the traffic safety perspective). Therefore, a study such as the one 

proposed in this article enables administering small and hence safe doses of pharmaceuticals 

depending on the characteristics of the given route (i.e. of the vibrations observed). 
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An interesting solution to the problem in question may be designing of locomotive driver seats in 

a manner ensuring that motion stimulants are minimised. Not only does the foregoing apply to the 

shock damping solutions currently used in those seats (often incorrectly designed), but also to their 

physical redesigning in every axis in order to minimise the impact of vibrations on the driver’s body. 

What proves an important aspect of this problem is the positioning of the driver’s cab against the 

locomotive axis (axle base, motor layout etc.). 

An important prospective benefit offered by the method proposed will be the capability to 

conduct the studies in question in real time. As aforementioned, in certain infrequent cases, the impact 

of vibrations may be translated into traffic safety. It is in those cases that real-time examination of 

vibrations may increase the safety of train traffic management. Regardless of the foregoing, corrective 

efforts may be oriented towards upgrading or replacement of track infrastructure elements causing 

excessive vibrations, and not necessarily should their replacement or upgrading result from scheduled 

repairs. 

As regards the structure of contemporary vehicles (including the rail ones), one may observe a 

clear trend of engineers striving towards designing virtualised driver’s control desks based on LED 

displays. What is inextricably linked with complicated visual arrangement of rail vehicle control 

elements is a danger of them being incorrectly operated. A driver’s hand trembles at the frequency of 

10 up to 20 Hz. The rail vehicle vibrations coincide with these frequencies. It is yet another field of 

study where the method proposed in this article may find application. 

For the sake of validation of the method, the research in question is planned to be extended in the 

future, and the results obtained owing to the method application compared with those which could be 

obtained by means of professional measuring sets. Such a set should enable accelerations to be 

measured directly on the locomotive driver’s body. Similar solutions are delivered, for instance, by 

XSENS  [13]. Considering the fact that the driver’s cab will inevitably become increasingly saturated 

with such features as virtualised control panels and HUD projectors, the solutions such as those 

addressed in the article seem even more important. They are assumed to enable direct measurement of 

vibrations in individual limbs of the driver’s body (including the head) along with determination of 

their location while professional duties are performed. 
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Numerical simulation of mobility of miners rescue robot

 (MTR187-15)

Gabriel Mura, Marek Adamczyk, Michał Nocoń 

Abstract: Since the beginning of mining industry, miner rescuers must carry out the 

rescue tasks in underground areas of a coal mines that have been closed due to 

a catastrophic events such as an explosion of methane or coal dust, a release of carbon 

dioxide or fire. In this case, the activity of a rescuer is extremely dangerous, and they 

can enter the hazardous area only if several values of critical parameters, such as 

methane content and temperature, are fulfilled. Nowadays we can minimalize the 

rescuers’ risks by using robots. This paper presents analysis of dynamics and mobility 

of unmanned, explosion safe, mechatronic platform for virtual teleportation of the 

rescuer into the areas of a coal mine affected by catastrophic events. In first step there 

will be presented an area where platform will work, then review of several finished 

projects of robots for mining and finally there will be shown a comparison of 

numerical analysis of mobility of platform passing simple obstacle in V-REP and 

LMS Virtual.Lab software. In the last chapter it will be presented main conclusion of 

mobility, visibility and steering of platform from numerical analysis of passing whole 

coal mine tunnel with obstacle like conveyor scraper and longwall system.  

1. Introduction

The work of a mine rescuer is extremely dangerous, and often has resulted in deaths. Mine rescuers 

take a huge risk when they enter in to extremely dangerous environments to check the condition of 

atmosphere in mine tunnel or longwall system, that is place where the most accident occur. Moreover, 

human rescuers can enter the restricted area only if several values of critical parameters, such as 

methane content and temperature, are achieved. Unfortunately, due to the high risk to human life, the 

rescuers cannot monitor the hazard accurately or perform the rescue operation since they are not 

allowed to penetrate the hazardous area [1,2]. In this case the best way is to monitor it by mobile 

robot adapted to hazardous area. 

The Central Rescue Mining Station (CRMS) prepare requirements for robots participating in 

rescue operations in underground coal mines. Beyond the requirements of fulfilling ATEX directive 

[3], the mine requirement is possibility to pass most of obstacle present in mining tunnel, except 

tunnel collapse without clearance. Another important requirement is that the robot have to drive 

through passage in the isolation dam with diameter 800 mm [4]. To pass this requirement the rescue 

robot needs to have exceptional mobility, but it is often in conflict with ATEX standards. 
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2. Review of existing robots

To show difficulties of designing underground mine rescue robots, it is useful to review a few 

subterranean robots for inspection or rescue. The literature has identified robots such as: 

a) Numbat - is a mine reconnaissance 8-wheeled vehicle (Fig.1a) [5-7],

b) Remotec Wolverine V-2 - traditional bomb squad tracked robot with a manipulator arm (Fig.1b)

[5, 8, 9], but modified for use in coal mines,

c) Gemini Scout – articulated robot with 4 tracks (Fig.1c) [5, 8, 9],

d) Unmanned mining robot looks like a digger replacing miner in the mine tunnel (Fig.1d) [10],

e) Groundhog – 4-wheeled mine reconnaissance vehicle (Fig.1e) [11, 12],

f) CSIR Mine Safety Platform – tracked robot with 2 stationary and 2 adjustable arms with tracks

(Fig.1f) [9,13],

g) MINBOT-II – tracked robot with 2 stationary and 4 adjustable arms with tracks (Fig.1g) [14],

h) MPI – 4-whilled articulated robot with ATEX M1 category [3, 16,17] that can work in case of

presence of explosive atmosphere (Fig.1h) [15].

All presented robots in figure 1 have increased off-road capability. But based on review of 

mining robots shown above there are no clearly information which solution is better, wheel or track, 

for unmanned mining robot. It is hard to predict what kind of obstacles or ground robot will meet, 

because moving in coal mine tunnel is quite easy, but if it will have to pass tunnel collapse or 

longwall system, it will cause difficulties. In the last case simple robot with wheel won’t be enough, 

especially that the accident occur most frequently near longwall. This is the main cause for authors 

why this paper arise. 

Figure 1.   Example of existing robot [5-15]: a) Numbat, b) Remotec Wolverine V-2, c) Gemini 

Scout, d) Unmanned coal mining robot looks like a digger, e) Groundhog, f) CSIR Mine 

Safety Platform, g) MINBOT-II, h) MPI. 
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3. Multibody system

The dynamics and kinematics of multibody systems is a very useful part of Computer Aided Design 

(CAD) and Computer Aided Engineering (CAE) software. By the definition we can include to 

multibody systems mechanical systems such as robots, vehicles or other machinery. Mechanisms used 

in all these devices are normally subjected to large displacements and in this case there is possibility 

to collide between working parts of mechanism. Its cause kinematic and dynamic problems which 

must be able to predict and control or eliminate in designing stage. The advantage of numerical 

simulations performed by CAD and CAE software is that they allow one to predict the kinematic and 

dynamic behaviour of almost all types of multibody systems from the first concepts to the final 

product [18]. In the literature we can find many examples where the multi body analysis were used: 

 Tracked vehicle with linked tracks or rubber tracks [19-22],

 Wheeled vehicle with 4 or more wheel [19, 23, 24]

 Inspection mobility robots with wheel or tracks [25, 26]

The above review of the usage of multibody simulation to analyze concepts or prototypes 

mobility during the design phase, gives sufficient proof that these tests are also indicated for the 

concept of robot to mine rescue. 

3.1. Ordinary differential equations in multibody system 

Analysis of multibody system dynamics is reduced to solving an equations of motion. They are 

second order ordinary differential equations (ODE), often connected with algebraic equations. In 

some modelled system the number of coordinates may be greater than the number of degrees of 

freedom of this system, so to determine the relationships between the coordinates are additional 

equations needed [27-29]. Many authors describe detailed ODE, but this is a short overview. 

Solving multibody system in very simple case is reduced to slowing a system of differential-

algebraic equations (DAE): 
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where: B is the modified matrix of a Jacobian determinant that is expressed by the equation: 
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and γ* is a modified right–hand side of the equation of acceleration, h is a vector, that represents

acceleration, g represents the vector of generalized forces, M is a global matrix of inertia that 

comprises masses and ma inertia parameter for all the bodies within the system and λ is a Lagrange 

multipliers [27-29]. Moreover, λ can be obtained as an explicit function of generalized coordinates is 
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characterized by a second–order ODE. In this way standard ODE software can be applied directly for 

computing solutions of the DAE [30]. 

In the market there are many CAE software offering tools to compute multibody dynamics 

analysis, but authors use only LMS Virtual.Lab and V-REP to compare different concepts of 

inspection robot. Each software offer a few different derivative method, which are described below. 

3.2. LMS Virtual.Lab integration method 

Predict, Evaluate, Correct, Evaluate PECE -is an explicit integration predictor-corrector method 

elaborated by Adams, Bashforth and Moulton, used in LMS Virtual.Lab. This method uses a 

differential-geometric approach[31, 32] to solve the DAE. A generalized coordinate partitioning 

method is used to reduce the DAE to ODE. To solve the reduced ODE variable- step size and 

variable-order ODE solver is used [31, 33]. 

Other important thing in building numerical model of multibody mechanism is contact forces. 

LMS uses Herzian formulations to describe forces between contacting parts. To describe friction it 

use the Coulomb friction model [31,34]. 

3.3. V-REP integration method 

To compare analysis of concept in different software, authors of this paper prepare also analysis in V-

REP software where one of the offered solvers is Open Dynamics Engine. ODE (different than above) 

is the most popular rigid-body dynamics implementation for robotics simulation. The author of this 

method is Russell Smith [35, 36, 37] and bellow there is short overview of this method. 

Generally multibody dynamic simulators solve the constrained Newton-Euler equation [35]: 

               (3) 

where fext is the external applied forces, fcon is the constraint forces and fd is the viscous joint damping 

forces. ODE makes equation (3) as a linear complementarity problem (LCP) solver in the coordinate 

system to ensure forces satisfy non-interpenetration and joint-constraints. ODE Quickstep solver uses 

the projected Gauss-Seidel (PGS) method with Successive Overrelaxation (SOR) [38]. 

Given that constraints of rigid body are described by a constraint Jacobian J as [35]: 

     (4) 

The following mixed complementarity formulation [35] results: 

          
 

  
   

  

  
             (5) 

where ζ ≥ 0 and c ≥ 0 for unilateral contacts. 

During an update step of equation 5, the Jacobians J are treated explicitly (held constant). It is 

possible to write equation (5) as: 

    , where: (6) 
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Solve for the unknowns ζ in (5) using Gauss-Seidel written in delta form: 

   
  

   
  

   

   

    
     ,where   

      
    

   for i=1,…,Ncon (8) 

When a relaxation constant ω is introduced with SOR, the update equation of λ becomes [35]: 

                    therefore it is possible to written equation (8) as: (9) 

     
  

   
  

   

   

    
       (10) 

V-REP also use the Coulomb friction model but ODE's friction models are approximations to the 

friction cone, for reasons of efficiency. There are to choose from currently approximations: 

 importance of the friction coefficient is changed so as to specify the maximum friction 

(tangential) force , which may be present in the contact in each direction tangential friction. 

 The friction cone is approximated by a friction pyramid aligned with the first and second 

friction directions.  

4. Lay out of numerical multibody model 

Each of mentioned software has similar method of building a dynamically model, but there are some 

differences, what is described below. 

4.1. LMS Virtual.Lab multibody model 

To correctly prepare numerical multi-body model of rescue robot in it’s necessary to create kinematic 

joints, where the most popular joint is Revolute joint with 1 degree of freedom (1DOF) which can be 

found between wheel and hull, sprocket and hull, arm and hull or arm and wheel ect. 

To demonstrate contact forces in each wheeled model there was used CAD Contact function, 

which is based on simple Hertzian contact. This type of contact was used between wheels and ground 

or hull and ground. In the picture bellow there are presented a graphical scheme with in different 

concept model. In the picture 2a we can see the representation of rubber track by group of sphere. In 

particle there is defined representation only for one pad (segment) of the track. Each pad is 

represented by 3 spheres and duplicate on rest of the track by module Discrete Track. 

 

Figure 2.   Contact types in different concepts of robot: a) track segment represented by 3 spheres in 

Sphere to Extruded surface Contact, b) discrete wheel and ground in CAD Contact. 
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To each model of wheel, hull or segment of track is assigned material properties (e.g. density). 

Based on volume and density of each element was automatically calculated mass and inertia 

properties, which were used in dynamics analysis. 

4.2. V-REP multibody model 

Models in V-REP are built in the same manner as in other MBS software, but there are some 

simplification. Vehicle model itself is built from rigid bodies interconnected with joints, in order 

consistent with its kinematic structure. 

Main simplification in V-REP during building model bodies is that rigid bodies should be built 

from convex primitive shapes as cuboids, cylinders or spheres.  

Wheeled platforms chasses are built from cuboids interconnected by revolute joints with spring-

damper element. Wheels are connected to chassis with another revolute joints, but every wheel joints 

acts as independent motor. Motors from one side are driven together from script level. Tracked 

platform’s chassis is one-piece rigid cuboid. Tracks are modelled in simplified way as overlapping 

wheels. Because of that, contact detection between them is disabled. Every wheel have its own joint 

in motor mode that is connected to arm body. Arms are attached to chassis also with motorized joints. 

In the Fig. 3 are shown visual and dynamical model of wheeled and tracked robot in V-REP software  

Figure 3.   Numerical model in V-REP: a)visual body of wheeled platform, b) dynamic body of 

wheeled platform, c)visual body of tracked platform, d) dynamic body of tracked platform 

5. Simulation condition and compare a results

To compare mobility of different concept, numerical model of each concepts pass two simple 

obstacles with the same velocity equal 1 m/s. in mentioned software. In the figure 4 is presented 

dimension and shape of obstacles. Despite large number of concepts, for the purposes of this paper 

authors reduce number of analyzed concepts of platform to 3 type: 4-wheeled robot with articulated 

hull, 6-wheeled robot with articulated hull and 4-tracked platform with adjustable arms (Fig.2, Fig.3). 

Figure 4.   Shape, dimension and arrangement of obstacle 
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5.1. Results of 4-wheeled platform 

In the figure 5 and 6 is presented results of analysis as a curves of displacement of hull in Z axis and 

torques loading wheels to keep constant rotation velocity. The curves of displacement shows that the 

both simulations are in line. In LMS simulations there are high picks of the torque in the case when 

wheel touch edges of obstacle. Moreover there are other differences between simulations in torque 

curves. Unfortunately in both simulations this concept has no ability to pass semicircle obstacle. In 

the figure 7 is presented screenshots of animation of results in LMS and V-REP. 

 

Figure 5.   Displacement of hull of 4-wheeled platform in Z axis. 

 

Figure 6.   Torque curves loading wheel needed to keep constant velocity in 4-wheeled platform 

 

Figure 7.   Screenshots of result animation of 4-wheeled platform: a-c – LMS, d-f – V-REP 

5.2. Results of 6-wheeled platform 

Figure 8 and 9 presents results of analysis as a curves of displacement of hull in Z axis and torques 

loading wheels to keep constant rotation velocity in 6 wheeled platform. It can be noticed that the 

order of magnitude of torque is similar in both cases. Also displacements are quite compatible. 

Unfortunately the curves of torque from V-REP simulation are again more unstable than from LMS. 
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In this case in both of simulation model of robot pass all obstacles. In the figure 10 is presented 

screenshots of animation of results in LMS and V-REP. 

Figure 8.   Displacement of hull of 6-wheeled platform in Z axis. 

Figure 9.   Torque curves loading wheel needed to keep constant velocity in 6-wheeled platform 

Figure 10.   Screenshots of result animation of 6-wheeled platform: a-d – LMS, e-h – V-REP 

5.3. Results of platform with 4 adjustable arm with tracks 

Figure 11 and 12 presents results of analysis as a curves of displacement of hull in Z axis and torques 

loading sprocket to keep constant rotation velocity in platform with 4 arms with tracks. It can be 

noticed that only the order of magnitude of torque is similar in both simulation, but the shape of the 

curves is different. This differences can be caused because of simplified tracks in V-REP to group of 

wheel. But behavior of each model in results animation and in displacement of hull is similar what is 

possible to see in the figures 11 and 13. 

372



 

Figure 11.   Displacement of hull of tracked platform in Z axis. 

 

Figure 12.   Torque curves loading sprocket needed to keep constant velocity in 4 tracked platform 

 

Figure 13.   Screenshots of result animation of 4 tracked platform: a-d – LMS, e-h – V-REP 

6. Simulation in coal mine environment 

Despite differences of curves of torque and difficulties with specifying inertia parameter and contact 

parameter units V-REP is faster tool to quick predict main functionality and mobility of concepts. 

Authors of this paper prepare special obstacle field similar to coal mine tunnel and longwall system. 

Based on simulations above the best possibilities to pass has concept with 4 adjustable arms with 

tracks, and with this platform was performed the mobility test. The main difficulties of this concept is 

lateral stability during passing obstacle such a ramp and designers need to find solution of this 

problem before building prototype. Except this platform pass almost all obstacle. The biggest 

advantage is that it is possible to perform the simulation in real time. In the Figure 14 is presented 

screenshots of the simulation. 
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Figure 14.   Screenshots of simulation of driving platform with 4 adjustable tracks in coal mine tunnel 

and longwall system 

7. Conclusions

Multibody analysis is very useful to predict behavior of tracked vehicle before building costly 

prototype. Thanks to the multibody analysis of vehicle or device it can avoid more engineering 

mistakes than in simple CAD designing. 

V-REP is very useful to quick prediction of mobility of vehicle thanks to real-time simulation, 

but it can gives difficulties in selecting design parameters such as required drivetrain power. 

Despite different torque characteristics, both of multibody software gives similar results in 

displacement of hull and mobility. 

Differences between simulations in each multibody software can be caused by different contact 

type, solver and simplification of track. 

Concept of coal mining rescue robot as a platform with 4 adjustable arms with tracks seems to be 

the best solution for this tasks because of its ability to pass large obstacle. 

There is a need to compare results of numerical simulations with real platform in the next stage 

of the project. 
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The effect of partially embedded inner reinforced core on 

modal properties of the Euler-Bernoulli beam structures

(VIB227-15) 
Milan Naď, Ladislav Rolník, Lenka Čičmancová 

Abstract: The beams are considered as fundamental structural elements used in many 

engineering applications. These beam structures are in the operating regimes very 

often loaded by the time-dependent forces which cause their undesirable dynamical 

behavior and the whole system is getting into critical resonance state. It is clear that 

the reduction of the level of unwanted vibrations or prevention of their occurrence 

should be one of the important objectives in the design of machine equipment and 

structures. To achieve these aims, the knowledge of modal properties of beam 

structures in relation to their internal structure is necessary. The required modification 

of modal properties of the beam structure (mode shapes, natural frequencies) can be 

achieved by the partially embedded inner reinforcing core. The dependence of the 

modal properties of modified beam structure on the geometric parameters and 

material properties of the embedded reinforcing core is studied in this paper. 

1. Introduction

Beams provide a fundamental model for the structural elements of many engineering applications. 

The recent trends tend to the use of lightweight and more flexible beam structures, and this 

requirement is vigorously required in various engineering applications. But, the use of lightweight 

and flexible beam structures has become vulnerable to excessive lateral vibration. 

Some of the machining tools (especially cutting tools) can be also classified as a beam structures. 

During the machining process (turning process), the various excitation effects affect the machine 

tools. Cutting speeds, cutting forces, chip making, the stiffness of MTW (machine-tool-workpiece) 

system are the main effects acting on the dynamics of MTW system and also on the machining 

process (roughness of the machined surface, tool wear, tool or workpiece damage, noise generated by 

the machining process, etc.). Based on the assessment of subsystems MTW of turning tools are the 

most critical elements [6]. It can be concluded that many of machining tools (e.g. turning tools, boring 

tools etc.) have a shape corresponding to beam structure and they are representative structure similar 

to cantilever beam. During the machining process, these tools are subjected to the various exciting 

effects. Very serious problems in the machining process occur when the frequencies of periodic 

changes of the significant effects of machining process are close to the values of the tool natural 

frequencies. As a result of these operating conditions, the resonant states of machine tool body are 
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occurring. The technological process carried out when the tool is in or close to resonant state, 

significantly affects the functionality of the tool and also the quality of the machining process. 

The dynamical properties of the tool body depend on its geometrical parameters and material 

properties. The beam structure representing tool body usually made of homogeneous material, in 

many cases do not have the required dynamic properties. Therefore, it is necessary to make structural 

changes of the tool body to meet the requirements to avoid the emergence undesirable dynamic 

effects. In many cases, it is necessary to eliminate these inconvenient effects by some design or 

technological treatments. One of the techniques [3] which lead to the change of modal properties 

(natural frequencies, mode shapes) of beam structure is based on application of reinforcing core 

inserted into beam body. 

2. Formulation of the problem

The considered structure is composite beam having step change of the cross-section caused by 

insertion of the reinforcing inner core. After inserting the core into the beam, the cross-section of the 

modified beam consists of a basic beam body and reinforcing core with uniform cross section, which 

is partially embedded into beam body (Fig. 1). Two concepts [4] for inserting of the reinforcing core 

are considered. The first approach consists of the insertion reinforcing core into the body of beam and 

beam structure Type I (Fig. 1a) with two fields is created. Consequently, a length of the inserted core 

can be in the range from zero to the length of the beam body. The second approach is based on a fixed 

length core of inserted into beam body (Fig. 1b), which is less than the length beam body. The 

position of the inserted reinforcing core can be changed and then beam structure Type II has three 

fields. It is clear that by changing the material properties and geometric parameters of reinforcing core 

the change in the distribution of mass and stiffness properties of the modified beam structure occurs, 

which also causes a change in the modal properties. The role of reinforcing inner core is to achieve an 

appropriate modification of the distribution of mass and stiffness properties of this beam structure. 

Figure 1.   Models of reinforced beam structures (a - Type I, b - Type II) 
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The computational model describing the studied beam structure will be based on Euler-Bernoulli 

beam theory. Two underlying assumptions for the Euler-Bernoulli beam analysis are considered. The 

first assumption is that the beam is long and slender. In practice, the Euler-Bernoulli theoretical 

approach is valid when the beam length is at a minimum of 10 times its diameter. Within this theory 

[1], the effect of shear deformation and the rotary inertia is neglected. Next, the Euler-Bernoulli beam 

theory assumes that the centerline deflection is small and only in the transversal direction. 

The other following assumptions to the creation of mathematical model and governing equations 

of the modified beam structure [2] are considered: 

- parts of cross-section of beam structure are lying in plane perpendicular to the neutral axis x, 

- beam cross-section before and during deformation is assumed as planar, 

- cross-sections of basic beam profile and core are symmetrical with respect to both axes y, z, 

- isotropic and homogeneous material properties of the parts of beam structure are considered, 

- perfect adhesion at the interface of beam structural parts is supposed. 

By using Euler-Bernoulli beam theory, the equation of motion for each jth segment of beam, is 
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while in this segment is expected, that the beam bending stiffness Ej Jj and mass j Sj are constant.   

Equation (1) has after introducing the assumed solution wj(xj, t) = Wj(xj)T(t) following form 
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dimensionless parameters are defined as 
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The solution of equation (2) has the following form 
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where Aj, Bj, Cj, Dj are integration constants and Krylov´s functions are defined as follows 
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Stepped beam structure (Type I: j = 1, 2; Type II: j = 1, 2, 3) is fixed on the left edge and on the 

right edge is free. Boundary conditions [5] are presented in Table 1 and Table 2. 

Table 1.  Boundary conditions for beam structure Type I (Fig. 1a) 

Boundary conditions - beam structure Type I (Fig. 1a) 

01  : 0)0(1 W  0)0(1 W  

c1 : 

c 12 : 

)1()( 21 cc WW   )1()( 222111 cc WJEWJE   

)1()( 21 cc WW   )1()( 222111 cc WJEWJE 

02  : 0)0(2 W  0)0(2 W

]1[0011 EJJEJE   

]1[0011 SSS   

0022 JEJE 

0022 SS 

Table 2.  Boundary conditions for beam structure Type II (Fig. 1b) 

Boundary conditions - beam structure Type II (Fig. 1b) 

01  : 0)0(1 W  0)0(1 W  

s1 : 

s2 : 

)()( 21 ss WW  )()( 222111 ss WJEWJE 

)()( 21 ss WW   )()( 222111 ss WJEWJE   

cs 2 : 

cs  13 : 

)1()( 32 cscs WW  )1()( 333222 cscs WJEWJE   

)1()( 32 cscs WW   )1()( 333222 cscs WJEWJE   

03  0)0(3 W 0)0(3 W

0011 JEJE 

0011 SS 

]1[0022 EJJEJE   

]1[0022 SSS   

0033 JEJE 

0033 SS 

Dimensionless parameters defining position 
0l

ls
s   and length of core 

0l

lc
c  . 

The parameters ΔEJ and ΔS mentioned in Table 1 and Table 2 characterize the modification of 

stiffness and mass properties of the beam. These modification parameters can be expressed [2] as 

00JE

JE cc
EJ      and  

00S

Scc
S




 , (6) 

where E - Young modulus,  - density, S - cross-section area and J - second moment of area 

(subscript 0 is used for the beam and subscript c is used for the core). 
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Substituting the solution )( jjW   into the boundary conditions (Table 1, Table 2) for beam 

structures Type I and Type II, the frequency determinants are obtained, i.e. 

- beam structure - Type I: 
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- beam structure - Type II: 
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The parameters k1, k2, k3 are expressed by the following relations 
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3. Numerical analysis and results 

The values of the frequency parameters β2,i (Type I) and β1,i (Type II) for the modified beam 

structures are obtained by the solution of frequency determinants (7) and (8). Using these frequency 
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parameters, the modification function for ith natural frequency of vibration the modified beam 

structure can be expressed. The modification function defined as the ratio of ith natural angular 

frequency of the modified beam structure to ith unmodified beam structure is expressed in the form: 

- beam structure - Type I 
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where Δfm,i(ΔEJ, ΔρS) - increment taking into account the modification of stiffness and mass structure. 

The dependence of increment of modification function Δfm,i for beam structure Type I on 

dimensionless length ξc for constant values of modification parameters ΔEJ = 1.0, ΔρS = 1.0 is shown 

in Fig. 2. The modification function is increasing up to 35% for the case of insertion reinforcing core 

into half length of the beam. The effect of dimensionless length of core ξc on the modification 

functions for additional natural frequencies is less significant. However, the insertion reinforcing core 

also gives some possibilities for modification higher natural frequencies of modified structure. 

Figure 2.   Dependency of Δfm,i  on ξc  - Type I  (ΔEJ = 1.0, ΔρS = 1.0). 

Furthermore, the dependence of increments of modification functions for structure Type I on the 

dimensionless length of the core for different values ΔEJ, ΔρS are displayed for the first four natural 

frequencies in the following figures. The largest increase in modification functions when core is 

inserted is achieved for the first natural frequency. Incremental values of modification functions are 

considerably dependent on the values of the stiffness modification parameter ΔEJ and mass 

modification parameter ΔρS (Fig. 3 and Fig.4). 
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Figure 3.   Dependency of  Δfm,i  (i = 1÷4) on ξc  - Type I  (ΔEJ = 0.5÷2.0, ΔρS = 0.5). 

 

 

Figure 4.   Dependency of  Δfm,i  (i = 1÷4) on ξc  - Type I  (ΔEJ = 0.5, ΔρS = 0.5÷2.0). 
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The main difference in comparison with modification based on the change of partial insertion of 

reinforcing core (Type I) is the use of partial reinforcing core (Type II) of constant length lc (resp. c) 

which is less than length of beam. Then the modification of modal properties also depends on the 

position of reinforcing core ls (resp. s) in the beam structure. The dependence of increment of 

modification function Δfm,i (i = 1÷4) on dimensionless length ξc + ξs, for various values of 

dimensionless length of core ξc and different combinations the stiffness modification parameters ΔEJ 

and mass modification parameter ΔρS are shown in the following figures (Fig. 5 ÷ Fig. 7). The 

changes in the considered structural parameters of beam structure Type II have the greatest impact on 

modification function for the first natural frequency. As it can be seen from Fig.5, the influence of 

individual considered parameters, especially geometric parameters determining the length and 

position of reinforcing core on increment of modification function for the second, third and fourth 

natural frequency seems to be non-significant in regard to the objectives of structural dynamic 

modification. Similarly as in the case of beam structure Type I, the mutual combination of values of 

structural modification parameters ΔEJ and ΔρS for Type II have an important role with regard to the 

value of modification function. 

Figure 5.   Dependency of  Δfm,i  on ξs + ξc for different ξc  - Type II  (ΔEJ = 1.0, ΔρS = 1.0). 
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Figure 6.   Dependency of Δfm,i  on ξs + ξc for different ξc - Type II  (ΔEJ = 2.0, ΔρS = 0.5). 

 

 

Figure 7.   Dependency of  Δfm,i  on ξs + ξc for different ξc  - Type II  (ΔEJ = 0.5, ΔρS = 2.0). 
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4. Experimental measurements

Experimental modal analysis of both types of beam structures (Type I, Type II) was performed for 

verification the results of computational analyses. The material of basic beam body is aluminium 

alloy EN AW6060 and for reinforcing core the steel threaded rod has been used. The geometrical 

dimensions and material properties are shown in Table 3. The measurements were carried out using a 

measuring system PULSE Brüel & Kjær (3560B-120), PULSE LabShop, accelerometer (4508B) and 

impact hammer (8206-001). Beam structure with attached accelerometer is shown in Fig. 8.   

Table 3. Geometrical dimensions and material properties 

Part of structure 

Material properties 
Geometrical parameters 

[mm] 
E 

[GPa] 

ρ 

[kg.m-3] 

ν 

[-] 

basic beam body 53 2709 0.3 l0 = 220 d0 = 20 

core - Typ I 163 7805 0.3 lc = 0÷220 dc = M12 

core - Typ II 163 7805 0.3 lc = 40 and 80 dc = M12 

Figure 8.   System for the experimental measurements 

It can be concluded that the trend of the curves from the above comparison clearly shows the 

relatively good agreement between the experimental measurement and numerical calculations (Fig.9). 

In view of the small differences between measured and calculated values it shows that the 

experimental measurements confirmed the correctness of the results of numerical calculations. The 

small deviations of the values of natural frequencies can be caused by imperfections in fixing of the 

beam body or as a result of threaded connection of the core and beam body.     
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a)     

b)     

c)     

Figure 9.   Comparison of measured and calculated values for the first natural frequency f1                 

(a - Type I;  b - Type II, lc = 40 mm;  c - Type II, lc = 80 mm) 
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5. Conclusions

The modification of dynamical properties of clamped beam structure by reinforcing core is presented 

in this paper. Structural modification of the beam structure by the length insertion of the reinforcing 

core with uniform cross-section provides an effective way of the modal properties modification of the 

beam structures. By changing the core length, inserted into the beam, it is possible to achieve 

a significant modification of natural frequencies of the beam. The results obtained confirm that this 

manner of the structural modification of beam offers a very effective tool to the modification of 

dynamical properties or to the dynamical tuning of the similar beam structures. 
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A hypoid gear pair tribo-dynamic model taking into account the rheological 

behaviour of fully formulated gear lubricants
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Abstract: A fully coupled tribo-dynamic model, capable of predicting the inefficiency 

and dynamic response of automotive differential hypoid gear pairs, is presented in this 

study. A gear dynamics solver is coupled with an analytical friction solver, which 

calculates the viscous shear, as well as the boundary conjunctional friction force. The 

time varying geometry and contact characteristics of the hypoid gear pair are taken 

into account by using realistic data available in the literature. The rheological models 

employed cover a range of two different behaviours: Newtonian and non-Newtonian 

Eyring (shear thinning). The Chittenden-Dowson equation is used to calculate the 

central film thickness of the elastohydrodynamic teeth conjunctions. The boundary 

friction force is calculated using the Greenwood & Tripp model. Finally, the actual 

surface topography of a run-in hypoid gear is obtained using a stylus profilometer. 

The results indicate an overestimation of the viscous friction by the Newtonian model, 

as opposed to  the non-Newtonian model, mainly due to shear thinning effects. 

Comparative studies are performed for different operating conditions, namely close or 

away from the main resonance, as well as for conditions corresponding to a non-linear 

sub-harmonic resonance. The frictional damping effect on the dynamic transmission 

error, which is an indication of the Noise Vibration and Harshness NVH response of 

the gear pair, is also examined.  

Introduction 

Hypoid gear pairs are some of the most heavily loaded components of the drivetrains of modern 

automobiles. They are one of the key components of the differential unit, which is used to transfer the 

engine torque from the main driveshaft to the wheels of the vehicle. In order to do so, the torque has 

to be transferred between two perpendicular and non-intersecting shafts. This configuration of the 

gear pair leads to significant sliding motion between their meshing teeth, which in turn is a major 

source of conjunctional power losses. An extra amount of power losses is added through the bearing 

losses, as well as through churning losses in the oil sump of the differential unit [1]. Examining the 

power losses of hypoid gear pair drives has been a subject of several studies. Xu and Kahraman [2] 

were among the first to perform such a numerical analysis. They focused on the conjunctional losses 

of hypoid gear pairs by employing the quasi-static Tooth Contact Analysis (TCA) technique in order 

to simulate the contact condition within the flanks of the meshing teeth. The friction force 

calculations were performed by either employing analytical friction coefficient formulae from the 

published literature, or by solving the one-dimensional Elastohydrodynamic Lubrication (EHL) 
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problem with known input conditions obtained by the TCA. Nonetheless, the actual dynamic 

response, prevalent in real life applications of the gear pair, could not be captured since the analysis 

was quasi-static. Consequently, the influence of non-linear jump phenomena, resonance and tooth 

separation, which seem to influence the conjunctional power losses [3], were not considered in the 

results. Additionally, the angled flow component of the entraining velocity of the lubricant has not 

been taken into account, since the one-dimensional EHL problem has been considered, which also 

seems to influence the magnitude of the central film thickness [4] and in turn the conjunctional power 

losses. A more recent study by Karagiannis et al. [5] has also attempted to numerically predict the 

conjunctional power losses of highly loaded hypoid gear pairs under the influence of dynamic 

loading. A 2-Degree-of-Freedom (2DoF) torsional gear dynamic model has been employed in order to 

predict the dynamic response of the gear pair under realistic driving conditions. An analytical EHL 

friction solver has been used, in conjunction with a boundary friction solver, in order to predict the 

conjunctional friction. The present study attempts to extend the study of Karagiannis et al. [5] to a 4-

Degree-of-Freedom (4DoF) torsional gear dynamics model which takes into account the torsional 

stiffness of the pinion and the ring gear shafts.  

2. Theory and governing equations

2.1 Methodology 

A torsional gear dynamics solver is employed to predict the dynamic response of the gear pair under a 

wide range of input torque. The conjunctional friction force is considered in the equations of motion 

of the gear pair. An analytical friction solver is employed to calculate the magnitude of the friction 

force at each time step. The viscous and boundary components of friction between the meshing gear 

teeth are taken into account. The viscous component of friction is calculated using the Newtonian 

assumption as well as the non-Newtonian Eyring assumption (shear thinning). The calculation of the 

component of boundary friction is performed by employing the Greenwood-Tripp model [6]. The 

Greenwood-Tripp parameters describing the roughness features of the gear teeth surfaces are 

determined by utilising the surface profile of a run-in pinion tooth and applying the procedure 

recommended by Arcoumanis et al. [7]. The instantaneous contact geometry and the instantaneous 

meshing stiffness are determined by employing TCA data that are available in the published literature 

[8], representing a realistic hypoid gear pair design. 

2.2  Gear dynamics 

A 4DoF torsional gear dynamics model is used to predict the dynamic response of the gear pair. The 

degrees of freedom that are considered are the angular displacements of the pinion shaft, the pinion 
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wheel, the gear wheel and the gear shaft. An additional integration in time domain is performed to 

calculate the Dynamic Transmission Error (DTE) by considering the time history of its variation. 

Equations (1) to (4) represent the equations of motion for the 4DoF lumped parameter torsional gear 

dynamics model employed.  

    
 

  
                                                                                                        (1) 

    
 

  
                                                                                           (2) 

    
 

  
                                                                                           (3) 

    
 

  
                                                                                                     (4) 

The lumped parameter model described by equations (1) to (4) is illustrated in Figure (1). 

 

Figure 1. The lumped parameter dynamic model used. 

 

In equations (1) to (4), the backlash function  , the dynamic transmission error   and the resistive 

torque at the gear shaft are calculated using equations (5) to (7).  

   
                     

                                         
                      

                                                                                   (5) 

                                                                                                                        (6) 

                                
 

 
  

                                                                    (7) 

The backlash function used in the present model (equation (5)) is similar to that recommended by 

Kahraman and Singh [9]. The calculation of the resistive torque on the ring gear shaft (equation (7)) 

takes into account the rolling resistance between the tire and the road, the resistance due to the 
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inclination of the road as well as the velocity related aerodynamic drag [10]. Finally, instantaneous 

values of the contact radii of the pinion and the gear, the meshing stiffness and the static transmission 

error are calculated by employing equations (8) to (11). 

                                      (8) 

                                      (9) 

                                              (10) 

                                      (11) 

Equations (8) to (11) are expanded until the 8th term. The values of the Fourier coefficients are the 

same as those used by Mohammadpour et al. [3] and correspond to a hypoid gear pair with the 

characteristics displayed in Table (1). 

Table 1. Geometric features of the hypoid gear pair under study. 

Parameter Pinion Gear 

Teeth Number (-) 13 36 

Face Width (mm) 33.851 29.999 

Face Angle (°) 29.056 59.653 

Pitch Angle (°) 29.056 59.653 

Root Angle (°) 29.056 59.653 

Spiral Angle (°) 45.989 27.601 

Pitch Apex (mm) -9.085 8.987 

Face Apex (mm) 1.368 10.948 

Outer Cone Distance (mm) 83.084 95.598 

Offset (mm) 24.0 24.0 

Sense (hand) Right Left 

2.3 Elastohydrodynamic Lubrication 

The regime of lubrication in highly loaded hypoid gear pairs is predominantly Elastohydrodynamic, 

as recommended by the results presented in the following sections.  In the present study, to reduce the 

computational cost, the coefficient of the conjunctional viscous friction is calculated in an analytical 

manner. An EHL friction calculation algorithm is used which is explained in the present section. As 

soon as the load per flank, the local radii of curvature of the mating teeth and the magnitude of the 

entraining velocities are known, given the properties of the lubricant in the conjunction, the central 

and minimum film thickness can be determined analytically using the Chittenden-Dowson equations 

[11] (equations (12) and (13)).  

392



           
           

                         
                                                               (12) 

           
           

                         
                                                                (13) 

The low shear dynamic viscosity value of the lubricant used in equations (12) and (13) corresponds to 

the pressure and temperature of the oil at the inlet meniscus; hence, at atmospheric conditions if the 

effects of the inlet shear heating and the inlet convectional heating are neglected. The pressure 

dependence of the low shear dynamic viscosity is calculated according to Roeland’s-Houpert equation 

[12], [13] (equation (14)). 

     
                                 

                                                                                       (14) 

Coefficient   is calculated using equation (15), according to Houpert [13].  

  
 

                     
                                                                                                                (15) 

After the calculation of the central film thickness, using equation (13) for each pair of teeth in 

conjunction, its value is used for the calculation of the viscous traction force according to equations 

(16) and (17). Equation (16) is used when the Newtonian assumption for the lubricant rheological 

behaviour is considered, whereas equation (17) is employed when Ree-Eyring [14] shear thinning 

behaviour is assumed.  

                  
    

  
                                                                                                         (16) 

                          
      

    
                                                                                      (17) 

In equations (16) and (17)      represents the area of the elliptical contact footprint of the EHL 

conjunction for each of the meshing teeth. In both of these equations,    is the low shear dynamic 

viscosity of the lubricant at a pressure equal to the average Hertzian pressure in the conjunction. Both 

     and    are calculated using the theory of dry non-conformal contacts according to Hertz [15]. 

Finally,      represents the contact area where direct inter-asperity contact occurs. The method for 

determining the value of this area is described in the following section (equation (19)). The gear oil 

used in the present study exhibits the characteristics listed in Table (2).  

 

Table 2. Gear oil properties. 

Property Value 
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2.4 Boundary friction 

The contribution of boundary friction due to the interaction of asperities is calculated by employing 

the Greenwood - Tripp model [6]. The underlying assumption is that the peak height distribution of 

the asperities on the mating surfaces (pinion and gear teeth) follows a Gaussian distribution. This is 

generally the case for the majority of the metallic engineering surfaces according to Greenwood and 

Williamson [16]. To calculate the value of the boundary conjunctional friction, equations (18) and 

(19) are employed yielding the total load carried by the asperities and the total surface area within 

which inter-asperity contact occurs. 

     
   

  
               

  

  
       (18) 

                       (19) 

The Greenwood-Tripp parameters appearing in equations (18) and (19) represent the surface density 

of the asperity peaks, the average radius of curvature of the asperity summits and the composite r.m.s. 

surface roughness of the mating surfaces. Greenwood and Tripp [6] suggest that for steel-on-steel 

contacts                 . For the case of highly loaded run-in hypoid gear pair teeth, where 

the lubricating oil contains extreme pressure (EP) additives, the lower limit of the recommended 

range may well be reduced. For that reason,   ,    and    values are calculated individually for a 

specific run-in hypoid pinion tooth surface, as described in the following section. The value of the 

statistical functions      and    are calculated according to De la Cruz et al. [17] (equations (20) and 

(21)). 

            
          

          
          

                  (20) 

              
          

          
          

                  (21) 

Finally, the magnitude of boundary friction is calculated by employing equation (22). 

                (22) 

Equation (22) accounts for two different sources of boundary friction. The product        represents 

the shearing of the tribo-film present at the asperity summits. It is assumed that the shear strength of 

the tribo-film is equal to the Eyring stress of the lubricant. The second source of boundary friction 

which is taken into account is the breaking of the cold welds formed between the asperities in contact. 

Its contribution is accounted for by using the product      , where   represents the coefficient of dry 

sliding friction of steel against steel. Its value is taken to be        according to De la Cruz et al. 

[17]. 
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2.5 Surface topography 

In order to take into account the component of boundary conjunctional friction due to the interaction 

of asperities, the surface profile of a run-in pinion tooth was studied. Two different techniques for 

determining the surface topography were employed: one optical and one mechanical. The optical 

technique is based on the principle of focus variation. An Alicona InfiniteFocus® optical microscope 

was used for that purpose (Figure (2)). A rotational unit was attached on the table of the machine to 

mount the pinion.  

 

Figure 2. Alicona InfiniteFocus® microscope with the pinion attached on the rotational unit. 

 
The principle of focus variation is explained below. Once the sample (pinion) has been placed on the 

rotational unit, the microscope is focusing on the region of interest on the tooth. Once it is focused, an 

upper and a lower focus boundary are set. Cross-sectional images are taken in between those 

boundaries. The compilation of those images yields the 2D surface topography of the pinion tooth at 

the point of interest. The mechanical technique of surface profile measurements that was employed is 

that of stylus profilometry. Six surface profiles along the axial and radial directions of the tooth were 

obtained: one set of two profiles each on the heel,  the middle and  the toe of the tooth. It was 

observed that the surface roughness parameters for each of those three profiles (yellow lines in Figure 

(3)) were of similar magnitude. Once the surface profiles were obtained, the Greenwood-Tripp 

parameters were calculated based on the procedure followed by Arcoumanis et al. [7]. The pair of 

profiles at the middle of the pinion tooth were considered for the present study as illustrated by the 

yellow lines in Figure (3).  
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Figure 3. The pinion surface model along with the surface profiles considered (yellow lines). 

Three spectral moments can be determined by applying equations (23) to (25) according to McCool 

[18]. 

                 (23) 

    
     

  
 
           

 (24) 

    
      

   
 
            

 (25) 

In order to account for the roughness profile along the axial and radial directions of the pinion tooth, 

the three spectral moments (equations (23)-(25)), are calculated along those directions. The spectral 

moments are calculated twice for the pinion tooth surface (once along the axial direction and once 

along the radial direction) and finally twice for the gear surface. In the present study the 

corresponding gear tooth surface profile has not been determined since it is assumed that it is exactly 

the same as the pinion tooth surface profile. The choice of the axial and radial directions of the pinion 

tooth for the determination of the spectral moments was made because the minimum and maximum 

surface roughness is observed along those directions, respectively. This is due to the fact that the axial 

direction of the tooth almost coincides with the direction of the polishing wear tracks on it. Equations 

(26) to (28) are employed to calculate the equivalent isotropic spectral moments of each of the two 

surfaces (of the pinion and gear) according to Sayles and Thomas [19].  

   
         

     
    (26) 

   
      

     
  (27) 

   
      

     
  (28) 
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In equations (26) to (28), the superscript   refers to either the pinion or the gear tooth surface. The 

subscripts   and   refer to the axial and radial directions of the tooth surface, respectively. Finally, 

equation (29) is used to calculate the equivalent isotropic moments for the composite interface. 

          
 

     
 

                                                                                                                   (29) 

Where, subscript   represents the spectral moment under determination and superscripts   and   

represent the pinion and gear teeth surfaces, respectively. As soon as the equivalent combined 

isotropic spectral moments are determined, the Greenwood-Trip parameters can be calculated by 

employing equations (30) to (32) according to Longuet-Higgins [20] and Bush et al. [21]. 

   
 

    

     

     
                                                                                                                             (30) 

         
 

     
                                                                                                                        (31) 

                                                                                                                                         (32) 

3.       Results 

The 2D surface topography of the pinion surface (obtained using the focus variation technique) is 

shown in Figure (4). The same figure also illustrates the 1D profile of the pinion tooth along its axial 

direction, taken by a stylus profilometer. A cross section along the axial direction of the tooth is taken 

from the 2D surface topography measurements. The surface roughness parameters calculated using 

the 2D surface profile measurements and the profile obtained by employing the stylus profilometry 

come in very good agreement.  

      

Figure 4. 3D surface topography of the run-in pinion (a) and the corresponding cross section (b). 

(a) (b) 
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By applying the Arcoumanis method [7], the Greenwood-Tripp parameters for the run-in hypoid gear 

pair generatethe following values,                       ,                  and 

                . The product of those three parameters is        which is considerably lower 

as compared to the typical values recommended by Greenwood and Tripp [6]. This is due to the 

polishing of the pinion and the ring gear teeth surfaces after some cycles of operation due to the 

running-in of the gears.  

Figure 5. Greenwood chart for       input torque (a) and DTE amplitude of the frictionless 

system (b). 

Figure (5) illustrates the Greenwood chart (left) and the DTE response of the gear pair when friction 

is not taken into account in the integration of the equations of motion (right). An observation of the 

left part of Figure (5) validates the statement that the regime of lubrication for the greater part of the 

meshing cycle is that of EHL. Some points of the meshing cycle lie within the isoviscous-rigid regime 

of lubrication. Those points correspond to the very beginning and the very end of the meshing cycle, 

where the flank load is extremely reduced. For the present analysis, three different input torque values 

were chosen in order to investigate the tribo-dynamic response of the system. Those values are 

illustrated on the right part of Figure (5). The       input torque corresponds to the 1st principal 

resonancefrequency where significant tooth separation (due to the presence of backlash) occurs. The 

      input torque corresponds to a vehicle cruising velocity of         while no tooth separation 

is observed. Finally, the        input torque corresponds to a subharmonic resonance frequency. 

The magnitude of the non-linear jump observed in that region is found to be very sensitive upon the 

structural damping of the system.  

27 Nm 

60 Nm 

186 Nm 

(a) (b) 

398



 

Figure 6. DTE (a) and inefficiency (b) for       input torque. 

Figures (6) to (8) illustrate the DTE response and inefficiency for the three different values of the 

input torque discussed above. Comparative curves assuming a frictionless conjunction as well as a 

lubricated conjunction, with and without the presence of the shear thinning effect, are also plotted. 

The general trend of those plots indicates that as the effect of the viscous friction becomes more 

significant, the DTE amplitude is decreased. The effect of viscous dissipation when the Eyring 

lubricant is considered, is mitigated as compared with the Newtonian lubricant, due to the influence 

of the shear thinning effect. Consequently, increased viscous dissipation leads to a better NVH 

response of the dynamic system, since the amplitude of the DTE is reduced. Nonetheless, the 

inefficiency plots indicate increased conjunctional inefficiency as the effect of viscous dissipation 

becomes more prevalent. 

 

Figure 7. DTE (a) and inefficiency (b) for       input torque. 

(a) (b) 

(a) (b) 
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Figure 8. DTE (a) and inefficiency (b) for        input torque. 

The qualitative relationship between the DTE response, the magnitude of viscous dissipation and 

inefficiency must be carefully examined in order to yield an optimum combination of lubricant, and 

gear pair design, in terms of the NVH and inefficiency characteristics of the system. Furthermore, by 

examining Figures (6) to (8) it can be concluded that the inefficiency of the system at       of input 

torque (primary resonance) seems to be reduced compared to the rest of the cases examined, despite 

the fact that the Stribeck parameter variation is within a lower range (Figure (9)), indicating that 

asperity interaction is more prevalent in that case. The asperity load ratio is also increased as 

compared to the rest of the cases corresponding to different values of input torque (Figures (9) to 

(11)). Furthermore, an observation of the inefficiency plots for       and        of input torque 

(Figures (7) and (8)) reveals that the inefficiency when the Newtonian assumption is used is increased 

for the case of        of input torque. The opposite occurs when the shear thinning assumption is 

used. This is due to the fact that in the case of        the central film thickness is increased, 

compared to the      , because of the increased magnitude of the entraining velocity. At the same 

time, the central film thickness for the Newtonian case and the shear thinning lubricant will be the 

same for the same input torque, since the value of the low shear dynamic viscosity at the inlet is used 

for its calculation. However, the shear stress of the shear thinning lubricant will be considerably 

decreased, as compared to the Newtonian lubricant, when high shear rate is applied, because of the 

shear thinning effect. This phenomenon , combined with the increased film thickness at high input 

torque, will lead to a decreased inefficiency for the shear thinning lubricant. Furthermore, Figure (8) 

reveals that the frequency content of the DTE is changing when the viscous dissipation is taken into 

account. For the frictionless conjunction, the dominant frequency is half that observed when the 

(a) (b) 
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Newtonian lubricant is taken into account. This is because t the Newtonian lubricant dissipates more 

energy from the system, suppressing the magnitude of the subharmonic resonance which is observed 

in Figure (5) for        of input torque. The intensity of the shear thinning response of the lubricant 

strongly depends upon the quantity of the polymer additives (i.e., viscosity modifiers) blended with 

the base oil. Higher concentration of polymers in the base oil leads to a reduced value of the Eyring 

stress, and consequently a more intense shear thinning response of the fluid. 

     

Figure 9. Stribeck parameter (a) and asperity load ratio (b) for       input torque. 

 

 

Figure 10. Stribeck parameter (a) and asperity load ratio (b) for       input torque. 

 

(a) (b) 

(a) (b) 
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Figure 11. Stribeck parameter (a) and asperity load ratio (b) for        input torque. 

Finally, Figures (9) to (11) reveal the effect of the input torque on the Stribeck parameter and the 

asperity load ratio     on the highly loaded flank of the gear pair. Minor differences between the 

Newtonian and the shear thinning lubricants are observed in terms of those parameters. This is due to 

the fact that those parameters strongly depend on the magnitude of the central film thickness, which 

in turn is a function of the low shear characteristics of the lubricant (at the low shear inlet). The load 

carried by the asperities is in general a very small fraction of the total contact load carried by the 

flank. This is due to the low surface roughness r.m.s. of the mating teeth, after being polished during 

the run-in period. Based on the results of Figure (11), no load is carried by the asperities at       of 

input torque, mainly due to the increased value of the film thickness which is an outcome of the 

increased entraining velocity of the lubricant in the conjunction.   

4. Conclusions

Summarizing the finding of the present study, the following conclusions can be drawn, 

 Increased viscous dissipation leads to improved NVH response of the system, however, the

conjunctional inefficiency of the system seems to be increased.

 The conjunctional inefficiency of the system seems to be reduced at the region of the

primary resonance, mainly due to teeth separation effects.

 Increased input torque leads to decreased inefficiency when the lubricant exhibits shear

thinning behaviour. The opposite occurs when the shear thinning characteristics of the

lubricant are not taken into account.

 The load carried by the asperities in run-in hypoid gear pair teeth conjunctions can be

significantly lower, as compared to pristine gear teeth, due to the polishing effects taking

place during the run-in period.

(a) (b) 
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Nomenclature 

              road inclination angle           

           total area of asperity contact      

          area of the EHL contact ellipse      

             frontal area of the vehicle      

               half backlash length     

               mesh damping coefficient        

             coefficient of aerodynamic resistance     

             torsional damping coefficient of the pinion shaft           

             torsional damping coefficient of the gear shaft           

             reduced modulus of elasticity of the gear teeth      

              coefficient of rolling resistance between the road and the tyre     

              acceleration of gravity        

              Chittenden-Dowson material parameter     

              central film thickness     

            Chittenden-Dowson dimensionless central film thickness     

           Chittenden-Dowson dimensionless minimum film thickness     

               mass moment of inertia (         )        

              torsional stiffness of the supporting shafts          

             mass of the vehicle     

             ring gear teeth number     

             pinion teeth number     

               lubricant pressure      

              asperity load to total flank load ratio     

              radius of curvature along the direction of entraining motion     

              ring gear contact radius     

              pinion contact radius     

              radius of curvature along the side leakage direction     

              radius of the wheel     

              constant input torque at the pinion shaft      

             velocity dependent resistive torque at the gear shaft      

403



             Chittenden-Dowson dimensionless speed parameter    

             vehicle cruising speed      

              sliding velocity of the mating teeth      

            Chittenden-Dowson dimensionless load parameter  –   

              pressure-viscosity coefficient       

             asperity summit average radius of curvature    

              lubricant low shear dynamic viscosity at standard temperature and pressure       

             asperity summit density per unit area      

              Stribeck parameter             –    

              air density        

             combined r.m.s. surface roughness of the mating teeth    

              Eyring shear stress of the lubricant     

              rotation angle of the corresponding DoF                   
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Influence of the fibre spring-damper computational models in a 

mechanical system on the coincidence with the experimental 

measurement results

(VIB169-15)

Pavel Polach, Michal Hajžman, Miroslav Byrtus, Zbyněk Šika 

Abstract: Experimental measurements focused on the investigation of a fibre 

behaviour are performed on an assembled weigh-fibre-pulley-drive mechanical 

system. The carbon fibre, which is driven by one drive, is led over a pulley. On its 

other end there is a prism-shaped steel weight, which moves in a prismatic linkage on 

an inclined plane. In presented case the position of the weight is symmetric with 

respect to the plane of a drive-pulley symmetry. Drive excitation signals can be of 

different shapes with the possibility of variation of a signal rate. Time histories of the 

weight position and of the force acting in the fibre are measured. The same system is 

numerically investigated by means of multibody model. The influence of dependences 

of the fibre spring-damper coefficients on velocity of the weight motion in the 

computational model on the coincidence of the simulation results and the 

experimental measurement results is evaluated. The simulations’ aim is to create 

a phenomenological model of a fibre, which will be utilizable in fibre modelling in the 

case of more complicated mechanical or mechatronic systems. 

1. Introduction

The replacement of the chosen rigid elements of manipulators or mechanisms by fibres or cables [1] 

is advantageous due to the achievement of a lower moving inertia, which can lead to a higher machine 

speed, and lower production costs. Drawbacks of using the flexible elements like that can be 

associated with the fact that cables should be only in tension (e.g. [2,3]) in the course of a motion. 

Experimental measurements focused on the investigation of the fibre behaviour are performed on 

an assembled weigh-fibre-pulley-drive system [4-10]. The fibre is driven with one drive, it is led over 

a pulley and on its other end there is a prism-shaped steel weight, which moves on an inclined plane. 

The position of the weight can be symmetric (see figure 1) or asymmetric with respect to the plane of 

a drive-pulley symmetry (note: results with symmetric position of the weight are presented in this 

paper). It is possible to add an extra mass to the weight. Time histories of the weight position and of 

the force acting in the fibre are measured. The same system is numerically investigated using 

multibody models created in the alaska simulation tool [11]. The influence of the model parameters 

on the coincidence of the results of experimental measurements and the simulations results is 
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evaluated. The simulation aim is to create a phenomenological model of a fibre, which will be 

utilizable in fibre modelling in the case of more complicated mechanical or mechatronic systems. 

The fibre damping coefficient, the fibre stiffness and the friction force acting between the weight 

and the prismatic linkage were considered to be system parameters of the phenomenological model. 

The parameters determined at investigating the weight-fibre system [12,13] were applied in the fibre 

model of the weight-fibre-pulley-drive system. The friction force acting between the weight and the 

prismatic linkage, as it has been confirmed [4-8], is not the parameter of the phenomenological 

model. This quantity is dependent on angle  of the inclined plane (see figure 1). At simulating the 

experimental measurements for “slower” drive motion [4-8] the local extremes of the time histories of 

the weight displacement and of the force acting in the fibre are independent of the fibre stiffness and 

the fibre damping coefficient (considered in feasible intervals of values). At simulating the 

experimental measurements for “quicker” drive motion [4-8] the local extremes of the monitored time 

histories are dependent on both the phenomenological model parameters (to explain: frequencies of 

drive motion – i.e. frequencies of input signal – higher than 1 Hz are designated as “quicker” drive 

motions, frequencies of drive motion lower than 1 Hz are designated as “slower” drive motions). 

From the obtained results it was evident that these parameters of the fibre phenomenological model 

must be, in addition, considered dependent on the velocity of the weight motion [9,10,14]. That is 

why the influence of considering the velocity-dependent stiffness [14] and/or the velocity-dependent 

damping “coefficient” [9]/[10] in the fibre model on dynamic response of the system was 

investigated. 

Figure 1.   Scheme and a real weight-fibre-pulley-drive mechanical system (symmetric position of the 

weight). 
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2. Experimental stand 

As it has been already stated experimental measurements focused on the investigation of the fibre 

behaviour are performed on an assembled weigh-fibre-pulley-drive mechanical system (see figure 1). 

A carbon fibre with a silicone coating (see e.g. [15]) is driven with one drive and it is led over 

a pulley. The fibre length is 1.82 meters (fibre weight is 4.95 grams), the pulley diameter is 

80 millimetres. The weight position can be symmetric [4,6] (see figure 1) or asymmetric [5,7] with 

respect to the vertical plane of drive-pulley symmetry (distance of the weight from the vertical plane 

of drive-pulley symmetry is 280 millimetres in the case of the asymmetric weight position). At the 

drive the fibre is fixed on a force gauge. In the other end of the fibre there is a prism-shaped steel 

weight (weight 3.096 kilograms), which moves in a prismatic linkage on an inclined plane. It is 

possible to add an extra mass (weight 5.035 kilograms) to the weight [6,7]. The angle of inclination of 

the inclined plane can be changed. In the case of the symmetric weight position the angle is 

  30 degrees and the pulley-fibre angle is   150 degrees (in the case of the asymmetric weight 

position the angle is   30.6 degrees and the pulley-fibre angle is   146 degrees). Drive exciting 

signals can be of a rectangular, a trapezoidal and a quasi-sinusoidal shape and there is a possibility of 

variation of a signal rate. The amplitudes of the drive displacements are up to 90 millimetres. Time 

histories of weight position u (in direction of the inclined plane; measured by means of a dial gauge), 

of drive position x (in vertical direction) and of the force acting in the fibre (measured by a force 

gauge at drive) are recorded using a sample rate of 2 kHz. 

3. Possibilities of the fibre modelling 

The fibre (cable, wire etc.) modelling should be based on considering the fibre flexibility and suitable 

approaches can be based on the flexible multibody dynamics (see e.g. [16,17]). Flexible multibody 

dynamics is a rapidly growing branch of computational mechanics and many industrial applications 

can be solved using newly proposed flexible multibody dynamics approaches. Studied problems are 

characterized by a general large motion of interconnected rigid and flexible bodies with the possible 

presence of various nonlinear forces and torques. There are many approaches to the modelling of 

flexible bodies in the framework of multibody systems [18]. Comprehensive reviews of these 

approaches can be found in [17] or in [19]. Further development together with other multibody 

dynamics trends was introduced in [20]. Details of multibody formalisms and means of the creation of 

equations of motion can be found e.g. in [21] or [22]. 

The simplest way how to incorporate fibres in equations of motion of a mechanism is the force 

representation of a fibre (e.g. [23]). It is assumed that the mass of fibres is low to such an extent 

comparing to the other moving parts that the inertia of fibres is negligible with respect to the other 

parts. The fibre is represented by the force dependent on the fibre deformation and its stiffness and 
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damping properties. This way of the fibre modelling is probably the most frequently used one in the 

cable-driven robot dynamics and control (e.g. [24,25]). The fibre-mass system fulfils all requirements 

for modelling the fibre using the force representation of the fibre. A more precise approach is based 

on the representation of the fibre by means of a point-mass model (e.g. [26]). It has the advantage of 

a lumped point-mass model. The point masses can be connected by forces or constraints. 

The massless fibre model is considered in this phase of investigation of the weight-fibre-pulley-

drive system. The fibre model is considered to be phenomenological and it is modelled by the forces 

which comprise e.g. influences of fibre transversal vibration, “jumping” from pulley etc. The 

multibody models of the weight-fibre-pulley-drive system in the case of considering the symmetric 

and asymmetric position of the weight with respect to the plane of drive-pulley symmetry slightly 

differ [4], [5]. In the case of symmetric position the number of degrees of freedom in kinematic joints 

is 5 (in the case of asymmetric position the number of degrees of freedom in kinematic joints is 6). 

The weight (with added mass), the pulley and the drive are considered to be rigid bodies. A planar 

joint between the weight and the base (prismatic linkage), a revolute joint between the pulley and the 

base and a prismatic joint between the drive and the base (the movement of the drive is kinematically 

prescribed) are considered. Behaviour of this nonlinear system is investigated using the alaska 

simulation tool [11]. 

4. Simulation and experimental results

As it has already been stated the simulations aim was to create a phenomenological model of a fibre. 

When looking for compliance of the results of experimental measurement with the results of 

simulation influences of the fibre stiffness and the fibre damping coefficient are considered. The 

friction force acting between the weight and the prismatic linkage in which the weight moves was 

considered to be phenomenological model parameter in the first phase of investigation [12,13]. 

Investigation of the (carbon) fibre properties eliminating the influence of the drive and of the 

pulley was an intermediate stage before the measurement on the stand [12,13]. A phenomenological 

model dependent on the fibre stiffness, on the fibre damping coefficient and on the friction force 

acting between the weight and the prismatic linkage was the result of this investigation. When looking 

for the fibre model [13] that would ensure the similarity of time histories of the weight displacement 

and time histories of the dynamic force acting in a fibre as high as possible a fibre stiffness and a fibre 

damping coefficient were considered to be constant in this phase of the fibre behaviour research. The 

nonlinear friction force course (in dependence on the weight velocity) determined (especially on the 

basis [27] and [28]) at investigating the weight-fibre mechanical system [12] with the angle of 

inclination of the inclined plane   30 degrees is applied in the model of the weight-fibre-pulley-
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drive mechanical system [4-8]. Values of fibre stiffness and fibre damping coefficient were calculated 

on the basis of the values determined in [4] (see table 1). 

At simulating the experimental measurements for a “quicker” drive motion [4-8] the local 

extremes of the time histories of measured and calculated weight displacement were more or less 

different. From these results it was evident that the parameters of the fibre phenomenological model 

must be, in addition, considered dependent on the velocity of the weight motion. That is why the 

influence of considering the velocity-dependent stiffness [14] and/or the velocity-dependent damping 

“coefficient” [9]/[10] in the fibre model on dynamic response of the system was investigated. 

Velocity-dependent stiffness c of the fibre is supposed in the form 


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where 
cc  is constant fibre stiffness (taken from [4]), 

2c  is constant, v is instantaneous velocity of the 

weight and 
trv  is threshold value of the velocity of the weight. Optimal (constant) values of constant 

2c  and threshold value of weight velocity 
trv  were found. Threshold value of weight velocity 

trv  was 

found in [14] and confirmed in [9] and [10]. 

Velocity-dependent damping “coefficient” b of the fibre is considered similarly as the 

velocity-dependent stiffness (see Eq. 1) 










,if,)(

if,

tr2trc

trc

vvbvvb

vvb
b  (2) 

where 
cb  is constant fibre damping coefficient (taken from [4]), 

2b  is constant. The optimal 

(constant) value of constant 
2b  was found. 

The influence of the velocity-dependent stiffness and/or the velocity-dependent damping 

“coefficient” values on time histories of the weight displacement (and also on time histories of the 

dynamic force acting in the fibre) was evaluated partly visually and partly on the basis of the value of 

the correlation coefficient between the records of the experimental measurements and the simulation 

results. Application of the approach based on the calculation of the statistical quantities that enables to 

express directly the relation between two time series has appeared to be suitable for comparing two 

time series in various cases – e.g. [29]. 

Correlation coefficient Rp [30] defined for two discrete time series x(1) (the time history 

recorded at experimental measurement) and x(2)p (the time history determined at simulation with the 

multibody model; function of investigated parameters p) was calculated 
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where 1 and 2p are mean values of the appropriate time series. The maximum value of the 

correlation coefficient is 1. The more the compared time series are similar to each other the more the 

correlation coefficient tends to 1. The advantage of the correlation coefficient is that it quantifies very 

well the similarity of two time series by scalar value, which is obtained using a simple calculation. 

The problem can be put as the problem of the minimization of the objective function in the form 

     .1
2

pp R  (4)

In table 1 there are given the optimal values of parameters in Eq. 1 and in Eq. 2 of the 

investigated model of the weight-fibre-pulley-drive mechanical system. From table 2 it is evident that 

the values of correlation coefficient Rp are “better” for the determined velocity-dependent 

coefficients than for the constant coefficients in the fibre model. In the time histories of the dynamic 

force acting in fibre the correlation coefficient Rp improvement is not evident very much – see 

table 3 (the values are of rather informative character). At time histories of dynamic force acting in 

the fibre during determining the optimum values of velocity-dependent coefficients attention was paid 

especially to keeping the character of their course and achieving the best possible agreement of 

extreme values of the measured and the calculated dynamic forces. 

Table 1. Values of coefficients of the fibre model. 

Threshold value 

of the velocity 
Stiffness 

Damping 

coefficients 

[m/s] [N/m] [N/s] [Ns/m] [N] 

trv cc 2c cb 2b

Constant coefficients - 34103 - 27.5 - 

Velocity-dependent stiffness 0.4 34103 730 27.5 0 

Velocity-dependent damping 

“coefficient” 
0.4 34103 0 27.5 385 

Velocity-dependent coefficients 0.4 34103 850 27.5 3.1 

Table 2. Values of correlation coefficient Rp [-] of the time histories of the weight displacement. 

Tested 

situation 

Constant 

coefficients 

Velocity-dependent 

stiffness 

Velocity-dependent 

damping “coefficient” 

Velocity-dependent 

coefficients 

2 0.9929 0.9937 0.9934 0.9954 

3c 0.7552 0.9365 0.9190 0.9464 

7a 0.9999 0.9999 0.9999 0.9999 

10 0.9834 0.9838 0.9838 0.9836 

11 0.2187 0.6909 0.6890 0.6534 
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Table 3. Values of correlation coefficient Rp [-] of the time histories of dynamic force acting in fibre. 

Tested 

situation 

Constant 

coefficients 

Velocity-dependent 

stiffness 

Velocity-dependent 

damping “coefficient” 

Velocity-dependent 

coefficients 

2 0.3904 0.3761 0.3847 0.2868 

3c 0.03925 0.0909 0.2084 0.1640 

7a 0.5673 0.5743 0.5743 0.5743 

10 0.5078 0.5080 0.5142 0.5047 

11 0.2323 0.6778 0.1146 0.1462 

 
At “slower” drive motions the time histories of the weight displacement recorded at the 

experimental measurements and computed at the computer simulations are approximately identical 

(see [4-10] and figure 6a) and hence it is not desirable to change values of parameters of the fibre 

phenomenological model (i.e. it is not necessary to consider the parameters of the fibre 

phenomenological model velocity-dependent). It is evident that it was the reason why the threshold 

value of velocity 
trv  of the weight was determined in such a way that the maximum velocity of the 

weight during “slower” drive motions should be lower than 
trv  (see table 1). 

Results of experimental measurements and simulations of five selected tested situations at weight 

symmetric position are presented in this paper (see figures 2 to 7). Four tested situations are at a 

“quicker” drive motion (see time histories of drive motion in figure 2a, figure 3a, figure 4a and figure 

5a) and one situation is at a “slower” drive motion (see time history of drive motion in figure 6a). 

General pieces of knowledge obtained at investigating the weight-fibre-pulley-drive system, 

independently of the combination of the position of the weight with respect to the plane of the drive-

pulley symmetry (symmetric or asymmetric) [5] and of the mass of the weight (without or with added 

mass) [9], are similar. 

 

           

     a)                                                                            b) 

Figure 2.   Time histories at a “quicker” tested situation (symmetric position of the weight, the weight 

without added mass), a) weight displacement, b) dynamic force acting in a fibre. 
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     a)                                                                            b) 

Figure 3.   Time histories at a “quicker” tested situation (symmetric position of the weight, the weight 

without added mass), a) weight displacement, b) dynamic force acting in a fibre. 

     a)                                                                            b) 

Figure 4.   Time histories at a “quicker” tested situation (symmetric position of the weight, the weight 

with added mass), a) weight displacement, b) dynamic force acting in a fibre. 

     a)                                                                            b) 

Figure 5.    Time histories at a “quicker” tested situation (symmetric position of the weight, the weight 

with added mass), a) weight displacement, b) dynamic force acting in a fibre. 
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     a)                                                                            b) 

Figure 6.   Time histories at a “slower” tested situation (symmetric position of the weight, the weight 

without added mass), a) weight displacement, b) dynamic force acting in a fibre. 

           

     a)                                                                            b) 

Figure 7.   Time histories of the weight displacement at a “quicker” tested situation (symmetric 

position of the weight), a) the weight without added mass), b) the weight with added mass. 

At the “quicker” tested situations the measured and the computed time histories of the weight 

displacement are of the same character (see figure 2a, figure 3a, figure 4a and figure 5a). On the basis 

of results it is evident that considering the velocity-dependent stiffness of the fibre in the model (not 

published), considering the velocity-dependent damping “coefficient” [10] and especially considering 

both the velocity-dependent stiffness and the velocity-dependent damping “coefficient” [9] have a 

great contribution to the improvement of agreement of the measured and the computed time histories 

and the local extremes of the weight displacement (see figure 2a, figure 3a, figure 4a and figure 5a). 

As it has already been stated in [4-6,8-10] at all the simulations when changing the 

computational model parameters the time histories of a dynamic force acting in the fibre are different 

(more or less) but their character remains the same. From figure 2b, figure 3b, figure 4b, figure 5b and 

figure 6b it is evident that time histories of dynamic force acting in the fibre are not suitable for 
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determining the parameters of the fibre phenomenological model. It follows from the fact, that the 

phenomenological model of a fibre is to cover, as it has been stated, e.g. influences of the fibre 

transversal vibration, “jumping” from the pulley etc. As it does not include those phenomena 

physically (but by the change in the already introduced model parameters), it is evident, that the time 

histories of the dynamic force acting in the fibre cannot be expected to be of the same course. 

It is evident that for searching for the parameters of the fibre phenomenological model it is 

necessary to use the results of experimental measurements with the “quicker” drive motion. The 

possibility of performing experimental measurements with other time histories of drive motion or 

with a different geometrical arrangement of the experimental stand will be analysed. 

5. Conclusions

The approach to the fibre modelling based on the force representations was utilised for the 

investigation of the weight motion in the weigh-fibre-pulley-drive mechanical system. The simulation 

aim is to create a phenomenological model of the fibre, which will be utilizable in fibre modelling in 

the case of more complicated mechanical or mechatronic systems. The created phenomenological 

model is assumed to be dependent on the velocity-dependent fibre stiffness and/or the velocity-

dependent fibre damping “coefficient”. 

Development of the fibre phenomenological model continues. It can be supposed that in a more 

sophisticated phenomenological model of the fibre more complicated dependencies of the fibre 

stiffness and of the fibre damping “coefficient” on the weight velocity will be considered. 

In addition it must be stated that the model of the fibre-pulley contact appears to be problematic 

in the computational model. 
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The influence of piezoelectric actuation on the lateral 

oscillation of a beam with varying cross section

(VIB255-15) 

Jacek Przybylski, Krzysztof Kuliński 

Abstract: The objects of this studies are the stability and transversal vibrations of a 

system consisted of a beam with a pair of piezoelectric patches. The system is 

kinematically loaded as a result of the prescribed axial support displacement. This 

type of loading not only changes the natural vibration frequencies but it may affect the 

system’s stability. An application of the electric field to the piezo actuators leads to 

generation of an axial residual force which can enhance the buckling capacity. Such 

force depends on both the voltage applied to the actuators as well as the geometrical 

and physical parameters of the system. Taking that into account, different 

combinations of the length of the piezo patches and their locations have been regarded 

for four different beam supports preventing the longitudinal displacements. Due to the 

geometric nonlinearity, Lindstedt-Poincare method has been applied for the solution 

purposes. A vast number of numerical results shows the effect of the residual 

piezoforce on the structural instability and non-linear vibration of the system. 

1. Introduction

Piezoelectrics are special group of materials which generate voltage under mechanical stress on

the basis of direct piezoelectric effect. These materials are widely utilized in airbags, speakers, 

lighters etc. The generated voltage resulting from a deformation may be also treated as a signal in 

various types of piezo sensors. A reverse piezoelectric effect, when piezo elements change their 

dimensions under a driving voltage, is also frequently used in practical engineering. This kind of 

phenomenon is applicable in control of static and dynamic responses of structures what makes piezo 

actuators appropriate for micro positioning, structure shaping, various domains of automotive 

industry, aviation, life and medical sciences etc.. Active control of columns’ buckling via piezo 

actuation has been studied by Thompson and Loughlan [1]. Authors found out that a geometrically 

imperfect column without active piezoelements is more vulnerable on earlier deformations at lower 

buckling load, while an application of the controlled voltage to the actuators allows the structure to 

remain undeflected and overall buckling load capacity is higher. Two significant papers concerning 

the piezo actuation control were elaborated by Faria [2] and Zehetner and Irschik [3]. Faria [2] 

proposed a new technique for enhancement of buckling loads of composite beams relied on using 

stress stiffening to create a non-zero tensile force acting along the beam axis which ultimately permits 
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the application of higher external compressive forces that lead to traditional buckling instabilities. 

After application a variational principle it has been demonstrated that the pin-force model must be 

used with caution when it comes to buckling of composite beams although it can be used to correctly 

predict the stress stiffening effects. The inconsistency of derivation of the motion equations by other 

authors for piezo-laminated Euler-Bernoulli beams subjected to an axial compressive load was also 

announced in [3]. It was demonstrated in that paper that utilization of inadmissible assumptions as an 

inextensible beam axis and an absence of longitudinal displacement under applied load leads to 

incorrect conclusions assuming that stability can be modified by piezoelectric axial actuation. On the 

basis of Faria [2] and Zehetner and Irschik [3] considerations one can state that the stability and 

vibrations control is only possible for beams or columns with both ends preventing longitudinal 

displacements where the electric field is applied to bonded piezoceramic elements. 

Nonlinear lateral vibration of beams with both ends preventing axial displacement have been the 

subject of interest by many researchers who have used both classic mathematical approach and finite 

element method in order to formulate and solve mentioned problems. Semi-analytical approach based 

on Lagrange principle and the harmonic balance method for the non-linear dynamic response problem 

of beams with simply supported and clamped ends have been proposed by Azrar et al. [4]. Amplitude-

frequency dependence have been determined by means of mathematical formulation concentrated on 

free and forced vibrations. Moreover a very thorough discussion about methods for increasing the 

accucary of the obtained solution have been presented. General model for large vibration amplitudes 

for straight beams was been elaborated by Benamar et al. [5] who studied the amplitude influence on 

the mode shape and natural frequency of the systems. The author observed a great increase of beam 

curvatures near the clamps, causing a highly non-linear increase in bending strain with increasing 

deflection. Özkaya et al. [6] investigated the non-linear free and forced vibrations of an Euler-

Bernoulli beam with different immovable end conditions under concentrated mass. The effect of 

position, magnitude of the mass and different end conditions on the vibrations has been determined. 

Application of piezoceramic actuators and their effect on the stability and natural frequency of slender 

beams were studied by Przybylski [7]. The author considered axially compressed column, divided 

onto three segments, with both ends sliding in the direction perpendicular to the undeflected axis of 

the system. The middle segment consisted two piezoelectric actuators colocally and perfectly bonded 

to the host column. A weakening hinge but strengthened with a spring support between the second 

and third segments was taken into consideration and von Karman theory was utilised to describe the 

strain-displacement relation. A broader literature overview and wider area of study of beams with 

integrated ceramic piezoactuators can be found in [8]. 

In this paper the influence of induced axial piezoelectric force on static and dynamic response of 

Euler-Bernoulli beams with varying cross section and different end conditions preventing longitudinal 
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displacements is discussed. The structure inhomogeneity results from two identical piezoceramic 

patches perfectly bonded at specified localization at the top and bottom surfaces of the beam. Such 

prismatic and segmented system is characterized by different axial and bending stiffnesses along its 

length. That inhomogeneity directly influences the dynamic behaviour of the system and its critical 

buckling load. In order to control the axial force during lateral vibrations and enhance buckling load 

capacity, the internal axial compressing or tensile piezo force is induced dependently on the direction 

of the applied electric field vector. The main purpose of this work is to show the influence of an 

external axial force on the natural frequency with the stretching or compressing effect caused by 

piezoelectric force actuation for different lengths of piezo-patches and different beam ends 

conditions. Moreover the amplitude-frequency relation is investigated. 

2. Problem formulation 

For the nonlinear lateral vibrations of the beam von Karman theory is used according to which the 

axial inertia effects can be neglected due to their insignificance regarding the considered type of 

motion. These assumptions were originally proposed and are continuously applied for elastic plates 

[9]. The strain-displacement relation which corresponds to small strains and small displacements and 

the beam’s curvature are definite as follows: 
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where: (x,t) describes mid-plane strain, U(x,t) is the axial displacements, W(x,t) is the transverse 

displacement, (x,t) is the beam axis curvature. 

In the study four different supports of beam ends preventing longitudinal displacements are taken 

into consideration: both ends clamped, both ends pinned and mixed ends supports as clamped-pinned 

and clamped-guided. The analyzed scheme of three-segmented beam with two colocally mounted 

piezo patches for pinned-pinned supports is shown in figure 1. In the considered model the thickness 

of adhesive layer is treated as negligibly small. The width of piezo-patches (b) is equal to the width of 

the host beam. Piezosegment and beam cross sections are rectangular. It is assumed that beam is 

rectilinear (without geometrical imperfections) and made of a homogeneous elastic isotropic material. 

The piezoceramic actuators are made of an elastic and transversely isotropic material and are 

perfectly bonded to the beam along the whole length. The electric field applied is uniform and has a 

constant value for upper and bottom piezoelement. 
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a) b) 

Figure 1.   Scheme of the pinned-clamped beam with two piezoelectric patches colocally bounded at its 

central part (a), cross section of the analyzed beam (b) 

The constitutive equation for the piezoelectric material in one-dimensional problem is as follows: 

 
pp hVexE /31  (3) 

where: Ep denotes piezoelectric material Young’s modulus, e31 is the piezoelectric constant, V is the 

voltage applied to the piezo-element and hp is the piezoelectric material thickness. The residual force 

for the n - sectional beam with both ends preventing axial displacements was derived in [7]. 

According to these considerations equation describing residual force for three-segmented beam, as in 

figure 1, takes the form: 
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where: F is a piezoelectric force induced by the electric field,  is the coefficient identified as a 

relation of piezosegment axial stiffness to the host beam axial stiffness, l2 is the non-dimensional 

length of piezosegment defined as a relation of dimensional length L2 to the entire beam length L. 

Piezoelectric force F depends on piezoelement width b, piezoelectric material constant e31 and the 

applied voltage V [10]. When the force is induced by a single pair of piezoceramic actuators its value 

is equal to:  

VbeF 312 (5) 

The value of piezoelectric force F is limited by the maximal value of voltage allowed to be applied 

without the risk of depolarization of a piezoelectric material. That threshold value of electric field for 

standard materials is around 2000 to 3000 [V/mm].  

Stretching dynamic force appearing during transversal vibrations of the system shown in figure 1 

can be defined on the basis of relation strain-displacement described by Eq. 1 and takes the form: 
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After some manipulation of Eq. 6, the axial displacement at the end of each segment is equal to: 
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The imposed natural boundary conditions on the axial displacements of particular segments 

applicable to the laterally vibrating system, lead to the equality: 
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Introducing non-dimensional quantities and taking into account the initial axial load resulting from 

prescribed axial displacement and the piezoelectric residual force, the governing equation of 

transversal beam vibrations can be demonstrated as follows: 
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in which the axial force parameter has three components:     2222 sfpp ruD  , where: pu
2 is the 

non-dimensional force parameter resulting from a prescribed support displacement, fr
2 defines the 

non-dimensional residual force parameter, and s2( ) is the dynamic force dependent upon the 

oscillation amplitude on the basis of Eq. (8) according to: 
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The dimensionless parameters are defined through the substitutions: 
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and the following notation has been introduced: EpIp, EbIb - the bending stiffness of piezo patches and 

stiffness of a beam, respectively, , p, b - the material densities of the actuators and beam, 

respectively, Ap, Ab - the cross section area of piezopatches and beam, respectively,  - the natural 

frequency of the system, and t is time. 

As the solution and analysis of the problem need to cover all types of supports preventing 

longitudinal displacements of the beam ends, the boundary conditions have been divided into two 

groups. The first group contains the boundary conditions for all beams. For the clamped-pinned 

system from figure 1 the boundary conditions are: 
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where: I and II are the Roman numerals denoting the order of the derivative with respect to the space 

variable . For a guided support both the slope wI and the shear forces wIII are equal to zero. For a 

system with mixed type of supports adequate boundary conditions have to be chosen from those 

described above. 

The second group specifies continuity boundary conditions – equaltity of displacements, slopes, 

bending moments and shear forces at the ends of particular segments: 
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3. Approximate solutions

In order to solve the stated non-linear boundary problem the Lindsted-Poincare method has been 

chosen. Lateral displacements, axial dynamic force and vibrations frequency  are expanded into an 

exponential series with respect to the small amplitude parameter  : 
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where separation of space   and time   variable is described as: 
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Introducing Eq. 14-16 into equations of motion (Eq. 9) and dynamic axial force (Eq. 11) and 

equating the terms of respective   exponents to zero, an infinite set of motion and axial force 

equations is obtained, where the first four are: 
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Equations (19) - (22) are solved sequentially with the use of boundary conditions Eq. 12-13 into 

which expansions from Eq. 14-16 has been previously introduced. An analytical step-by-step process 

of solution of those equation has been given in [8]. The solution to Eq. 22 gives the relationship 

between the load parameter pD  and the first term 0 of the natural frequency . The second term of 

the frequency 2 is established on the basis of an orthogonality condition applied to Eq. 21 to which 

the solution of Eq. 20 has been previously introduced. Having computed 0 and 2 terms, the 

relationship between the natural frequency  and the vibration amplitude parameter  can be 

determined by using Eq. 16 with a customary restriction up to order of two terms. 

4. Numerical results 

In figure 2 the relationship between axial force parameter pu  and the natural frequency parameter  0 

for beams with different ends conditions and different piezosegment length has been sketched. The 

physical properties of the materials used are given in Table 1. 
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Table 1. Material properties of the beam and piezosegment 

Property Beam Piezo-patches 

Material model Aluminium Piezoceramic P-41 

E [GPa] 70.00 83.33 

31
d  [C/N] - 110-10 

h  [mm] 3.00 0.50 

b  [mm] 20.00 20.00 

 [kg/m3] 2720 7450 

max
U  [V/mm] - 2000 

a) 
b) 

c) d) 

Figure 2.   The first natural frequency ω0 versus non-dimensional load pu for different lengths of 

piezosegment and different beam’s supports 
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Small icons included in all figures visualize the way of beam’s supporting. The curves sketched 

with dashed line corresponds to systems without piezopatches, whereas solid lines concern beams 

with different lengths of piezosegment. The critical forces for each case can be read at points marked 

with a small circle at the load axis.  

The results presented in figure 2 in the form of frequency curves show how courses of those 

curves and the critical forces are affected when piezo stripes of different lengths are centrally attached 

to beams of different supports. Comparing the results one can state that for identical piezosegment 

length the highest value of the critical force is obtained in the following order with respect to the 

beam ends support: clamped-clamped system (figure 2a), clamped-pinned (figure 2b), pinned-pinned 

(figure 2c) and clamped-guided (figure 2d). Due to a simultaneous influence of two factors i.e. the 

bending stiffness and the mass per unit length, the natural frequency at zero external load changes 

irregularly with an increase of the piezo lengths for different ways of system supporting. Hence one 

can state that physical and geometrical properties of piezoelements such as their width, length, 

thickness and type of piezoceramic material determine not only the maximum value of the electric 

field but also affect the alteration range of both the buckling load and the frequency. 

In order to investigate the influence of piezo actuation on the natural vibrations, the non-

dimensional value of piezoelectric force f parameter of the value equal to the critical buckling force 

for a uniform prismatic pinned-pinned beam have been chosen: 

 L
IE

P
f

bb

cr  (23) 

Despite the fact that all calculations in the study are made in non-dimensional form, an analysis of 

practical model should also be demonstrated. To verify the applied electric field necessary to generate 

the piezoelectric force f = π the beam of L = 1.20 [m] has been selected. The critical buckling load for 

mentioned beam on the basis of Eq. 23 is equal to 21.59 [N], hence an individual piezeceramic 

actuator should generate a force equal to 10.80 [N]. To do that, the necessary voltage of the applied 

electric field should reach the value of: 

77.64
2 31


pp

cr

app
Edb

P
V  [V] (24) 

In accordance to the producer recommendation, the maximal applied voltage without risk of 

depolarisation of piezoceramics should be lower than Vmax = Umax hp = 2000 [V]. Based on this 

considerations the non-dimensional piezoelectric force f = ± π can be safely treated as a control value 

for actuation purposes in the considered system. It should be noted here that according to Eq. 4 the 
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piezoelectric force is equal to the residual force fr only when the length of piezo stripes (l2) is identical 

as the length of the whole beam (l), in other cases fr  <  f. 

An induction of the piezoelectric force can be treated as an introduction of a compressive or 

tensile axial force to the beam to counteract the stresses that will result from the applied external load. 

Hence the piezoelectric actuation is a tool for alteration both the critical force and the vibrations 

frequency. The modification of the natural frequency curves and the buckling loads for beams with 

different supports and constant piezosegment length (l2 = 0.4) has been demonstrated in figure 3. 

a) b) 

c) d) 

Figure 3.   Influence of piezoelectric actuation on the natural vibration frequency of beams with 

different ends supports 

Regardless of the way of beam supporting, an induction of the tensile piezoelectric force results 

in increasing the vibration frequency in relation to the system without actuation. On the other hand a 

compressive piezoelectric force reduces system natural frequency and its buckling force. The smallest 

influence on the stated objectives occurs for a beam with both end clamped. In that case one can 
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notice 5.01% relative growth in the buckling load for f = -  and  2.42% increase in the frequency for 

pu = 0 at the same level of the piezoelectric force. For the clamped-guided system the relevant 

changes are: 14.21% growth in the buckling load for f = -  and  13.69% increase in the frequency for 

an externally unloaded system. 

An effect of the piezoelectric actuation on the non-linear vibration frequency for amplitude 

 = 3, two lengths of piezosegment (l2 = 0.2, 0.8) and three different axial force pu are presented 

in Table 2. 

Table 2. Non-linear to linear frequency for piezo actuated beam 

0



 

pu 

l2 = 0.2 l2 = 0.8 

2


f  f  = 0 

2


f  

2


f  f  = 0 

2


f  

2 

0 

-2 

1.37277 

1.31633 

1.27477 

1.38673 

1.32630 

1.28226 

1.40177 

1.33693 

1.29017 

1.25304 

1.22929 

1.20961 

1.28019 

1.25136 

1.22790 

1.31387 

1.27812 

1.24969 

The compressing piezoelectric force, which diminishes the frequency 0 at each level of the 

external load, causes an increase in the nonlinear frequency  , whereas the stretching force acts in an 

opposite way. 

5. Conclusions 

The problem of stability and transversal vibrations of the Euler-Bernoulli beam with different ends 

support conditions and a pair of perfectly bonded piezoelectric patches is discussed. Due to geometric 

non-linearity, the Lindsted-Poincare method has been applied. The piezoelectric force induced in the 

system can either enlarge compression or counteract prescribed axial support displacement what 

depends on the direction of the electric field. In the paper two opposite working operations of the 

piezoelectric force have been taken into considerations.  

The less rigid system the higher influence of the residual force on both the buckling force and 

transversal vibration frequency has been observed. The geometry of piezo stripes and the type of 

piezoelectric material has also a crucial effect on the natural vibration frequency and the critical force. 

It should be noted that geometry of the considered structure is one of possible configurations of the 

system. A greater number of piezo patches with different localizations and appropriate voltages may 

be used to directly correct the dynamic features and stability of piezo-beam systems in actuated 

engineering structures.  
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Vibrations of a double-string complex system subjected 

to uniformly distributed moving forces

(VIB048-15) 

Jarosław Rusin 

Abstract: In this paper the dynamic response of a complex double-string system 

traversed by uniformly distributed moving load is considered. The conflation is 

represented by a set of linear springs in Winkler model. The classical solution of the 

response of complex systems subjected to forces moving with a constant velocity has 

a form of an infinite series. The main goal of this paper is to show that in the 

considered case part of the solution can be presented in a closed, analytical form 

instead of an infinite series. The presented method to search for a solution in a closed, 

analytical form is based on the observation that the solution of the system of partial 

differential equations in the form of an infinite series is also a solution of an 

appropriate system of ordinary differential equations. The dynamic response of 

complex systems may be used for the analysis the complex models of moving load. 

Keywords: vibration complex systems, moving loads, closed-form solutions. 

1. Introduction

Complex systems are very important in aeronautical, civil and mechanical engineering as structural 

members with high strength to weight ratios. This problem occurs in dynamics of bridges, aircrafts, 

space shuttles, missiles as well as railways and motorways. Dynamics response of complex string 

systems has been studied by many authors in the recent decades. The problem of a dynamic response 

of a structure subjected to moving loads is interesting and important whereby various models of 

moving loads have been assumed Ref. [1,2,12]. A string as a simple model of a one-dimensional 

continuous system resistant to tension but not to bending is often used in analysis of numerous 

engineering structures and has been a subject of great scientific interest for a considerable time. This 

follows from the fact that the vibrations of a string are described by the wave differential equation. 

This allows one to see the wave effect in a string, contrary to many more complex systems where it 

might be either not present or not clearly visible. An important technological extension of a single 

string, beam or plate is that of the double-string, double-beam or string-beam system. Various aspects 

of vibration of the complex strings and beams has been considered in the papers Ref. [1-3,5-9,11,12-

15]. The paper includes the study of a dynamic behavior of a finite, simply supported double-string 

complex system subject to uniformly distributed moving forces with a constant velocity on the top 

string. The strings are identical, parallel one upon the other and continuously coupled by a linear 

443



Winkler elastic element. The classical solution has a form of an infinite series. The main goal of the 

paper is to show that the aperiodic part of the solution can be presented in a closed form instead of an 

infinite series. In the paper the solutions are derived in a closed form Ref. [10-12]. The presented 

method to finding a solution in a closed form is based on the observation that the solution of the 

system of partial differential equations in the form of an infinite series is also a solution of an 

appropriate system of ordinary differential equations Ref. [3,11-13]. The solution for the dynamic 

response of the composite strings under moving force is important because it can be used also in order 

to find the solution for other types of moving loads. The double string connected in parallel by linear 

elastic elements can be studied as a theoretical model of composite system or prestressed structure in 

which coupling effects and transverse wave effects are taken into account. 

2. Mathematical model and governing equation

Let us consider the vibration of complex system consist of couple strings interface by a linear springs 

under axial compression N excited by a force p(x,t) moving with a constant velocity v as on Fig.1.  

N

 txp ,

N

N

N

L  txw ,2

 txw ,1

x

kk

v

mEA ,

mEA,

Figure 1.   Double-string system under a moving force. 

The solution of the system in the classical forms is investigated. It is possible to find the closed forms 

of the deflection functions wi(x,t). The letter i ={1,2} denote the first and the second string. The 

vibration of double-string system is governed by two conjugate partial differential equations: 
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where m is the mass spread over the length of the string system, k denotes the stiffness modulus of a 

Winkler elastic element, and furthermore, EA is the axial stiffness of the strings, E denotes Young’s 

modulus of elasticity and A is the area of the cross-section of the strings. And the boundary 

conditions: 

     .2,1,0,,0,0  itLwtw ii
(2) 
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The function p(x,t) could occur in four cases as on Fig.2. The entrance on the top of strings system, 

Fig.2 case (1), can be written as: 

   ,, xtvHqtxp   (3) 

where q is the intensity of the load and H(.) denotes Heaviside step function. When the load is entirely 

on the string but its scope is less than the length of the complex system a < L, Fig.2 case (2), the load 

function has the form: 

      ., axtvHxtvHqtxp   (4) 

L

a)1(
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Figure 2.   Passage combinations of the moving uniformly distributed load. 

In contrast, when the force is entirely on the top of double-string and its range is a ≥ L, Fig.2 case (3), 

the load is exactly q. And the last case an exit, Fig.2 case (4), which can be shown as: 

    .1, xtvHqtxp   (5) 

For further consideration we introduce dimensionless variables: 

   .1,0,1,0,,  TLtvTLx   (6) 

System of Eq. (1) takes the form: 
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where p(, T) describes the position of the intensity of the load and: 

.,,, 22 NLqqNLkkvvmNv ooss    (8) 

The quantity vs represents velocity of the transverse wave in the system of double-string. The Roman 

numerals denote differentiation with respect to the spatial coordinate , and the dots denote 

differentiation with respect to time T. And the boundary conditions Eq. (2) take the form: 

     ,2,1,0,1,0,0  iTwTw ii
 (9) 
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whereas the initial conditions are the following: 

     .2,1,00,,00,  iww ii   (10) 

Let us introduce two new functions: 

           .,,,,,,, 2121 TwTwTwTwTwTw III   (11) 

From Eq.(8) we obtain two new differential equations for the functions wI(,T) and wII(,T): 

     ,,,, 2 TpqTwTw oI
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II
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Eq. (12) describes vibrations of a single string, while Eq. (13) describes vibrations of a single string 

resting on elastic Winkler support with parameter 2k (2ko). From (11) it follows that: 

              .2,,,,2,,, 21 TwTwTwTwTwTw IIIIII    (14)

The solutions to Eqs. (12) and (13) for boundary conditions (9) are assumed to be in the form of the 

sine series: 

     .,,sin,
1

IIIJnTyTw
n

JnJ 




 (15) 

By substituting expression (15) into Eqs. (12) and (13) and using the orthogonalization method one 

obtains the following set of uncoupled ordinary differential equations: 

    ,sin2 22  nqTyTy JnJnJn

  (16) 

where for J=I,  Jn =  In = nπ/η, and for J=II,  Jn = IIn = [(nπ)2+2ko]
½/η.

These functions fulfill the initial conditions 
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The solutionto Eq. (18) has the form: 

    1,T0for,dsinsin
2

02
 

T

Jn

Jn

Jn nT
q

Ty 


 (18) 
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After integrating Eq. (18) we obtain the classical solution for the vibrations of the system of the 

strings in the form of infinite series. Below we present a method for finding the solution also in a 

closed analytic form. Let the function f(ξ,T) for ξ[0,1], T[0,1] be given by the series: 
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where k, r, s  N0, quantities ai (i = 0, 2, …, k) are real numbers such that ao  0. To function (20) one 

can associate the following partial differential equation: 
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 (21) 

where (.) denote the Dirac delta and Eq. (21) has a solution with the boundary conditions: 

       
,0,1,0

22
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jj
TfTf  (22) 

wherein [f(ξ,T)](2j) = d2j f(ξ,T)/dξ2j and j = 0, 1, ..., k1. 

This can be verified by solving (21) using finite Fourier sine transform. After solving (21) by, for 

example, Laplace transform and taking into account the boundary conditions (22) we get the function 

f(ξ,T) in a closed-form. 

3. Entrance of moving load 

Let us consider vibrations of a double-string complex system of finite length L subjected to an 

entrance of a load moving with a constant velocity v. The position of the entry force describes p(, T) 

= H(T). From Eq. (18) it follows that the solutions Eqs. (12) and (13) for the initial condition (10) 

are sums of particular integrals wI
A(,T), wII

A(,T) and general integrals wI
S(,T), wII

S(,T): 
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The functions wI
A(,T) and wII

A(,T) are aperiodic vibrations and wI
S(,T) and wII

S(,T) are free

vibrations of the strings. Now we will present the aperiodic solutions wI
A(,T) given by the first series

in expression (23) in a closed analytical form. This function consists of two sums, where we assume 

that a solution first sum is in the form of a polynomial: 
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where ao, …, a3 are certain constants. Then the solution is as follows: 
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Let us notice an important fact that a second sum is a solution not only of the partial differential 

equations (12) but also of the ordinary equation: 
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for the boundary conditions (9). The variable T in Eq. (27) is the only parameter that describes the 

location of the moving force on the string. Using the method described by Eqs. (20)–(22) for solving 

the second sum we can obtain the functions wI2
A(,T) in a closed-form:
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Also the function wI
S(,T) can be presented in the closed-form because. This function is also a

solution of the equation: 
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and hence can be presented in the closed-form depending on the parameter η, when η  1 we obtain: 
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A part of the aperiodic solution wII
A(,T) given by the first series in the expression (24) is a solution

not only of the partial differential equation (13) but also of the ordinary equation: 
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The closed-form of the solution wII1
A(,T) has the form:
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The second series in the expression (24) can be also present in a closed-form depending on the 

parameter η. 

  

Figure 3.   Deflection wi(,T) and rotationi(,T) of double-string system under the entrance load. 

4. Passage of a uniformly distributed load for a < L 

Let the moving force be shorter than the length of the strings complex. The position of the passage 

load describes p(, T) = H(T)  H(Tao), where ao = a/L. The classic solution wI (,T) has form: 
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For example, the first series Eq. (33) fulfills the following ordinary differential equation: 
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The solution of Eq. (34) when η  1 takes the form: 
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It is known the classic-form solutions a function wII(,T) but it has very extensive form dependent on 

a number of parameters. According to the procedure from Eqs. (20)–(22) it is easy to find a closed-
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form of aperiodic function wI
A(,T) and wII

A(,T) but for wI
S(,T) and wII

S(,T)  it is possible to obtain

only a part free vibration in analytical form. 

Figure 4.   Deflection wi(,T) and rotationi(,T) of double-string system for a <  L (ao <  1). 

5. Passage of a uniformly distributed load for a  L and exit

We consider a vibration caused by uniformly distributed load when the load is on the whole length of 

the string system. The function p(, T) = 1. The classic solution of wI (,T) and wII (,T) are known, 

also closed-forms can be found.  

Furthermore, the dynamic component of the tension in the strings is given by: 
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Figure 5.   Deflection wi(,T) and rotationi(,T) of double-string system for a   L (ao  1). 

Location of the intensity of the load p(, T) during the exit can be written as 1  H(T). But this is 

the only difference between the passing for a   L (ao  1) and the entry of load. So both forms 

solutions are known. 
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Figure 6.   Deflection wi(,T) and rotationi(,T) of double-string system under the exit load. 

6. Some numerical results 

In Figures 3-6, we present deflections wi(,T) and rotationsi(,T) of double-string complex system 

under the uniform partially distributed moving load. And the following dimensionless values of the 

parameters are used in the numerical calculations: n = 1000, ko = 100, qo = 5, ao = 0.15, T = {0.25, 

0.50, 0.75} and η = {0.1, 0.2, 0.5}. The results for different location of the moving force are presented 

in graphical form in Figs. 3-6. The continuous line represents the functions of loaded string. The 

dashed line shows functions of the second string for which the load is transferred with the coupling. 

7. Conclusions 

The dynamics response of an elastically connected double-string complex system loaded by a uniform 

distributed moving force, in four cases of passing, moving with a constant velocity has been studied. 

The motion of the system is described by a non-homogeneous conjugate set of two partial differential 

equations and vibrations can be described by ordinary system equations. The classical solution for 

transverse displacement function has a form of a sum of two infinite series. It has been shown that 

aperiodic and a part of free vibrations of strings system of the series can be presented in a closed, 

analytical form. The closed solutions take different forms depending if the velocity v of a moving 

force is smaller, equal or larger than the shear wave velocity vis of the strings. This follows from the 

fact that in string wave phenomena may occur. The presented closed solutions have important 

meaning in the case when we consider the tension force in the string. The closed solutions improve 

the preciseness of the classical sine series expansion of the complex system of strings response by 

considering the vibration as the solution not only to partial of the differential equation but also to 

appropriate ordinary differential equation. So the closed-form allows analyzing the vibration 

phenomena due to moving loads without performing numerical calculations. Having determined the 

closed-form allows us to assess a quantity of necessary function approximation to determine the 

classical solution. 
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On the dynamics of solitary wave solutions supported by the model 
of mutually penetrating continua

(VIB247-15)

Sergii Skurativskyi, Vjacheslav Danylenko

Abstract: The model we deal with is the mathematical model for mutually pen-
etrating continua one of which is the carrying medium obeying the wave equa-
tion whereas the other one is the oscillating inclusion described by the equation
for oscillators. These equations of motion are closed by the cubic constitutive
equation for the carrying medium. Studying the wave solutions we reduce this
model to a plane dynamical system of Hamiltonian type. This allows us to
derive the relation describing the homoclinic trajectory going through the ori-
gin and obtain the solitary wave with infinite support. Moreover, there exist
a limiting solitary wave with finite support, i.e. compacton. To model the
solitary waves dynamics, we construct the three level finite-difference numeri-
cal scheme and study its stability. We are interested in the interaction of the
pair of solitary waves. It turns out that the collisions of solitary waves have
non-elastic character but the shapes of waves after collisions are preserved.

1. Introduction

Natural geomaterials are highly heterogeneous and interact intensively with the environment.

In these conditions the peculiarities of internal medium’s structure, namely discreteness

and oscillating dynamics [1, 6], can manifest. To incorporate these features of media, the

mathematical model for mutually penetrating continua is used [5,9]. This model consists of

the wave equation for carrying medium and equations of motion for oscillating continuum

which is regarded as the set of partial oscillators. To generalize the linear counterpart of

this model [5, 9], the nonlinearity has been incorporated in the equation of state for carring

medium [2, 3, 7] and in the kinetics for oscillator’s equations of motion. We thus are going

to treat the following mathematical model

ρ
∂2u

∂t2
=
∂σ

∂x
−mρ

∂2w

∂t2
,

∂2w

∂t2
+Φ(w − u) = 0, (1)

where ρ is medium’s density, u and w are the displacements of carrying medium and oscillator

from the rest state, mρ is the density of oscillating continuum. To close model (1), we apply

the cubic constitutive equation for the carrying medium σ = e1ux + e3u
3
x and Φ(x) =

ω2x+ δx3. The novelty of this model lies in the taking into account the cubic terms in the

expressions for σ and Φ.
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In this report we consider the properties of wave solutions having the following form

u = U(s), w =W (s), s = x−Dt, (2)

where the parameter D is a constant velocity of the wave front. Inserting (2) into model (1),

it easy to see that the functions U and W satisfy the dynamical system

D2U ′ = ρ−1σ
(
U ′)−mD2W ′, W ′′ +Ω2 (W − U) + δD−1 (W − U)3 = 0,

where Ω = ωD−1.

This system can be written in the form

W ′ = α1R+ α3R
3, U ′ = R, (α1 + 3α3R

2)R′ +Ω2(W − U) + δD−2(W − U)3 = 0, (3)

where α1 =
e1 −D2ρ

mρD2
, α3 =

e3
mρD2

. Through the report we fix e1 = 1, e3 = 0.5, m = 0.6,

ω = 0.9 in numerical treatments.

1.1. Solitary waves in the model with the linear equation of motion for oscillat-

ing inclusions

At first, consider system (3) at δ = 0. Excluding the variable W , system (3) is reduced to

the planar system (
α1 + 3α3R

2)2R′ = Z
(
α1 + 3α3R

2)2 ,(
α1 + 3α3R

2)2 Z′ = −
[
6α3RZ

2 +Ω2 ((α1 − 1)R+ α3R
3)] (α1 + 3α3R

2) , (4)

which admits the Hamiltonian

H =
1

2
Z2 (α1 + 3α3R

2)2 + Ω2

2

[
α2
3R

6 +
4α1 − 3

2
α3R

4 +
(
α2
1 − α1

)
R2

]
= const.

Since solitary waves correspond to homoclinic loops, we thus need to state the conditions

when saddle separatrices form a loop. Omitting the detail description [8] of phase plane

of dynamical system (4), let us consider the fixed saddle points and their separatrices only.

System (4) has the fixed points O(0; 0) and A± = ±
√

(1− α1)/α3 if (1 − α1)/α3 > 0. It

easy to see that the origin is a center at α1 < 0, whereas it is a saddle if 0 < α1 < 1 .

Therefore, we can restrict ourself by the case when 0 < α1 < 1 only. So, the homoclinic

trajectories that go through the origin satisfy the equation H = 0. From this it follows the

relation for Z = Z(R) and the expression s−s0 =
∫
dR/Z(R) for homoclinic loop which can

be written in the explicit form

s− s0 =
3

2Ω
arcsin

(
4α3r − 3 + 4α1√

9− 8α1

)
− 1

2Ω

√
α1

1− α1
×

ln

(
1

r
+

3α3 − 4α1α3

4 (α1 − α2
1)

+

√{
1

r
+

3α3 − 4α1α3

4 (α1 − α2
1)

}2

− α2
3 (9− 8α1)

16 (α1 − α2
1)

2

)∣∣∣∣∣
r

r0

,

(5)
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a b

Figure 1. The phase portraits for system (4) at a: α1 < 0 (D = 0.9) and b: α1 = 0 (D = 1).

where r = R2. The typical phase portrait of dynamical system (4) is depicted in fig. 1a.

The pair of homoclinic orbits are drawn with the bold curves. Solution (5) corresponds to

the soliton solution with infinite support at 0 < α1 < 1.

When α1 tends to zero, the angles between separatrices of saddle point O are growing. As

a result, at α1 = 0 we obtain the degenerate phase portrait presented in fig.1b. The bold lines

mark the orbits corresponding to solitary wave solutions with finite support (compacton).

These orbits are described by the following expressions

R = U ′
s =


√

3
2α3

sin
(
Ωs
3

)
, Ωs

3
∈ [0;π]

0, Ωs
3
/∈ [0;π].

This regime can be thought as a limit state for solution (5) with infinite support.

1.2. Homoclinic loops in the model with cubic nonlinearity in the equation of

motion for oscillating inclusions

If δ ̸= 0, then system (3) does not reduce to the dynamical system in the plane (R;R′). But

the first integral for (3) can still be derived in the form

I = Ω2 (W − U)2 +
δ

2D2
(W − U)4 + α2

3R
6 +

4α1 − 3

2
α3R

4 +
(
α2
1 − α1

)
R2.

Consider the position and the form of homoclinic trajectories when the parameter δ is

varied. Since homoclinic loops are described by the level curve I = 0, we plot the set of

curve I(δ) = 0 (fig.2). Starting from the loop I(0) = 0 which coincides with the orbits of

fig.1a, we see that increasing δ causes the attenuation of loop’s size along vertical exis. If δ

decreases, loop’s size grows, but at δ0 the additional heterocycle connecting four new saddle

points appears. The bifurcational value δ0 can be derived via analysing the function I(δ).
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Figure 2. Left: Position of level curves I(δ) = 0 at different values of δ. Curve 1 is

plotted at δ = 0, curve 2 at δ0, curve 3 at δ = −1.5 > δ0, curve 4 at δ = −2.7 < δ0. Right:

Homoclinic trajectories from the left diagram corresponding to δ = −2.7 < δ0 (upper panel)

and δ = −1.5 > δ0 (lower panel).

Namely, solving the biquadratic equation I = 0 with respect to W − U , several branches

of level curves are obtained. The condition of contact for two branches leads us to a qubic

equation with respect to R2 with zero discriminant. Then δ0 = −α3Ω
4D2

(α1−1)2
or δ0 = 27α3Ω

4D2

α2
1(9−8α1)

.

So, if D = 0.9, then δ0 = −2.24732. From the figure 2 it follows that for δ < δ0

the homoclinic loops are placed in the vertical quarters of the phase plane. Note that the

profiles of the resulting solitary waves are different (fig.2(right panel)), namely, at δ < δ0 the

U profile looks like a bell-shape curve, whereas at δ > δ0 it is a kink-like regime.

1.3. The numerical scheme for the model (1)

To model the soliton dynamics, we construct the three level finite-difference numerical scheme

for model (1) and study its stability.

Let us construct the numerical scheme for model (1) in the region Σ = [0 ≤ x ≤ L] ×
[0 ≤ t ≤ T ] with grid lines x = ih and t = jτ , where h, τ are constant, i = 1...N . Consider

three level numerical scheme. Denote u = u (tj+1), v = u (tj), q = u (tj−1), and K =

w (tj+1), G = w (tj), F = w (tj−1). We use the following difference approximation of

derivatives

∂2u

∂t2
≈ ui − 2vi + qi

τ2
,

∂2u

∂x2
≈ r

ui−1 − 2ui + ui+1

h2
+ (1− r)

vi−1 − 2vi + vi+1

h2
,

∂u

∂x
≈ vi+1 − vi−1

2h
,

∂2w

∂t2
≈ Ki − 2Gi + Fi

τ2
, w − u ≈ 3Gi − Fi

2
− 3vi − qi

2
≡ ψi.

Thus, if r ̸= 0, then we obtain the three level implicit scheme:

Aiui−1 + Ciui +Biui+1 = Yi, Ki = 2Gi − Fi − τ2ω2ψi − τ2δψ3
i , (6)
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Figure 3. The construction of initial data for numerical scheme.

where Ai = Bi =
r

h2
φ, Ci = −2

r

h2
φ− 1

τ2
, φ = ρ−1

(
e1 + 3e3

(vi+1 − vi−1

2h

)2)
,

Yi = −

(
φ
vi−1 − 2vi + vi+1

h2
(1− r) +mω2ψi +mδψ3

i +
2vi − qi
τ2

)
.

System of algebraic equations (6) can be solved by the sweep method. The necessary

conditions of the sweep method stability (|Ai| + |Bi| ≤ |Ci| ) are fulfilled. To get the

restrictions for spatial and temporal steps, the Fourier stability method, being applied to

linearized scheme (6), is used. Let us fix the values of the parameters e1 = 1, e3 = 0.5, ρ = 1,

ω = 0.9, m = 0.6, D = 0.9, and the parameters of the numerical scheme L = 30, N = 200,

r = 0.3, h = L/N , τ = 0.05.

Let us construct the initial data vi, qi, Gi, Fi for numerical simulation on the base of

solitary waves. To do this, we integrate dynamical system (4) with initial data R(0) = 10−8,

Z(0) = 0, s ∈ [0;L] and choose the right homoclinic loop in the phase portrait (fig.1). Then

the profiles of W (s), U(s), and R(s) can be derived. Joining the proper arrays, we can build

the profile in the form of arch:

v = U(ih) ∪ U(L− ih), q = u(x+ τD) = [U(ih) + τDR(ih)] ∪ [U(L− ih) + τDR(L− ih)] .

The arrays G and F are formed in similar manner. Combining two arches and continuing

the steady solutions at the ends of graph, we get more complicated profile.The sequence of

steps for profile construction is depicted in figure 3 in detail. We apply the fixed boundary

conditions, i.e. u(x = 0, t) = v1, u(x = Kh, t) = vK , where K is the length of an array.

Starting from the two-arch initial data, we see (fig.4) that solitary waves move to each

other, vanish during approaching, and appear with negative amplitude and shift of phases.

After collision in the zones between waves some ripples are revealed. Secondary collision of
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Figure 4. The propagation of solitary waves at δ = 0 starting from the initial prifile depicted

in the figure 3.

waves are watched also. Note that the simulation of compacton solutions displays similar

properties.

Figure 5. Solitary waves dynamics at δ = −0.2 and δ = 1.3.

Propagation of solitary waves at δ ̸= 0 depends on the sign of δ. Analysing the diagrams

of figures 5, we see that for δ > 0 the collision of waves is similar to the collision at δ = 0.

Behaviour of waves after interaction does not change essentially when δ < 0 and close to

zero. But at δ = −0.3 after collision the amplitude of solution is increasing in the place of

soliton’s intersection (fig.6) and after a while the solution is destroyed.

This suggests that we encounter the unstable interaction of solitary waves or the nu-
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Figure 6. Solitary waves dynamics at δ = −0.3. In the right panel the curve 1 is the initial

profile, whereas other curves 2 are the forms of solutions just before blowup.

merical scheme we used possesses spurious solutions. But if we take half spatial step and

increase the scheme parameter r up to 0.8, the scenario of solitary waves collision is not

changed qualitatively. Therefore, the assertion on the unstable nature of collision is more

preferable.

2. Conclusions

So, in this report, we have presented the novel nonlinear generalization of model for media

with oscillating inclusions. It is important for application that the new parameters e3 and

δ have clear physical meaning. As it was shown in subsections 1.1 and 1.2, this model

possesses the solitary waves of different types including compactons. We have considered

the conditions of their existence and bifurcations when the parameters of nonlinearity were

varied. The exact solutions describing the solitary waves with both unbounded and compact

support were derived. Analysing the expression (5) and Fig. 2a, we should emphasize that the

characteristics of solitary waves crucially depend on the dynamics of oscillating inclusions. To

study the properties of solitary waves and their interactions, we have proposed the effective

numerical scheme based on the finite difference approximation of the continious model. In

particular, we have found out the conditions when the stable propagation of solitons and

their collisions are observed. It turned out that the nonlinearity of the oscillating dynamics

describing by Φ affects not only the form of solitary waves but their stability properties

in collisions (Fig. 6). Finally, there are solitary waves moving without preserving of their

selfsimilar shapes. While the numerical results concerning the stable properties of single

solitary wave can be confirmed by analytical treatments [10], the studies of wave collisions

require mostly the application of improved numerical schemes. The results presented above
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can be useful for modelling the behaviour of complex media in vibrational fields, for instance

when we deal with the intensification of extracting oil and natural gas [4].
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Simulation results of robot with differential drive 
moving on circular path

(MTR119-15)

Alexandr Štefek, Václav Křivánek, Yves T. Bergeon, Jean Motsch

Abstract: This article discusses basic principles of control of a robot with dif-
ferential drive and their application to design an circular path. Differentially
driven robot moves by use of two motors thus its constant rotation (without
any acceleration) can be considered as a constraint. In this case the robot
moves on path of a circular arc. It should be noted that circular arc is a func-
tion which does not fit all planed paths so some adaptations have to be made.
In later chapters two possible adaptation are presented and discussed. The first
adaptation is done by modifying known algorithm. The second one is author’s
own contribution to the problematic. Results are verified in a simulator.

1. Introduction

Path planning is a complex problem, which involves meeting physical constraints of un-

manned robot (entity), constraints of operating environment and other operational require-

ments. For Unmanned Ground Vehicle (UGV) the problem of path planning is mostly

reduced to two dimensional space. That is in contrast to Unmanned Aerial Vehicles (UAVs)

where path planning is always a three dimensional issue.

The paths can be designed by various techniques based on whether the system has to

traverse an area that is known, unknown, or partially known. Physical limitations, operating

environment and communication requirements then make the planning more complex. It is

essential to have an on-board processor to design end execute paths and trajectories.

Research into path planning is widely documented in fields of ground robotics and ma-

nipulation systems [8]. Path planning methods can be divided into several categories, based

on criteria like: nature of applications, operation environment, medium of operation and

path constraints. These criteria have then resulted in creation of variety of algorithms and

techniques. The predominant methods used in ground robotics are (i) the road map method,

(ii) the cell decomposition method, (iii) the potential field method.

Purpose of these methods is to generate routes for a robot to move from a start point to

a finish point. It is also important to note that these methods rely on accurate definition of

the environment. The environment is defined by a map, which contains known and unknown

obstacles. Finding a path between two points on the map is simplified by (i) discretization
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of the map into small areas or cells or by (ii) converting the map into a continuous field.

Hence, path planning can be classified as discrete or continuous. A suitable search algorithm

is then used to find a path connecting the start and finish points on this simplified map. The

road map and cell decomposition methods transform the environment into a discrete map,

while the potential field method transforms the map into a continuous function [9]. These

methods, which produce a path for a given map or an environment, are also called global path

planners. These methods transform the given environment into a searchable database [8].

For the rest of this paper the global path is considered to be known and set of check

points to be given. The issue at hand is how to cross from one point on the planned path

to another and simultaneously create optimal conditions to reach a third point.Previous

experience shows that usage of odometry and inappropriate algorithm can result in missing

the check points on the planned path, see figure 7.

The paper deals with description of a new algorithm used to pass through set of given

points based on splines [6]. The results are then compared with the commonly used method –

proportional control. This paper is separated into five sections. Section 2 contains description

of differential driven robot control. Section 3 deals with control algorithms alongside with

minimum control requirements included the motor motion dynamics. Section 4 describes

the simulation results. And finally section 5 contains summarized conclusion of the paper

and a plan for the future work in the issue.

For design of general algorithm three types of robot with differential drive were consid-

ered, see figure 1. The smallest one is ArduRobot controlled by Arduino. The medium-sized

one is DaNI driven by Single Board RIO by National Instruments. And the biggest one is

TurtleBot 2 managed by ROS (Robot Operating System). The aim for future work is to

apply the proposed algorithm of motion control onto all three platforms and to compare

their performance to the simulation results.

2. Robot with differential drive

Differentially driven robot is perhaps the simplest possible design for a ground-contact mobile

robot [3, 5]. Differentially driven robot consists of two wheels mounted to a common axis

controlled by separate motors, see figure 2. Its movement is done by use of kinematics.

Kinematics deals with relationship between control parameters (relative velocity of the two

wheels vr, vl) and the behavior of system in state space [4].

For the robot to rotate around a point, both left and right wheel have to follow a path

that moves around the Instantaneous center of rotation (ICC) at the same angular rate ω,

at each instant in time, and thus
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Figure 1. Three types of differentially driven robots. Notes: the pictures are not scaled.

From left to right side: (i) ArduRobot; (ii) DaNI; (iii) TurtleBot 2.

ω

(
R+

l

2

)
= vr, ω

(
R− l

2

)
= vl. (1)

where l is axis distance between the center of the two wheels, vl is the left wheel’s velocity

along the ground, vr is the right wheel’s velocity along the ground and R is the distance of

ICC to the midpoint between the two wheels [2]. Note that vl, vr, ω and R are all functions

of time. At any instant in time, solving for R and ω results in

R =
l(vl + vr)

2(vr − vl)
, ω =

vr − vl
l

. (2)

The equations above are in a standard form which is widely used (as an example see [4]).

Nevertheless, for practical implementation, the variable R (radius) becomes problematic,

when vr = vl (R becomes infinity, see equation 2, and robot is moving on a straight line).

Figure 2. Differentially driven kinematics.
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Figure 3. Relationship between two points on the robot path.

As the value of infinity is not usable in computer math implementation this case must be

strictly avoided. Thus the equations introduced above can be and have to be changed into

different form
ẋ

ẏ

ϕ̇

 =


cosϕ 0

sinϕ 0

0 2
l

 ·
 v

∆

 , (3)

where x, y are robot’s position coordinates in state space, ϕ is its orientation, v is its velocity,

∆ is half of difference in circumferential velocities of its wheels and l is the distance between

the wheels.

v =
vr + vl

2
, ∆ =

vr − vl
2

, (4)

r =
vl

2∆
, (5)

ω =
2∆

l
, (6)

where r is radius of rotation for planned path and ω is angular velocity of the whole robot.

If robot’s direction is straightforward then radius r approaches infinity, ω and ∆ is zero.

2.1. Traditional approach to control of differentially driven robot

The traditional approach to control differentially driven robot uses difference in angles.

Figure 3 depicts this situation. Compare there angles ϕ, α and (α − ϕ). In this case the

differential equation has form

ω = Kα, (7)

There is also a problem in appropriate setting of the proportional control coefficient K.

If the coefficient K is too low then the robot can even miss its goal. This type of differential

driven control robot is considered as an etalon for comparison with new approach presented

in the next chapters.
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3. Derivation of feedback-based control for circular path

Unfortunately, there is an occurence of delay between estimated and actual time of acceler-

ation and deacceleration(speedups and slowdowns) during the use of classic control method.

That results in integration of time errors. If startups and slowdowns occur too often, then

the whole dimetric-based measurement systems can show significant deviation. If it could

be assured that the angular velocity of both wheels is kept at a constant level during the

whole control process(or at least during its significant part), then the resulting trajectory

deviation would be kept to a minimum.

If we want to minimize the change in motor speeds during one part of the planned

path, then it is necessary to keep these speeds at constant level. Such path, where both

motors have constant speed is in shape of a circular arc. To plan adaptive control during the

movement of the robot on the circular arc, it is important to define feedback-based control

that constantly handles speeds of both motors on each point of the robots path. Taking

these requirements into considerations it is possible to reverse-engineer the feedback-based

control by the following method.

Two points can be connected by infinite amount of different circular arcs. But given

that the robot has a certain starting orientation which is in direction of a tangent line, then

there is only one acceptable circular arc to consider, e.g. figure 4.

The figure 3 describes the robot’s position and its relation to position of its goal (the

starting and the final orientations of the robot are of course also considered). When the

robot is moving from point A to point B, the relation between distance of points A and B

and radius of rotation can be expressed by equation 8.

Figure 4. Robot path compounded by circular segments.
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2 · r · sinα = |AB|,

sinα =
1
2
|AB|
r

.
(8)

Considering equation 5 and equation 6

ω =
v

r
= 2v

sinα

|AB| , (9)

the following set of equations can be easily derived with use of trigonometry

cos(α− ϕ) =
abx
|AB| ,

sin(α− ϕ) = − aby
|AB| , (10)

sin(α) = sin[(α− ϕ) + ϕ] = cos(α− ϕ) · sinϕ+ sin(α− ϕ) · cosϕ, (11)

sinα =
abx · sinϕ− aby · cosϕ

|AB| . (12)

Combining equation 9 and 12 gives

ω = 2v
abx sinϕ− aby cosϕ

|AB|2 . (13)

Compared to equation 6, the final form of feedback-based control is

ω =
2∆

l
= 2v

abx sinϕ− abycosϕ
|AB|2 , (14)

thus

∆ = vl
abxsinϕ− abycosϕ

|AB|2 . (15)

It can be interesting to note that according to equation 3 and equation 14 can be derived

ω = 2
abxẏ − abyẋ
|AB|2 . (16)

Let’s be reminded that

~AB = (abx; aby), |AB| =
√

(abx)2 + (aby)2. (17)

The equations 3, 4 and 15 define the final mathematical form of feedback-based control

for robot moving on circular path segments. Derived control has not any option to change

robot behavior. Thus Kc coefficient added to equation can play interesting role.

∆ = Kcvl
abxsinϕ− abycosϕ

|AB|2 . (18)

The equation 18 allows to run multiple experiments / fine-tune a path of a robot on

single line segment. In the next chapter two approaches will be compared to each other.

One using this form and the other being a classical one (proportional control for ω).
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4. Simulation results

This chapter discusses the results of the simulations. To be as close to real results as possible

the dynamic of motors was also considered. The comparison in this chapter was done with

use of simulation tools. A dynamic model of motor behavior had to be modeled to consider

its dynamic characteristic on the robot chassis.

4.1. Motor dynamics

Because two identical motors are used for one robot chassis, only one transfer function will

be defined. The common transfer function for single motor is

F (s) =
Y (s

U(s)
=

1

a2s2 + a1s+ 1
, (19)

where a2 = T1 · T2, a1 = T1 + T2, and T1, T2 are time constants. Thus from

α2ÿ + a1ẏ + y = u, (20)

we can obtain state differential equations of both left and right motor

ẋor = − 1

a2
· vr +

1

a2
· vsr, v̇r = −a1

a2
· vr, (21)

ẋol = − 1

a2
· vl +

1

a2
· vsl, v̇l = −a1

a2
· vl. (22)

In simulations the values T1 and T2 were set to 0.03 s. The simulation uses this list of

equations: 3, 4, 15, 21 and 22. Motor is modeled here as a complex system where input is

demanded angular velocity and output is real angular velocity.

4.2. Path comparison

For the purpose of comparison, the parameters have been set to lead to similar trajectories.

In figure 5 there are five trajectories based on the same originally planned path that is also

shown. Trajectory ’Robot A0’ is pure circular path (Kc is equal to 1), ’Robot A1’ uses

Kc = 4, ’Robot A2’ uses Kc = 8. Two trajectories ’Robot W1’ and ’Robot W2’ both use

the classical approach to motion control but with different increments of coefficient Kc . It

is interesting to note that trajectories ’Robot W1’ and ’Robot A1’ are nearly the same as

trajectories ’Robot W2’ and ’Robot A2’.

4.3. Limitation of centripetal acceleration

Centripetal acceleration is a very important parameter which has to be observed during robot

control. High values can lead to tipping of the robot. For approach presented in this paper

it is very easy to limit the centripetal acceleration to a desired interval by use of Kc. That
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Figure 5. Robots path, overview of all planned paths for different K and Kc.

can be done because the presented algorithm has robust stability (comparatively to figure

7 where the unstable behavior of classical approach is depicted for low value of gain K).

Figure 6 shows the centripetal acceleration in time. It should be noted that, for one segment

of a path (e.g. from point A to point B), ’Robot A0’ has constant centripetal acceleration.

The case when centripetal acceleration was strictly in the interval < −3; 3 >, was tested.

The both paths filtered and unfiltered were compared; difference between both is minimal.

It this case centripetal acceleration filtering do not play a significant role. The robot path

is nearly the same but the centripetal acceleration is low enough.

Figure 6. Centripetal acceleration, detailed view.
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Figure 7. The example of path for both approaches. Classical approach ’Robot W’ implies

instability around the second check point for low value of gain K.

5. Conclusion

The new approach to differential robot control was derived, presented and compared to

classical proportional approach. This approach can help the robot to move on a single

segment of its path with minimal changes to both angular velocities of wheels. Moreover

the extended version of control with Kc coefficient can play important role in limitation

of centripetal acceleration which has a substantial impact on stability of the robot chassis

during switching from one path segment to another one.

Possible future work can include on-the-move adaptations of Kc coefficient to find opti-

mal behavior and (sub)optimum of fitness function for given robot (see figure 1). The issue

is to compare real path of different approaches made by differential control robots. Very

useful appears to construct a portal as a cameras holder to observe the scene with robot.

Hence the quality of control process is transform to machine vision problem [1,3].

Proposed algorithm can be used not only for UGVs but also for UAVs as well, which are

then going to be able to copy the planned trajectory with minimum of changes caused by

dynamic effects of the environment [7]. For the implementation of the algorithm is needed

to extend the state space to 3D territory.
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The influence of pretensioner characteristic of four-point 

fastening system on the disabled driver behavior during  

frontal crash

(LIF201-15) 

Kamil Sybilski, Jerzy Małachowski 

Abstract: In case of disabled driver, task of seat belts (besides limiting longitudinal 

displacements) is stabilization of his body during maneuvers on the road. In particular 

it is important, when the driver is deprived of one of the limbs, which is additional 

support for him. In order to increase stability in most of the cases the four-point 

fastening systems are used. In best solutions these systems ensure continuous 

tensioning. The paper presents numerical model development, its sensitivity study and 

results of multivariate analysis for frontal crash cases of cars being driven by the 

disabled drivers. The numerical model includes nonlinear interaction between human 

body-seat belt system and human body response under dynamic conditions. The aim 

of this work is to estimate the impact of the pretensioner and the seat belts 

characteristics on biomechanics of the disabled driver body. The simulations were 

performed using dynamical system integration (explicit). Driver with disabilities was 

modelled using the modified Dummy Hybrid III 50th model, which was seated using 

gravity load before simulations. As the result of the performed numerical analysis the 

charts of dummy’s mass centre movement, angle of body rotation, head accelerations, 

forces between dummy and seat belts are presented. Based on those charts several 

biomechanical (injury) criteria factors were estimated (e.g. HIC and Nij). 

1. Introduction

Disabled persons are a big part of contemporary societies. In many cases they are well educated

and have very unique skills, which are widely sought on working market. Unfortunately very often 

they could not undertake any kind of activity because of lack of adapted infrastructure which is able 

to meet their requirements. It concerns especially people who live outside city centres where in many 

cases their mobility is limited. Therefore if they want to work they have to involve other people to 

help them get to the workplace or they have to buy car adapted to their disabilities or adapt already 

bought car in specialist workshop. In Europe and around the world there are a lot of this kind of 

workshops. Also there is a lot of institutions, which help disabled persons in purchasing of new cars 

and adaptation equipment. Among many solutions are commonly used four-point seat belts. They are 

mounted straight to the seat and their main task is increasing stability of driver body. One of their 

biggest advantages is symmetry and ability to tight fastening. But on the other hand their biggest 
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disadvantage is a lack of pulling out seat belts during frontal crash. The generated in such situation 

system of loads acting on the driver can be too high. Therefore authors decided to check impact of the 

application of pretensioner from three-point seat belts with four-point belts and various characteristics 

(stiffness) of the seat belts on safety of disabled driver. Investigations were performed based on 

dynamic analysis using finite element method (FEM) approach. 

2. Numerical model – assumptions and brief description

The main aim of the paper was to check impact of an application of pretensioner from three-point

seat belts with four-point belts and various characteristics of the their material on disabled driver 

safety. To meet such very challenging task the FE model was developed. It contained quadrant of C-

segment car [1], seat and dummy Hybrid III 50th [2, 3]. During numerical analysis the driver with 

paralyzed hands was considered. In such cases the driver has to use specialized handle on the steering 

wheel (Fig. 1). In numerical model it was reflected by the three cylinders fixed to the triangular plate 

using the 1D rigid connectors. Besides the connectors and sheathing car all elements during analyses 

were treated as a deformable. 

Simulations were performed in two steps. In the first one the subsidence of the dummy on seat 

and handle under gravity load was carried out. Then four-point seat belts were added to the numerical 

model (Fig. 1). To properly describe the seat belts operationa the following parts were taken into 

account: sliprings (in places where the seat belts change direction), pretensioner and retractor. The 

sliprings allow to change shortening of one 1D seat belt element into elongation of another 1D seat 

belt element keeping the same tension in both elements. Pretensioner and retractor were placed in 

bottom of the seat, where can be placed slipring and connector with existing in real car pretensioner 

and retractor. The pretensioner used in the model represent pyrotechnic device which spins the spool 

of a retractor and thanks to that the seat belts are reeled in. To control this process a pull-in versus 

time curve was defined. The retractor was controlled by load curves (pull in/out vs force) for loading 

and unloading phase respectively. The retractor allow seat belt to be paid out into a 1D belt element. 

It operates in one of two regimes: unlocked when the belt material is paid out or reeled in under 

constant tension and locked when assumed force-pullout relationship applies. The retractor is initially 

unlocked and it pull in belt until triggering of acceleration sensors (set to 2,5g.).  
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Figure 1.   Numerical model used during analysis. 

Because of limitation of described elements the seat belts had to be modeled using mix of 1D and 2D 

elements. The connection between them was modelled with 1D rigid elements on their ends. 

The same acceleration sensor (as for the pretensioner) was used to activate airbag placed in 

steering wheel. In numerical model simple airbag was used, in which pressure is defined by equation 

[4, 5]: 

1
p

v

c
p e

c


 
    
 

 (1) 

where: cp – heat capacity at constant pressure, cv – heat capacity at constant volume, ρ – density,  

e – specific internal energy of the gas. 

The filling of the airbag was realized by a specifying input mass flow rate. 

One of the most important issues of the paper is an accurate numerical description of the two 

interacting bodies. The presented computational investigations were based on the analytical 

considerations included in the papers [6, 7, 8]. It was assumed that in the performed analysis the 

following constitutive relations between contacting bodies are formulated, according to contact 

normal stress tensor, using penalty method: 

Nt t n  (1) 

where N N Nt g  and N  is the normal penalty factor. 

From the finite element formulation, the contact contribution for slave node k is formulated on 

the following equation: 

k T TC u F u K u
c c c c c c

     (2) 
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where cF is the contact force vector, T

cu  is a displacement vector for the contact elements and cK  is 

the contact stiffness matrix of the contact element containing the tangent stiffness matrix NK for the 

normal contact. 

Taking all above into consideration, the final global nonlinear element equation for penalty 

approach is as follows: 

  ( ) -c cMU K K U F t F   (3) 

where: M is the mass matrix, K is the stiffness matrix and vector F(t) describing external force. 

It should be concluded that the most challenging problem is the proper contact stiffness 

assessment which is strongly dependent on many factors. The contact process played a significant 

role due to its direct influence on the interaction process between contacting/interacting bodies. Thus, 

it was necessary to simulate the interaction between the segments of collaborating parts as accurately 

as possible. In explicit software, the interaction between two or more bodies is define using a so 

called penalty function approach [8]. For elements with different stiffness, the contact stiffness is 

determined by the following formula: 
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 

(4) 

where: SLSFAC – scaling factor, SFS and SFM – scaling factor for slave and master side, m1 and m2 – 

masses of master and slave nodes, ( )ct t  – initial time step dependent on the contact procedure (if 

the solution time step grows, ct  is reset to the current time step to prevent unstable behavior of the 

simulation). 

In the above formula, it is possible to observe that the contact stiffness depends, inter alia, on 

ct , which, in turn, directly influences the solution time step and can be placed in the following 

formula: 

 min ,c FEt C t t    (4) 

where: ct  – time step size dependent on the contact procedure, FEt  – time step size based on the 

discrete element (selected through all elements in the model), C – scale factor related to the CFL 

stability condition. 

The boundary conditions and crash process control were already described in the previous 

authors’ papers [9, 10]. 
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3. Simulation – main stages 

During numerical analysis the impact of limiting force for retractor and seat belts characteristic 

were analysed. In the first case force was changed within the range from 1175 N to infinity (retractor 

and pretensioner were disabled). In the second case seat belts characteristic (stiffness), both for 1D 

and 2D elements, was scaled. There was thus obtained a set of characteristics describing force versus 

engineering strain and stress versus strain (for 1D elements presented in Fig. 2). In the first case seat 

belt characteristics shown in Figure 2 as a 100% was implemented. In the second stage the limiting 

force equal to 4 700 N was used. 

During all performed simulations can be specify several similar stages. In the first step seat belts 

were rolled up, what minimized clearances between them and the dummy. Next the car started to slow 

down sharply, what caused triggering of the sensor and thereby activating pretensioners and filling 

airbag. In the next stage the dummy started to move on the seat which was accompanied by increasing 

reaction between the dummy and the seat belts. At the same time the airbag has been filled in and the 

dummy’s chest started pressing it. The filled airbag also rapidly pushed away dummy's hand towards 

the door. In the last stage the car has changed moving direction and dummy's head hit into the airbag. 

From that point the body started moving backward. 

 

Figure 2.   Characteristic force versus engineering strain for 1D seat belts used in analysis. 

4. Results – 1st case – limiting force for retractor 

In the first case limiting forces in retractor and pretensioner system was changed. It has 

significant impact on reaction between seat belts and dummy’s body (Fig. 3). It can be observed that 

in the second stage, when the pretensioner acted, the maximum force was obtained for the biggest 

limit. The lower limit, the lower the maximum force in the second stage was obtained. But in the next 
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stages this trend is clearly visible only for two groups: the two lowest limiting forces and others. For 

the first group maximal forces were much lower than in the other cases.  

Figure 3.   Comparison of reaction between seat belts and dummy. 

The limiting force has impact on acceleration of the dummy’s head (Fig. 4). The maximal value 

was obtained for a maximal limiting force. As in the previous case, the results can be divided into two 

groups. But this time for the first group can be included: disabled retractor and pretensioner, and 

liming forces: 1175N, 2350N and 4700N. For these cases, the maximum acceleration was lower by 

approximately 100 m/s2 than in the other one. 

Figure 4.   Comparison of acceleration of center of the head. 
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The course of acceleration had automatically influences the Head Injury Criterion (HIC) (Fig. 5). 

The lowest value was obtained for limiting force equal to 4700 N (similar to value from three-point 

seat belts). This indicates that both for three-point and four-point seat belts there is similar optimal 

limiting force. 

 

Figure 5.   Head Injury Criterion. 

The lower value of limiting forces means that the driver is less inhibited during crash by seat 

belts. It is better for his chest, but on the other hand his velocity is higher during hitting into airbag. 

Higher kinetic energy, especially head, must be absorbed by airbag.  

During the frontal crash the first part of the driver, which was in contact with the air bag, was 

the trunk. But during this interaction the forces acting between these bodies were very small. 

Therefore, the biggest part of the energy of the upper drivers body, must absorb belts, which 

depending on their stiffness and force limiting takes place on a shorter or longer distance. The only 

part of the body not hampered by external devices was the head. The inhibition resulted from  

a connection with the torso through the neck and the forces acting in it. At the hitting moment the 

neck was strongly tensioned and bended. It is visible in the Neck Injury Criterion (Nij) charts. The 

maximum value of the Nij coincides with the time of full deceleration of the head. The difference 

between each course of the chart is significant. However none of them approached the limit 1.  
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Figure 6.   Neck Injury Criterion. 

Equipment mounted on steering wheel for drivers with disabilities results in a significant change 

in the behavior of the body in the crash phase. The reason is a change in body position, which is very 

asymmetrical relative to a plane passing through the steering wheel. This occurs even when using 

four-point belts, which are fully symmetrical. In Figure 7 the angle of rotation of the arms for the 

analyzed cases is shown. The lowest angle (approx. 2 degree) occurs when seat belts are fixed. The 

biggest angle can be noticed for the smallest limits. 

Figure 7.   Angle of the shoulders rotation. 
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5. Results – 2nd case – change of the seat belts characteristic 

In the second case characteristic of the seat belts was changed. In Figure 8 the impact of the 

characteristics of the seat belts on the reaction force between them and the dummy is shown. It can be 

noticed that the increase of the seat belts stiffness results in the reaction force increase. The maximal 

obtained value was 15,6 kN and the lowest 9 kN. 

 

Figure 8.   Comparison of reaction between seat belts and dummy. 

Seat belts characteristics don’t have impact on acceleration of the dummy head (Fig. 9.) The 

maximal values were similar for each case. Thereby, the Head Injury Criterion also was almost the 

same for each seat belt stiffness.  

 

Figure 9.   Comparison of acceleration of center of the head. 
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The same situation appeared in the case of the Neck Injury Criterion (Nij) (Fig. 10). For each of 

the cases similar courses of the charts were obtained. Additionally, the maximum values were much 

smaller than the allowable limit.  

Figure 10.   Comparison of acceleration of center of the head. 

The stiffness change of the seat belts affected the angle of shoulders rotation (Fig. ).The smaller 

stiffness results in the larger angle of rotation. The change was not such significant. The difference 

between the extremes values reached 1,5 degree.  

Figure 11.   Angle of the shoulders rotation. 
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6. Summary and conclusions 

The paper presents results of research on the two key parameters of seat belts designed for 

disabled persons. The impact of limiting force and seat belts stiffness on driver safety was analyzed. 

Analyzing the obtained results it can be noticed that the limiting force increase affecting higher 

load on the dummy chest. This effect is strongly is unfavorable phenomenon. Finally, it increases the 

probability of a critical head injury by a driver. simultaneously the Nij value decrease is observed 

what is the positive and desirable phenomenon. 

Increasing the stiffness of the seat belts also increases the load on the dummy chest. Fortunately,  

it does not affect the value of the head and neck injury criterion.  

Taking into account all above aspects, , the best solution is to use the four-point seat belts with 

pretensioner and retractor from three-point version..  

The next part of the work will be focused on research of connection of left and right side of the 

four-point seat belts with pretensioner and its impact on disabled driver kinematics. 
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Double pendulum colliding with a rough obstacle

 (NON254-15)

Grażyna Sypniewska-Kamińska, Roman Starosta, Jan Awrejcewicz 

Abstract: The externally excited and damped vibrations of the double pendulum in the 

vertical plane are considered. The pendulum can collide with a rough obstacle many 

times during its motion. The pendulum is modeled as a piecewise smooth system. The 

differential equations govern the motion of the system in the relatively long time 

between the collisions. When a contact with the obstacle occurs, the pendulum 

exhibits a discontinuous behaviour. The velocities of both parts of the pendulum and 

the reaction forces are changing stepwise. An important element of the solving 

algorithm is aimed on the continuous tracking of the position of the pendulum in order 

to detect the collision with the unilateral constraints and to determine the state vector 

of the pendulum at the impact time instant. A single collision is described by the 

Euler’s laws of motion in the integral form. The equations are supplemented by the 

Poisson's hypothesis and Coulomb’s law of friction. The friction law is formulated for 

the instantaneous values of the reaction forces. The values of their impulses depend 

on the existence of a slip between the contacting bodies. Furthermore, during the 

collision the dynamic behaviour may change. Therefore the Coulomb law cannot be 

generalized for the linear impulses of the forces in a simple way. We have applied the 

Routh method in order to solve the problem. The method has a simple geometrical 

interpretation in the impulse space. 

1. Introduction

It is well known that in many mechanical engineering systems, a contact between individual elements 

is not continuous. This may be an intended effect or a result of gradual destruction of the mechanical 

parts. Regardless of the cause, the collisions between various elements entail significant increase of 

the dynamic loads what leads to the greater destruction of the colliding elements. 

In many papers dealing with collisions in multi-body systems consisting of rigid bodies, the 

influence of friction forces on the kinematic state of the bodies after impact is omitted. An approach 

to three-dimensional analysis of the collision of rigid bodies with friction was originally formulated 

by Routh [1]. In recent years many researchers rediscover the Routh model [2], analysing it in detail 

[4] and also applying it in modelling of multi-body systems with impacts [5]. On the base of Routh's 

model some more advanced models have been recently developed [3]. 

In this paper the collision of a relatively simple system, which is a double pendulum, with a fixed 

obstacle is investigated. The friction forces accompanying the collision are taken into account and the 

Routh model is employed. 
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2. Model of the system

The behaviour of a double pendulum colliding with an obstacle is considered (see Figure 1). The 

system is constrained to move in a fixed vertical plane. The pendulum, suspended at the point O, 

consists of two rigid bodies linked by a joint A. One of the bodies is a rod of mass m1 and length l1. 

The second part of the pendulum is composed of a rod of length l2 and a disc of radius r. The rod and 

the disc are fixed connected, and their common mass is equal to m2. C1 and C2 are the mass centres of 

the both parts. I1 and I2 denote the moments of inertia of the parts with respect to the axes which pass 

through the points C1 and C2, respectively, and are perpendicular to the plane of motion. There is 

viscous damping at the both joints with a priori known coefficients c1 and c2. Moreover, two torques 

M1(t) =
 M01cos(Ω1t) and M2(t)

 = M02cos(Ω2t) are taken into consideration. 

Figure 1.   Double pendulum colliding with a rough obstacle. 

The angles ψ1 and ψ2 are chosen as the general coordinates. The obstacle is motionless, and its 

surface is plane and rough. We assume that the distance D between the obstacle and the point O 

fulfils the following conditions 

 .2211 rllDl   (1) 

So, the motion of the pendulum is constrained by unilateral constraint 

,0)cos()()cos( 2211  rrllD   (2) 

and only the disk placed at the end of the pendulum may come into contact with the rough obstacle. 

3. Mathematical model

Observe that the unilateral constraint (2) does not act in relatively long intervals. From the point of 

view of the slow time scale which is suitable to observe the pendulum motion, they become active 

only in some time instants. When the contact with the obstacle occurs, the pendulum exhibits 
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discontinuous behaviour. The velocities of both parts of the pendulum as well as the reaction forces at 

the joints, and in the contact point with the obstacle exhibit stepwise changes. The pendulum, the 

motion of which is constrained by inequality (2) will be treated as piecewise smooth system. In such 

an approach, all the intervals in which kinematic and dynamic quantities change continuously are 

separated from each other by some time instants t1, t2,…, in which some from them change in 

stepwise way.  

3.1. Motion between collisions 

In each relatively long term between the collisions the pendulum motion is determined by differential 

equations and initial conditions. The equations of motion of the pendulum derived from the Lagrange 

equations of the second kind and written in matrix notation are as follows 

,QΨA   (3) 

where: 
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where .2AClc   

The configuration of the pendulum at time instant ti and its kinematic state after i-th collision are 

assumed as the initial values for the motion in (i+1)-th interval. Taking into account also the 

conditions at t = 0, we can write 

,...2,1,0)()( 00  itt iiii ΘΨΨΨ   (4) 

The vectors 0000 ,ΘΨ are known, while both the vectors ii 00 ,ΘΨ  (for i > 0) are determined, 

using the Routh method, for each of the collision event.  

Each of the initial value problems (3) with appropriate initial conditions (4) is solved numerically 

using the fourth order Runge-Kutta method. Usefulness of the method as well as the choice of the 

appropriate time step h have been tested numerically. 
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3.2. Kinematic aspect of the collision 

An important element of the algorithm used to solving the initial problem (3)-(4) is the continuous 

tracking of the position of the pendulum in order to detect the collision with the obstacle. The 

collision occurs when 

.0)cos()()cos(),( 221121  rrllDf   (5) 

Every time when function f changes its sign the Runge-Kutta algorithm is discontinued. The function 

f in equation (5) is interpolated linearly in the found interval of length h what allows to determine 

approximately the instant ti of starting of i-th collision. Then the configuration of the pendulum as 

well as all necessary velocities at the instant ti may be calculated. 

3.3. Collision laws 

Modelling the collision, we assume commonly used assumptions. All displacements and rotations 

during the collision are negligible. Impulses of contact forces are bounded, and impulses of all other 

forces may be neglected. The colliding bodies remain rigid and interact on each other only at one 

point. In time scale adapted to motion of the pendulum the duration of the collision is very short. 

However, during the collision velocities, accelerations and forces change, and these changes require 

to be described in a different time scale. We introduce the fast scale time τ suitable for collision 

modeling. For each collision, the time τ starts from 0. 

Figure 2.   Forces taken into account during collision. 

Integrating the Euler laws of motion with respect to time τ, and taking into account only the 

forces at the contact point M, the internal forces at the joint A, and the reaction forces at the joint O 

(see Figure 2), we can write 

,))0()(( 111 RHvvm xx   (6) 

,))0()(( 111 PVvvm zz  (7) 

,))0()(( 222 HTvvm xx   (8) 
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,))0()(( 222 VFvvm zz   (9) 
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where: ,2 clrld   PRVHTF ,,,,,  are impulses of the components of the forces shown in 

Figure 2 (for instance 




0

~
)

~
( dFF ), zxzx vvvv 2211 ,,, are components of the velocities 1v  and 2v  of 

the mass centres C1 and C2, yy 21 , are components of the angular velocities 1ω  and 2ω of the 

bodies (perpendicular to the motion plane), whereas )0(),0(),0(),0( 2211 zxzx vvvv  and )0(),0( 21 yy 

are known.  

Equations (6) - (11) are valid for any instant of time ),0( f  , whereas f  is the time instant in 

which the collision ends. Due to rigidity of the pendulum, there the following relationships hold 

,111 OCωv  (12) 

.2212 ACOA  ωωv  (13) 

Therefore, among the six kinematic quantities in equations (6) - (11), only two are independent, for 

example )(1  y  and )(2  y . 

Let us decompose the velocity at the contact point M into two components in directions of the 

axes of the collision reference frame shown in Figure 2 in the following way 

,kicsv csM   (14) 

where is s  is called the sliding velocity, and kc c  is the closing velocity. The friction force T is 

modeled using the Coulomb law, and hence both the magnitude as well as the direction of the force T 

depend on the sliding velocity s at the contact point M, namely 

,0,0 FTs
s

s
FTs    (15) 

where μ is the friction coefficient, and  iT T  is the projection of the vector T on the common 

tangent at the contact point. 
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In accordance with the Poisson hypothesis we distinguish two phases of the collision. They are 

separated from each other by an instant m  in which the magnitude of the normal force F achieves 

the maximum, and the closing velocity c is equal to zero. The impulses of the force F in the first and 

in the second phase are coupled as follows 

,mII FkF   (16) 

where k is the coefficient of restitution, and 
m

dFFm





0

~
)

~
( , .

~
)

~
(

f

m

dFFII





  

Equations (6) - (13), written for time instant f , together with equation (16) and relationships 

(15) create the set of collision laws. They allow to determine the kinematic state of the pendulum after 

collision. All of the laws, except the friction laws, have the global nature (in other words they are 

written in the integral formulation) and concern the whole collision. The law given by (15) is 

formulated for instantaneous values and it cannot be generalized for the impulses F  and T  in a 

simple way, i.e. by integrating. This is why due to the dual form of the friction law the value of the 

impulse T  at the moment f  depends on existence of the slip at the contact point M. In what follows 

we illustrate how to solve this difficulty applying the Routh method. 

3.4. Routh’s method and collision of double pendulum 

It should be emphasized that Routh’s method is an exact one. Application of this method requires 

solving the system of equations (6) - (13) with respect to .,,,,, 21 PRVHyy   Then, substituting the 

solution for y1 and y2 into formula 

,21 AMOAM  ωωv  (17) 

we obtain two equations 

,)0()( FTss    (18) 

,)0()( FTcc    (19) 

where  ,,  are constant dependent on the geometric parameters, the inertia parameters and the 

configuration of the pendulum at .0  This means that they must be determined for each collision. 
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The Routh method has a clear geometrical interpretation in the impulse space. In the case of planar 

motion, this space is two-dimensional. Accordingly to the nature of a normal force F, its impulse is 

always non-negative. Therefore, we will say further about the impulse semi-plane.  

Assuming that in Eq. (18) 0)( s , one can derive the condition for the collision without slip. A 

line called the line of sticking corresponds to this condition on the semi-plane. Similarly, supposing 

0)( c in Eq. (19), we obtain the equation of the line of maximum compression. The relationship 

between impulses F  and T , when 0)( s , derived from (15) is as follows 

.
)0(

)0(

s

s
FT   (20) 

The line of friction is its image on the impulse semi-plane. 

 

Figure 3.   Interpretation of Routh’s method on the impulse semi-plane. 

It should be noted that all lines are strictly determined by a configuration state of the pendulum 

as well as the velocity Mv  at the moment in which the collision starts. Mutually location of these 

lines is of decisive importance for the values of impulses at the end of each collision. There are some 

possibilities of this arrangement. Five of them are presented in Figure 3. The axes of the coordinate 

system are scaled in units of impulse. The starting point of the line of friction (depicted by bold solid 

line) lies always at the origin of the system and represents the beginning of the collision (we assume 
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that at 0 , the slip always appears). On the graph a), the line of friction and the line of sticking 

(depicted by dotted line) do not cross each other in the first phase of collision (i.e. on the left side of 

the line of maximum compression c = 0). Therefore, the point m  in which the line of friction and the

line of maximum compression intersect each other determines the end of the first phase of the 

collision. In accordance with Eq. (16), the abscissa of the point m  multiplied by (1+k) specifies the

line of end of collision (it is always parallel to the vertical axis). The line of friction crosses it at the 

point f  the coordinates of which are sought values of impulses F  and T  at the end of the 

collision. On the graphs b) and c) the line of friction crosses the line of sticking in the first phase of 

the collision. That means then the sliding velocity s becomes equal zero. The relation between the 

angles   and s  is of decisive importance for the possibility of continuation the collision 

accompanied by the slip.  If s  , what is shown in Figure 3b), the slip vanishes and the collision 

without the sliding lasts to the end of the contact with the obstacle. Since that moment, the line of 

sticking represents the collision and its crossing-points with the lines of maximum compression as 

well as the line of end of collision determine the point f . Otherwise, what is shown on the graph c), 

the friction forces are too small to eliminate the slip. So, the disc having changed the direction still 

slides on the obstacle. The change of the sign of the vectors s and T causes that on the line of friction 

appears the discontinuity in slope. Graphs d) and e) concern the situation when the line of friction 

crosses the line of sticking in the second phase of the collision. For each of the graphs shown in 

Figure 3 exists its counterpart, that presents an arrangement with the line of friction which is 

symmetric in respect to the horizontal axis. 

4. Results

Let us consider the motion of double pendulum whose parameters are as follows: kg,31 m

kg,4.22 m m,5.01 l m,34.0cl m.04.0r  The moments of inertia due to central principal axis:  

.mkg94.0,mkg64.0 2
2

2
1  II  During the motion, the pendulum collides with a fixed obstacle 

that is placed at the distance D = 0.8m from the point O. The chosen values of the coefficients of 

friction and restitution are: .9.0,2.0  k  It is assumed that do not act the external torques and 

there is no damping at the both joints. The values for the initial conditions are as follows: 

,130)0(1   ,90)0(2  rad/s,6.0)0(1   rad/s.5.0)0(2   The numerical simulations have

been done using the original software written in Fortran 95. 

490



 

Figure 4.   Stepwise changes of mechanical energy of the pendulum. 

 

Figure 5.   Stepwise changes of angular velocities of the pendulum parts. 

 

Figure 6.   Stepwise changes of reaction forces. 

In Figure 4, the loss of mechanical energy versus time of motion is shown. Under the given 

above assumptions, the system may lose the energy only as a result of collisions. Indeed, between the 

collisions the total energy is constant. It can be seen that the pendulum collides ten times in time of 
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simulation. The energy decreases stepwise after each contact with the obstacle (for comparison, the 

energy of the pendulum at the stable equilibrium position is about of -27.13 J). 

 In Figure 5, the time histories of the angular velocities of the both part of the pendulum are 

shown. The observed stepwise changes of their values (in number of ten) are the results of the 

collisions with the fixed and rough plane. The horizontal and vertical components of the reaction 

force at the joint O as functions of time are presented in Figure 6. 

5. Conclusions

Models of collision phenomena taking into account friction forces at contact are more suitable for real 

problems. Possibility of the non-sliding type of contact significantly complicates the solving of the 

problem, even for relatively simple models with only one point of contact. In the paper, the Routh 

method has been applied to solve the problem concerning the collision of multi-body system. 

Combination of an exact method with numerical calculations in the framework of the piecewise 

smooth model allows us to investigate multiple collisions of mechanical systems under consideration. 
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Modelling and studies of dynamics of a wheeled mobile robot 
during longitudinal motion on the soft ground

(MTR124-15) 

Maciej Trojnacki, Przemysław Dąbek 

Abstract: The paper is concerned with the study of longitudinal motion of a four-
wheeled mobile robot on the soft ground. Design of the robot and research environment 
are described. Dynamics model of the robot-ground system taking into account proper-
ties of soft ground is presented. Results of simulation research of robot motion and the 
analogous empirical tests are presented. Actual motion parameters of the robot and the 
values of longitudinal slip ratio of wheels are determined. The study is focused on influ-
ence of the longitudinal robot velocity on longitudinal slip of wheels. The results of sim-
ulation and experimental investigations are compared and discussed. The conclusions 
resulting from performed research are presented. 

1. Introduction

Wheeled mobile robots are unmanned vehicles whose motion is primarily a result of interaction of 

wheels with the ground. An important problem associated with motion of the wheel is the slip phe-

nomenon. Additionally, in case of robot motion on the soft ground deformability of this ground be-

comes important and its influence on robot motion must be taken into account. Wheel slip phenomena 

and ground deformability should be considered in the robot dynamics model, which becomes an 

important tool in the process of robot mechanical design and in the process of synthesis of its motion 

control algorithms. 

The problems of modelling of the tyre-ground system were tackled so far mainly from the point of 

view of requirements of automotive vehicles, which over the years resulted in development of multiple 

tyre models with diverse capabilities, both on-road [7] and off-road [1, 11]. However, it turns out that the 

wheeled mobile robots, especially lightweight robots, differ significantly from automotive vehicles in 

terms of applications, manoeuvres performed, types of ground, vehicle design and properties of tyres. It 

seems that there is very little work done so far in the field of modelling of tyre-road interaction for 

lightweight wheeled robots. Several studies concern wheel-terrain interaction of planetary rovers, where 

a rigid wheel is considered [6] or a flexible wheel of special design made primarily of metal [3]. Works 

that study motion of lightweight wheeled robots on deformable ground are not readily available. There-

fore a couple of questions arise like: if deformability of both tyres and ground should be included in the 

tyre-ground model, if the factors affecting the motion of small robotic wheel on deformable ground are 

similar as in case of the manned vehicles, etc. 
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The aim of the present work is modelling and studies of dynamics of a lightweight wheeled mo-

bile robot during longitudinal motion on the soft ground. The investigations cover robot motion with 

various longitudinal velocities on sand. Influence of robot longitudinal velocity on the occurring 

wheel slips is analysed. Results of the simulation studies are compared and verified against empirical 

data obtained during experiment at a dedicated test stand.  

2. Four-Wheeled Skid-Steered Mobile Robot

The object of the research is a small four-wheeled mobile robot called PIAP GRANITE (Ground Robot 

for ANalyzes of wheels Interaction with various TErrain). The robot has all wheels driven independently 

by DC servomotors with gear units and encoders. The current design of the robot is shown in Fig. 1a, 

and its kinematic structure, in Fig. 1b.  

Figure 1. Four-wheeled skid-steered mobile robot PIAP GRANITE: 
a – current design, b – kinematic structure. 

It is possible to distinguish the following main components of the robot: 0 – body with frame for 

installation of the research equipment, 1-4 – wheels with toothed belt pulleys, 5-6 – toothed belts. The 

drive transmission in each drive unit can be decoupled and also toothed belts can be removed which 

permits obtaining various configurations of the robot drive system. In this paper, the configuration of 

the robot with independent driving of all 4 wheels is analysed.  

The following symbols for the ith wheel have been introduced in the robot model: Ai – geomet-

rical centre, ri = r – radius, bi = b – width of tyre tread, θi – angle of wheel spin (i = 1, ..., 4). 

The robot is equipped with: a laptop computer for control and data acquisition purposes, iNEMO 

and ADIS inertial measurement units each consisting of 3-axis MEMS accelerometer, gyro and mag-

netometer, a GNSS receiver and antenna for robot navigation [8], a 2D laser scanner for localization 

in known environment [5]. The measuring system that allows determination of robot motion parame-

a) b) 
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ters in the present work according to the method proposed in [10], consists of inertial measurement 

units only. The GNSS receiver and antenna are a separate module which can be dismantled. Moreo-

ver, in case of robot motion investigations on the soft ground dual tyres are used so that the wheels 

are subject to less sinkage during motion. 

3. Modelling of the Robot 

3.1. Robot kinematics  

In this paper longitudinal motion of the robot is analyzed. It is assumed that this motion is realized in 

Oxz plane of the fixed coordinate system {O}. The moving coordinate system associated with the robot 

is denoted with symbol {R}. 

In the analyzed case, the desired parameter of robot motion will be velocity of the characteristic 

point R of the robot (Fig. 1b), that is OvRd. Because the robot is in longitudinal motion, velocities of 

geometric centres of wheels, that is OvAi, should be equal to OvRd velocity. In practice, during robot 

motion wheel slips can occur. The measure of instantaneous longitudinal wheel slip is the longitudi-

nal slip ratio, which can be calculated from the following formula based on [11]: 







−

=
=λ

,other for/)(

,0for0

oioiAix
R

oi

oi

i
vvvv

v   (1) 

where 
iioi rv θ= &  and 

Aix
Rv  are respectively velocity at the wheel circumference and longitudinal com-

ponent of velocity of wheel geometric centre for ith wheel. 

Another measure of the longitudinal slip of wheel, this time for the whole drive system of the ro-

bot, can be robot longitudinal slip ratio in the form: 

RxdRxRxdR sss /)( −=λ ,  (2) 

where: sRx – actual distance traversed by a robot in longitudinal direction, sRxd – desired distance 

equivalent to the distance traversed in case of wheel rolling without slip. 

This kind of longitudinal slip measure can be used especially in case of robots moving with small 

velocities like rover vehicles, which are applied for planetary exploration. This measure can be also 

used for larger velocities of motion, on condition that only the part of trajectory when the robot is in 

steady motion will be taken into account. 

3.2. Tyre-ground interaction model 

Modelling assumptions. As far as conditions of wheel-deformable ground interaction are concerned, 

in the model the following aspects can be taken into account: the case of not moving tyre, phenome-

non of different ground height under and behind the tyre, deformability of tyre, passage of trailing 
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wheels in the rut created by the leading wheels (multi-pass) and the associated phenomenon of soil 

compaction, damping in the tyre-ground system, shape of the tyre tread. 

In the present work, during determination of the longitudinal slip, based on which the longitudi-

nal wheel force is calculated, the case of not moving wheel is included, which allows determination of 

forces and moments acting on the robot before motion begins and after it is finished. In the work, the 

phenomenon of different ground height directly under and just behind the tyre is also taken into ac-

count. It is assumed that robot wheels are rigid bodies, which is the assumption usually made by other 

authors in case of vehicle motion on sand. In the tyre model the multi-pass effect and soil compaction 

are not included. This phenomenon will take place in case of longitudinal motion and will affect the 

results obtained from the simulation studies. However, this influence will be negligible if the soil was 

already compacted (subjected to pressure) before motion and this phenomenon is frequently neglected 

in models. Tyre-ground interaction damping is included, because otherwise undamped oscillations 

would occur in the model. In the work the overall tread shape and shape of individual tread blocks is 

not taken into account. This aspect is taken into account in the advanced tyre-ground models, and it 

may have significant effect on tyre interaction with deformable ground, therefore it will be the topic 

of future works of the authors. 

Tyre and ground deformation. In Fig. 2 wheel load is schematically illustrated for the case of rigid wheel. 

Figure 2. Modelling of load of wheel moving on deformable ground 

on assumption of the rigid wheel, after [9]. 

In the figure are shown: driving moment for the wheel Ti, tangential τi(ϑi) and normal σi(ϑi) 

stresses and the resultant pressure pi(ϑi) at a certain point of the wheel-ground contact, that is, for the 

angle ϑi, angular velocity of wheel spin ωi, longitudinal velocity of geometric centre of wheel RvAix, 

characteristic angles ϑ1i, ϑ2i and maximum ground deformation z0i. 

While the ϑ1i angle and maximum ground deformation z0i can be calculated from geometric rela-

tionships, the same is not possible for the ϑ2i angle. In the case when the wheel is stationary one may 

506



assume that the angle ϑ2i is equal to the angle ϑ1i. More difficult is, however, determination of the angle 

ϑ2i during robot motion, and it has substantial influence on the value of the longitudinal force RFAix. 

In the literature sometimes zero value of this angle is assumed, which may lead to undervalued 

longitudinal force RFAix as compared to its empirical value. More often models with certain small 

value of this angle relatively to the angle ϑ1i can be found. 

In the present work, the angle ϑ2i is calculated from the relationship: 

ciii k ϑ≥ϑ=ϑ ϑ 122
,  (3) 

where the coefficient kϑ2 will be chosen as a result of a procedure of fitting the simulation results to 

empirical results so as to obtain adequate value of the longitudinal force RFAix. 

For determination of tangential deformation of the ground in the range 
iii 12 , ϑϑ−∈ϑ  the fol-

lowing formula will be used [9]: 

( ))sin)(sin1()()( 11 iiiiiiii rj ϑ−ϑλ−−ϑ−ϑ=ϑ , (4) 

whereas static sinkage will be calculated from the relationship: 

( )0),cos1(max)( 0 iiiii rzz ϑ−−=ϑ .  (5) 

Ground rheological model and stresses. During analysis of robot motion on deformable ground like 

sand, rheological model of the ground should be taken into account in which important are relations 

between pressure and sinkage as well as between shear stress and shear displacement. 

The pressure-sinkage relation can be described using Bekker formula [1]: 

( ) ( )n

ii
i

cn

iiii zk
b

k
zkp )()()( ϑ








+=ϑ=ϑ φ

, (6) 

where: pi(ϑi) – pressure, zi(ϑi) – static sinkage, bi – width of tyre tread, kc – cohesive modulus of ter-

rain deformation, kϕ – frictional modulus of terrain deformation, n – exponent of terrain deformation. 

In the works associated with modelling of tyre-ground interaction usually the implicit assumption 

is made that normal stresses σ(ϑi) acting on tyre at particular points have values close to p(ϑi), that is 

the following approximation holds true: 

)()( iiii p ϑ≈ϑσ .  (7) 

This assumption is correct in case of small angle δi(ϑi) between directions of the pressure pi(ϑi) 

and stress σi(ϑi) and allows to obtain results of satisfactory accuracy for practical purposes. 
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Dependency between maximum shear stress τimax(ϑi) and normal stress σi(ϑi) is described by the 

Coulomb rule in form [1]: 

φϑσ+=ϑτ tan)()( iiiimax c , (8) 

where: c – coefficient of cohesion of soil, ϕ – angle of internal friction. 

For dry sand, soil cohesion is equal c = 0 while for wet clay, tan ϕ = 0. 

It should be noted that in case when, as a result of tyre-deformable ground interaction, ground 

shearing is absent but only moving of the tyre surface with respect to the ground takes place, the 

coefficient of sliding friction µ should be introduced which, depending on velocity of this movement, 

has different values and it is possible to assume it is contained in the range sk µµ ,
 
where µk and µs 

are respectively coefficient of kinetic and static friction. 

After taking into account what was said above, the maximum shear stress can be determined 

based on the modified relationship [2]: 

( )φϑσ+ϑσµ=ϑτ tan)(),(min)( iiiisiimax c , (9) 

which takes into account both described cases of tyre-ground interaction, and to this relationship 

coefficient of static friction µs is introduced. 

Tangential stresses acting on the tyre are determined based on various relationships where nor-

mal and tangential stresses in the ground are included. 

According to the Janosi-Hanamoto hypothesis [11] tangential stresses are determined based on 

the relationship: 
















 ϑ−−ϑτ=ϑτ
K

j ii
iimaxii

)(
exp1)()( , (10) 

where: ji(ϑi)  – soil shear displacement, K – shear deformation parameter. 

The present work focuses on investigations of robot longitudinal motion on dry sand. In the fur-

ther considerations, parameters proposed in the work [4] will be taken into account (Tab. 1). 

Table 1. Dry sand characteristic parameters, after [4]. 

n 
(–) 

kc 
(kN/mn+1) 

kϕ 
(kN/mn+2) 

c 
(kPa) 

ϕ 
(deg) 

K 
(m) 

1.1 0.90 1 523 1.00 30 0.025 

In order to take into account friction phenomenon between tyre and ground, µs friction coeffi-

cient must be known which for the rubber tyre-dry sand is equal µs = 0.6, according to [12]. 
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Forces and moments of force acting on the wheel from the ground. Based on the known tangential 

and normal stresses acting on the tyre from the ground over the arc described by angle 

iii 12 ,ϑϑ−∈ϑ  and treating the robot wheel as a rigid body, it is possible to calculate resultant forces 

and moments of force acting on the wheel, that is, respectively static vertical load, motion resistance 

force, traction force and wheel load torque (sometimes called applied torque) using the following 

formulas: 

( )∫∫
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The longitudinal force acting on the tyre in both cases described above is the resultant of the mo-

tion resistance and traction force: 

tiiTix
R RFF += .  (15) 

In turn, the resultant normal force RFTiz acting on the tyre should be determined based on the stat-

ic vertical load after including damping of the tyre-ground system, that is based on the relationship: 

)sgn( 00 iitiiTiz
R zzcWF &+= .  (16) 

As mentioned earlier, on the basis of this force and known radial stiffness of the tyre kr that within cer-

tain range can be assumed linear, radial deformation of the tyre ∆ri can be determined from the relationship: 

rTiz
R

i kFr /=∆ .  (17) 

Eventually, forces and moments of force acting on particular wheels and resulting from tyre-ground 

interaction can be reduced to the wheel geometric centre and written in the following vector form: 

T
Tiz

R
Tix

RT
Aiz

R
Aix

R
Ai

R FFFF ],0,[],0,[ ==F ,   T
iAi

R M ]0,,0[ ω=M . (18) 

3.3. Multi-body dynamics model 

In the present work the dynamics model of the PIAP GRANITE robot will be introduced for the case 

of longitudinal motion on a horizontal ground. 
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It is assumed that the robot is under action of the following external forces: ground reaction forc-

es RFTi = [RFTix, RFTiy, RFTiz]T (i = 1, ..., 4) acting on each wheel, gravity force RG = mR Rg, where mR 

denotes total mass of the robot. Above mentioned forces acting on the robot and on the wheel are illus-

trated in Fig. 3. For particular pairs of wheels the following subscripts are introduced: f – front wheels 

(f = 1, 2), b – back wheels (b = 3, 4). 

Figure 3. Forces and moments of force in Rxz plane:  
a – acting on the PIAP GRANITE robot, b – reduced to the centre of the wheel 

(f = 1, 2, b = 3, 4, L = Af Ab = 2AfR = 2AbR). 

Gravity force vector RG is a function of gravitational acceleration vector Rg = [Rgx, Rgy, Rgz]T and its 

application point is at the robot mass centre, whose position is described by the vector RrCM = [RxCM, 
RyCM, RzCM]T. Under action of the mentioned forces, according to the Newton’s 2nd law, the robot 

moves with acceleration T
CMz

R
CMy

R
CMx

R
CM

R aaa ],,[=a . 

Dynamic equations of motion in Oxz plane have the form (Fig. 3): 
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where: Rxf = L/2 – RxCM, Rxb = –L/2 – RxCM, RxCM and RzCM – coordinates of mass centre of the robot in 

{ R} coordinate system, IRy – mass moment of inertia about the axis parallel to Ry and passing through 

the mass centre of the robot, g = 9.81 m/s2 – gravity acceleration, Θ – robot body pitch angle (the 

angle of body rotation about Ry axis). 

a) 

b) 
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Moreover, for each of the robot wheels it is then possible to write dynamic equation of motion 

associated with wheel spin: 

iiiWiy MTI ω+=θ&& ,  (22) 

where: IWiy – mass moment of inertia of the wheel about its spin axis, Ti – driving torque, 
ii θ=ε &&  – angular 

acceleration of spin of that wheel. 

After taking into account the above relationships, it is possible to determine values of linear ac-

celerations in Rx and Rz directions, angular acceleration about Ry axis and angular accelerations of wheel 

spin for driving torques Ti acting on the driven wheels (forward dynamics problem) based on the 

following equations:  

Θ+=∑ =
sin/

4

1
gmFa Ri Aix

R
CMx

R ,   Θ−=∑ =
cos/

4

1
gmFa

i RAiz
R

CMz
R , (23) 
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3.4. Drive units model and controller 

The described simplified model of robot dynamics can be also enhanced with the model of its 

drive units. It is assumed that: each of the robot drive units consists of identical DC motor, encoder, 

and transmission system, robot drive units are not self-locking, mass moments of inertia of the rotat-

ing elements of DC motor, encoder and gear unit are small in comparison to mass moments of inertia 

of the driven parts of the robot (wheels), that is why they are neglected. 

The DC motor model of the ith drive unit is described by relationships: 

( ) dididei
i LiRnku
t

i −θ−= &

d

d ,   
imddi iknT η= , (25) 

where: ui – motor voltage input, ii – rotor current, Ld, Rd – respectively inductance and resistance of the 

rotor, ke – electromotive force constant, km – motor torque coefficient, nd – gear ratio of the transmission 

system, ηd – efficiency factor of the transmission system. 

In the present work, robot motion control is conducted by means of a simple linear drive controller. 

Based on the desired and actual angles and angular velocities of wheel spin, that is, respectively vectors: 

θd = [θ1d, θ2d, θ3d, θ4d]T and ωd = [ω1d, ω2d, ω3d, ω4d]T as well as  θ = [θ1, θ2, θ3, θ4]T and ω = [ω1, ω2, ω3, ω4]T, 

controller determines the control vector u = [u1, u2, u3, u4]T for drives of particular wheels. 

After assuming that errors of angles and angular velocities of spin for driven wheels are defined as: 

θθe −=θ d
,    ωωe −=ω d

,  (26) 
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the control signal u = [u1, u2, u3, u4]T for motors of driven wheels in (V) can be determined using the 

control law: 

( )maxminDP kk uueeu ,,sat ωθ += , (27) 

where sat() – saturation function, kP, kD – controller parameters, and eθ = [eθ1, eθ2, eθ3, eθ4]T, eω = [eω1, 

eω2, eω3, eω4]T, umax = [umax, umax, umax, umax]T, umin = [0, 0, 0, 0]T. 

4. Simulation Research

Robot motion simulation studies were conducted in the Matlab/Simulink environment. For simula-

tions the Runge-Kutta fixed-step solver was chosen with ∆t step size. Convergence of solutions with 

changes of ∆t was investigated, which allowed choice of ∆t value as a compromise between results 

accuracy and computation time. 

In the work robot longitudinal motion is analysed, that is, motion in which robot body is by as-

sumption in translational motion, and its wheels are in plane motion. It is assumed that robot motion 

consists of three phases: accelerating with maximum acceleration aRmax over the distance lr, steady mo-

tion with constant velocity OvRd = vRu, braking with maximum acceleration (deceleration) aRmax over the 

distance lh. Robot motion is studied for different maximum values of desired linear velocity vRu, acceler-

ation aRmax and total distance length Lp. Considered variants of robot motion are summarized in Tab. 2. 

Table 2. Parameters of considered cases of robot motion 

vRu (m/s) 0.2 0.3 0.5 0.7 1.0 
aRmax (m/s2) 0.6 1.2 1.2 2.4 2.4 

Lp (m) 1.0 2.0 2.5 3.0 4.0 

For the simulation studies the following values of the basic design parameters of the PIAP 

GRANITE robot are assumed: 

• dimensions: L = 0.425 m, W = 0.59 m (where: L = A1A3 = A2A4, W = A1A2 = A3A4, see Fig. 1b),
ri = r = 0.0965 m, bi = b = 2 · 0.064 m,

• masses of the components: m0 = 36.54 kg, mi = 1.64 kg, m5 = m6 = 0.18 kg,
• robot mass centre coordinates: RxCM = –0.012 m, RyCM ≈ 0 m, RzCM = 0.06 m,
• mass moments of inertia: IWy = 0.016 kg m2, IRy = 0.51 kg m2,
• tyre parameters: kri = kr = 40 000 N/m, cti = ct = 1000 Ns/m,
• parameters of drive units: Ld = 0.0823 mH, Rd = 0.317 Ω, ke = 0.0301 Vs/rad, km = 0.0302 Nm/A,

nd = 53, ηd = 0.8, umax = 32 V.

Moreover, tyre-ground contact parameters from Tab. 1 are assumed. The kϑ2 angle was chosen em-

pirically as a function of the desired velocity of robot motion so as to obtain agreement of results of 
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simulation-based and empirical investigations. The acceleration of gravity is assumed g = 9.81 m/s2. 

In simulations the following gains of the drive controller kP = 30 V/rad, kD = 10 Vs/rad and fixed-step 

size ∆t = 0.05 ms are assumed. 

5. Experimental investigations 

Experimental investigations were conducted in a container with sand dedicated for the research 

(Fig. 4a). Initially the sand was compacted by compression. During empirical research, similarly as 

during simulation studies, motion of robot equipped with dual tyres was analyzed (Fig. 4b). 

The investigations were conducted for analogous cases of motion as during simulation studies 

(Tab. 2). For each variant, three repetitions (trials) were performed. Before each trial, the ground was 

carefully prepared according to procedure which included raking and levelling. During experiment robot 

motion was recorded using inertial measurement units, according to methodology described in [10]. 

 

  
Figure 4. Empirical investigations of robot motion: a – sand container used during experiments,   
b – the robot in the configuration used during experiments (dual tyres, without GNSS antenna). 

 

6. Simulation vs. experimental research 

As a result of simulation and empirical research, the values of longitudinal slip ratio of the robot in ana-

lyzed variants of motion shown in Tab. 3  were obtained. In this table also values of the kϑ2 coefficient for 

wheels (Fig. 2) used during simulations are presented – for those values of coefficients the best agreement 

with results of empirical research was achieved.  

Relationship between longitudinal slip ratio and desired linear velocity of the robot obtained as 

a result of simulation and experimental investigations is illustrated in Fig. 5. 

a) b) 
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Table 3. Simulation vs. empirical research results – obtained values of longitudinal 
slip ratio of the robot in analyzed variants of motion. 

vRu (m/s) 0.2 0.3 0.5 0.7 1.0 

Simulation research 
λR (%) 5.00 8.16 16.6 21.1 26.4 
kϑ2 (–) 0.35 0.27 0.13 0.06 0.00 

Empirical research λR (%) 5.31 8.35 16.5 22.9 39.8 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40
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 vRd
R  (m/s)

Figure 5. Relationship between longitudinal slip ratio and desired linear velocity of the robot obtained 
as a result of simulation (●) and empirical investigations (+).  
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Figure 6. Time histories obtained in simulation research for the case vRu = 0.3 m/s: 
a – desired and actual velocities of the robot as well as circumferential velocity of wheels,  
b – desired and actual accelerations of the robot, c – longitudinal slip ratios for the wheels,  

d – wheels sinkage, e-f – longitudinal and normal components of the ground reaction forces, 
g-h – driving and load torques. 
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Figure 7. Time histories obtained in experimental research for the case vRu = 0.3 m/s:  

a – desired and actual velocities of the robot as well as circumferential velocity of wheels,  
b – desired and actual accelerations of the robot, c – longitudinal slip ratios for the wheels,  
d – driving torques calculated on the basis of measured current consumed by the motors. 
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Figure 8. Time histories obtained in simulation research for the case vRu = 1 m/s: 

a – desired and actual velocities of the robot as well as circumferential velocity of wheels,  
b – desired and actual accelerations of the robot, c – longitudinal slip ratios for the wheels,  

d – wheels sinkage, e-f – longitudinal and normal components of the ground reaction forces,  
g-h – driving and load torques. 
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In the obtained graph very good agreement of simulation and empirical results for the desired linear 

velocity RvRd from range 0.2 – 0.7 m/s is visible. Larger discrepancy is evident for the velocity of 1 m/s. 

In Figs. 6-7 time histories of selected quantities describing robot motion with 0.3 m/s velocity ob-

tained respectively from simulation and empirical research are presented. 

From comparison of the obtained results, in general their quite good agreement can be noticed. As 

a result of empirical research larger instantaneous values of longitudinal slip ratio of wheels (Figs. 6c and 

7c) were obtained.  

In the final phase of motion in the simulation studies occurs slower braking of the robot than in 

empirical research, and as a result also differences in the time plots of driving torques can be noticed (Figs. 

6g and 7d). Driving torques in case of empirical investigations were calculated on the basis of measured 

current consumed by the motors. 

In the empirical investigations also minor differences in rotation of left- and right-hand side wheels 

were noticed which results in small differences of time histories of driving torques. In Fig. 7 results for left-

hand side wheels only are shown. 

In two following figures (Figs. 8-9) are presented analogous time histories as previously, but this 

time for the 1 m/s robot longitudinal velocity. 
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Figure 9. Time histories obtained in experimental research for the case vRu = 1 m/s:  
a – desired and actual velocities of the robot as well as circumferential velocity of wheels,  
b – desired and actual accelerations of the robot, c – longitudinal slip ratios for the wheels, 
d – driving torques calculated on the basis of measured current consumed by the motors. 

By comparing the results, one may notice longitudinal velocity oscillations of relatively low fre-

quency occurring for empirical data and not present in the simulation studies (Figs. 8a and 9a). This 

phenomenon may be associated with operation of the wheel drive unit controller and will be subject 

to further analyses. Additionally, similarly as previously the differences in wheel slip parameters 
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during initial and final phase of motion (Figs. 8c and 9c) and in drive torques during final phase of 

motion (Figs. 8g and 9d) take place. 

In general, results agreement is quite good, but worse than in case of 0.3 m/s velocity, because in 

the simulation studies the wheel slips are slightly too small.  

7. Summary and Future Works 

In the present work, results of simulation and empirical research for the robot longitudinal motion are 

presented. The research was conducted for various desired longitudinal velocities of motion. 

The most significant conclusions from the research include the following: 

• For the given velocities of robot motion in the range 0.2-0.7 m/s good agreement of simulation and 

empirical results was achieved. For the 1 m/s velocity the presented model seems less adequate, 

which is evidenced by too small instantaneous values of longitudinal slip ratio for wheels.  

• It was noticed that the obtained simulation results are significantly affected by the value of ϑ2 

angle which was calculated based on the ϑ1 angle by multiplication through assumed kϑ2 coeffi-

cient. In order to obtain better agreement of simulation and empirical results, the kϑ2 coefficient 

should change with the velocity of robot motion, specifically it should decrease with this velocity. 

Directions of future works will include: 

• Simulation studies of robot motion based on the model where deformation of robot tyres, tread 

shape and multi-pass effect will be taken into account. 

• Detailed analysis concerning the ϑ2 angle, especially influence of robot velocity and longitudinal 

slip on this angle. 

• Simulation and empirical research for some other robot manoeuvres including pivot turn or turning 

with different turn radii. 

• Simulation and empirical research for some other deformable grounds like sandy clay. 
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Dynamics of rigid bodies with multiple frictional contacts: 

new faces of Painlevé’s paradox

(NON134-15)
 

Péter L. Várkonyi 

Abstract: the dynamics of finite degree-of-freedom, planar mechanical systems with 

multiple sliding, unilateral frictional point contacts is investigated. A complete 

classification of systems with 2 contacts is given. The contact-mode based approach 

of rigid body mechanics is combined with linear stability analysis using a compliant 

contact model to find the set of consistent contact modes and their stability in each 

class. Three new phenomena related to Painlevé’s classical non-existence and non-

uniqueness ‘paradoxes’ are described: (i) the stability of an individual contact mode 

may be unpredictable within the framework of rigid-body theory; (ii) multi-contact 

systems may undergo spontaneous contact mode transitions; and (iii) having a unique 

consistent contact mode does not imply the stability of this mode, consequently 

dynamic phenomena commonly associated with Painlevé’s paradoxes also occur in 

‘non-Painlevé’ systems. Preliminary results of an extended analysis focusing on other 

types of contact dynamics (impact without collision, inverse clattering, sprag-slip 

oscillations) are briefly discussed.  

1. Introduction

Impacts and friction between solids were among the first topics extensively studied in the history of 

modern physics. Impact laws were already proposed by Isaac Newton whereas the first known laws of 

dry friction were set up long before Newton’s time by Leonardo da Vinci. Nevertheless modelling 

systems with impacts and friction still poses a challenge because the inherent unreliability of simple 

impact and friction laws  [2], [18], [20]; and the complexity of the dynamics induced by them  [20], 

[22]. The present work addresses Painlevé’s paradox, an important source of complexity. 

1.1. Painlevé’s paradoxes 

The piecewise-smooth nature of dry friction suggests that a unilateral, frictional, rigid point contact is 

in one of 3 possible modes: sliding, sticking or separation (except for those instants when a rigid 

element hits another). To identify the instantaneous acceleration of a system in the presence of 

contacts, all combinations of modes for all contacts (briefly: all contact modes of the system) are 

routinely tested for consistency [11] [21].  A fundamental shortcoming of the contact mode-based 

approach was already discovered in the late 19th century [9], [16]: the number of consistent solutions 

may be zero, as well as greater than 1. These observations became known as Painlevé’s non-

uniqueness and non-existence paradox. For systems with a single contact, all possible types of 
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indeterminacy and inconsistency have been identified and listed. At the same time the systematic 

analysis of multiple-contact systems has not been performed yet.  

1.2. Contact regularization, and the resolution of non-existence 

In addition to identifying all forms of Painlevé’s paradox, much effort has been devoted to the 

understanding of their physical origin and to their resolution. The paradoxes are consequences of the 

assumption of rigidity, and thus a common approach of the analysis is contact regularization, i.e. the 

modelling of contact compliance [1], [8], [10]. The application of this approach to general systems 

with a single contact [13] as well as to several specific examples (Painlevé’s rod [1], [3], [23], [24]; 

Painlevé-Klein example  [1], [4], [8]; and others [12] [15] [16]) uncovered that the non-existence 

paradox is resolvable by allowing the possibility of “impact without collision” (IWC), i.e. an 

impulsive contact force with vanishing pre-impact normal contact velocity. The IWC was also found 

to be a possible scenario in some cases of the non-uniqueness paradox, but never possible in states 

free from Painlevé’s paradoxes. Accordingly, it is often assumed that Painlevé’s paradoxes capture 

those dynamic states where unusual contact dynamics is to be expected.   

1.3. Stability analysis and partial resolution of non-uniqueness 

The dynamic stability of consistent contact modes can be analysed using contact regularization. The 

stability analysis of single contact reveals that consistent contact modes may be dynamically unstable 

[13]. Nevertheless, the stability analysis does not resolve the non-uniqueness paradox due to the 

possibility of IWCs and multiple stable contact modes. For single-contact systems, the stability 

properties of each contact mode have been found to be independent of the characteristics of the 

underlying compliant contact model. Hence, the question of stability is decidable within rigid body 

theory. The analysis also offers a partial resolution of the non-uniqueness paradox by demonstrating 

that single-contact systems never undergo spontaneous contact mode transitions: a systems never 

changes from contact mode M1 to M2 as long as M1 remains consistent. The only remaining 

‘paradoxical’ situation is the ambiguity of ‘triggered’ transitions induced by M1 losing its 

consistency.  

1.4. Questions addressed by the current work 

As we have seen, most of our knowledge about Painlevé’s paradox comes from the analysis of single-

contact planar systems. Many of these properties are believed to be true for more complex systems. 

The present paper reports on some of the author’s ongoing work of extending the results to general 

multi-contact systems.  

After introducing notations in Sec. 2, a classification of planar systems with two frictional, 

unilateral, sliding contacts is presented. The classification is based on geometric, and inertial 
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properties, values of the friction coefficient, and properties of the external loads as inputs. A complete 

list of consistent contact modes is given for each class in Sec 3. The new classification is the 

refinement of a coarser scheme by Ivanov [8], who investigated the following question: “which 

systems are guaranteed to have a unique consistent contact mode regardless of the external forces?” 

Sec. 4 is devoted to the stability analysis of contact modes, and the paper is closed by a Conclusions 

section. The analysis allows us to answer the following questions: (i) is the stability of contact modes 

decidable within rigid body theory?  (ii) are spontaneous contact mode transitions impossible in 

general?; and (iii) is Painlevé’s paradox a necessary criterion of non-stationary, fast contact dynamics 

(such as impact without collision)? 

2. Basic notations

We consider a finite degree-of-freedom mechanical system with two unilateral, sliding point

contacts and nonzero initial sliding velocity. Coulomb friction with constant coefficients of friction μj 

is assumed at the two contacts. For simplicity, it is assumed that all internal or external constraint 

forces of the system other than the contact forces at the two sliding contacts can be expressed 

explicitly and thus the corresponding constraints can be removed from the equations of motion.  

Let q denote the vector of generalized coordinates of the system and the 2-vector d=[d1d2]
T

contain the gaps between the object and the two contact surfaces. From the Euler-Lagrange equations, 

one obtains a system of 2 equations of the form:  

),()( qqafqBd    
(1)

where dot means derivation with respect to time; f=[f1  f2]
T is a vector of  Lagrange multipliers where

fi is the magnitude of the (unknown) normal contact force at the sliding contact i (i=1 or 2). The 

tangential component of the same contact force is μifi. Vector a=[a1  a2]
T contains minus 1 times the

(known) second time derivative of the gap d in the absence of contact forces. B=[bij] is a (known) 

„local, normal  mobility matrix” of size 2 by 2, defined as follows: bij is the second time derivative of 

the gap di in response to a sliding contact force with normal component 1 and tangential component μj  

at contact j. B is usually asymmetric due to friction.  

We also introduce the following related notations: α for the angle between the vectors a and [1 

0]T such that 0 α2; bj for the jth column of B. bj  represents the response of both contacts to the

contact force at contact j; βj  for the angle between the vectors  bj and [1  0]T; and βj
* for the angle

between the vectors -bj and [1  0]T;

The primary goal of the contact mode-based approach is to determine stationary values of f and 

d , i.e. the contact forces and the instantaneous acceleration of the system.
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3. Consistency of contact modes

A closed unilateral contact with zero normal velocity ( 0 ii dd  ) and nonzero tangential sliding 

velocity in a given direction may remain in sliding mode (S mode) with 

0id (2) 

0if (3) 

or it may start free flight (F mode) corresponding to 

0id  (4) 

0if (5) 

Stick and slip in opposite direction are ruled out by the nonzero initial tangential velocity. 

In a system with two contacts, these scenarios determine 4 possible contact modes. To determine 

the consistency of each contact mode, we combine the equations of motion (1) with the relevant 

equality constraint (2) or (5) to determine the corresponding value of fi (sliding) or 
id  (free flight). A 

contact mode is called consistent if the relevant inequality constraint (3) or (4) is satisfied. The 

consistency of each contact mode depends on the elements of B and a; conditions are summarized in 

Table 1 (with derivation in Appendix A).    

Table 1. consistency conditions of contact modes 

name description consistency conditions 

FF free flight at both legs a1<0 & a2<0 

SF 
sliding on leg 1, 

free flight at leg 2 

b11a1>0 (positive contact force at leg 1) & 

b21/b11a1>a2 (other leg lifts up) 

FS 
sliding on leg 2, 

separation at leg 1 

b22a2>0 (positive contact force at leg 2) & 

b12/b22a2>a1 (other leg lifts up) 

SS sliding on both legs a is in the cone spanned by vectors b1 and b2 

Using the consistency conditions summarized in Table 1, the consistency of each contact mode can be 

determined using only the following information:  

 the index of the quadrant of 2 (real plane) containing b1, or equivalently, the index of 1 in

the ascending  ordering of the set { β1, π/2, π, 3π/2}. 

 The index of  2 in the ascending ordering  of the set { β1, β1
*, β2,  π/2, π, 3π/2}

 the index of   in the ascending ordering  of the set { , β1, β2,  π/2, π, 3π/2}
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This observation enables us to classify systems by a three digit code ijk where i  {1,2…,4}; j,k  

{1,2…,6}. The first two digits will be used to define a coarse classification (from now: classes), 

previously described by Ivanov [9]. The last digit will be used as refinement (subclasses). Table 2 

presents consistent contact modes for each subclass based on the previously determined conditions 

(Table 1).   

 

Table 2. classification of systems based on the directions of vectors b1, b2 and a. Column 1 lists 

classes based on the first two digits of the three-digit labels. A second code in parenthesis 

indicates the dual of the class obtained by switching the indices of the two contacts. The word 

‘same’ indicates a self-dual class. The second columns illustrates the corresponding directions of 

bj (solid arrows), and the directions of the vector a for every subclass (enumerated dashed 

arrows). Columns 3-6 contain lists of subclasses associated with each contact mode. A subclass 

is in the list if the contact mode is consistent. The stability of the contact mode is marked by dark 

(unstable) hatched (model-dependent) and white (stable) background colors.   
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The classification scheme outlined in the paper is not redundant, because there are real 

mechanical systems in all classes and subclasses. For example, a single planar rigid body with two 

contacts, and its own weight as external load can belong to any of the subclasses if the positions and 

directions of contacts as well as the friction coefficients are chosen appropriately.  

Inspection of Table 2 reveals many examples of Painlevé’s paradoxes. For example, in class 112, 

three contact modes are consistent, whereas in class 152, none of the contact modes is consistent. 

These examples of non-uniqueness and non-existence are analogous to previously described examples 

with a single contact point. 

In what follows, a more detailed characterization of contact modes is obtained. A compliant 

contact model allows the application of linear stability analysis, and uncovers novel phenomena. 

4. Contact regularization

In this section we introduce a compliant contact model (Sec. 4.1), and investigate the dynamic 

stability of the contact modes (Sec. 4.2). 

4.1. Contact model 

A unilateral, Kelvin-Voigt type, linear, viscoelastic contact model is used with adjustable stiffness. It 

is assumed that the mechanical system under investigation behaves as a collection of rigid bodies, 

which are allowed to overlap in small contact areas with each other and with rigid contact surfaces. 

The signed gap between a pair of objects is denoted by di (negative if they overlap).  A contact 

stiffness scaling factor ε is introduced such that ε0 corresponds to a rigid contact. The normal 

contact force is a piecewise linear function of the rescaled contact gap 
ii dd  and its derivative 'id  

with respect to rescaled time tt 2/1  : 































0

'

0
max

00

i

iiii

i

i dif
dqdk

dif

f (6) 

The tangential contact force follows Coulomb friction law for sliding. Tangential compliance is 

not included in the model. The positive scalars ki and qi represent rescaled stiffness and damping 

coefficients of contact i. 

The usage of the rescaled variables 
id  and 'id  is motivated by the fact that contacts with

O(ε-1) stiffness suffer O(ε) contact deformations  under finite forces, and their contact dynamics has 

an O(ε1/2) characteristic time-scale. The small deformations and the fast characteristic time scale 

allow a simplified analysis of contact dynamics, in which the parameters ai and bij of (1) can be 

treated as constants. 
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4.2. Stability of contact modes 

The equation of motion (1) and the compliant contact model (6) together determine the fast dynamics 

of the contact gaps (d) and forces (f). Each contact mode corresponds to a stationary value of f. The 

consistency of a contact mode (investigated in Sec. 3) means that this stationary point exists and 

satisfies the inequality constraint (3) or (4). Nevertheless stationary points of a dynamical system may 

be dynamically unstable (i.e. repulsive), which means that a system will practically never stay at such 

a point. Identifying unstable modes offers a partial resolution of the non-uniqueness paradox.  

A contact in free-flight (F) state is special in the sense that the vanishing contact force fi=0 is not 

sensitive to small perturbations of the system. Thus, on the one hand, the FF mode is always stable 

(provided that it is consistent). On the other hand, in SF mode, the dynamics of contact 1 can be 

analysed in itself. Equations (2) and (6) determine a second-order ODE for the time-evolution of d1, 

which is rewritten as a system of 2 linear, 1st order ODEs: 






















1111111

010
'

aqbkb
gg    where   











'1

1

d

d
g  

(7) 

As we show in Appendix B, if b11 is negative, then the coefficient matrix in (7) has two real 

eigenvalues, one positive and one negative. The stationary point of the system is a saddle, i.e. the SF 

mode is unstable. In the opposite case, the matrix has only negative (real or complex) eigenvalues. 

Hence the stationary point representing the FS mode is a stable node or a stable focus. Analogously, 

the FS mode is stable if and only if b22 is positive.  

For the SS mode, a similar system of ODEs describes the simultaneous dynamics of d1 and d2:  


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
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(8) 

where  
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2

1

0

0

q

q
Q . 

 

The stability analysis of this type of system has attracted considerable attention as a minimal model of 

break squeal [5] [6] [7]. It was found that the stationary point of the dynamics may be destabilized by 

friction-induced ‘mode coupling’. Our analysis of contact mode stability follows these earlier works. 
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Figure 1.   Stability regions of the contact modes (SF, FS, SS) in the 1-2 plane. The FF mode is 

always stable (not shown in the figure). The curved boundaries are influenced by q1, q2, k1, 

k2, |b1|and |b2|. The curves displayed in the figure emerge if k1|b1|/ k2|b2|=0.5 and q1=q2=0. 

The two-digit numbers are labels of the classes described in Sec. 3. 

A stationary point of this system is stable if all eigenvalues of the matrix in (8) have negative real 

parts. The fulfilment of the stability condition may depend on B, Q and K (but not on a or ε), see 

Appendix C. There are choices of the angles i, for which the fulfilment of the condition is decidable 

based on knowing nothing else but i. However we there are other intervals of the angles βi where the 

stability of the SS mode depends on parameters of the compliant contact model (K and Q). The 

results of the stability analysis of all contact modes are summarized in Table 2 and in Fig. 1. Those 

values of i for which the SS mode is stable are depicted by dark grey shading in Fig. 1. The curved 

borders of the stability region in classes 13, 14, 23, 31, 41 and 46 depend on the choice of K, Q. The 

straight boundaries of the stability regions at boundaries of classes are however not sensitive to these 

parameters, as long as the angles i are kept constant. Since stability is not affected by a, each 

subclass within a class has the same stability properties. 

526



4.3. New properties of contact modes 

We have seen that the SS mode has stability boundaries within classes 13, 14, 23, 31, 41 and 46.  The 

shapes of the boundaries depend on several parameters of the compliant contact model. This fact 

means that the question of stability of the SS mode is often material-dependent, hence undecidable 

within the framework of rigid body theory. The undecidability of the stability of a contact mode is a 

new phenomenon, which is not present in systems with a single contact. 

We have also demonstrated that the material-dependent stability boundaries lie in the interior of 

subclasses: variation of the angles βj within a subclass may push a system through the stability 

boundary. At the same time, the consistency of a contact mode may only change at the boundaries of 

subclasses. This property means that a contact mode may become unstable without losing 

consistency, and thus multi-contact systems may undergo ‘spontaneous’ contact mode transitions. 

The opposite is known to be true for single-contact systems [13] . 

Subclasses 261 and 262 display a surprising novel phenomenon. The SS mode is consistent in 

both subclasses, whereas FF, SF and FS are inconsistent. Hence, these subclasses do not suffer from 

Painlevé’s paradoxes. At the same time, the SS is robustly unstable in both cases. The result of the 

stability analysis implies that systems of this type do not follow any contact mode. Instead, they 

undergo non-stationary fast dynamics. The analysis of the contact dynamics is the subject of ongoing 

work. Our preliminary results suggest that an impact without collision emerges. This finding is 

important, because an engineer’s common approach to rigid body dynamics with frictional contacts is 

to count the number of consistent contact modes. If the number differs from one, unusual dynamic 

behaviour is to be expected. The converse statement is often believed to be true: the existence and the 

uniqueness of a consistent contact mode makes it unnecessary to search for other types of behaviour. 

Nevertheless this implication of existence and uniqueness does not hold in the case of multiple 

contacts.  

5. Discussion 

This paper presented the consistency and stability analysis of all contact modes for rigid multi-body 

systems with two sliding contacts. We adopted the methodology of earlier works, focusing on single-

contact systems. The new analysis sheds light on three qualitative differences between single contact 

systems and general multi-contact systems, including the undecidability of the stability of contact 

modes within the framework of rigid body theory; the occurrence of spontaneous contact mode 

transitions; and the possibility of ‘unusual’ contact dynamics despite the uniqueness of a consistent 

contact mode. The author believes that the last result is an important step towards a deeper 

understanding of Painlevé’s paradoxes. While the paradoxes are often thought to be the cause of 
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strange contact dynamics, our results indicate that they are merely members in a large family of 

peculiar phenomena associated with frictional contacts 

Future work to be done includes a systematic investigation of IWCs using the same compliant 

contact model. The aim of this work will be a description of possible types of IWC (impact at one leg 

or both legs) and finding conditions under which they occur. Other types of contact dynamics, such as 

inverse clattering [13] and sprag-slip oscillations [17] may also be analysed in a similar fashion. 

Important questions addressed by the extended analysis include the following: do IWCs always 

resolve non-existence? Can we make a finite list of possible patterns of contact dynamics? Efforts to 

answer these questions are motivated by the need of a complete classification of contact dynamics in 

rigid multibody systems with frictional contacts, even though such a complete classification will 

probably never be reached. 

Our current investigations and the tasks described above are limited to “instantaneous” 

phenomena, which are observable within an infinitely short time interval. These include instantaneous 

accelerations of the system (contact modes), fast contact dynamics (inverse clattering) and 

singularities of contact dynamics (IWCs). Nevertheless, they do not include singularities of the (much 

slower) dynamics of sliding motion [3] [15]. Dynamic jamming of multi-contact systems and related 

phenomena will also be the subject of future work. 
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Appendix A: consistency conditions of contact modes 

FF mode: in this mode, (5) implies f=0, and ad   by (1). According to the constraint (4),  the FF

mode is consistent, if a1, a2<0.  

SF mode: in this mode, (2) implies f2=0; from (1) and (2) with i=1, we have f1=a1/b11. The constraint 

(3) for leg 1 is satisfied if a1b11>0. Furthermore, 
12122 fbad  , i.e. (4) for leg 2 is satisfied if

-a2+a1b21/b11>0. The consistency condition of FS is analogous. 

SS mode: according to (1) and (2) with i=1 and 2, aBf  . The constraint (3) is satisfied for both 

legs if a is in the cone spanned by the two column vectors b1 and b2 of B. 

Appendix B: eigenvalues of the coefficient matrix in (7)  

The determinant of the matrix (i.e. the product of the two eigenvalues) is b11k1; whereas the trace of 

the matrix (i.e. the sum of the eigenvalues) is –b11q1.  
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Hence, for b11>0, the determinant is positive and the trace is negative, implying that both 

eigenvalues have negative real parts. For b11<0, the negative determinant implies two real eigenvalues 

with opposite signs. 

Appendix C: eigenvalues of the coefficient matrix in (8) 

The signs of the eigenvalues of matrix 

 



















BQBK

M 10

01

00

00
def

 (9) 

are investigated in this part. In the special case of Q=0, the structure of M implies that its eigenvalues 

are λ1/2 and the eigenvectors are  [xT λxT]T where λ and x are eigenvalues and eigenvectors of the 2 

by 2 matrix BK . Hence, the problem is reduced to the eigenvalue analysis of a 2 by 2 matrix. M 

has an eigenvalue with positive real part if and only if BK  has a positive eigenvalue, i.e. if either 

its determinant is negative or its trace is positive. This is impossible in classes 12 and 42; true in some 

regions within classes 13, 14, 23, 31, 41, 46; and always true in the rest of the classes. Eigenvalues 

with non-positive real parts are always purely imaginary 

In the general case Q≠0, the problem is equivalent of a quadratic eigenvalue problem with 2 by 2 

matrices. The eigenvalues and eigenvectors can be expressed in closed from, however they appear to 

have a much more complicated structure than for Q=0. Instead of an analytical calculation, we 

performed numerical analysis with systematic variations of K and Q. The analysis suggests that the 

answers outlined above for Q=0 remain true except that the eigenvalues with non-positive real parts 

are no more purely imaginary, but they typically have negative real parts. This is caused by the 

damping introduced via Q. 
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Solitary waves in one-dimensional pre-stressed lattice and its 
continual analog

(VIB210-15)

Vsevolod Vladimirov, Sergii Skurativskyi

Abstract: One of the most interesting phenomena occuring in nonlinear media
models is the existence of wave patterns, such as kinks, solitons, compactons,
peakons and many others. There are known numerous nonlinear evolutionary
PDEs, supporting soliton (multi-soliton) and compacton traveling wave (TW)
solutions. Unfortunately, the vast majority of the models, with the exception of
completely integrable ones, do not enable to analyze the properties of solitary
waves interaction using only qualitative methods. Therefore it is instructive,
when dealing with the non-integrable PDEs, to combine the qualitative treat-
ment with numerical simulations. In this report we are going to present the
results of studying compacton solutions in the continual models for granular
pre-stressed chains. The model is shown to possess a pair of compacton TW
solutions which are the bright and dark compactons. First we consider the
stability properties of the compacton solutions and show that both the bright
and the dark compactons pass the stability test. Next we analyze the dynamics
of the compactons, simulating numerically the temporal evolution of a single
compacton, a well as the interection of pairs of compactons, including bright-
bright, dark-dark and bright-dark pairs. To be able to simulate the evolutin
of interacting compactons, we have modified the numerical scheme built by J.
de Frutos, M. A. Lopez-Marcos, and J. M. Sanz-Serna. Results of simulations
are compared with that of evolution of corresponding impulse in the granular
pre-stressed chain.

1. Introduction

This paper deals with some nonlinear evolutionary PDEs associated with dynamics of one-

dimensional chains of pre-stressed granules. Since Nesterenko’s pioneering works, [9–11],

propagation of pulses in such media has been a subject of a great number of experimental

studies and numerical works. We consider a nonlinear evolutionary PDE associated with an

ODE systems describing the interaction of the adjacent elements of the chain with the forces

depending on the relative displacement of the centers of mass of the granules. The PDE in

question is obtained by means of the passage to the continuum limit, followed by the formal

multi-scale decomposition.

We perform in this paper qualitative and numerical study of dark and bright compacton

traveling wave solutions, supported by the PDE, paying attention to the stability and dy-

namical features of the compactons’ solutions. The paper is arranged as follows. In section
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2 we introduce the continual analog of the granular pre-stressed media with the specific

interaction allowing for the propagation of the wave of compression as well as the wave of

rarefaction. In section 3 we construct the Hamiltonian representations for the model, and

show that the compacton traveling wave solutions, satisfying factorised equations, fulfill nec-

essary conditions of extrema for some Lagrange functionals. Next we perform stability tests

for compacton solutions, basing on the approach developed in [2, 6, 7], and show that both

the dark and the bright compactons pass the stability test. The results of qualitative analysis

are backed and partly supplemented by the numerical study. Numerical simulations show

that the compacton solutions completely reestablish their shapes after the mutual collisions.

Finally, in section 4 we present the results of numerical simulation of the Cauchy problem

for discrete chains and compare the results of the numerical simulation with the analogous

simulations performed within the continual analog.

2. Evolutionary PDEs associated with the granular prestressed chains

Unusual features of the solitons associated with the celebrated Korteveg-de Vries (KdV)

equation, as well as other completely integrable models [3], are often prescribed to the

existence of higher symmetries and (or) infinite set of conservation laws. However, there

are known non-integrable equations possessing the localised TW solutions with quite similar

features. As a well-known example, the so called K(m, n) hierarchy [4] can be presented:

K(m, n) = ut + (um)x + (un)xxx = 0, m ≥ 2, n ≥ 2. (1)

Members of this hierarchy are not completely integrable at least for the generic values of the

parameters m, n [14] and yet possess the compactly-supported TW solutions demonstrating

the solitonic features [1, 4].

The K(m, n) family was introduced in years 90th of the XX century as a formal gen-

eralisation of the KdV hierarchy, without referring to its physical context. Earlier V.F.

Nesterenko [9] considered the dynamics of a chain of preloaded granules described by the

following ODE system:

Q̈k(t) = F (Qk−1 −Qk)− F (Qk −Qk+1), k ∈ {0,± 1,± 2, ....} (2)

where Qk(t) is the displacement of granule k centre of mass from its equilibrium position,

F (z) = Azn, n > 1. (3)

A passage to the continual analog of the above discrete model is attained by the substitution:

Qk(t) = u(t, k a) ≡ u(t, x), (4)
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where a is the average distance between granules. Inserting this formula, together with the

identities

Qk± 1 = u(t, x± a) = e±aDxu(t, x) =

n+3∑
j=0

(± a)j

j!

∂j

∂ xj
u(t, x) +O

(
|a|n+4) , (5)

into (2) and dropping out terms of the order O(|a|n+4) and higher, we get the equation:

utt = −C
{
(−ux)

n + β (−ux)
n−1
2

[
(−ux)

n+1
2

]
xx

}
x
, (6)

where

C = Aan+1, β =
na2

6(n+ 1)
.

Differentiating the above equation with respect to x and employing the new variable S =

(−ux), we obtain the Nesterenko’s equation [11]:

Stt = C
{
Sn + β S

n−1
2

[
S

n+1
2

]
xx

}
xx
. (7)

Eq. (7) describes dynamics of strongly preloaded media in which the propagation of acous-

tic waves is impossible (the effect of ”sonic vacuum”). Nesterenko had shown [11] that this

equation possesses a one paremeter family of compacton TW solutions describing the prop-

agation of the waves of compression. Unfortunately, he did not pay much attention to the

investigation of their dynamical features. Our preliminary study show that the compacton

solutions supported by Eq. (7) are unstable. This situation is absolutely analogous to that

with processing the celebrated Fermi-Pasta-Ulam problem [3] which takes the form of sys-

tem (2) in which the interaction force has the form F (z) = Az2 + B z with |A| = O(|B|).
Passing to the continual analog by means of the substitution (4) one obtains the Boussinesq

equation, possessing unstable soliton-like solutions. The famous KdV equation is extracted

from the Boussinesq equation by means the multi-scale decomposition [3].

Our proceedings to the ”proper” compacton-supporting equation is following. We start

from the discrete system (2) in which the interaction force has the form

F (z) = A zn +B z. (8)

In addition, we assume that B = γ an+3, |γ| = O(|A|). Making in the formula (2) the

substitution (4), (5) we get the equation

utt = −C
{
(−ux)

n + β (−ux)
n−1
2

[
(−ux)

n+1
2

]
xx

}
x
+ γ an+3 (−ux)x . (9)
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Differentiating the above equation with respect to x and introducing the new variable S =

(−ux), we obtain the following equation:

Stt = C
{
Sn + β S

n−1
2

[
S

n+1
2

]
xx

}
xx

+ γ an+3 Sxx. (10)

Now we use a series of scaling transformations. Employment of the scaling τ =
√
γ an+3 t,

enables to rewrite the above equation in the form:

Sτ τ =
C

γ an+3

{
Sn + β S

n−1
2

[
S

n+1
2

]
xx

}
xx

+ Sxx.

Next the transformation T̄ = 1
2
aqτ, ξ = ap(x − τ), S = arW is used. If, for example,

we make a choice q = 1, p = −1, r = 5, then the higher order coefficient O(a2) will

stand at the term with the second derivative with respect to T̄ . So, dropping out the terms

proportional to O(a2), we obtain, after the integration with respect to ξ, the equation:

WT̄ +
A

γ

{
Wn +

n

6 (n+ 1)
W

n−1
2

[
W

n+1
2

]
ξ ξ

}
ξ

= 0.

The scaling T = A
γ
L T̄ , X = Lξ, L =

√
6(n+1)

n
leads us finally to the target equation:

WT +
{
Wn +W

n−1
2

[
W

n+1
2

]
XX

}
X

= 0. (11)

Description of waves of rerefaction in the case n = 2 k requires the following modification

of the interaction force:

F (z) = −Az2 k +B z (12)

(for n = 2 k + 1 the formula (8) describes automatically both wave of compression and

raferaction). Applying the above machinery to the system (2) with the interaction (12), one

can get the equation

WT −
{
Wn +W

n−1
2

[
W

n+1
2

]
XX

}
X

= 0, n = 2 k. (13)

Thus, for n = 2 k the universal equation describing waves of compression and rarefaction

can be presented in the form

WT + sgn(W )
{
Wn +W

n−1
2

[
W

n+1
2

]
XX

}
X

= 0. (14)

Let us note in conclusion that the equations (11) - (14) are obtained by formal employ-

ment of the multiscale decomposition method, which cannot be justified in our case because

of negativeness of the index p. Nevertheless further investigations of these equations is still

of interest because they occur to possess a set of compacton solutions demonstrating inter-

esting dynamical features. As will be shown below, these solutions qualitatively correctly

describe propagation of short impulses in the chain of prestressed blocks.
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3. Compacton solutions and stability tests

Let us consider the pair of equations (11), (13), which can be expressed in the common form

WT + ϵ
{
Wn +W

n−1
2

[
W

n+1
2

]
XX

}
X

= 0, ϵ = ± 1. (15)

Since we are interested in the TW solutions W = W (z) ≡ W (X − c T ), it is instructive to

make a passage to the traveling wave coordinates T → T, X → z = X − c T . Performing

this change, we get:

WT − cWz + ϵ
{
Wn +W

n−1
2

[
W

n+1
2

]
zz

}
z
= 0. (16)

Below we formulate several statements, which are easily verified by direct inspection.

Statement 1. Eq. (16) admits the following representation

∂

∂T
W =

∂

∂ z
δ (ϵH + cQ)/δW, (17)

where

H =

∫ [
n+ 1

4
Wn−1W 2

X − 1

n+ 1
Wn+1

]
d z, Q =

1

2

∫
W 2 d z.

Statement 2. The functionals H, Q are conserved in time.

Statement 3. Consider the following functions:

W ϵ
c (z) = ϵWc(z) =

 ϵM cosγ (B z), if |K z| < π
2
,

0 elsewhere,
(18)

where

M =

[
c(n+ 1)

2

] 1
n−1

, K =
n− 1

n+ 1
, γ =

2

n− 1
.

If n = 2 k + 1, k ∈ N, then the functions W±
c (z) are the generalized solutions to the

equation

δ (H + cQ) /δW |
W=W±

c
= 0. (19)

If n = 2 k, k ∈ N, then the function W ϵ
c (z) satisfies the equation

δ (ϵH + cQ) /δW |W=W ϵ
c
= 0. (20)
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So, the TW solutions (18) are the critical points of either the Lagrange functional Λ[β] =

(H + β Q) (case n = 2 k + 2) or Λϵ[β] = (ϵH + β Q) (case n = 2 k) with the common

Lagrange multiplier β = c. A necessary and sufficient condition for Λ[β] (Λϵ[β]) to attain

the minimum on the compacton solution can be formulated in terms of the positiveness of

the second variation of the corresponding functional, which, in turn, guarantees the orbital

stability of the TW solution, [5]. Here we do not touch upon the problem of strict estimating

the signs of the second variations. Instead of this, we follow the approach suggested in [2,6,7],

which enables to test a mere possibility of the local minimum appearance on a selected sets

of perturbations of TW solutions.

Let us consider a family of perturbations

W ϵ
c (z) → λαW ϵ

c (λ z). (21)

By choosing α = 1/2 we guarantee that

Q[λ] =
1

2

∫ π/2

−π/2

[
λ

1
2 W ϵ

c (λ z)
]2
d z = Q[1]. (22)

Imposing this condition, we reject the ”longitudinal” perturbations, associated with sym-

metry Tγ [W
ϵ
c (z)] = W ϵ

c (z + γ). Indeed, since the equations (19), (20) are invariant under

the shift z → z + γ, then TγW
ϵ
c (z) belongs to the set of solutions as well, while formally

the transformation W ϵ
c (z) → W ϵ

c (z + γ) can be treated as a perturbation. In order to ex-

clude the perturbations of this sort, the orthogonality condition is posed. Introducing the

representation for the perturbed solution

W ϵ
c (z)[λ] =W ϵ

c (z)[1] + v(z),

and using the condition (22), we get

0 = Q[λ]−Q[1] =

∫ π/2

−π/2

W ϵ
c (z) v(z) d z +O

(
||v(z)||2

)
.

For α = 1/2, we get the following functions to be tested:

Λν [λ] = (ν H + cQ)[λ] = ν
{
λ

n+3
2 Iϵn − λ

n−1
2 Jϵ

n

}
+ cQ, (23)

where

Iϵn =
n+ 1

4

∫ π/2

−π/2

[W ϵ
c ]

n−1 (τ) [W ϵ
c ]

2
τ (τ) d τ, Jϵ

n =
1

n+ 1

∫ π/2

−π/2

[W ϵ
c ]

n+1 (τ) d τ,
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ν = ϵn+1 =

 +1 when n = 2 k + 1,

ϵ when n = 2 k.

If the functional Λν = ν H + cQ attains the extremal value on the compacton solution,

then the function Λν [λ] has the corresponding extremum in the point λ = 1. The verification

of this property is used as a test.

A necessary condition of the extremum d
d λ

Λν [λ]
∣∣∣
λ=1

= 0 gives us the equality:

Iϵn =
n− 1

n+ 3
Jϵ
n. (24)

Using (24), we can easily get convinced that

d2

d λ2
Λν [λ]

∣∣∣
λ=1

= ν
n− 1

2
Jϵ
n = ϵ2(k+1) n− 1

2(n+ 1)

∫
[Wc]

n+1 (τ) d τ > 0

for both n = 2 k + 1 and n = 2 k.

So the generalized solutions (18) pass the test for stability.

Further information about the properties of the compacton solutions deliver the numer-

ical simulations.

4. Numerical simulations of compactons’ dynamics

a) b)

Figure 1. The movement of single compacton with the velocity D = 1 to the right (left

panel). The movement of two bright compactons with the velocities D = 1 and D = 1/4,

respectively (right panel).
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Figure 2. The movement of two dark-compactons with the velocities D = 1 and D = 1/4,

respectively.

The solitary waves’ dynamics is studied by means of direct numerical simulation, based

on the finite-difference scheme. To derive the finite-difference scheme, e.g., for the model

equation (11), we modify the scheme presented in [1]. In accordance with the metodology

proposed in this paper, we introduce the artificial viscosity by adding the term εW4x, where ε

is a small parameter. Thus, instead of (11) we have in the case n = 3 the following equation:

Wt +
{
W 3}

x
+
{
W
[
W 2]

xx

}
x
+ εW4x = 0. (25)

Let us approximate the spatial derivatives as follows

1

120
(Ẇj−2 + 26Ẇj−1 + 66Ẇj + 26Ẇj+1 + Ẇj+2)+

+
1

24h
(−W 3

j−2 − 10W 3
j−1 + 10W 3

j+1 +W 3
j+2)+

+
1

24h
(−Lj−2 − 10Lj−1 + 10Lj+1 + Lj+2)+

+ε
1

h4
(Wj−2 − 4Wj−1 + 6Wj − 4Wj+1 +Wj+2) = 0,

(26)

where Lj =Wj
W2

j−2−2W2
j +W2

j+2

h2 .

To integrate the system (26) in time, we use the midpoint method. According to this

method, the quantities Wj and Ẇj are presented in the form

Wj →
Wn+1

j +Wn
j

2
, Ẇj →

Wn+1
j −Wn

j

τ
.
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Figure 3. Evolution of the initial perturbation in the granular media (marked with dots) on

the background of the corresponding evolution of the compacton (marked with solid lines)

upper row: left: t = 0 right: t = 4; lower row: left: t = 9; right: t = 14

The resulting nonlinear algebraic system with respect to Wn+1
j can be solved by iterative

methods.

We test the scheme (26) by considering the movement of a singe compacton. Assume

that the model’s parameters D1 = 1, s0 = 5.5 and scheme’s parameters N = 600, h = 30/N ,

τ = 0.01, ε = 10−3 are fixed. The application of the scheme (26) gives us the figure 1a.

To study the interaction of two bright compactons, we combine the previous compacton

and another one with the lower amplitude taking the velocity D2 = D1/4 and s0 = 15.5.

The result of modelling is presented in fig. 1b. The interaction of two dark compactons has

the similar properties and is depicted in fig. 2.

5. Comparison of numerical evolution of compactons with the numerical solu-

tion of the granular media, subjected to similar initial conditions

We’ve performed the comparison of the evolution of compacton solutions with corresponding

solutions of the finite (but long enough) discrete system. The discrete analogs to the field

S(t, x) = − ∂ u(t, x)
∂ x

are the ”stresses” Rk = Qk−1 −Qk, satisfying the system

R̈1(t) = 0, R̈k(t) = A [Rn
k−1 − 2Rn

k +Rn
k+1] , R̈m(t) = 0
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Figure 4. Evolution of two initially separated compacton perturbation in the granular

media (marked with dots) on the background of the numerical solution of the continual

model with the same initial data (marked with solid lines) upper row: left: t = 0 right: t = 3;

lower row: left: t = 21.5; right: t = 31

with the initial conditions

Rk(0) =

M cosγ [Bak − I] if |Bak − I| < π/2

0 if otherwise,

and

Ṙk(0) =

−Mcγ cosγ−1[Bak − I] sin[Bak − I] if |B ak − I| < π/2

0 if otherwise,

where I is a constant phase, k = 2, 3, ....,m − 1. The result of comparison for a single

compacton is shown in fig. 3. In fig. 4 evolution of two initially separated compactons is

shown for both continual and discrete models.

6. Conclusion and discussion

In this paper compacton solutions are studied, supported by the continual analogs of the

dynamical systems describing one-dimensional chains of prestressed particles. The equation
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(10) obtained without resorting to the method of multi-scaled decomposition possesses the

compacton solutions which fail to pass the stability test. Numerical experiments show that

the compacton solutions are destroyed in a very short time.

Contrary, the equations (11), (13) which are obtained with the help of formal multi scale

decomposition, possess families of bright and dark compacton solutions, correspondingly,

which occur to be stable. This is backed both by the stability test and results of the

numerical simulations.

A characteristic feature of the equation (11) connected with the decomposition used

during its derivation is that it describes a processes with the ”long” temporal and ”short”

spatial scales. So it is rather questionable if this equation can adequately describe a localised

pulse propagation in a discrete media in which the characteristic sizes of the particles are

comparable with compacton’s width ∆x. In fact, making the backward transformations

X → ξ → x we get the following formula for the width of the compacton solution (18) in

the initial coordinate:

∆x = π a

√
n(n+ 1)

6(n− 1)2
.

For n = 3/2, corresponding to the Hertzian force between spherical particles, we get ∆x ≈
4.96 a. It is then curious to know that the same results for the particles with the spherical

geometry were obtained during the numerical work, and experimental studies [8–10,12,13].

Let us remark in conclusion that some of the present results, in particular those concern-

ing the stability study, are only preliminary. The full investigations of stability of compacton

solutions supported by (11)-(14) will be published elsewhere.
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Proposed methods of controlling dual fuel CI engine using CAN-

BUS information

(MTR288-15) 

Damian Walczak, Łukasz Zieliński, Krzysztof Szczurowski, Stanisław Radkowski 

Abstract: In this article the information concerning proposed methods of controlling 

the dual fuel engines with compression ignition with an addition of LPG, has been 

presented. The proposition of the steering method is based on using the copyright 

controller, originally designed for the test bench and in later solutions – for 

controlling the work of the LPG fitting system in the commercial passenger vehicle. 

This method presents the way of utilizing information from the CAN network for 

controlling the LPG addition into the intake manifold. Two methods of the LPG 

injector control have been described, and the differences resulting from both methods 

have been presented. The algorithm calculating the gas injection duration has been 

described, based on the information obtained from the CAN network, in the first place 

the information about rotational speed, diesel oil injection dose, or the position of the 

acceleration pedal. The advantages of the control system using this information have 

been emphasized, especially that there is no necessity of interference in the analogue 

signals and thereby in the original factory electric wiring. 

1. Introduction

These three pages of the Template should be regarded to as samples. Due to the international scope of 

the DSTA Conference the contribution should be written in a possibly clear and concise English. 

With the introduced increasingly stringent standards of exhaust gases emission [1], and with the 

shrinking petroleum resources, the new solutions are sought after, enabling reduction of fuel 

consumption and toxic compounds emission. One of the possible ways to reduce the amount of such 

compounds is using alternative fuels or their additives. More and more tests are carried out regarding 

dual fuel engines in which, for example, the basic fuel is diesel oil and the additional fuel – liquefied 

petroleum gas (LPG), biogas, etc., which are fuels far cheaper than diesel oil and which generate 

fewer toxic compounds [2]. 

Development of control systems for the combustion engines allows for attempts of very precise 

control of dual fuel engines work. LPG is an alternative gaseous fuel, which is a by-product of 

refining crude oil, consisting basically of propylene, propane, butane, and other light hydrocarbons. 

A high octane number caused an extensive use of this kind of fuel, mainly in positive ignition 

engines. As a result of a highly developed distribution network, and the fact that it is easy to store 
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compared with other gaseous fuels, this fuel can be an essential source of power not only in engines 

with positive ignition.  

Currently, in many research centres the tests are performed, devoted to using gaseous fuels (most 

frequently LPG and CNG) to fuel the combustion engines with compression ignition. Among the 

most important directions of research the following should be mentioned: 

 fuelling engines with LPG, CNG, LNG  (dual fuelling) [3,4,5,6],

 fuelling engines with biogas (by means of the engine modification: changing the compression

ratio and installing the additional ignition system) [7],

 fuelling engines with the modified LPG and CNG (using additives enabling self-ignition).

The test results regarding the diesel LPG engines indicate that within the range of certain load 

and rotational velocity values, combustion of a defined gas additive, causing reduction of toxic 

compounds, is possible. However, it has also been proved that at smaller load values, poor 

combustion of LPG takes place, resulting therefore in lowering the engine efficiency and an increase 

in HC and CO emissions. Analysing the contemporary state of knowledge, it seems reasonable 

controlling the combustion processes in a way, which uses current engine parameters such as 

temperature of the exhaust gases, pressure in the combustion chamber, or analysis of the fuel mixture 

composition [8]. 

Amount of the added gas should be selected taking into consideration these parameters, and it 

should be adjusted to the current engine load and participation of gases from the exhaust gas 

recirculation [9]. 

In spite of the problems with automating the dual fuel engines, the tendency of increasing 

popularity of installations enabling addition or replacing LPG can be observed on the European 

market. It is caused mainly by the possibility of saving resulting from the relatively low price of LPG, 

at present accounting for approximately 40% of the liquid fuel price. The solutions offered in these 

installations allow for addition to approximately 30% of propane-butane. This proportion results from 

the control of the combustion process, especially from the susceptibility to detonation combustion and 

the tendency of the exhaust gases temperature to rise [10]. 

In commercial solutions, however, operation of the control system is based on controlling the 

mixture using the signal from the potentiometer of the accelerator pedal or the signal from the fuel 

pressure sensor in the container tank [11]. These signals are measured and subsequently the foster 

signals are generated, which reach the original factory controller. The engine safety is guaranteed by 

the shut-off of gas flow to the engine in the case of exceeding the temperature difference of exhaust 

gases in exhaust manifold for dual fuel work, compared to work on diesel oil exclusively, which 

indicates too heavy load. Such a manner of LPG addition control is relatively easy and reliable, 

nevertheless, such a low degree of integrity with the manufacturer’s system leads to certain 
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limitations. There is no possibility of influencing such parameters as injection timing, or smooth 

limitation of LPG addition, which does not support the optimal dual fuel work as far as efficiency and 

maximal share of LPG are concerned. 

Damaging any of the system’s elements also results in the control system switching to exclusive 

diesel oil fuelling. The modification of an engine with compression ignition to LPG fuelling, in case 

of delivering gas to the intake manifold generates problems, which constitute separate issues [12]. 

Differences in fuelling can take place depending on the place in which the gas injector is installed. 

The angle of injector positioning can influence the filling up of the cylinder and possible losses of 

delivering the mixture to the cylinder. In the case of multi-cylinder engines, the problem consists in 

the amount of gas delivered to different cylinders because intake manifolds for different cylinders can 

vary in length. Then, in some cylinders, diesel oil with a smaller addition of LPG gas compared to 

other cylinders can be combusted. 

2. Testing the vehicle’s CAN 

Taking into consideration the information included in the Introduction section, the authors took 

up the subject of controlling the dual fuel engine using their own original controller [13], enabling the 

LPG injection control. The main purpose was lack of interference with the engine’s factory wiring 

and using the CAN network to acquire the information about the engine load.  

One of the work stages consisted in finding the frame identifiers [14], in which the information 

can be sent from the engine controller about the rotational velocity, depressing the accelerator pedal, 

and diesel fuel dose. After finding the identifiers, the method of computing the data from the CAN 

frame into real quantities was determined.  

Vital information is sent in the High Speed network, this is why the NI USB-8473s card by 

National Instruments has been used to search the information. The card was connected to the CAN 

network responsible for the drive system. 

Using the chosen card and the software delivered by the manufacturer to test the connected 

measuring equipment, made it possible finding the frame ID and the byte, in which the information 

about the accelerator pedal position is sent, together with the method of computing data into real 

quantities.  

  The comparative tests on a distance of approximately 60km enabled finding the most interesting 

information (Fig. 1, Fig. 2). The analyses of the test results showed that the doses registered by the 

diagnoscope, and read from CAN after proper rescaling do not fully match each other, which is 

illustrated by the comparative time curve diagram and by the scatter plot. 
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Figure 1.   Curve of time for the CAN dose and for the dose registered by the diagnoscope 

Figure 2.   Comparison of the dose with the value from CAN network 

As can be observed in the chart (Fig. 2), the linear description is possible only within the limited 

range (to about 20 mg/stroke). Above this value, a clear discrepancy of the results compared with the 

linear description can be seen because at normal operation, doses over 20mg/stroke occur relatively 

rarely; they correspond to heavy loading, this is why the decision was taken to use the linear 

description in the first step, to fit the needs of the LPG addition installation. 

After a thorough analysis of the registered data, an attempt has been made to compare the given 

value with a different parameter of engine work, which is a calculated torque. It is computed by the 

engine controller on the basis of the diesel fuel dose. 
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Figure 3 shows the comparison of the values from the CAN network with the calculated torque 

registered by the diagnoscope. In this case, the linear description matches the real–life data, which is 

proved by the earlier proposition of description with the help of a linear model. 

 

Figure 3.   Comparison of the calculated torque with the values from CAN 

3. Algorithm of the LPG dose selection 

Apart from the information from the CAN network, using additional sensors, dedicated to the 

LPG fittings, proved necessary:   

• integrated LPG pressure sensor, 

• exhaust gas temperature (EGT) sensor. 

 

The information from CAN regarding the calculated torque is converted into a diesel fuel dose, 

and it is used to calculate the LPG base dose. The diesel fuel dose is multiplied by a base dose 

coefficient, which defines the mass ratio of LPG to diesel oil. It was determined on the basis of the 

earlier tests and studying the literature of the subject, its value ranges between 0 to 50%, and it is 

recorded in the controller’s memory. 

                       (1) 

Where: 

          – calculated LPG base dose [mg/stroke] 

         – diesel oil dose reading from CAN network [mg/stroke] 

     – base dose coefficient recorded in the EEPROM memory 
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The calculated LPG base dose must be corrected because of several reasons, the most important 

being: 

• too big a dose, in given conditions, can lead to detonation combustion which is destructive for

the engine;

• injection of too big a dose without sufficient amount of air will cause a decrease in engine

efficiency through incomplete fuel combustion, and will result in the growth of  hydrocarbon

emission.

In the algorithm the following limitations of the dose, applied at different levels, have been 

implemented: 

 limiting the dose coefficient     ) 

o due to the coolant temperature (          ), 

o due to the position of the accelerator pedal             ), 

 limiting the dose          ) 

o due to the difference in the current and maximal diesel oil dose for given

conditions (                   ),

o limiting to the maximal dose (              

o due to the exhaust gases temperature (EGT) (             ). 

4. Limitations of the dose coefficient

The first limitation of the dose coefficient is limitation due to the engine temperature. This 

limitation has a purpose of making the dose smaller when the engine and regulator temperature is still 

too low to assure the proper functioning, which could lead to an uncontrolled LPG injection. 

Additionally, the dose coefficient is reduced at high temperature in order to protect the engine from 

overheating. This limitation is a function consisting of many linear functions and is computed on the 

basis of the formula presented below. The operating area is illustrated by the diagram (Fig. 4). 

           

 
 
 

 
 

                       

                              

                                

                   

                  
               

 (2) 

Where: 

          - maximal coefficient of the dose due to the engine temperature [%], 

    - engine temperature [oC]. 
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Figure 4.   Operating area of the dose coefficient as a function of coolant temperature 

The second limitation of the dose coefficient is implemented due to the position of the 

accelerator pedal, which enables stable engine work with small doses and small movements 

depressing the accelerator pedal, reducing simultaneously wear of the drive system, due to the 

smoother increase of the torque. This limitation is calculated on the basis of the following formula: 

                     (3) 

Where: 

              - maximal value of the multiplication factor [%], 

    - depressing the accelerator pedal [%]. 

The calculations made are used for ultimate limitation of the dose coefficient on the basis of 

the formulae below: 

        
                    

                          

  (4) 

        
                           

                                  

  (5) 

Where: 

        - ultimate value of dose coefficient [%]. 

Before approaching the subsequent limitations, the base dose is calculated, after the limitation of 

the dose coefficient was taken into consideration.   

                         (6) 
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5. Dose limitations

The first limitation acting directly on the LPG dose is implemented with regard to the difference 

of the current diesel oil dose and the maximal dose in a given moment. Both values are sent through 

the factory engine controller through the CAN network. On the basis of this difference, the amount of 

gas to be totally combusted can be estimated. The value is made bigger by the additional amount of 

gas in order to improve the engine performance. The dose coefficient for the maximal dose of diesel 

oil (        serves this purpose. Its value was determined experimentally and ranges from 0%, with 

no performance increase, to 15% for the maximal engine performance.  

                 
           

                       (7) 

Where: 

                 
 - maximal LPG dose due to diesel oil maximal dose [mg/stroke], 

          
- maximal diesel oil dose in a given moment [mg/stroke], 

      - diesel oil dose coefficient for maximal diesel oil dose [%]. 

The second direct limitation of LPG dose               is a constant value recorded in the 

controller’s EEPROM memory. Its value was experimentally determined at the level of 10 mg/stroke, 

with the possibility of implementing changes by the user.  

The last LPG limitation is implemented due to the exhaust gases temperature (EGT) 

(             ). This limitation protects the engine from damage caused by too high combustion 

temperature. This limiter’s operation is based on limiting the maximal dose              . The EGT 

limiter makes the maximal dose smaller, in the temperature range depending on the configured 

parameters. These parameters define, at which temperature the dose limitation starts (         ), how 

it depends on the temperature (    ), and the minimal level of this limiter (        ). The method of 

calculating this limitation is shown in the relationship below.  

               
                          

                                               
 (8) 

               
                                     

                               

 (9) 

Where: 

             - maximal LPG dose due to the exhaust gas temperature [mg/stroke], 

    - exhaust gas temperature (EGT) [oC], 
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          - exhaust gas temperature, above which the maximal dose is limited [oC], 

     - współczynnik zmniejszenia dawki ze względu na zwiększenie temperatury 

[mg/100oC], 

         - minimalna dawka dla ograniczenia ze względu na temperaturę spalania [mg/suw]. 

 

Figure 5 illustrates how the limiter value changes depending on the exhaust gas temperature 

for different parameters.  

 

Figure 5.   Reducing the amount of gas due to the exhaust gas temperature 

The ultimate gas dose is calculated in the following way: 

         
  

        
         

                  

                 
         

                  

  (10) 

 

         
  

         
          

              

                        
              

  (11) 

6. The control algorithm injector 

The injector opening time results from the calculated LPG dose, with the assumption of the 

constant gas pressure behind the regulator, and of the constant pressure in the intake manifold. 

Because of the changing gas parameters, the coefficient of correction of the injection duration was 

used in the formula below, calculated on the basis of the LPG pressure and in the intake manifold.  

       
           

  
     (12) 
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T_min=430 ᵒC; 

k_EGT=4 mg/100ᵒC; 

q_EGTmin=4 mg;  

T_min=420 ᵒC; 
k_EGT=5 mg/100ᵒC; 
q_EGTmin=5 mg;  
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Where: 

      – injection duration [ms]

    – dose calculated in the previous step [mg/stroke]

  – theoretical injector flow rate [mg/ms]

   – injector operation delay, theoretical injection duration, at which injector shows zero

flow rate [ms] 

  – correction coefficient resulting from gas pressure, boost pressure and gas temperature

The injector constants are determined experimentally in the process of calibration: 

 theoretical injector flow rate              , 

 injector opening delay            . 

The calibration was performed at the absolute pressure                and the 

temperature TLPG_0=20oC. The gas changes its mass with changing temperature or pressure, keeping

its constant volume in accordance with the ideal gas equation: 

          (13) 

Where: 

        - variable parameters of gas state: pressure, volume, mass, temperature 

  - individual gas constant 

To maintain the constant dose, the constant mass            was adopted in the formula 

above, with temperature or pressure change, a different gas volume should be delivered. After simple 

transformation, the following equation was obtained: 

   

 
         (14) 

             

      
 

         

    
(15) 

The correction coefficient ( ) for the injector opening time determines what gas volume must 

be delivered proportionally to the volume during performed calibration. The formula below illustrates 

the method of calculation of the   coefficient. 

  
    

      
  

           

           
(16) 

Where: 

      - gas volume during injector calibration [l] 

    - gas volume that must be injected during engine work [l] 

      - absolute gas pressure during calibration               

      - temperature during calibration                  

    - current gas pressure on the regulator outlet [kPa] 

    - current gas temperature on the regulator outlet [K] 
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7. Tests 

The presented algorithm of the LPG dose selection and of injector automation was recorded as a 

source code, and subsequently compiled and uploaded into the authors’ original controller [13]. The 

created control system was installed on a Seat Cordoba with the 1.4 TDI engine. A series of tests were 

conducted, tests of influence of the gas addition on engine performance, among others. The tests were 

carried out for the maximal engine load, with no diesel oil dose limitation. Figure 6 shows the engine 

characteristics for powering: 

• with diesel oil only  

• with diesel oil with 5% LPG addition 

• with diesel oil with 10% LPG addition. 

 

Figure 6.   Characteristics of power and torque for different LPG additions 

8. Summary 

The tests conducted by the authors prove there is a deep sense searching for methods enabling 

the use of information transferred through the CAN network. This way of obtaining information from 

the factory installation increases the control system reliability, at the same time allowing for 

application of a more complex algorithm to calculate the LPG optimal dose.  

Modern engines with compression ignition are equipped with turbochargers, the effect of which 

are the pressure changes in the intake manifold. The injector calibration was performed at idle speed 

with the constant pressure value. Developing the system, pressure changes in the intake manifold to 

the correction of injector opening time, are also worth taking into consideration. 
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Nonlinear modal interactions in composite thin-walled beam 
structures with CAS lay-ups

(VIB116-15)

Xiao Wang, Zhanming Qin

Abstract: A second-order geometrically nonlinear theory of anisotropic thin-
walled beams is developed to investigate the nonlinear dynamic characteristics
of composite aircraft wings in the presence of internal resonance. Some promi-
nent non-classical effects such as of transverse shear strain, warping inhibition,
and three-dimensional (3-D) strain are considered. Moreover, Circumferen-
tially Asymmetric Stiffness (CAS) lay-up configuration is adapted to generate
the transverse bending-twisting elastic coupling. The governing equations of
the dynamic system and the related boundary conditions are derived via Hamil-
ton’s Principle. The solution methodology is based on the Extended Galerkin’s
Method and the method of multiple scales is applied to the system in order
to obtain the equations of amplitude and modulation. Steady-state solution
and their stability are investigated by means of the eigenvalues of the Jacobian
matrix. The peculiarity of the internal resonances and the conditions for satu-
ration and jump phenomenon during the modal interactions are discussed and
the commercial code ABAQUS is used to validate the theoretical results we
have obtained. Finally, the prominent features of modal interactions in com-
posite thin-walled beam structures are summarized and pertinent suggestions
concerning safe design of the wing structures are given.

1. Introduction

Composite materials and structures, due to their vast advantages, have been increasingly

used in aerospace industry and other fields of advanced technology. They have even been

identified as a major thrust for designing high-performance aerospace structures (see e.g.,

[4, 5]). Anisotropic composite thin-walled structures are expected to meet the increasingly

aggressive missions of the next generation of high-performance flight vehicles. In recent years,

some further refinements are conducted to the modeling of open or closed cross-section thin-

walled composite beam structures (see e.g., [3, 8, 26, 28]). Among these efforts, Cortinez et

al. [3] and Vo and Lee [26] introduced warping shear to try to improve the model’s accuracy;

and together with a geometrically exact, intrinsic theory of anisotropic beams developed by

Hodges [7], the variational-asymptotic beam sectional analysis [28] can be used for arbitrarily

large deflections and rotations(see e.g., [19]).

It is well know that nonlinear structures may display manifold nonlinear characteris-

tics such as multiple solutions, limit cycles, sub-harmonic and super-harmonic resonances,
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various modal interactions, bifurcations and chaotic motions [16]. Among these behaviors,

modal interactions pose a particular concern since as clearly pointed out by [15], it can be

dangerous when energy is transferred from low-amplitude high-frequency modes to lower

modes with high-amplitude. Although there have been extensive research work on this issue

in solid structures, such as solid beam, plate, shell, in the context of aircraft composite wing

structures modeled as thin-walled box beams, the issue of modal interactions has not yet

been addressed.

In the present paper, based on the theory developed by Bhaskar and Librescu [1], a thin-

walled box beam theory with second-order geometrically nonlinear terms is developed. Modal

interactions in the presence of combination internal resonance are analytically investigated.

Finally, for the purpose of validating the preceding theoretical results, the commercial code

ABAQUS [6] is used to simulated the nonlinear vibration responses of the thin-walled box

beam subjected to primary-resonance excitation. The fast Fourier transform (FFT) [27] is

further used for the frequency-domain analysis.

2. Structural Elements of a Geometrically Nonlinear Theory of Anisotropic

Thin-Walled Beams

According to the basic assumptions as proposed in [1,2,11], in the local coordinates (s, y, n),

a material point on the mid-line contour (i.e., n = 0) within the walls can also be represented

by the global coordinates (x(s), z(s)). For arbitrary large rotation φ, the 3-D displacements

u(x, y, z, t), v(x, y, z, t), w(x, y, z, t) of the beam can be postulated as

u = u0 + (z + n
dx

d s
) sinφ− (x− nd z

d s
)(1− cosφ), (1a)

v = v0 + (x− nd z

d s
)θz + (z + n

dx

d s
)θx − [Fw + na]φ′, (1b)

w = w0 − (x− nd z

d s
) sinφ− (z + n

dx

d s
)(1− cosφ), (1c)

where

θx = γyz − w′
0 cosφ− u′

0 sinφ, θz = γxy − u′
0 cosφ+ w′

0 sinφ, (2a)

a = −(z
d z

d s
+ x

dx

d s
), rn = z

dx

d s
− xd z

d s
. (2b)

We note that u0(y, t), v0(y, t), w0(y, t), φ(y, t), θx(y, t), θz(y, t) represent the 1-D displace-

ment measures, and constitute the basic unknowns of the problem.

The warping function in Eq. (1b) is expressed as

Fw =

∫ s

0

[rn(s)− ψ(s)]ds, (3)
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Figure 1. Geometry of an aircraft wing modeled as a thin-walled beam.

here, the torsional function ψ(s) is defined as

ψ(s) =

∮
c

rn(s) d s

/(
h(s)Ḡsy(s)

∮
c

d s

h(s)Ḡsy(s)

)
, (4)

where Gsy(s) is the effective membrane shear stiffness, which is defined as [1]:

Gsy(s) =
Nsy

h(s)γ0
sy(s)

. (5)

In order to develop the 2nd-order geometrically nonlinear thin-walled composite beam

theory, we truncate up to the quadratic nonlinear terms in the Green strain [1, 11,22]:

ε0yy = [v′0 +
1

2
(u′

0)2 +
1

2
(w′

0)2]+x(θ′z−w′
0φ

′)+z(θ′x +u′
0φ

′)−Fwφ
′′ +

1

2
(φ′)2(x2 +z2), (6)

ε1yy =
dx

d s
(θ′x + u′

0φ
′) +

d z

d s
(−θ′z + w′

0φ
′)− aφ′′ + rn(φ′)2, (7)

γys =
dx

d s
(θz + u′

0 − w′
0φ) +

d z

d s
(θx + w′

0 + u′
0φ) + ψ(s)φ′ + 2nφ′, (8)

γny = −d z

d s
(θz + u′

0 − w′
0φ) +

dx

d s
(θx + w′

0 + u′
0φ). (9)
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3. Formulation of the Governing System for beams with CAS lay-up

The governing equations with the boundary conditions can be systematically derived from

Hamilton’s principle [13, pp. 82-86]. Particular lay-ups induce specific types of elastic cou-

pling [20, 23]. In order to generate the transverse bending-twisting elastic coupling that is

beneficial for the aeroelastic response behavior of aircraft wings and to apply the tailoring

technique, the circumferentially asymmetric stiffness (CAS) configuration is adopted [11,12]

in the present case. For beams with the CAS lay-up, there are two types of elastic coupling,

viz, extension-transverse shear and bending-twist coupling. Moreover, for the thin-walled

CAS beams, the balanced lay-ups on the webs (left and right walls) imply that the stiffness

coefficient a15 is zero [20], and the coefficient a27 is much smaller (< 2%) than a37, a22, a55

and a77 for all the lay-ups considered, and therefore, can be ignored [20].

Ignoring the 3rd-order and up nonlinear terms, the governing equations for the above

CAS lay-up, expressed in terms of the basic unknowns, are:

δu0 : a14v
′′
0 + a44(u′′

0 + θ′z) + a14(u′
0u

′′
0 + w′

0w
′′
0 )− a44(w′

0φ)′ + a48φ
′φ′′

+
[
a11v

′
0u

′
0 + a14(u′

0 + θz)u′
0 + a33θ

′
xφ

′ + a37(φ′)2 + a55(w′
0φ+ θxφ)

]′
+ px − b1ü0 = 0,

(10a)

δv0 : a11v
′′
0 + a14(u′′

0 + θ′z) + a11(u′
0u

′′
0 + w′

0w
′′
0 )− a14(w′

0φ)′ + a18φ
′φ′′

+ py − b1v̈0 = 0,
(10b)

δw0 : a55(w′′
0 + θ′x) + a55(u′

0φ)′ + a58φ
′φ′′ + [a14(u′

0 + θz)w′
0 − a22θ′zφ′

−a44(u′
0 + θz)φ+ a11v

′
0w

′
0 − a14v′0φ]′ + pz − b1ẅ0 = 0,

(10c)

δφ : a37θ
′′
x + a77φ

′′ − a66φ(iv) + a37(u′
0φ

′)′ +
{

[a33θ
′
x + a37φ

′]u′
0 − a22θ′zw′

0

}′
+a55(w′

0 + θx)u′
0 +

{
[a48(u′

0 + θz) + a58(w′
0 + θx)]φ′ + a18v

′
0φ

′}′
−a44(u′

0 + θz)w′
0 − a14v′0w′

0 +my + b′w − (b4 + b5)φ̈+ b10φ̈
′′ = 0,

(10d)

δθx : a33θ
′′
x + a37φ

′′ − a55(w′
0 + θx) + a33(u′

0φ
′)′ − a55(u′

0φ)− a58(φ′)2/2

+mx − b4θ̈x = 0,
(10e)

δθz : a22θ
′′
z − a14v′0 − a44(u′

0 + θz)− a22(w′
0φ

′)′ − a14
[
(u′

0)2/2 + (w′
0)2/2

]
+a44w

′
0φ− a48(φ′)2/2 +mz − b5θ̈z = 0,

(10f)

where the inertial coefficients b1, b4, b5, b10, external forces px, py, pz, my, b′w, my, mx,

mz and corresponding linear stiffness coefficients a11 ∼ a77 are defined in [12, 20], while

a18 ∼ a88 denote the nonlinear stiffness coefficients. Limited by the paper length, we omit the
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expressions of a18 ∼ a88 here. The 2nd order nonlinear terms in the governing equations are

denoted by underline. We note that the linear part of the governing system (10) can be split

into two independent subsystems: one involving extension/lateral bending/lateral transverse

shear motions (u− v− z subsystem) and the other involving twist/vertical bending/vertical

transverse shear motions (w − φ− x subsystem) [20,24].

4. Nonlinear Analysis

In order to solve Eqs. (10a-f) in a general way, the Extended Galerkin Method (EGM)

[10, 18] is used. For the thin-walled beams with CAS lay-ups to be investigated here, this

method leads to symmetric mass and stiffness matrices [20, 21]. The method of multiple

scales [9, 14,17] is used to solve the governing equation. By considering the possible secular

terms with respect to the quadratic nonlinearities, we conclude that when ωp ≈ ωm + ωn ,

ωp ≈ ωm − ωn and ωp ≈ −ωm + ωn extra internal resonance may exist. We introduce the

internal and external resonance detuning parameters σ1 and σ2 [9, 25]

ωp = ωm + ωn + εσ1, Ω = ωp + εσ2. (11)

When the external energy input from the pth mode, i.e. Ω near ωp, the solvability

conditions [14] that governed the amplitude αp, αm, αn and phase βp, βm, βn of the linear

system can be obtained as [17]:

α̇p = −Npαm
2 sin γ − µαp − Fp sin ξ, αpβ̇p = Npαm

2 cos γ + Fp cos ξ, (12a)

α̇m = Nmαpαn sin γ − µαm, αmβ̇m = Nmαpαn cos γ, (12b)

α̇n = Nnαpαm sin γ − µαn, αnβ̇n = Nnαpαm cos γ, (12c)

where

γ = βm + βn − σ1T1 − βp, ξ = σ2T1 − βp, (13)

Np =
(Nmn

T + Nnm
T )Vp

2ωpVp
TMTVp

, Nm =
(Nnp

T + Npn
T )Vm

2ωmVm
TMTVm

, (14)

Nn =
(Nmp

T + Npm
T )Vn

2ωnVn
TMTVn

, Fp =
QTVp

2ωpVp
TMTVp

, (15)

in which external force vector Q, mass matrix M are defined in [20, 21], while Vp denotes

the eigenvector for the pth mode of the linear system. Matrixes Nmn, Nnm, Nmp, Npm,

Nnp and Npn denote the corresponding 2nd order nonlinear terms. Limited by the paper

length, we omit their expressions here.
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4.1. Steady-state solution

The steady-state motions occur when α̇p = α̇m = α̇n = 0, γ̇ = 0 and ξ̇ = 0, which correspond

to the fixed points solution of Eqs. (12) and (13). It can be found that there are two kinds

of fixed points:

(1) αp 6= 0 and αm = αn = 0,

αp
2 =

Fp
2

µ2 + σ2
2
, (16)

(2) αp 6= 0, αm 6= 0 and αn 6= 0,

αp
2 =

(σ1 + σ2)2 + 4µ2

4NmNn
, αm

2 =

√
Nm

Nn
X, αn

2 =

√
Nn

Nm
X, (17a)

the values of X are determined by the roots of the following quadratic equation

Np
2X2 +

Np√
NmNn

[2µ2 − σ2(σ1 + σ2)]X + αp
2(µ2 + σ2

2)− Fp
2 = 0. (18)

For solution (1), the primary (external) resonance plays a dominant role and the internal

resonance can be ignored. No energy transfer between modes occur and the response of the

system is governed by the directly excited pth mode only. This agrees with the solution of

the corresponding linear system. In solution (2), the amplitude of the primary resonance

mode αp is independent of external excitation FP .

The stability of steady-state solutions can be determined by the eigenvalues of the lin-

earized coefficients matrix of the system (Jacobian matrix) near the corresponding steady-

state solution. If the real part of each eigenvalue of the coefficient matrix is not positive,

then the corresponding steady-state solution is stable, otherwise is unstable.

5. Example

The material property and geometric specification of the beam used for example are given in

Table 1, and the lay-ups are specified in Table 2. From Table 3, a significant relationship for

internal resonance can be found: ωu
3 ≈ ωw

3 + ωw
4 . We make ωp = ωu

3 , ωm = ωw
3 , ωn = ωw

4 ,

the damping coefficient as µ = 0.5, and external excitation frequency as Ω = 195Hz.

In Figs. 2a and 2b, αp, αm and αn are plotted as functions of external excitation Fp,

where stable solutions are indicated in solid lines while unstable solutions in dashed lines. In

these two figures, one can clearly see the saturation phenomenon. As the external excitation

Fp increases from zero, so does the response of αp. This agrees with the solution of the

corresponding linear system (16). And beyond a critical value, the solution (16) loses stability

and another branch of solution determined by (17) dominates. It is clearly seen that the
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Figure 2. Response amplitudes versus excitation intensity Fp when energy is input from

the ωu
3 mode, (a) σ1 = σ2 = 0.1, (b) σ1 = σ2 = 1.5.

response αp is independent of external excitation, though the energy is input from the

external resonance mode ωu
3 . In Fig. 2b the detunings of the internal and external resonance

are both large, a jump phenomenon associated with varying the excitation amplitude Fp

occurs. The trend of amplitude responses αp, αm and αn can be traced from two ways,

i.e., from Fp = 0 to higher values and vice verse. The jump phenomenon can be traced by

tracking the arrows.

In Figs. 3a and 3b, αp , αm and αn are plotted as functions of external resonance detun-

ing parameter σ2, where stable solutions are indicated in solid lines while unstable solutions

in dashed lines. In Fig. 3a, the jump phenomenon associated with varying the frequency Ω of

the excitation is indicated by the arrows. The symmetric behavior of the frequency-response

curve versus external resonance detuning σ2 can be seen where the internal resonance detun-

ing σ1 is zero. The nonzero value of internal resonance detuning parameter σ1 will cause the

unsymmetrical configurations in frequency-response curves which can be seen in Figs. 3b.

6. Validation

In oder to test the accuracy of our model and validate our theoretical results on modal

interactions, the commercial code ABAQUS [6] is used in simulating the forced nonlinear

vibration responses of the box thin-walled beams. A 4-node doubly curved general-purpose

shell element type S4 is adopted in the computation. All the responses in validations all

come from one note at the tip of the beam. And Fast Fourier Transform (FFT) [27] will be

used for the corresponding frequency-domain analysis. Theoretical prediction of the natural

frequencies and the results from ABAQUS are compared in Table 3. In all computed modes,

an excellent agreement is observed between the theoretical and numerical results.
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Figure 3. Response amplitudes versus excitation frequency σ2 when energy is input from

the ωu
3 mode, (a) σ1 = 0, Fp = 0.01, (b) σ1 = 2, Fp = 0.01.
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Figure 4. The extension response v and the corresponding frequency-domain analysis when

the excitation energy is input from the ωu
3 mode.

The normal uniform shell edge external load distributed on the tip of the beam with

magnitude specified as 6000N/m and frequency Ω specified as 195Hz is considered here.

The responses of v, w and φ are displayed in Figs. 4, 5a and 5b respectively. It is readily

seen that after a transient process about 0.5 second, the vertical bending and twist responses

are induced heavily by the extension excitation. And from the results of frequency-domain

analysis, it is easy to confirm the induced vertical bending motion mode is ωw
3 , while the

induced twist motion mode is ωw
4 . Moreover, the response amplitude of mode ωw

3 and ωw
4 are

much larger than that of the response amplitude of mode ωu
3 . Extension excitation induces

high-amplitude low-frequency vertical bending and twist response, which agrees with our

theoretical prediction.
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Figure 5. The forced responses of the beam and the corresponding frequency-domain

analysis when the excitation energy is input from the ωu
3 mode, (a) twist response φ, (b)

vertical bending response w.

7. Summary and conclusions

Nonlinear modal interactions of a thin-walled composite beam with CAS lay-ups, due to

combination internal resonance and subjected to primary-resonance excitation are investi-

gated. Multiple jump and saturation phenomenons in the steady-state response are observed

via the parametric analyses. Simulation results by commercial code ABAQUS validates sat-

isfactorily our theoretical predictions. Major conclusions include:

1. Significant modal interactions exist when the thin-walled composite beam with CAS

lay-ups exhibits apparent ωp ≈ ωm + ωn internal resonance.

2. Due to internal resonance, the independent u − v − z subsystem and w − φ − x

subsystem are coupled again. Energy can transfer between the two subsystems, i.e.,

lateral bending/extension motions may induce vertical/twist motions and vice verse.

3. Low-amplitude high-frequency motion can induce high-amplitude low-frequency mo-

tion due to modal interactions, which should be forbidden in the wing’s design.
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Global modal approach for nonlinear dynamical modeling 

of an L-shaped beam-mass structure 

(VIB150-15)

Jin Wei, Dengqing Cao, Yang Yang, and Wenhu Huang 

Abstract: The purpose of this paper is to formulate a set of mathematically ordinary 

differential equations of motion describing the nonlinear dynamic of an L-shaped 

beam structure. Presenting the linear equations of motion for the bending of each 

beam and associated boundary conditions, the characteristic equation is derived for 

the whole system. The natural frequencies and global mode shapes of the linear model 

of the structure are determined, and orthogonality relations of the global mode shapes 

are established. Then, substituting the global modes into the formula of kinetic energy 

and potential energy, the nonlinear ordinary differential equations of motion for the 

structure with multiple-DoF are obtained by using the Lagrange procedure. A 

comparison between the natural frequencies obtained by the proposed method and 

those from finite element method is presented to illustrate the validity of governing 

equation of motion for L-shape structure. The governing equations of motion are 

expanded to a system with nonlinear terms up to order three to facilitate the study on 

nonlinear vibration responses by analytical techniques. 

1. Introduction

A specific structure composed of multi-flexible-body and of lumped masses is usually used as

component in large-scale space structures within the fields of mechanical, aeronautical and civil 

engineering[1, 2]. In order to acquire higher precision, reliability and stability, a nonlinear dynamical 

analysis of such systems is of practical importance for predicting and understanding their behavior 

under the effect of applied loads. 

The nonlinear dynamics of a single beam have been studied in the literature[3-11]. Comparing with 

a single beam, the dynamic behavior of the multi-beam structure is more complex due to internal 

coupling and complex nonlinearities resulting from nonlinear geometry and inertia. In such coupling 

beam, one subsystem becomes a source of excitation for the other, and it may lead to parametric 

vibration. This kind of motion analysis is explored in, so-called, L-shaped beam structure in Refs[12-19]. 

Haddow et al[16] present the equation of motion for the structure with only quadratic nonlinearities, 

taking account of the axial motion of the beam due to bending. In [16], the method of multiple scales 

is used to determine approximate solution of the resulting equations. Nayfeh et al[12, 13, 17-19] make a 

further comprehensive experimental and theoretical study on nonlinear motions of the L-shaped beam 
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structure, which indicate that a small excitation levels can produce chaotic response under the two-to-

one internal resonance. Periodic, quasi-preiodic, and chaotic responses predicted by theory are good 

agreement with the experimental observations.  

Moreover, chaotic vibrations of post-buckled L-shaped beam with an axial constraint are 

presented in Ref[20], which are investigated with the Fourier spectra, the Poincare projections, the 

maximum Lyapunov exponents and Lyapunov dimension. Linear non-planar motion analysis of L-

shaped beam structure is presented in Refs[21-23]. The linear equations of motion for the structure 

considering rotary inertia effects are derived, and the modal analysis is performed to investigate the 

influence of rotary inertia terms and shear effects. Meanwhile, another type of an L-shaped beam 

structure has been addressed in Refs[24-26]. Due to the essentially different stiffness in two orthogonal 

directions, the interaction between bending and torsion vibration are different from the model in [21]. 

Cartmell and Roberts[25] give the analytical and experimental investigation on the effect of nonlinear 

coupling between bending modes of vibration, and the results show that a four mode interaction can 

exhibit non-synchronous large amplitudes of indirectly excited modes and saturation of the directly 

excited mode. Bux and Roberts[24] show that violent non-synchronous torsion and bending vibration 

occur by the existence of quadratic nonlinear coupling and internal resonance effects between three 

and four modes. Warminski et.al[26] present a systematic derivation of the differential equations of 

motion. It is shown that certain modes in the stiff and flexible directions of both beams may interact, 

and unexpected out-of-plane motion may appear. 

It is well known that the multi-beam structures are continuous dynamic models with an infinite 

numbers of degrees-of-freedom. To suit for the use of numerical and analytical investigations, the 

approximate methods for the discretization of continuous systems are employed to convert into 

equivalent discrete systems, which usually represent the solution as a truncated finite series consisting 

of space-dependent mode functions multiplied by time-dependent generalized coordinates. The 

accuracy of the dynamic model obtained from the analytical formulation is highly dependent on the 

adopted mode functions of the beam deflection. Due to the coupling effects between different mode 

functions, the mode functions of each beam for the multi-beam structure are certainly different from 

those for a single beam. The present work is devoted towards to obtain an accurate global mode 

functions for the purpose of developing an explicit set of reduced-order nonlinear differential 

equations of motion for the multi-beam structures. The nonlinear ordinary differential equations are 

put into a form which is convenient for the use of analytical techniques to predict nonlinear 

phenomena exhibited by the structure. Furthermore, the equations developed here are convenient for 

the design of control laws to the multi-beam structure.  

In this article, the natural frequencies and the corresponding global mode shapes of the transverse 

motion for the system are formulated by the method proposed in Refs[27, 28]. Consequently, the explicit 
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orthogonality relationship for vibration modes of the whole system is presented. Then, the Lagrange 

procedure is employed to establish the reduced-order model that describes the planar nonlinear 

motion for the L-shaped beam-mass structure. A comparison between the natural frequencies 

obtained by the proposed method and those from finite element method is given to illustrate the 

validity of governing equation of motion for L-shape structure. Based on the low-dimension model 

presented here, the nonlinear analysis of L-shaped beam-mass structure can be conducted easily. 

2. Specifications for the deformed configurations 

Consider the planar motion of a L-shaped beam structure that consist of two light-weight 

inextensible beams, which are a horizontal beam with the length 
1l  and a vertical beam with the 

length 
2l , as shown in Figure 1. The L-shaped beam is fixed to the base which is subjected to the 

horizontal harmonic excitation cossw F t  . A rigid mass m  is fixed at the end of the vertical 

beam. The coordinate system 
1 1 1o x y  is the fixed inertial frame with origin at the left end of the 

horizontal beam. The body coordinate system 
2 2 2o x y  is fixed to the vertical beam with origin at point 

2o , the junction of the horizontal and vertical beam. Its axial and transverse displacements are 

represented by ( , )i iu x t  and ( , )i iv x t , respectively, which are measured with respect to the coordinate 

system located at the beginning of the beam. Moreover, assume that the shear deformation and 

warping is negligible for both the horizontal beam and vertical beam. 

 

Figure 1.   Schematic of L-shaped beam-mass structure. 

The kinetic energy is given by 
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   

     
 

 
(1) 

and the potential energy is described as 

22
2 2

0
1

1 1
d

2 2

il

i i i i

i

V EA u v EIv x


  
      

   
  , (2) 

where , ,E I  and A  are the density per unit length, Young’s modulus, area moment inertia of the 

cross-section and the cross-sectional area. The superposed dot has the usual meaning of time 

derivative iu , iv  and iv  represent the first and second partial derivatives with respect to ix , 

respectively. Moreover, the effect of the weak damping is taken into account and described by the 

dissipation function 

 
1 22 2 2 2

1 1 1 1 2 1 1 2 2 2 2 2 2
0 0

1 1 1 1
d ( , ) d ( , )

2 2 2 2

l l

D c v x c l m v l t c v x c mv l t      . (3) 

According to the assumption that the two beams are inextensible, the inextensibility constraint in 

-thi beam is expressed as  

   
2 2

1 1i iu v    . (4) 

Thus, the axial displacements 
iu  and the transverse displacements iv  are related to each other 

through the constraint equation (4), and the axial displacements can be expressed as 

2

0

1
d

2

ix

i i iu v x   . (5) 

Then, the displacement iv  can be expressed in the following form 

1 1 1 2 2 2

1 1

( ) ( ), ( ) ( )
n n

j j j j

j j

v x q t v x q t 
 

   , (6) 

where 1 1( )j x  and 2 2( )j x  are the mode shapes of the horizontal and vertical beam for the L-shaped 

beam-mass structure, respectively, ( )jq t  is the generalized coordinate for the whole system. In order 

to derive the nonlinear equations of motion by using the Lagrange equation, we require the accurate 

global mode shapes of transverse vibration. Therefore, in next section, the linear equations for the 

transverse vibration and associated boundary condition for the L-shaped beam-mass structure are 

presented to obtain the natural frequencies and global mode shapes. 
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3. Natural frequencies and global mode shapes 

Considering the bending moment only on the transverse motion yields the linear dynamical 

equation of motion of the -thi  beam 

 0i iv EIv    (7) 

The match conditions and boundary conditions of the L-shaped beam-mass structure are 

  
1 1 2 1 1 2

1 1 1 1 12 2

2 2 2 2 2

1

2

(0, ) 0, (0, ) 0, (0, ) 0, ( , ) (0, ),

( , ) ( , ), ( , ) (0, ),  

( , ) ( , ), ( , ) 0.                        

v t v t v t v l t v t

EIv l t l t EIv l t EIv t

EI v l t mv l t EIv l t

l m v

     


   
   





 (8) 

Let the non-dimensional coordinates ix x , and assume that the displacement ( , )iv x t  are 

separable in space and time, 

 ( , ) ( )sin( )i iv x t x t   (9) 

The eigenvalue problem can be written directly in the form  

 
2( ) ( ) 0i ix x

EI


      (10) 

The boundary conditions in Eq.(8)  are reduced to the following forms 

 
  2
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

       
 (11) 

The solutions of Eq. (10) can be written as 

 
1 2 3 4( ) cos( ) sin( ) cosh( ) sinh( ), [0, ]i i i i

i ix C x C x C x C x x l         , (12) 

where 
2

1 4

.
EI




 
  
 

 Let 

 
T

1 1 1 1 2 2 2 2

1 2 3 4 1 2 3 4C C C C C C C C   ψ . (13) 

Substituting Eq. (12) into the boundary conditions (11)  yields 

 ( ) 0 Η ψ , (14) 

where entries of the matrix 
8 8( ) R Η  are given in Appendix A. 

The positive roots of the frequency equation det( ( )) 0  , denoted in ascending order by 

1 2, ,  , are the natural frequencies of the L-shaped beam-mass structure. The eigenvector 
( )r , 

where 1,2,r  , corresponding to the natural frequency ,r  can be obtained from Eq.(14). Once the 

natural frequency r  and the corresponding vector 
( )r  are obtained, the -thr mode shapes for the 

L-shaped beam-mass structure  can be determined from Eq.(12). 
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Now, let us consider a simple example of the L-shaped beam-mass structure. Assume that the 

material for both beams is steel with density 3=7850 kg m , Young’s modulus =200 paE G , 

Poisson’s ratio =0.31.  The cross section of both beams are 
1 0.012mb  ,

1 0.002mh  . The length 

of both  beams is 
1 0.15m.l   By using the proposed method, the nature frequencies can be calculated 

and listed in Table 1. 

Table 1 Natural frequencies for an L-shaped beam-mass structure. 

Mode 
Natural frequency (Hz) 

Propose method 

Natural frequency (Hz) 

FE method 
Relative difference 0

0

1 8.32 8.32 0 

2 26.95 26.94 0.3 

3 241.78 241.63 0.06 

4 417.97 417.41 0.13 

Dividing each flexible beam into 20 elements, the natural frequencies are calculated using FE 

method and listed in Table 1 for validation purpose. The maximum relative error between the natural 

frequencies from the current and finite element methods, defined by 

FE

FE

j j

j

 




, is 0

00.3 . This implies 

that the natural frequency obtained using the proposed global mode method is a high accurate one. 

Using the corresponding mode shapes, an accurate set of reduced-order nonlinear differential 

equations of motion for the multi-beam structures can be obtained by using the proposed method. 

4. Orthogonality of the global mode shapes

The global mode shapes associated with the two distinct eigenvalues r and s are denoted by 

( )r x and ( )s x , respectively, where 

 
T

1 2( ) ( ) ( )r r rx x x   (15) 

By Eq.(10), one has 

2

1 1( ) ( ),r r rEI x x     (16) 

2

2 2( ) ( ).r r rEI x x     (17) 

Now, let us multiply Eqs. (16)~(17) by 1 ( )s x  and 2 ( )s x , respectively, integrating the resulting 

equation over the domain 10 x l   for the first beam and domain 20 x l   for the second beam, 

and add the resulting equations, to get 
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1 2

1 2

1 1 2 2
0 0

2

1 1 2 2
0 0

( ) ( )d ( ) ( )d

( ) ( )d ( ) ( )d .

l l

r s r s

l l

r r s r s

EI x x x x x x

x x x x x x

   

     

   
  

 
  

 

 
 (18) 

Integration by parts, yields 

 

 

1 2 1

2

2

1 1 2 2 1 1
0 0 0

2 2

2 2 2 1 2 1 2 2 2 2 2
0

( ) ( )d ( ) ( )d ( ) ( )d

( ) ( )d ( ) ( ) ( ) ( ) .

l l l

r s r s r r s

l

r r s r r s r s

EI x x x x x x x x x

x x x l m l l m l l

       

         

     
  

     

  



 (19) 

Exchanging the superscripts s  and r  in Eq.(19), yields 

 

 

1 2 1

2

2

1 1 2 2 1 1
0 0 0

2 2

2 2 2 1 2 1 2 2 2 2 2
0

( ) ( )d ( ) ( )d ( ) ( )d

( ) ( )d ( ) ( ) ( ) ( )

l l l

s r s r s r s

l

s s r s s r s r

EI x x x x x x x x x

x x x l m l l m l l

       

         

     
  

     

  



 (20) 

Subtracting Eq. (20) from Eq. (19), the first orthogonality relation can be obtained as 

 

 

1 22 2

1 1 2 2
0 0

2 2

2 1 1 1 1 2 2 2 2

( ) ( ) ( )d ( ) ( )d

( ) ( ) ( ) ( ) ( ) 0,

l l

r s r s r s

r s r s r s

x x x x x x

l m l l m l l

      

      

  
  

      

 
 (21) 

from Eq.(21), the first orthogonality relation can be obtained 

 

 

1 2

1 1 2 2
0 0

2 1 1 1 1 2 2 2 2

( ) ( )d ( ) ( )d

( ) ) ) ,( ) ( ( s

l l

r s r s

r s r ss r

x x x x x x

l m l l m l l M

    

    

 
  

     

 
 (22) 

where sM  is a positive constant and rs  is the Kronecker delta. Using of Eqs. (22) and (18), the 

second orthogonality relation can be obtained as 

 
1 2

1 1 2 2
0 0

( ) ( )d ( ) ( .)d
l l

r s r s rssEI x x x x x x K         
     (23) 

where sK  is a positive constant.  

5. Governing equations of motion 

Substituting the global mode shapes obtained by the proposed approach into the expressions (5) 

and (6), then the kinetic energy and the potential energy expressed in (1) and (2) can be used to obtain 

the ordinary differential equations of motion for the L-shaped beam-mass structure by following 

Lagrange procedure, namely, 

573



1 2

1 1 1

2 3 3

1 1 1 1 1 1 1 1

3

1 1 1

( ) ( ) ( ) cos ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

n n n

s s s s s j j k

j j k

n n n n n n n n

j k j k r j k r

j k j k r j k r

n n n

j k r

j k r

M q t K q t cq t a F t q t a q t q t

a q t q t a q t q t q t a q t q t q t

a q t q t q t

  

       

  

    

  



 

  



2

4

1 1 1

2 2 2
0

( ) ( ) ( )

cos ( )d cos ( ), 1,2, , .

n n n

j k r

j k r

l

s s

a q t q t q t

F t x x mF t l s n  

  



    





(24) 

where,  is a damping coefficient, and ( 1,2,3,4)ia i  are constants which can be determined by the 

global mode shapes. 

For generality, we introduce the following dimensionless variables and parameters 

2 4 3

1 1 1

1 1

2 4

4 0 12

0 0 0

1

, , , , ,

, , ,  1.0 rad/s.

EAl cl Flx m
x m c F

l l EI EI EI

ll
t

l EI







    


    



    



(25) 

Then the non-dimensional form of Eq. (24) is 

 

2

1 2

1 1 1

2 3 3

1 1 1 1 1 1 1 1

3

1 1 1

( ) ( ) ( ) cos ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

n n n

s s s s j j k

j j k

n n n n n n n n

j k j k r j k r

j k j k r j k r

n n n

j k r

j k r

q q q t a F q a q q

a q q a q q q a q q q

a q q q a

       

       

  

  

       

  

     

  



 

  

 4

1 1 1

( ) ( ) ( ) cos , 1,2, , .
n n n

j k r s

j k r

q q q f s n   
  

  

 (26) 

where the constants , ( 1,2,3,4)ia i   and sf  are given in the Appendix B. 

6. Conclusions

A set of ordinary differential equations of motion describing the nonlinear dynamic of an L-

shaped beam structure have been formulated. The global mode approach was employed to get the 

natural frequencies and the corresponding global mode shapes for the whole system. A comparison of 

the natural frequencies obtained by the proposed method with those from FEM has been presented to 

illustrate the validity of the proposed approach. Moreover, the orthogonality relations of the global 

mode shapes have been established. Substituting the global modes into the formula of kinetic energy 

and potential energy, the nonlinear ODEs of motion for the structure with multiple-DoF can be easily 

obtained by using the Lagrange procedure. Based on the low-dimension model presented here, the 

nonlinear phenomena of L-shaped beam-mass structure, such as resonant, internal resonant, 

bifurcation and chaotic motion of the system, can be conducted easily.  
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Appendix A.  Entries of the matrix ( )Η in (14) 

 

11 13 22 24 47 55 57 66 68 45

12 14 15 16 17 18 21 23 25 26 27 28

35 36 37 38 46 48 51 52 53 54 56 58

65 67 71 72 73 74 81 82 83 84

31 1

1, 1,

0,

0,

0,

sin( )l

                    

                    

                     

                  

   2 1 32 1 2 1

33 1 2 1 34 1 2 1

41 1 42 1 43 1 44 1

61 1 6

cos( ), cos( ) sin( ),

sinh( ) cosh( ), cosh( ) sinh( ),

cos( ), sin( ), cosh( ), sinh( ),

sin( ),

m m
l l l l l

m m
l l l l l l

l l l l

l

    
 

     
 

   



   
        

   

   
          

   

         

    2 1 63 1 64 1

75 2 76 2 77 2 78 2

85 2 2 86 2 2

87 2 2 88 1 2

cos( ), sinh( ), cosh( ),

cos( ), sin( ), cosh( ), sinh( ),

sin( ) cos( ), cos( ) sin( ),

sinh( ) cosh( ), cosh( ) sinh( ).

l l l

l l l l

m m
l l l l

m m
l l l l

  

   

     
 

     
 

    

         

      

     

 

Appendix B. The constants in Eq. (26) 

 
1

4

0 1 1 2 2 1 1 2 2
0 0

4

0 2 2
0

1 1 1

1 1 1 1 1 1
0 0 0 0 0

1

( ) ( )d ( ) ( )d + (1) (1) ( ) ( ) ,

, ( ) d (1) ,

( ) ( )d d (1) (1)d d (1) (1)d

=

,

r s r s r s r s

s s s s

x

s

j s j s j s s

x x x x x x m m

c f x F x mF M

x x

M

x x x x m x Ma







           

   

     

   
  

   
  

       
  



 



    

 

 

 

2 21 22 23 24

3 31 32 33 34

4 41 42 43 44 45 46

,

,

.

s

s

s

a a a a a M

a a a a a M

a a a a a a a M

   

   

     

 

in which, 
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 

4

21 0 1 2 2
0 0

1
4

22 0 2 1 1
0 0

4

23 0 1 2 2
0

1
4

24 0 2 1 1
0

4

31 0 1 1 1
0

2 (1) ( ) ( )d d ,

2 ( ) (1) (1)d d ,

2 (1) (1) (1)d ,

2 (1) (1) (1)d ,

( ) ( )d ( )

x

s j k

s j k

s j k

s j k

x

s j k

a x x x x

a x x x

a m x

a m x

a x x x x







   

   

   

   

    

   
  

   
  

  

  

   

 

 





  
  
  

1

1
0 0

1 1
4

32 0 1 1 1 1
0 0 0

4

33 0 2 2 2 2
0 0 0

( )d d ,

(1) (1)d (1) (1)d d ,

( ) ( )d ( ) ( )d d ,

x

r

s j k r

x x

s j k r

x x x

a x x x

a x x x x x x x





    
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   

   

 

  

  

  
  

4

34 0 2 2 2 2
0 0

1

41 1 1 1 1
0 0 0

42 2 2 2 2
0 0 0

1

43 1 1 1 1
0

44

(1) (1)d (1) (1)d ,

2 ( ) ( )d ( ) ( )d d ,

2 ( ) ( )d ( ) ( )d d , 

1
( ) ( ) ( ) ( )d ,

2

1

2

s j k r

x x

s j k r

x x

s j k r

s j k r

a m x x

a x x x x x x x

a x x x x x x x

a x x x x x

a

 


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    

    

    



   

   

   
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

 
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

 
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2 2 2 2
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1
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x x x x x

a x x x x x x

a x x x x x x





   
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   

    
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
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Optimization of micro-jet dynamical systems 

cooling after steel welding 

(MTR259-15)

Tomasz Węgrzyn, Jan Piwnik, Aleksander Borek, Wojciech Tarasiuk 

Abstract: The paper focuses on low alloy steel after an innovative welding method 

with micro-jet cooling. Weld metal deposit (WMD) was carried out for standard MIG 

process with micro-jet cooling.  This method is very promising mainly due to the high 

amount of acicular ferrite in WMD. That structure corresponds to good mechanical 

properties, and has a high impact on the toughness of welds. Dynamical systems 

of micro-jet cooling just after welding can find application in automotive industry. 

1. Introduction

Micro-jet technology gives the chance to obtain weld that corresponds to a much better impact 

toughness of WMD compared to actual welding processes [1-5]. Good mechanical properties of weld 

correspond to low-nitrogen and low-oxygen processes. The amount of nitrogen and oxygen has a 

strong influence on the metallographic structure because of the influence on the acicular ferrite (AF) 

formation. The amount of AF must be treated as the most beneficial structure in low alloy steel WMD 

that directly corresponds with high impact toughness of weld [6-8]. Acicular ferrite is formed with 

non-metallic inclusion contact (nitride and oxide inclusions of welds). Even having the optimal 

inclusion parameters  it is only possible to get maximum 50 % of AF in weld [9, 10]. Micro-jet 

cooling just after welding gives a new chance to increase the amount of AF in weld and consequently 

micro-jet cooling has an effect on the impact toughness of weld [11-15]. The micro-jet cooling was 

tested for low alloy steel with various micro-jet gases: argon, helium and nitrogen. First, gas mixtures 

of argon with carbon dioxide were tested for dynamic micro-jet cooling. 

2. Aim and plan of the research

The present paper aims to  outline the micro-jet innovations in MIG welding process which represent 

steps ahead to achieve the following objective: 

• a high amount of acicular ferrite in WMD,

• an increase of the impact toughness of WMD.

The weld metal deposit was prepared by welding with micro-jet cooling, with varied gases, and 

mixtures for MIG welding and dynamic micro-jet cooling process to obtain various amounts 
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A 

B 

of acicular ferrite in the weld, a welding process with a micro-jet injector was installed. The main 

parameters of micro-jet cooling were slightly varied:  

• cooling steam diameter was varied twice (40 µm and 50 µm),

• number of cooling jets was varied twice (1 and 2),

• gas pressure was varied twice (0.4 MPa until 0.5 MPa),

• micro-jet gases were varied (argon, nitrogen, helium, a gas mixture of 79% Ar and  21% CO2 gas

mixture of 90% Ar and  10% CO2). 

Figure 1 illustrates the assembly of the welding head with the micro-jet injector. 

Figure. 1. Montage of welding head (B) and micro-jet injector (A). 

3. Materials to research

The basic materials to research were S355J2G3 steel. A typical weld metal deposit has rather similar 

chemical composition in all tested cases, except oxygen amount (table 1). Argon was chosen as the 

shielded gas for MIG welding in all the cases. 

Table 1. Chemical composition of WMD without micro-jet cooling. 

Element Amount 

C 0.08% 

Mn 0.79% 

Si 0.39% 

P 0.017% 

S 0.018% 

O 380 ppm 

N 50 ppm 
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4. Research and discussion 

Various welds of standard MIG welding process with and without micro-jet cooling were compared. 

Micro-jet gas has an influence on the intensive dynamic cooling conditions, but it does not have 

serious influence on chemical WMD composition. The oxygen amount in the WMD was counted 

only for the main micro-jet parameters: 

• Diameter of micro-stream (40 µm), 

• Number of jets (1), 

• Gas pressure (0.4 MPa). 

 A typical weld metal deposit had rather similar chemical composition in all the tested cases, 

except oxygen amount (Table 2). 

 

Table 2. Oxygen and nitrogen in WMD after MIG welding with micro-jet cooling. 

Welding process 

Diameter 

of micro-stream 

[µm] 

Gas pressure 

[MPa] 
Number of jets Oxygen amount 

without micro-jet 

cooling 
- - 0 380 ppm 

He as micro-jet 

gas 
40 0.4 1 375 ppm 

Ar as micro-jet 

gas 
40 0.4 1 375 ppm 

N2 as micro-jet 

gas 
40 0.4 1 385 ppm 

Gas mixture of 

(79% Ar and 

21% CO2), 

40 0.4 1 530 ppm 

Gas mixture of 

(90% Ar and 

10% CO2), 

40 0.4 1 465 ppm 

 

 For standard MIG welding, various amount of oxygen in WMD were observed. It is easy 

to deduce that micro-jet cooling with gas mixtures after welding has a strong influence on the oxygen 

amount in WMD. After chemical analyses the metallographic structure analysis was carried out. The 

various amounts of acicular ferrite are shown in Table 3 
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Table 3. Acicular ferrite in WMD after welding with various micro-jet cooling. 

Micro-jet gas 
Micro-jet gas 

pressure [MPa] 

Micro-jet diameter 

[µm] 
Ferrite AF 

- - - 55% 

He 0.4 40 60% 

He 0.4 50 61% 

He 0.5 40 61% 

He 0.5 50 59% 

Ar 0.4 40 71% 

Ar 0.4 50 73% 

Ar 0.5 40 73% 

Ar 0.5 50 72% 

N2 0.4 40 53% 

N2 0.4 50 51% 

N2 0.5 40 50% 

N2 0.5 50 49% 

79% Ar and 

21% CO2 
0.4 40 64% 

79% Ar and 

21% CO2 
0.4 50 69% 

79% Ar and 

21% CO2 
0.5 40 68% 

79% Ar and 

21% CO2 
0.5 50 66% 

90% Ar and 

10% CO2 
0.4 40 68% 

90% Ar and 

10% CO2 
0.4 50 70% 

90% Ar and 

10% CO2 
0.5 40 71% 

90% Ar and 

10% CO2 
0.5 50 68% 
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Tables 3 shows that in all cases argon is the most beneficial micro-jet gas. Also, the experiment with a 

gas mixture of 90% Ar and  10% CO2 can be conducted to be a good choice. Helium must be treated 

as an intensive cooling gas.  Nitrogen as micro-jet gas could be treated as a wrong choice (perhaps 

because of the higher amount of N in WMD that was not measured). In standard MIG welding 

process (i.e., without micro-jet cooling) there are higher amounts of grain boundary ferrite (GBF); 

there are also usually observed and site plate ferrite (SPF) fraction meanwhile after welding with 

micro-jet cooling both GBF and SPF structures were not so dominant. In all tested cases, MAC (self-

tempered martensite, retained austenite, carbide) phases on the level of 3% were also observed.  

Acicular ferrite with percentage above 70% could be obtained only in two cases: after MIG welding 

with argon micro-jet cooling and after MIG welding with argon gas mixture (90% Ar and 10% CO2) 

micro-jet cooling (shown in Figure 2 and in Table 3). 

 

Fig. 2. High amount of acicular ferrite in weld (73%) after an Ar micro-jet cooling. 

 

After the microstructure studies, the Charpy V impact toughness test of the deposited metal were 

carried out (5 specimens). The Charpy tests were only carried out at temperatures of - 40° C and +20° 

C. The impact toughness of WMD was determined only for the same micro-jet parameters: 

 Diameter: 40 µm, 

 Number of jet: only one, 

 Gas pressure: only 0.4 MPa. 

The impact toughness results are given in Table 4. 
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Table 4. The impact toughness of WMD after welding with various micro-jet cooling. 

Welding 

method 
Micro-jet gases 

Impact toughness 

KCV, J 

(at - 40° C) 

Impact toughness 

KCV, J 

(at -20° C) 

Impact toughness 

KCV, J 

(at +20° C) 

MIG - 43 65 181 

MIG with 

micro-jet 
Ar 59 81 195 

MIG with 

micro-jet 
He 51 64 182 

MIG with 

micro-jet 
N2 below 40 46 155 

MIG with 

micro-jet 

79% Ar and 

21% CO2 
53 76 191 

MIG with 

micro-jet 

90% Ar and 

10% CO2 
56 79 193 

It is possible to deduce that impact toughness at ambient and negative temperature (-20° C and -40° 

C) of weld metal deposit is apparently affected by different types of micro-jet cooling. Micro-jet

technology always has a strong effect on the impact toughness of WMD.  Argon and gas mixture of 

90% Ar and  10% CO2 might be treated as proper micro-jet gases. 

5. Conclusion

The results confirm that for low alloy steel welding there are two general types of tests

performed: impact toughness and microstructure. Acicular ferrite and MAC phases (self-tempered 

martensite, upper and lower bainite, retained austenite, carbides) were fully analysed and counted for 

each weld metal deposit. The innovative micro-jet technology was firstly recognized succesfully for 

MIG welding. In paper dynamic micro-jet cooling technology was also precisely described and tested 

for MIG welding process with various micro-jet gases: argon, helium, nitrogen, and various gas 

mixtures of argon and carbon dioxide. On the basis of investigation it is possible to deduce that 

micro-jet technology could be important complement of both welding methods: MIG and MAG. 

An important part of this article was to analyse impact toughness of welds after various dynamic 

micro-jet cooling. Final conclusions: 

a) micro-jet cooling could be treated as an important element of MIG welding processes,

584



b) micro-jet cooling after welding can prove a significant amount of ferrite AF, the most 

beneficial phase in low alloy steel WMD,  

c) argon or gas mixture of argon and carbon dioxide could be conducted to be the optional 

micro-jet gases for low alloy steel welding processes for MIG process, 

d) helium and nitrogen could not be treated as a good choice for low alloy steel micro-jet 

welding; however micro-jet helium cooling gives better results than simple MIG/MAG 

welding without micro-jet cooling. 
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Mathematical model for two-dimensional dry friction modified by dither

(NON052-15) 

Adam Wijata, Jan Awrejcewicz, Jan Matej, Michał Makowski 

Abstract: A new dynamic two-dimensional friction model is developed which is 

based on the bristle theory. Actually it is the Reset Integrator Model converted into a 

two-dimensional space. Usually two-dimensional friction models are indeed one-

dimensional models which are rotated into the slip velocity direction. However, this 

often used approach cannot be applied to the bristle model. That is why an idea of a 

two-dimensional bristle is presented. Bristle’s deformation is described using polar 

coordinates. The carried out numerical simulation of a planar oscillator has proved 

that the new model correctly captures the mechanism of smoothing dry friction by 

dither applied via perpendicular and co-linear way regarding the body velocity. Fur-

thermore, the introduced mathematical model captures two-dimensional stick-slip be-

haviour. The Cartesian slip velocity components are the only inputs to the model. In 

addition, our proposed model allows to describe a friction anisotropy using the bristle 

parameters. The paper contains results of an experimental verification of the new fric-

tion model conducted on the special laboratory rig being used to investigate the two-

dimensional motion in the presence of dither as well as to validate our numerical re-

sults. 

1. Introduction

Although friction belongs to natural and common phenomena, it is still difficult to find a general 

mathematical model for friction force being valid in various regimes of contact dynamics of machine 

elements. Fundamental problem in friction modelling is discontinuity in transition from sticking to 

slipping phase of motion. Even in sticking phase some microscopic motion occurs, which is called 

pre-sliding displacement. A force needed to initiate macroscopic motion is called break-away force. It 

was experimentally proven, that this force changes with a rate of increase of external force applied to 

contacting bodies. During motion a friction force is referred as kinetic friction. There are static effects 

applied to kinetic friction like Stribeck or viscous friction effects. On the other hand and from dy-

namical point of view there exists a hysteresis effect called frictional lag which applies to kinetic fric-

tion [1].  

Over the years any general theory of friction, which explains all frictional effects has not been de-

veloped yet. On the other hand numerous mathematical models were created. In general friction mod-

els can be divided into two classes: static and dynamic models. Static models are those which de-

scribe friction phenomenon only as a function of a slip velocity. This category includes classical 

models, the Karnopp model and Armstrong’s model. In many cases internal state variables and the 

appropriate differential equations are used as the attributes of dynamic friction models. Examples of 
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dynamic models are the Dahl model, the bristle model, the reset integrator model and the LuGre 

model [2,3,4]. 

2. Smoothing dry friction by dither

Dither is a word for intentionally introduced vibrations or noise. In mechanical systems with friction, 

vibrations of one of contacting bodies can be understood as dither. Dither may influences friction 

characteristic essentially. In general it plays an important role since it smoothes  transition from stick 

to slip regimes. In addition, dither can be used to quench or even eliminate a harmful stick-slip behav-

iour. Noticeable effect of introducing dither into mechanical system is realised via change of system’s 

damping character. It is a well-known that oscillatory motion damped only with dry-friction decays 

with straight-line envelopes. After introducing dither, envelopes change into exponential shapes. It 

means that dither changes dry friction damping into viscous damping. Furthermore, this effect pos-

sesses a directional property. Namely, the motion co-linear with dither is lightly damped in compari-

son to the motion perpendicular to it. However, the mechanism of modification for dither perpendicu-

lar to and co-linear with the body velocity is different. A role of the crucial parameter which 

influences the friction damping plays an amplitude of dither velocity. 

For dither co-linear with body velocity the resultant slip velocity can be described as a difference 

between body velocity and dither velocity. Assuming friction described by simple Coulomb model, 

friction force reaches the value +/- FC depending on a slip velocity sign, where FC denotes here the 

Coulomb friction force. 

Dither perpendicular to body velocity actually makes friction two-dimensional. Friction force is 

directed opposite to resultant slip velocity. Components of friction force are proportional to compo-

nents of slip velocity, i.e. dither and body velocity. It means that, the friction force component co-

linear with body velocity is modulated by both body and dither velocity. The so far given brief de-

scription can be treated as an introduction to the detailed analysis on the mechanism of smoothing dry 

friction by dither presented in reference [5]. 

3. The new model of two-dimensional dry friction and numerical experiments

The developed friction model is a two-dimensional interpretation of the reset integrator model, pre-

sented by Haessing and Friedland in 1991 [3]. Bristle theory introduced and developed in reference 

[3] concerns frictions as effect of contact and deformation of irregularities of contacting surfaces. In 

the reset integrator model this effect is approximated by a single bristle. Strain of the bristle (z) is the 

internal state variable of the model. Strain is increasing till limiting value z0 is reached, which can be 

interpreted as the stiction range. After reaching this value, strain is kept on a constant level, what in-
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deed represents a slipping phase of the studied motion. An idea of bristle’s strain and generation of 

friction force is presented in Fig. 3.1, where the variable z is governed by the following equation: 

0

0

0 0

0 0

s

s

s

if v and z z
dz

if v and z z
dt

v otherwise

 


  



. (3.1) 

Friction force is divided into static and kinetic friction, whereas bristle’s strain z plays the role of 

a switching variable: 

0 1 0

0 0

(1 )
F

dz
a z if z z

F dt

z if z z

 




  

 
 

. (3.2) 

In equation (3.2) σ0 is the bristle stiffness, a is the stiction gradient and σ1 stands for the damping 

parameter.  

 

Figure 3.1. Bristle deformation: (A) contacting bodies, (B) bristle, (Z) – bristle’s strain 

 
In reference [6] two-dimensional model for investigation of stick-slip motion is presented. Com-

ponents of friction force are calculated on the basis of friction direction angle concept, which is de-

fined by both slip velocity and applied force. On the other hand the friction model presented in [5] al-

lows for introducing anisotropy into friction force description. Friction force angle is chosen using the 

principle of maximum energy dissipation. Both models can be considered as one-dimensional models 

which are rotated with respect to the vector of the slip velocity. However, this approach cannot be ap-

plied to converting dynamic friction models into two-dimensional space. It is especially useless as far 

as interpretation of internal state variable is based on the bristle theory. Simple rotating of such a 

model results in loss of capturing spring-like behaviour before gross sliding occurs. It could even lead 

to not detecting transition between sticking and slipping phase of the studied motion. Frictional lag 

phenomenon is also lost. In conclusion, majority of advantages of these models is lost. That is why a 

different approach is highly required with respect to transformation of bristle models into a two-

dimensional space.  
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A role of the basic parameter of every bristle model plays a stiction range. In the case of planar 

motion, stiction range should be described by the following planar set: 

  2 , 0z z    Z Z . (3.3) 

In our further investigation Φz(Z) is governed by a circle formula with a radius being equal to the 

required pre-sliding displacement. In other words, it means that the isotropic stiction range has been 

assumed. 

In order to obtain an appropriate physical character of the bristle model, its two-dimensional inter-

pretation must ensure deforming bristle in two directions and hold resultant deformation during slip-

ping phase of motion. During a planar motion  the slip velocity can change its direction without ob-

taining value equal to zero or even without changing this value at all. It means that in the slipping 

phase, deformation of bristle must be hold at the same level, while its components may change. One 

may say that the bristle “rotates to the direction of a slip”. The so far carried out consideration leads to 

division of the bristle deformation into two components, i.e. rotation and strain. This division gives 

motivation to choose polar coordinates as the appropriate one for description of the bristle deforma-

tion:  











z

zr
Z . (3.4) 

This choice has its consequences in description of the internal state variable Z. Slip velocity is dis-

tributed into two components: rotational vφ and radial one vr, which is co-linear with the deformed 

bristle. Mechanism of this division is shown in Fig. 3.2 Rotational component vφ forces the bristle to 

rotate into current slip velocity direction, whereas radial component vr is responsible for regulation of 

bristle’s strain. 

Figure 3.2. Mechanism of dividing slip velocity 

Resulting description of variable Z dynamic is described by the following equations: 
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 (3.5) 

The friction force originates from the bending of the bristle. The scheme shown in Fig. 3.3 illus-

trates an idea of generating two-dimensional vector of the friction force. Although the bristle defor-

mation is described by polar coordinates, the resulting friction force is given in Cartesian coordinates. 

In order to make our model more application oriented, the transition into polar coordinates is carried 

out inside the model. It means that both input and output of the model are presented in Cartesian co-

ordinates. Like in the reset integrator model (RIM), two different components of the sticking and 

slipping phase while describing the friction force are introduced: 
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FF  (3.6) 

Description of the friction force by equation (3.6) makes it possible to use hints from paper [3] re-

garding a selection of parameters of the model. Even though stiction range is assumed to be isotropic, 

anisotropy of friction can be introduced in description of each friction force component separately. 

Actually there are three parameters for both directions introduced, which can be set independently.  

 

Figure 3.3. Idea of generating two-dimensional friction force 

 
A few numerical experiments concerning application of the new friction model exhibiting the in-

troduced damping parameters σ11 and σ12 as velocity dependent has been carried out. Actually they 

decrease with velocity increasing, ownig to the following formula [1]: 

 
2

1 1 exp s
s

v

v
v

a
 

  
   
   

, (3.7) 

where the parameter av is small (for instance of order 10-2). 
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(a)  (b) 

Figure 3.4. Planar oscillator (a) and spring-mass system for stick-slip investigation (b) 

In order to validate numerical computation, a simple planar oscillator (Fig. 3.4(a)) has been stud-

ied with following fixed parameters and initial conditions: 

(i) friction parameters: σ01= σ02= 102[N m-1], σ11= σ12= 74,15[N s m-1], a = 0,1[-], z0  = 10-2[m];

(ii) oscillator parameters: m = 1[kg], k1 = k2 = 100[N m-1];

(iii) initial conditions: x1(t0) = x2(t0) = 0,08[m], v1(t0) = -0,8[m s-1],

v2(t0) = 0,8[m s-1], zr(t0) = 10-4[m], zφ(t0) = 135[º].

Displacement of the body in two, perpendicular directions is shown in Fig. 3.5. Observe that both 

x1  and x2 displacements are decaying with straight-line envelopes, what is characteristic feature for 

motion damped by dry friction. Fig. 3.6 shows polar diagram of radial and rotational components of 

the internal state variable z. Actually, this diagram shows trajectory of bristle deformation during the 

simulated motion. As can be seen, components of two-dimensional friction force are proportional to 

bristle’s deformation, except the place where sticking phase begins, what has to be expected.  

(a) (b) (c) 

Figure 3.5. Simulation results: displacements x1(t) (a) and  x2(t) (b) versus time and  trajectory (c) 

592



 

 (a) (b) 

Figure 3.6.  Simulation results: two-dimensional friction force (a) and bristle trajectory (b) 

 
Next, experiment concerning two-dimensional stick-slip behaviour has been conducted regarding 

the system shown in Fig. 3.4 (b) for the following fixed parameters: x1(t0) = x2(t0) = 0[m], v1(t0) = 

v2(t0) = 0[m s-1], zr(t0) = 10-4[m], zφ(t0) = 135[º], vy1 = 0,01[m s-1], vy2  = 0,005[m s-1], vy1= vy2 = const. 

Friction and system parameters are the same as in the previous simulation. 

  

 (a) (b) 

Figure 3.7. Time histories of the stick-slip behavior: (a) x1(t), (b) x2(t)  

  

 (a) (b) 

Figure 3.8. Time histories of the friction force: (a) FF1(t), (b) FF2(t)  
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Fig. 3.7 and Fig. 3.8 present simulation results, which capture two-dimensional stick-slip behav-

iour.  

5. Conclusions

The new model of two-dimensional friction has been proposed and validated numerically and ex-

perimentally. The proposed model is two-dimensional interpretation of the Reset Integrator Model 

presented by Haessing and Friedland in reference [3] as more computational efficiency version of the 

bristle model (presented in the same paper). One-dimensional model was converted into two-

dimensional space with usage of original two-dimensional bristle concept. The developed by us 

model allows introducing anisotropy of friction in bristle parameters. It has been tested numerically 

regarding capturing two-dimensional stick-slip effect and mechanism of smoothing friction by dither. 

Furthermore the experimental verification has been carried out using special laboratory rig. The car-

ried out laboratory experiments dealt with 2D friction modified and not by dither. Results obtained 

from the experiment and numerical simulation have shown good agreement, which validates our 2d 

friction model. 
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Mathematical model of pennate muscle

 (LIF043-15)
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Abstract: The purpose of this study is to create a new mathematical model of pennate 

striated skeletal muscle. This new model describes behaviour of isolated flat pennate 

muscle in two dimensions (2D) by taking into account that rheological properties of 

muscle fibres depend on their planar arrangement. A new mathematical model is 

implemented in two types: 1) numerical model of unipennate muscle (unipennate 

model); 2) numerical model of bipennate muscle (bipennate model). Applying similar 

boundary conditions and similar load, proposed numerical models had been tested. 

Obtained results were compared with results of numerical researches by applying a 

Hill-Zajac muscle model (this is a Hill type muscle model, in which the angle of 

pennation is taken into consideration) and a fusiform muscle model (a muscle is 

treated as a structure composed of serially linked different mechanical properties 

parts). 

1. Introduction

The human movement system consists of striated skeletal muscles that have different architectures. 

Among these muscles are fusiform muscles and pennate muscles (unipennate muscles, bipennate 

muscles and multipennate muscles) [7]. The fusiform muscle fibers run generally parallel to the 

muscle axis (it is line connecting the origin tendon and the insertion tendon).  The unipennate muscle 

fibers run parallel to each other but at the pennation angle to the muscle axis [6]. The bipennate 

muscle consists of two unipennate muscles that run in two distinct directions (i.e. different pennation 

angles). The multipennate muscle is composed of a few bundles of fibers that run in distinct 

directions.   

From the physiology point of view the unipennate muscle consists of three parts: the muscle 

insertion (‘muscle – insertion tendon’ connection), the belly (muscle fibers), and the muscle origin 

(‘muscle – origin tendon’ connection). It is assumed that during contraction the belly maintains the 

isovolume, each tendon moves only along its axis and muscle fibers become more pennated (the 

pennation angle is increased) [12]. 

The spatial arrangement of pennate muscle fibres determines the muscle fibres length, the lengths 

of tendons and mechanical properties of muscle. That is why the contractile characteristic (i.e. force-

generating capacity) depends on the pennation angle [6]. Moreover, one should take into 

consideration that a real pennate muscle is a non-homogenous structure:  the distal muscle fascicles 
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tend to contract more (i.e. they act at greater pennation angles) than the more proximal muscle 

fascicles. 

Applying an imaging techniques, such as nuclear magnetic resonance (MRI) and ultrasonography 

(US), with a motion analysis techniques, one might perform in vivo non-invasive measurements to 

estimate volumes of muscles, muscle fibres lengths and pennation angles [6]. However, one should 

perform invasive measurements to obtain [1]: 1) mechanical properties values (by applying tensile 

tests and sonomicrometry); 2) muscle morphology and architecture evaluated at the microscopic level 

(by using a muscle biopsy); 3) muscle static characteristic (length-force dependence); 4) muscle 

dynamic characteristic (velocity-force dependence); 5) muscle-tendon parameters used in the Hill-

type muscle model. That is why a very limited amount of data describing mechanical properties of 

pennation muscles can be found in literature.    

To model behaviour of pennate muscle one should take into consideration that spatial 

arrangement of muscle fibers influence mechanical properties and contractile properties of this 

muscle. Nowadays, to describe pennate muscle function in muscle biomechanics there are applied 

rheological models: Hill-type muscle models and Hill-Zajac muscle models [4,12]. However, 

application of these models is very limited due to problems related to the obtainment of model 

parameters.   

The purpose of this study is to create a new mathematical model of pennate striated skeletal 

muscle that describes behaviour of isolated flat pennate muscle in two dimensions (2D) by taking into 

account that rheological properties of muscle fibres depend on their planar arrangement. A new 

mathematical model is implemented in two types: 1) numerical model of unipennate muscle 

(unipennate model); 2) numerical model of bipennate muscle (bipennate model).  

2. Pennate muscle modelling

2.1 Principles of modelling

The mathematical models of unipennate muscle and bipennate muscle were created on the base of a 

deformation schema of unipennate muscle shown in the Figure 1. According to this deformation 

schema, the muscle contraction occurs in the plane (two-dimension space) along muscle fibers 

directed at the pennation angle p towards the line connecting the muscle insertion (it is a movable 

part with one degree of freedom) and the muscle origin (it is a non-movable part). It is assumed that 

during muscle contraction the muscle width tt is constant (according to [5]) and muscle fibers 

generate a contractile muscle force  Fm, which causes the displacement of muscle insertion x and 

counterbalances an external force Fext: 

pmext cosFF  .                                                                                                                          (1) 
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During contraction the muscle fibers are shortening and the muscle insertion is translated from the 

point B to the point B’ (the distance BB’ is equal to x). It causes the change of pennation angle: the 

initial value of pennation angle po (at the length of muscle equals AB), is changed to the value p (at 

the length of muscle equals AB’). Analyzing the deformation schema of unipennate muscle, the 

following relation can be derived: 

ppo cos'ABcosABtt   .                                                                                                     (2) 

 
A) 

 
B) 

Figure 1. Deformation schema of unipennate muscle:  

A) directions of acting of external force Fext  and  contractile muscle force Fm towards the 

muscle insertion displacement x; B) schema of deformation of unipennate muscle (AB – the 

initial length of muscle (before contraction); AB’ – the finish length of muscle (after 

contraction); Fmo – initial contractile muscle force at the length of muscle equals AB; Fm – finish 

contractile muscle  force at the length of muscle equals AB’; po – the pennation angle before 

contraction (at the length of muscle equals AB); p – the pennation angle after contraction (at 

the length of muscle equals  AB’); xm –  change of muscle length that is equal to the difference 

of the length AB  and the length AB’). 

 

 Taking into consideration a deformation schema of unipennate muscle, five rheological models 

were created:  

1) Unipennate muscle model WW (the author is Wiktoria Wojnicz) (part 2.2);   

2) Unipennate muscle model BZ (the author is Batłomiej Zagrodny) (part 2.3);  

3) Hill-Zajac unipennate muscle model (part 2.4);  

4) The bipennate muscle model WW (the author is Wiktoria Wojnicz) (part 2.5);  

5) The bipennate muscle model BZ (the author is Batłomiej Zagrodny) (part 2.6). 

 Assuming that the time variable is t, proposed models can be applied to solve the dynamics task 

formulated in three following problems: 

1) Input variables are the insertion displacement  x(t)  and the external force Fext(t); output variables 

are the internal force  tPw  (this force is generated by the contractile elements of muscle model 

and it causes an appearing of contractile muscle force Fm(t)), the pennation angle p(t) and 

deformations of muscle model parts (for chosen muscle models); 

597



2) Input variables are the insertion displacement  x(t) and the internal force  tPw ; output variables

are the external force Fext(t), the pennation angle p(t) and deformations of muscle model parts

(for chosen muscle models);

3) Input variables are the external force Fext(t) and the internal force  tPw ;  output variables are the

insertion displacement x(t), the pennation angle p(t) and deformations of muscle model parts (for

chosen muscle models).

2.2.    Unipennate muscle model WW 

The unipennate muscle model WW describes behaviour of unipennate muscle with the pennation 

angle equals p (Figure 2). This muscle behaviour is described by the rheological model created on 

the base of the rheological model of fusiform muscle published in [10,11]. The rheological model of 

unipennate muscle model WW is composed of serially linked three fragments (two passive (non-

contractile) fragments and one active (contractile) fragment) that describe different mechanical 

properties of muscle parts. Each fragment is composed of mass element, elastic element and viscous 

element. Active fragment has additionally a contractile element that models an ability of muscle to 

contract. Two lateral fragments model the passive muscle parts (muscle-tendon connections of the 

muscle insertion and the muscle origin). One middle fragment models the active muscle part (i.e. 

muscle belly).  This model has three degrees of freedom. According to this model: 1) the difference of 

displacements (x0 – x1) describes the change of upper passive muscle fragment; 2) the difference of 

displacements (x1 – x2) describes the change of middle active muscle fragment; 3) the displacement x2 

describes the change of lower passive muscle fragment. 

Figure 2. Unipennate muscle model WW (rheological model). 

The mathematical model of the unipennate muscle model WW is described by the system of 

three differential equations: 
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and following geometrical relations: 
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where: mj  – mass of the j-th element; Kj  – stiffness coefficient of the  j-th elastic element; Lj – 

damping coefficient of the j-th viscous element;  tPw
1 – internal force of the contractile element; l0 – 

initial length of muscle model; po – initial pennation angle when the length of muscle model is 

equals to  l0. 

 

2.3.   Unipennate muscle model BZ    

The unipennate muscle model BZ describes behaviour of unipennate muscle with the pennation angle 

equals p (Figure 3). This model is similar to the unipennate muscle model WW (part 2.2). The 

unipennate muscle model BZ takes into consideration that stiffness and dumping characteristics of 

skeletal muscle is described by a nonlinear relationship according to [2,9]: 

1) 
2

jjj xkK  , j = w, z, 1,2, where kj is a correction factor of stiffness; 

2) 
2

jjj xcC  , j = w, z, 1, 2, where cj is a correction factor of damping. 

 Applying the geometrical relations (4A – 4D), the mathematical model of unipennate muscle 

model BZ is described by the system of two following equations:  
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,                                               (5) 

where: pw cosxx 1 ; xw – displacement of mass mw;  xz – displacement of mass mz.   
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Figure 3. Unipennate muscle model BZ. 

2.4.      Hill-Zajac unipennate muscle model 

The Hill-Zajac unipennate muscle model describes behaviour of unnipennate muscle by using the 

Hill-type muscle model and Zajac muscle model (this is a Hill type muscle model, in which the angle 

of pennation p is taken into consideration). There are a lot of modifications of these models [4,12]. 

In this paper it was assumed that Hill-Zajac unipennate muscle model has a rheological structure 

shown in the Figure 4. In this model the muscle length is the sum of belly length Lm/cos(p)  and 

tendon length Lt. Mechanical properties of muscle are described by using a mass element M (this is a 

muscle mass reduced to a point) and parallel linking of three elements: a contractile element that 

generates a force FCE (it depends on the actual muscle length l, velocity of muscle fibers contraction 

and activation Act that originate from a nervous system), a parallel elastic element described by a 

stiffness coefficient equals KPE and a viscous element described by a damping coefficient equals L. 

Tendon behaviour is modelled by using an elastic element and its force depends on the tendon 

stiffness coefficient Kt and the tendon elongation described by a difference of displacements (xt – x).  

Figure 4. Hill-Zajac unipennate muscle model (rheological model). 
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The mathematical model of Hill-Zajaca unipennate muscle model is described by the system of 

two equations: 

 
  pmtt

ttext

cosFxxKxM

xxKF







0
,                                                                                                 (6) 

where the contractile muscle force is equals to: 

00 xLxKFF PECEm  .                                                                                                       (7) 

It was assumed that force of contractile element CEF  depends on the muscle activation Act, the 

muscle length l and difference between the active component of static muscle characteristic act
mF  and 

the passive component of static muscle characteristic pas
mF :  

    lFlFActF pas
m

act
mCE  .                                                                                                    (8) 

To implement the Hill-Zajac unipennate muscle model there were used: 1) a static muscle 

characteristic (length-force relationship) proposed in [5]; 2) a static tendon characteristic (elongation-

force relationship) proposed in [12]; 3) a dynamic muscle characteristic (velocity-force relationship) 

published in [12]; 4) data described musculotendon properties (the maximum isometric muscle force, 

the optimal muscle fiber length, the tendon slack length) according with [5]. 

 

2.5.    Bipennate muscle model WW 

The bipennate muscle model WW described behaviour of bipennate muscle composed of two parts 

directed at the pennation angle p1 (left part with a constant muscle width tt1)  and the pennation angle 

p2 (right part with a constant muscle width tt2) towards the muscle insertion (it is movable part) and 

muscle origins (there are non-movable parts) (Figure 5). Each muscle part behaviour is modelled as a 

rheological model of the unipennate muscle WW described in the part 2.2 (i.e. each muscle part is 

composed of two passive fragments and one active fragment). The bipennate muscle model WW has 

six degrees of freedom. According to this model: 1) difference of displacements (x01 – x11) describes 

the length change of upper passive fragment of muscle left part; 2) difference of displacements               

(x11 – x21) describes the length change of middle active fragment of muscle left part; 3) displacement 

x21 describes the length change of lower passive fragment of muscle left part; 4) difference of 

displacements (x02 – x12) describes the length change of upper passive fragment of muscle right part; 

5) difference of displacements (x12 – x22) describes the length change of middle active fragment of 

muscle right part; 6) displacement x22 describes the length change of lower passive fragment of 

muscle right part. 
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Figure 5. Bipennate muscle model WW (rheological model). 

The mathematical model of bipennate muscle model WW is described by the system of five 

differential equations: 
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and following geometrical relations: 
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where: mji  – mass of the j-th element of i-th muscle part; m  – mass of the element m01 and the 

element m02; Kji  – stiffness coefficient of the  j-th elastic element of i-th muscle part; Lji – damping 

coefficient of the j-th viscous element of i-th muscle part;  tPw
1 – internal force of the contractile 

element of left muscle part;  tPw
2 – internal force of the contractile element of right muscle part; l01 – 

initial length of left part of muscle model; l02 – initial length of right part of muscle model; po1 – 

initial pennation angle when the length of left part of muscle model is equal to l01; po2 – initial 

pennation angle when the length of right part of muscle model is equal to l02. 

 

2.6.    Bipennate muscle model BZ 

The bipennate muscle model BZ described behaviour of bipennate muscle directed at the pennation 

angle  (left part) and the pennation angle  (right part) towards the muscle insertion (it is movable 

part) and muscle origins (there are non-movable parts) (Figure 6).  

 

 

Figure 6. Bipennate muscle model BZ. 
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The bipennate muscle model BZ is similar to the bipennate muscle model WW (part 2.5) but it takes 

into consideration that stiffness and dumping characteristics of skeletal muscle are nonlinear (part. 

2.3). Applying the geometrical relationships (10A – 10D), the mathematical model of bipennate 

muscle model BZ is described by the system of four following equations: 

     
   
   

       1121
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 ,  (11) 

where:  cosxcosxx  31 2 .

3. Numerical simulation results

Numerical models of unipennate muscle and bipennate muscle were created on the base of proposed 

mathematical models. To perform numerical researches there were used data describing a lateral head 

of triceps brachii published in [5]. Applying similar boundary conditions and similar load, proposed 

numerical models had been tested. Numerical model of unipennate muscle model WW (described in 

part 2.2) was applied to solve three problems of the dynamics task described in part 2.1. Chosen 

results obtained from numerical solving of the third problem are shown at the Figure 7. 

A) B) 

Figure 7. Numerical simulation results of the unipennate muscle model WW: A) displacement of 

muscle points; B) stiffness of muscle.  

Numerical model of Hill-Zajac unipennate muscle model (described in part 2.4) was applied to 

solve a dynamics task formulated in the following problem: input variables are the insertion 

displacement  x(t), the pennation angle p(t) and the external force Fext(t); output variables are the 

force of contractile element CEF  and muscle activation Act. Chosen results obtained from numerical 

solving of this problem are shown at the Figure 8. 
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Figure 8. Numerical simulation results of the Hill-Zajac unipennate muscle model: contractile muscle 

force Fm and force of contractile element FCE. 

 

Numerical model of bipennate muscle model WW (described in part 2.5) was applied to solve 

the third problem of the dynamics task (described in part 2.1). Chosen results obtained from 

numerical solving of the third problem are shown in the Figure 9. 

 
A) 

 
B) 

Figure 9. Numerical simulation results of the bipennate muscle model WW: A) displacement of left 

muscle part points; B) stiffness of muscle left and right part. 

 

Numerical model of unipennate muscle model BZ (described in part 2.3) and bipennate muscle 

model BZ (described in part 2.6) were applied to solve the third problem of the dynamics task 

(described in part 2.1). Chosen results obtained from numerical solving of the third problem are 

shown in the Figure 10. 

 
A) 

 
B) 

Figure 10. Numerical simulation results of: A) the unipennate muscle model BZ (displacement of 

the tendon xz and muscle fiber xw; B) the bipennate muscle model BZ (displacement of the tendon xz 

and muscle fibers x2 = x3 in the case of  = ). 
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To compare the influence of planar arrangement of muscle fibers  the numerical model of 

fusiform muscle model published in [11] was applied to solve the third problem of the dynamics task 

(chosen results are shown in the Figure 11).  

A) B) 

Figure 11. Numerical simulation results of the fusiform muscle model: A) displacement of muscle 

points; B) stiffness of muscle.  

4. Method of verification

To prove models proposed in this paper a method of verification was elaborated. According to this 

method, a first step consists in applying a non-invasive image analysis and a second step consists in 

performing experiments by using the prototype of pennate muscle. An image analysis (US or MRI) 

allows us to perform static image analysis (for a single image) and dynamical image analysis (for a 

multiple images or a single movie). It is worth noticing that an image analysis requires that an image 

has high resolution to precisely distinguish muscle fibers [3,8]. Single image of muscle section allows 

to measure a pennation angle αp, a muscle diameter and a muscle length (Figure 12).  

Figure 12. Muscle geometrical parameters in visual analysis: pennation angle αp, 

muscle diameter d and muscle length l. 

The prototype of pennate muscle is composed of four artificial pneumatic muscles (Figure 13). 

Each artificial muscle is a linear McKibben actuator. This prototype allows us to form four initial 

pennation angles: 9o, 14o, 18o and 24o. Chosen experiments results and numerical simulation results 

are shown in the Figure 14. Analysing these results, we may conclude that greater pennation angle 

causes the drop of force measured along a long axis of the muscle (each pneumatic actuator produces 

the same maximal force, which is independent of the pennation angle).  
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Figure 13.  A prototype of pennate 

muscle (a prototype is composed of                                             

four artificial pneumatic muscles) 

 
Figure 14. Normalized force as a function of 

pennation angle. 

 

 

 

 

5.     Conclusions  

The aim of this study was to create mathematical models of unipennate striated skeletal muscle and 

bipennate striated skeletal muscle. New models were created in the form of rheological models by 

taking into consideration that muscle contraction occurs in two-dimension space and the arrangement 

of muscle fibers influence mechanical properties and contractile properties of this muscle. Moreover, 

at this stage of modelling we assumed that slow and fast muscle tissues have identical mechanical 

properties.  

 Analysing results of numerical simulations we concluded that:  

1) efficiency of fusiform muscle (it is a quotient the external force to the contractile muscle force) is 

more than the efficiency of unipennate muscle (because a unipennate muscle works in a plane and 

a part of its contractile force is devoted to spatial arrangement of muscle fibers);  

2) the efficiency of bipennate muscle is more that the efficiency of unipennate muscle;  

3) to model a behaviour of pennate muscle one should precisely describe the geometrical relations 

occurring between pennate muscle fibers (i.e. geometrical constrains) and the force-length 

relations depended on the time variable (i.e. dynamics equations of motion).   
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Dynamics of vibrating machines with unbalanced drive in case 

of flat vibrations of bearing body

(VIB018-15) 

Nikolay Yaroshevich, Ivan Zabrodets, Tatyana Yaroshevich 

Abstract: Expressions for vibration moments (additional dynamic loading caused by 

the vibrations of bearing body) during the passage of resonant zone by vibration 

machines with the flat vibrations of bearing body both with one arbitrarily located 

vibration exciter and with two self-synchronization vibration exciters for the different 

modes of starting  are got in an analytical form by method of direct division of 

motions. Using approaches of vibration mechanics of I.I. Blekhman possibilities of 

improvement of process of running approach of vibration machines with unbalanced 

vibration exciters are demonstrated by using of methods the "double" (in case of one 

vibration exciter) and "separate" starting of electric motors (in case of two vibration 

exciters). It is shown that the first method is based on using semislow vibrations 

arising in the resonant zone. The necessary condition of the successful using of this 

method is motion on the rotor of exciter in the moment of the repeated including of 

engine of rotary-type vibration moment. The conditions when the separate starting is 

effective are shown. Conclusions and practical recommendations that allow to 

facilitate starting of vibration machines with an unbalanced drive are pointed. 

1. Introduction

Posing the problem and its connection with the main scientific tasks. Solutions of problems of run-up 

and run-down of vibrational systems with inertial drive is of considerable interest for vibrational 

technical devices. When inertial vibroexciter passes the zone of natural frequencies an unset of 

resonance vibrations is possible which cause both a sufficient rise of dynamic loads on the rotor of 

electric motor, on elements of machine bearing construction and additional losses of power in the 

system. So, the start of vibration machine with unbalanced drive needs the power of the drive with 

sufficiently exceed the power needed for operating in stationary mode (2-5 times as large by some 

data). In addition to that, in case of large machines with the drive from electric motors of 

asynchronous type the striking starting current exerts negatively upon the feeding electrical network.  

In order to lower the level of vibrations when passing the resonance zone various means are 

used – from vibroexciters with automatically regulated static moment of unbalance mass to 

algorithms with feedback. No doubt, to successful realization of the lasts it is important to have more 

thorough conception of dynamics of the occurring processes.  
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Analysis of the latest investigations. 

The survey of investigations, concerning the passing of the resonance zone by inertial 

vibroexciter one may find in [1-3]. In the last years a number of tasks are solved on the basis of 

vibrational mechanics approaches, in particular, by using the method of direct separation of motions. 

In [3] it is shown by the example of the simplest system with linear vibrations of the bearing body and 

one unbalanced exciter that the important merit of such approach is its comperative simplicity and 

physical integration of the results.  

In work [1] attention is paid to the peculiarity of the motion of the system nearby the resonance – 

the availability of the so called inner pendulum and its “semislow” motions, which are physical base 

of the efficiency of some methods of controlling  the starting of vibration machines with inertial 

exciting of vibration.  

A great number of works are dedicated to the use of the phenomenon of selfsynchronization in 

vibration machines and devices, they are shown in [1, 3], and the latest ones in [4-6]. However, no 

attention was paid to the dynamics of starting of such vibrations machines. The presented paper is 

dedicated to generalization and development of the results of works [2, 7, 8]. 

Statement of the task. The majority of vibration machines with unbalanced drive may be 

idealized in the form of a system, consisting with a single lifting rigid body, which may execute 

plane-parallel motion and is connected with stationary base with elastic and damping elements (fig. 

1). As exciters of vibrations of lifting body mostly unbalanced vibroexciters (disbalanced rotors) 

drived by the electric motors of asynchronous type are used. Motion equations of such system may be 

written down in the following form (see, for instance, [1-3]): 
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where M , J  – are correspondingly, mass and moment of inertia of the lifting body as to the axis 

which passes through its center of gravity; , ,x y   – are coordinates, determining the position of the 

lifting body; i – are the angles of rotation of vibroexciter; ir  and
i  –  are polar coordinates of 

axes of vibroexciters; ,m   – are, correspondingly, mass and accentricity of the exciter; iI  – is 
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applied to the shaft of the vibroexciter moment of inertia of the rotating parts of the drive; 
xc  yc , c  

– are horizontal, vertical and rotational rigidity of the elastic elements; 
x , y ,   – are coefficients 

of viscous resistance;    ,i i i iL R   – is the torque of the electric motor and moment of forces of 

resistance to rotation; g  –  is a free-fall accekeration.  

 

Figure 1.   General diagram of vibrational system with unbalanced vibroexciters 

Exposition of the basic material. To solve the set of equate ions (1), (2) we use the method of 

direct separation of motions [1, 3]. Set us accept as a zero-order approximation 
i t  , 

sin cosi i iq P t Q t     where ( )t   – are slowly and , ,iq x y   – fast changing time 

functions. Then it is not complicated to come from the original system of equations of vibroexciters 

rotors motion (2) to the equations of their rotation in the resonance zone in the form, obtained in [3] 

( ) ( ) ( )i i i iI L R V      , (3) 

where ( ) sin cos cos( ) .i i i i i i i iV m x y r         
 

French quotes in (3) point out at averaging for the 2T   by fast time t  .  

It should be noted that equation (3) differs from classic equation of machine assembly by 

presence of item ( )iV  – vibrational moment which defines the peculiarity of vibrational system 

conduct. Presence of vibrational moment explains both Zommerfield’s effect and selfsynchronization 

of vibroexciters. Determination of the vibrational moment is of main interest.  

It should be noted that equation (3) keeps its form, obtained for the system with linear vibrations 

of the lifting body [3] for the examined more general case as well. Only expression for vibrational 

moment has more complicated structure, algorithm of its obtaining remains previous, only computing 

difficulties grow up.  

Vibrational systems with one vibroexciter Zommerfield’s effect. Certain part of operating at 

present machines has one unbalanced vibroexciter. It is not complicated to obtain expressions of 
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vibrational moment in the resonance zone for the case of vibroexciter, placed arbitrarily as to centre 

of masses of the lifting body in plane vibration in the form   

2 2
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where qp –  are the frequencies of the natural vibration of the system. 

Here, if ,q x y , then qM M , if q  , then 
2

2qM M
h


  ; in addition to that, 

2
n
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






 . 

One can see that all items in formula (4) are negative. Hence, vibrational moment is always 

braking one, that is, it is an additional dynamic load upon the rotor of the engine, its dependence from 

frequency is of resonance character and, therefore, an essential braking exercion is manifested in 

comparatively narrow range of natural frequencies. In addition to that, rapid growth of value ( )V   at 

approaching to resonance just explains the possible “sticking” of frequency in the process of starting 

(Zommerfield’s effect) and, as consequence, the necessity of overrated (from starting conditions) 

power of the drive of postresonance vibromachines. Such conclusion follows from diagramic 

presentation of dependences ( )L   and ( ) ( )sumM R V    (fig. 2), abscissas of intersection points 

correspond to possible stationary modes (curves L  describe statical characteristics of electric 

engines. Stability of motions is easily determined geometrically by the sign and values of slope angles 

tangent to curves ( )L   and 
sumM . It is evident that right slopes of resonance curve cannot be 

realized. According to the figure, the presence of several resonance peaks of the curve of vibrational 

moment may lead to the emergence (as compared with the system of linear vibration of the lifting 

body) points of curves intersection. So, there exists a possibility of several stationary modes of 

motions, having different angular velocities (up to seven, four of them may be stable). However, there 

are only two, different in lessence modes of motion: “sticking” (curves 1) of the system with engine 

of deficient power in the resonance zone (motor) on having come in the process of running to this 

mode, would not be able to overcome the resonance peak and far postresonance mode with frequency 

of electric motor. If the motor power is sufficient, then, as a rule, after some breaking in the resonance 

zone, the system rapidly (upsetting) passes to far postresonance modes of motion (curves 2).  

So, to reach by the exciter the working frequency, the moment of the motor should overcome 

vibrational moment ( )V   during its running. According to (4), maximal (peak) value of moment 

( )V   is as much large as a damping of qn  becomes less and higher of the own vibrations of system 

qp . Hence, it is important not to overrate the value of rigidity of elastic elements; the use of elastic 
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suspension may be effective; it is possible to lower resonance peak values of vibrations as well as the 

power of the drive by installation of dampers of maximal vibrations. Expression (3) may be presented 

in the form of the sum of “partial” vibration movements 
qv , which characterize the impact of 

vibrations, corresponding to each of the generalized coordinates: 
, ,

( )
q x y

qV v



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  , where 

1
sin

2
q q qv Fa  ; 

2
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q

q

q

n

B
   ; q

q q

m
a

M B


 ; 2F m . It is natural that maximal breaking 

exertion is effected by “partial” vibrational moment which corresponds to the highest natural 

frequency of vibrations qp , so it is often enough to use damper of only suck vibrations.   

 

Figure 2.   Stationary modes of rotation of vibroexciter: 1 – “sticking” in resonance zone, 2 – far 

postresonance mode 

It is clear from formula (4) that start of vibromachine at the absence of working load is more 

complicated than at its presence; that to make the start easier it is advisable to install vibroexciter in 

the centre of masses of the system or as close to it, as possible. So, the breaking vibrational moment, 

resonance vibrations and, correspondingly, the necessary power of the motor are sufficiently less for 

centre-drilled system (fig. 3, a) than, for instance, for the diagram shown in fig. 3, b (in the first case 

the last component in formula of vibrational moment (4) disappears). It should also be noted that 

“rapid” (with frequency 2 ) vibrations of vibrational moment do not take place in such system in the 

steady mode, which is favorable for the durability of the system  

On the other hand, taking into account the fact that the value of the vibrational moment depends, 

first of all, on the velocity of running of the rotor of vibroexciter, to make easier the start, engines 

with higher starting moment are recommended (it facilitates, also, the solution of the problem of 
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lifting the unbalanced mass at first half-turn). At prescribed static moment unbalance mass should be 

designed with minimal moment of inertia. So, constructions of vibroexciters with laid on unbalanced 

mass are more preferable for changing the amplitude of vibrations, then those, having regulated static 

moment. In addition to this, it is recommended to exclude from the construction (if they are available) 

synchronizers, mechanical transmissions and so on, using the phenomena of selfsynchronization, 

employing controlled electric drive.  

a                                                   b 

Figure 3.   Diagrams of vibromachines: a) with centrally installed vibroexciter; b) with shifted 

vibroexciter 

Manifestation of Zommerfield’s effect during the run-up of vibromachine is visually 

demonstrated by the results of numerical modelling, obtained for vibrational system (fig. 3, a) with 

parameter 330M kg ; 28,02J kg m  ; 54,5 10 /y õñ ñ N m   ; 42,8 10ñ N m    ; 40m kg ; 

0,036m  , electric engine – asynchronous, with frequency of rotation 1500rot / mincn  , of 

power 1,5P kW . According to fig. 4, at passing the natural frequencies zone ( 0,15 0,42t s  ) 

dynamic load upon the rotor of electric engine grows sufficiently (curve 1); one can see that the value 

of vibrational moment is larger, than in stationary mode several times as much and its maximal 

vibrations are compatible with starting moment of the engine. 

Correspondingly, the velocity of running of the rotor of exciter shows down intensively up to 

short-term stabilization of the frequency of rotation (curve 2), in addition to that, maximal resonance 

vibration of the lifting body are excited. Just after passing the resonance the value of vibrational 

moment decreases sufficiently fast and its vibrations cover positive zone, that is it becomes rotating in 

some moments of time. Then their damping takes place as to small negative level (determined by 

resistance to the vibrations of the lifting body); the amplitude of vibrations of lifting body decreases 

as fast and the value of rotating moment of the engine changes from starting to nominal value 

(curve 3). 
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Figure 4.   Changing in time: 1 – of engine moment; 2 – of vibrational moment; 3 – of vibroexciter 

velocity  

As it follows from the diagrams of velocity of rotation of vibroexciter for cases of different 

powers of driving electric motor (fig. 5) at replacing motor of power 1,5P kW  with motor of power 

2,2P kW , slowing down of velocity of exciter in resonance zone is practically absent (curve 3) 

while its steady postresonance mode of operating becomes impossible (curve 2 – “sticking” of 

angular velocity in postresonance zone). 

 

Figure 5.   Changing in time the vibroexciter velocity: 1 – 1,5P kW ; 2 – 1,1P kW  (“sticking” of 

velocity); 3 – 2,2P kW   
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Double start of vibrational machines with unbalanced drive. In practical use of such machines the 

so called method of “double starting” is applied for lowering the level of vibrations during passing the 

resonance frequencies. Its technical realization is rather simple. Method consists in switching-off and 

next switching-on the electric motor in the resonance zone in predetermined moment of time. 

Theoretical grounding of the method with account of standpoints of vibrational mechanics facilitates 

its wider use. The basis of the method lies in two existing appropriatenesses of motion of the system 

close to the region of manifestation of Zommerfield’s effect: the first one – at switching-off the motor 

in the resonance zone vibrational moment effecting the rotor of vibroexciter becomes positive, that is, 

rotating (it follows from the basic equation of vibrational mechanics (3), written down for the case of 

stationary mode); the second one – availability of so called inner pendulum and its “semislow” 

motions. So, using the method of direct separation of motions and accepting as the first 

approximation (1)

1 1 t      , (0) (1)q q q  , for general system (fig. 1) in case of one 

vibroexciter it is not complicated to obtain equation of “semislow” vibrations in the form [2] 

2
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12 /n k I ; k – is a coefficient of damping. 

a                                                                         b 

Figure 6.   Changing in time: 1 – of vibrational moment; 2 – of motor moment ( 1,1P kW ): 

a) switching-off of the motor in the resonance zone, sw. offt 0,3 s  ; 

b) double starting of the engine, sw. offt 0,3 s  , rep. sw. ont 0,48 s   
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The value q B
 
is frequency of small free vibrations of the inner pendulum on condition of 

slow changing of the frequency of rotation of rotor   [2]. The effect of appearance of semislow 

vibrations in the resonance zone may be observed in the fig. 5-7. In addition to that, according to fig. 

6, a (curve 1) semislow (with frequency 2q ) vibrations of vibrational moment take place after 

switching-off of the motor with regard to the shifted to the positive side level. 

Fig. 6, b and fig.7 demonstrate the possibility of realization of running ang coming to the mode of 

rotation with frequency, close to nominal of the motor of “unsufficient” power ( 1,1P kW ) with the 

help of method of double starting as one can see, the necessary condition of successful use of the 

method is, first of all, effect upon the rotor of vibroexciter in the moment of repeated switching-on of 

the motor (in figures rep. sw. ont 0,48 s  ) of rotating vibrational moment commensurable with its 

starting moment. The abovementioned condition is not complicated to realize with the help of modern 

means of controlling the electric motors. Applied recommendations to switch off the motor in the 

moment of growing of intensive resonance vibrations of the lifting body and at once (in a period of 

time of semiperiod of semislow vibrations 2 /t q ) switch it on again. 

 

Figure 7.   Changing in time of the velocity of vibroexciter ( 1,1P kW ): 1 – switching-on the motor 

in the resonance zone, 
sw. offt 0,3 s  ; 2 – double start of the motor, 

sw. offt 0,3 s  , 

rep. sw. ont 0,48 s   

Vibrational systems with two selfsynchronizing exciters. Separate starting. Many modern 

vibrational machines, in particular, screens and platforms with directed vertical (horizontal) vibrations 

are realized by the diagram, shown in fig. 8. Expressions for vibrational moments influencing in 

resonance zone upon the rotors of exciters rotating in opposite directions are presented in the form 
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Vibrational machines with selfsynchronizing exciters permit the possibility of separate (in turns) 

start of electric motors, however, it is not applied in practice. Using the approach under consideration, 

it is possible to demonstrate possibility advantages of such start. 

It is not complicated to establish that vibrational moment in case of running only one of 

vibroexciters will equal 
1

( ) ( )
4

separV V  , where ( )V  is determined by formula (4). It follows 

from analysis (4) that if natural frequencies of vibrational system qp  differ sufficiently enough (it 

may always be reached by the choice of elastic elements), then with the grows of frequency   in the 

process of running each item (except the one corresponding to qp  ) will be disregardly small. 

Taking into account the fact that ratio 2 /Mr J  is for the dynamic system in consideration, 

sufficiently less than unity it is possible to come to the following estimation of the value of 

vibrational moment, functioning in the resonance zone in case of separate start of its electric motors: 

1
( ) ( )

2
separ iV V  . So, by corresponding choice of the parameters of the system at separate start of 

motors it is possible to attain the decrease of resonance vibrational moments and, as a result, to attain 

all connected with this possible of improvement of dynamic and power characteristics of 

vibromachines. 

Figure 8.   Diagram of vibrational machine with selfsynchronizing exciters 

In favor of decrease of vibrational moments at separate start of selfsynchronizing vibroexciters 

are the facts that, owing to the differences between their phases, some “collateral” vibrations of the 

lifting body occur and that it is necessary at more precise determination of vibrational moment of the 

exciter under consideration, to take account of the effect of other exciters. That is, at calculation of 

vibrational moment  it should be presented in the form of the sum of two items, one of which (being 

determined above) represents additional load , caused by losses of power at vibrations, and the second 

(noticeably less in the resonance zone, as a rull) is caused by the influence of other vibroexciters. It 
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should be noted, that the second item represents redistribution of power between the vibroexciters. 

Formulas for determination of its value for many of vibrational systems may be found in specialize 

literature [1, 3]. The positive effect may be magnified by installation of damper of vertical vibrations. 

Besides, in case of using separate start of motoes, the decrease (almost twice as much) of starting 

currents is rather important.  

It should be noted that somewhat excessive power of electric drive is recommended for easing the 

start in case of vibromachines with two selfsynchronizing exciters. In addition to that, effect of 

vibrational support of rotation of unbalanced exciter in steady state should be used, working with one 

switched off motor. Especially as mode of vibrational support of rotation is the most stable for the 

dynamic system under consideration.  It follows from comparison (4) and (6) that dynamic load upon 

the rotors of electric motors and, correspondingly, the necessary total power of electric drive in case 

of vertical vibrations of the working part of vibromachine will be sufficiently less than at elliptic 

trajectory.  

Results of simulation confirm the advantages of separate start. Thus, for instance, according to 

fig. 9 ( 2 / 0,52Mr J  ), in case of such start resonance amplitudes of vibration of masses centre of 

the lifting body are sufficiently less than those at synchronous start of the motors. In addition to that 

amplitudes of horizontal and turning resonance vibrations grow. However, their amplitudes are far 

from maximal values of amplitudes of vertical vibrations.  

a               b 

Figure 9.   Trajectories of the centre of masses of lifting body: a) synchronous (ordinary) start of 

motors; b) start of one motor (separate start) 

Findings. Thus, the majority of mechanisms of behavior of inertial vibroexciters and vibrational 

system in general at passing the resonance zone may be explained on the basis of approaches of 

vibrational mechanics. On this ground practical conclusions and recommendations improving 
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dynamic and power characteristics of vibromachines with unbalanced drive may be obtained. 

Methods of double and separated start are effective for easing the start of postresonance 

vibromachines with unbalanced drive.  
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