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PREFACE

This is the thirteen time when the conference “Dynamical Systems: Theory
and Applications” gathers a numerous group of outstanding scientists and engineers, who
deal with widely understood problems of dynamics met in daily life.

Organization of the conference would not have been possible without a great effort
of the staff of the Department of Automation, Biomechanics and Mechatronics, as well as
Committee of Mechanics of the Polish Academy of Sciences. The financial support has
been given by the Polish Academy of Sciences.

It is a great pleasure that our invitation has been accepted by recording in the history
of our conference number of people, including good colleagues and friends as well as a
large group of researchers and scientists, who decided to participate in the conference for
the first time. With proud and satisfaction we welcomed over 180 persons from 29
countries all over the world. They decided to share the results of their research and many
years experiences in a discipline of dynamical systems by submitting many very interesting
papers.

This year, the DSTA Conference Proceedings were split into three volumes entitled
“Dynamical Systems” with respective subtitles: Mathematical and numerical approaches;
Mechatronics and life sciences and vol. 3 Control and stability. Additionally there will be
also published two volumes of Springer Proceedings in Mathematics and Statistics entitled
“Dynamical Systems. Modelling” and “Dynamical Systems. Theoretical and Experimental
Analysis”.

These books include the invited papers and regular papers dealing with the following
topics:

e control in dynamical systems,

o stability of dynamical systems,

¢ asymptotic methods in nonlinear dynamics,

e mathematical approaches to dynamical systems,

¢ dynamics in life sciences and bioengineering,

* engineering systems and differential equations,

e original numerical methods of vibration analysis,

e bifurcations and chaos in dynamical systems,

e vibrations of lumped and continuous systems,

¢ non-smooth systems,

e other problems.

Proceedings of the 13th Conference ,Dynamical Systems - Theory and Applications"
summarize 164 and the Springer Proceedings summarize 60 best papers of university
teachers and students, researchers and engineers from whole the world. The papers were
chosen by the International Scientific Committee from 315 papers submitted to the
conference. The reader thus obtains an overview of the recent developments of dynamical
systems and can study the most progressive tendencies in this field of science.



Our previous experience shows that an extensive thematic scope comprising
dynamical systems stimulates a wide exchange of opinions among researchers dealing
with different branches of dynamics. We think that vivid discussions will influence
positively the creativity and will result in effective solutions of many problems of
dynamical systems in mechanics and physics, both in terms of theory and applications.

We do hope that DSTA 2015 will contribute to the same extent as all the previous
conferences to establishing new and tightening the already existing relations and scientific
and technological co-operation between both Polish and foreign institutions.

On behalf of both
Scientific and Organizing Committees

Hfimica—

rman

Professor Jan Awrejcewicz
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On the vibrations of a composite structure with
hexagonal structure of a circular inclusions
(VIB302-15)

Igor V. Andrianov, Jan Awrejcewicz, Bernd Markert, Galina A. Starushenko

Abstract: One of the major advantages of homogenization is a possibility of the
generalization of the obtained results. Namely, if a solution to the local problem is
found, then without principal problems one may solve not only the analyzed problem,
by also a series of related static and dynamic problems, including: linear, quasi-
linear, the eigenvalue problems, etc. The mentioned approach has been applied to the
eigenvalue problems regarding the perforated structures and periodically non-
homogenous 2D constructions with a square mesh of inclusions. In this work we have
used theory of averaging to solve the vibrations problem regarding stiffly clamped
rectangular membrane with periodically located circular inclusions creating a
hexagonal mesh. The relations governing eigenvalues (frequencies) and
eigenfunctions have been derived. The derivation of analytical formulas governing
membrane eigenforms and frequencies consists of three parts. In the first part the
local problem regarding a cell (inclusion) of the composite is studied. Second part is
focused on finding main terms of the averaged problem. The third part is aimed at an
estimation of the first improvement term with respect to the membrane fundamental
frequency.

1. Introduction

The problem of transition of waves in periodic structures consists of a wide spectrum of various

questions having roots in different fields of physics and mathematics including mechanics of
deformable solids, theory of electromagnetic vibrations and waves, electrotechnics, theory of
vibrations, mechanics of composites, theory of crystals, etc.
The first background of the problem investigation has been introduced in 1686 by Newton [31], who
studied 1D chain of oscillators while computing the second velocity. Beginning from 1727, a study of
1D chains of oscillators has been carried out by J. Bernoulli and nest by his son D. Bernoulli, who in
1753 formulated the superposition principle i.e. any motion of the vibrating system can be presented
as a superposition of its eigenvibrations.

Further development of 1 D models of the wave transition in periodic structures is associated with
the works of Cauchy, Rayleigh [34] and Kelvin [25]. In the years 1835-1836 Hamilton obtained
remarkable results regarding the light transition in crystals [24]. A review of the state of the art of the
development of theory of wave distributions in 1 D chains of oscillators can be found in reference
[16].
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Among the fundamental works published in the middle of the previous century we mention
monographs of Brillouin [14, 15] and Brillouin and Parodi, where not only the mathematical theory of
1 D chains is presented, but also systems with the cell of periodicity having a few degrees-of-freedom
(DOFs) have been considered. In reference [16] the obtained results of investigations are generalized
into 3D case and a solution to 3D wave equations is given. Chains of coupled particles have been
considered by Ashcroft and Solid [8]. Born and Karman [12] have applied this concept of chains to
model wave transitions in crystals from a point of view of solid mechanics. Idealization idea
introduced through coupled chains of particles/masses has been also applied in other scientific
disciplines like atomic and molecular dynamics in physics, in chemistry and biology as well as in
mechanics for modeling rod and beam constructions with added particles, in quasi-periodic systems,
etc. [see for, instance, 17, 19, 28, 29, 35].

In the series of publications [23, 30, 36, 37] the transition and localization of elastic waves in
periodic composite materials have been studied.

On the other hand it is well known that the theory of averaging belongs to one of the effective
mathematical tools for modeling physical processes of different kind in periodic non-homogenous
structures [9, 10, 27]. One of the major advantages of the homogenization is a possibility of the
generalization of the obtained results. Namely, if a solution to the local problem is found, then
without principal problems one may solve not only the analyzed problem, but also a series of related
static and dynamic problems, including: linear, quasi-linear, the eigenvalue problems, etc. The
mentioned approach has been applied to the eigenvalue problems regarding the perforated structures
and periodically non-homogenous 2D constructions with the square mesh of inclusions in references
[4-71.

Application of the asymptotic homogenization [2, 3] is based on the procedure of multi-scale
series and yields reliable solutions regarding long waves for the low frequencies level [1, 13,21]. The
discussed approach has been applied in the linear case in references [1, 18, 20]. On the other hand, in
references [11,22,33] the method of asymptotic homogenization has been applied in the case of large
deformations with a successive linear distribution of the elastic wave.

In this work, based on the averaging theory and the multi-scale series, the analytical results
regarding dynamic features of the membrane vibrations having periodically located circular
inclusions in the form of a hexagonal mesh are obtained. In particular, relations yielding

eigenfrequencies and the associated eigenfunctions including first improvement terms are derived.
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2. Problem formulation in terms of averaging theory

We consider the eigenvalue problem of a vibrating rectangular membrane clamped along its
contour treated as a composite structure with periodically located circled inclusions forming the
hexagonal mesh (Figure 1).

Figure 1. Composite material with hexagonal structure of inclusions

In the general case, the membrane eigenvalue problem can be formulated in the following form:

o (azw olu” J At

2 + 2 | 2 n
oo T @)
L(éu d%u ) du”
c v + v =0 o
in =i ; 2
ou” ou”
C+2 = _ C—Z -
ut=u " on on on %Y. @3)
u*=0 o 0Q. 4)
ou*
_ g —=F*(x,y)
u=f (X'y), ot f0rt=0, (5)

where: U -transversal displacement of the membrane points; CZ=£, p —stress inside
p

the membrane, p —surface density; n—external normal to the inclusion contour.

Solution to the problem (1)-(5) is assumed to be as follows:
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ut(x, y,t)=u*(x,y)e", (6)
where w —stands for a circular frequency.

Then, owing to (6) problem (1)-( 3) can be transformed to the following form

2.+ 2.+
%X—”2+‘3ay—”2+mu*=o in Q; @
2, - 2
x(aa; +aa;2 j+mu —0inQ; @®)
ar_ar
ut=uT o an o g O )
-2 2
where: x:CTZ; = sz .
c c

Following the theory of averaging [9, 10] and applying two-scale techniques [31] the solutions to
the problem (7)-( 9), (4) in the form of asymptotic series regarding a small parameter characterizing
the structural period are assumed in the following form

u* ZUO(Xa y)+8|:u10(x' y)+uf(x, y,&,,n)]+

) (10)
+¢’ [ Uy (X, Y)+U; (X, Y, &, 1’]):|+...
. X Yy
where: &, n stand for the fast variables,and £=—, n=~.
€ €
The frequency is also presented in the form of the asymptotic series:
T=w, +EW, +E @, +.... (11)

After splitting procedure regarding € being applied to relations (7), (8), the following infinite

recursive set of equations is obtained

2+ 2+
ou  ou

L2 " on’ =0
gt S0 2y (12)
1 1 .
+—=0;
e o
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o’u, 0%, o o . o’u; . o’u;
L o¢ o Taxee Toyom ok on? .
g . 2 2 2, - 2, - 2, - 2, -
A 0 uz" +6 uzf’ +2a et +2a Y +6 u22 +6 Liz + @y, =0;
ox: . oyr | oxdE oyon  0g:  an

+@,U, =0;

2, + 2.+ 2 2 2.+ 2, + 2, .+ 2, +
a“;+a“;+6”;°+a“;°+ 6u2+ 6u2+8u23 8u23
15 oy ox oy ox0g  oyom 08" On
+mlu0+wo(ul*+um):0;
2,,— 2,,— 2 2 2,,— 2,,— 2, - 2, - 14
k[@uzl+au21+au;0+6u;0+28u2+26u2+au23+au23 (14)
ox oy OxX oy oxog  oyom 08" onm

+ @l + @, (U +Uyg ) =0

The compatibility relations (9) takes the form:

g U =u; (15)

e U =uy; (16)

g 6u_1 +%:X 6L_1+% ; 7
on  on on  on

oo +%+%:;{%+%+5“_wj, (18)

“en on on oR  én  on

0 _— . . )
where 6__ 8_ are derivatives along the external normal to an inclusion contour regarding fast
n on

and slow variables, respectively:

i_zicosa+icosﬁ, (29)
on o on
EZECOSOL+ECOSB. (20)
on  0ox oy

Therefore, the problem of finding a solution to the complex space governed by equations (7)—(9), (4)
is split to a series of problems in the spaces of essentially simpler geometry in comparison to the input
problem.
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3. Derivation of analytical formulas governing membrane eigenforms and

frequencies

Owing to the general procedure of the homogenization method a solution to the problem (7)—(9),
(4) can be divided into three parts:

nA

Figure 2. Characteristic structure of the composite cell: Q. —matrix area; ; —inclusion area.

(i) In the first part a solution to the local problem is defined [9, 10], i.e. we study a periodically
repeated cell of the composite (see Figure 2):

2, 2,,+
o'y, +6u1 =0 in Q, (21)
8&2 67]2
_ouf ou, ou
u' =u , —2-A—2=(A-1)—2 on Q. , 22
Yt em on ( )6n ' @)
U =0 on 0Q);. (23)

(if) The second part is aimed at finding main parts of the eigenfunctions and frequencies of the

averaged problems. The averaged equation is obtained through application of the following averaging

J‘J-GD*(x,y,a,n)dian+kJ‘J‘CD(x,y,é’;,n)déan (24)
Q Q5

operator

D(x,y)=

1
|

+

to relations (2.13), and the input problem takes the following form:
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_ (0%, 0%y,
q| 5o +ay2 +

62 + 82 + 62 - (25)
J‘J' jd?‘;@n +w,U, =0
axag aya a 6& 6y6

|Q* +x|Q|

o

Taking into account the relations for U, , U, which define the problem on the cell (21)—(23), the

where QO = UQ; G = —averaged parameter in the sense of Foight.

averaged problem can be transformed to the following one:

du,
qX +qy 0 +Jm,U, =0 in Q, (26)
ay*
u, =0 on 0Q, 27)
. | 0=xZL . i
where: Q : —smooth membrane space with the reduced characteristics; q,, q,—
O<y</, y

averaged parameters of the following form:

_ 1 Oy, Ol
=0+ — ——dEm+Ar déom |: 28
a =7 IQ? 3 &on 3 &on (28)
1 6ul*(2) auy )
=0+ —=d +A d on 29
a, =7 IQ? P &on 6n & (29)

where: u ( =1, 2) —are the solutions to the local problems (21)—(23), estimated with accuracy up

to constant multipliers corresponding to the slow solution component:

=Uyy (ES 11) (2)(‘?5'”) EY
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Solution to the eigenvalue problem (26), (27) in the smooth space of the rectangular membrane with

reduced physical characteristics can be formulated in the following form

©

S nmy
=1

sin wsin— , (30)
1 2

n m) nY
=) o 2] ] -

where constants S, (m, n=1,2, ) are defined by the initial conditions (5).

U=,

m=1n

mn

(iii) The third part of our approach is focused on estimation of the first improvement term regarding

the frequency @, . This requires finding one more approximation to the function U, i.e. we need to

find functions uzi as a solution to the following compatibility problem:

2, + 2, + 2 2 2+ 2ur
8U22+8U22 =— 8UZO+8UZO alh +28U1 — @y in Q?? (32)
oe’  om ox° oyt oxeg  oyom
2 2 .- 2 2 20— 20—
Al 2 - 9 = 0 0 8 u PPLL TP LA ~ @, In O (33)
oE?  on oxt oyt oxog  oyom
u=uy, Mo 5 M g)Pho A Ao a0 (34)
on on on on  on
u; =0 on QY . (3%)

Observe that the structure of the problems regarding the first and second approximations of the cell is
identical, and they differ only in the amount an even component, which does not play the principal
role, i.e. it does not introduce an essential input to the averaging, and hence it can be omitted while

estimating the frequency @, [6,7].

Consequently, relations for the functions u2i , yielded by solving the problems (32)—(35), can be

presented in the following general way:
Uy =U; (uo _>ulo)"'uzi (E.n n) ,

where U; (=&, -1)=U; (&,n).
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Owing to the latter remark, the averaged problem of the second approximation is governed by the

averaged equation obtained by application of the averaging operator (24) to relations (34):

%y,
aXZ

ulO

62
ay2

a, +0(w, Uy +, Uy ) =0 in Q, (36)

+0,

with the following boundary condition

U, =—0, on 00, (37

where U, is the averaged part of the function u;" (X, y, &, ).

It should be emphasized that the relation (36) includes two unknown functions: u,,— slow
solution of the &' order and the first improvement term to the frequency @, . In order to find the
frequency @, we need to transform (36) applying the known scheme (see [26]). Namely, we multiply

(30) by u, and next we integrate this equation by parts regarding the space Q" which taking into

account (26) and boundary condition (27) yields the following relation:

~
o

. /‘2 /‘2

au
uZ dxdy — —yu
_([ 0 y qx'([ ax 10

X=/ y={,

dx=0. (38)

y=0

@,q

O e,

! 4 ou
dy—-g, | =—2u
y'!; ay 10

x=0

Therefore, if
U, =-0,=0 on 0Q2,
then @, =0, and the series responsible for eigenfrequency begins with @, , i.e. the term of order

g,

In the case when U,, does not satisfy the boundary conditions on the external membrane contour, i.e.

Uy, =0 on 0€), we get non-zero first improvement term regarding the eigenfrequency, which taking

into account (38) has the following form:

q, I¢(y)dy+qy[jl(p(><)dx

1

: (39)
q

O ey

_[ ug dxdy
0
where
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ou X=/{, ou y={,

¢(Y):a_xou10 0 (P(X):Eoulo

: : (40)

Subsequent term of the series (10), (11) can be found by analogous scheme and its estimation
does not require principal difficulties.

4. Conclusions

The theory of averaging has been applied in order to solve the problem of vibrations of the
rectangular membrane stiffly clamped along its contour, representing the composite structure with
periodically located circular inclusions within the hexagonal mesh.

In the general case, the fundamental analytical relations of smooth components of the
eigenfunctions and the eigenfrequencies (30), (31) as well as of their first fast oscillating terms (21)-
(23), (39), (40) have been derived.

Practical realization of the proposed approach depends strongly on finding a solution of the
problem regarding the cell, i.e. in a correct estimation of the averaged characteristics of the non-
homogenous structure.

Depending on the values of the physical and geometric characteristics of the composite a solution
to the local problem can be obtained either by an asymptotic series or by combined analytical-

numerical approaches.
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Identification of a non-linear damping coefficient characteristics in
the free decay test of a single pendulum with friction
(VIB001-15)

Jan Awrejcewicz, Pawet Olejnik

Abstract: A pendulum in form of an equal arms angle body being a part of
a two degrees-of-freedom mechanical system with friction is identified with
respect to the observed influence of some resistance of its rotational motion in
ball bearings. It is damped in a much more complex manner, what could be
considered as a non-linear damping. There is supposed between others, that
the effective non-linear damping characteristics depends on a few effects such as
fluid friction caused by vibrations of the pendulum with two springs in the air,
as well as unknown kinds of a frictional resistance existing in ball bearings. The
model under investigation finds its real realization on a laboratory rig designed
for experimental investigations of viscous and structural frictional effects. A
transient response oscillations of the pendulum are described by the explicitly
state-dependent free decay. A free decay test of the pendulum with the state-
dependent non-linear parameters of damping and stiffness has been performed
in this paper. It provided interesting observations that led to elaboration of a
method of the overall damping coefficient identification. Effects of application
of the proposed semi-empirical method of identification of the overall damping
and stiffness coeflicients have been illustrated and discussed.

1. Introduction

In the theory of waves the linear models are commonly applied to predict the performance
of various engineering objects. In offshore engineering and naval architecture it is common
practice to determine damping coefficients, both linear and non-linear, from free decay tests
[10]. For example, in ocean engineering it is common practice to obtain damping coefficients
of floating structures from free decay tests [1]. Authors of the paper present some work
on the determination of non-linear damping coefficients for flap-type oscillating wave surge
converters from free decay tests. Simulations of free decay tests in computational fluid
dynamics are presented as well as their validation against experimental results is performed.
Analysis of the obtained data reveals that linear quadratic-damping, as commonly used in
time domain models, is not able to accurately model the occurring damping over the whole
regime of rotation amplitudes. The authors concluded that a hyperbolic function is most
suitable to express the instantaneous damping ratio over the rotation amplitude.

In the design process, it is essential to use accurate numerical simulation tools to predict

the complex aero-hydro-servo-elastic response of a floating wind turbine [11]. Cited paper
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focuses on the use of the open-water test data of the SWAY prototype wind turbine to
calibrate a floating offshore wind turbine numerical model for future validation efforts. After
turbine deployment and installation of the NREL instrumentation, five free decay tests were
conducted on the SWAY prototype by displacing the system and allowing it to return to
equilibrium. The inability to model frictional damping in the universal joints of the system
contributes to discrepancies between measured and simulated results. The inability to model
frictional damping in the universal joints in the tension rod became significant in affecting
the overall motion of the system.

Presented examples and many problems in other measurements of damping [6-9] confirm
the need of continuation of investigations on techniques related to identification of parameters
of oscillating bodies, especially, when some difficult properties like viscous damping are
necessary to determine [12-14].

Our paper is focused on identification of a non-linear damping coefficient characteristics
during free vibrations of a single pendulum with friction [3].

The angle body — a single pendulum, a part of the 2-DoF mechanical system with friction
shown in Fig. la is damped in a much more complex manner, what could be considered as
a non-linear damping of some characteristics that is by assumption dependent on angular
displacement and velocity of the pendulum rotating about the pivot point s (see Fig. 1).

One assumes in the research an existence of an effective non-linear damping character-

istics, which could be dependent on system states affected by a few possible phenomena:

— fluid friction caused by vibrations of the pendulum 1 with two springs in the air (see

Fig. la);

— unknown kinds of resistance existing in ball bearings, in which both ends of an alu-

minium shaft 2 are mounted to allow rotation of the pendulum about the joint s.

It is likely a hypothesis, but there will be proved in a free decay test an existence of a non-
linear explicitly state-dependent characteristics of damping and stiffness of the pendulum.

To get knowledge about the true characteristics of both parameters, the block 3 (see in
Fig. 1a) has been stopped and a transient response (see Fig. 2) of pendulum 1 in the free
decay test was analysed using some parameter identification method presented below.

Originally, self-excited vibrations of the block 3 sliding on the moving belt cause some
irregularly forced response of the pendulum [15]. The pendulum 1 is coupled with the block
by means of two springs, and therefore, it changes the normal and tangent contact forces
in the frictional connection created by the stick-slip contact of the block sliding on the

moving belt. A precise mathematical description of dynamical behaviour of the the single
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pendulum 1 is very important in the context of identification of the static as well as kinematic

characteristics of a frictional contact in the block-on-belt model [16].

V7

a) experimental stand

ko, Cyp m, J pendulum
/

¥
-1-gs
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%\\\\\\‘
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y=er
b) a physical model of single pendulum

Figure 1. Picture of the experimental stand (a) for measurement of friction characteristics
with the particular physical model (b): 1 — the pendulum under investigation, 2 — an alu-
minium shaft rotating in ball bearings fixed in the frame, 3 — the block sliding on the belt
(temporarily stopped in the experiment), 4 — incremental encoder, 5 — a microcontroller for

data acquisition, 6 — a direct current motor with gear, 7 — a direct current motor driver.
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Figure 2. Time history of a transient response of the pendulum in the free decay test. The

time series ym (t) has been acquired from measurements on the laboratory rig (see Fig. 1).

2. A semi-empirical method of estimation of the non-linear characteristics of

overall damping and stiffness

It would be interesting to check if the damping and stiffness coefficients of the investigated
free decay oscillations are constant.

At small enough angles of rotation, the starting equation in our research follows
my+cy+ky=0, fory= prande <mr/36, (1)

where: y [m] is the linear displacement of the pendulum, ¢ [rad] — angle of rotation, a virtual
mass m = J/r? [kg], mass moment of inertia J = 2.4423-10"* [kg-m?], arm length » = 0.078
[m], unknown overall damping ¢ — &, (t) [N-s/m], unknown overall stiffness k — ko (t) +
k1 + ks = ky(t) +145.82 [N/m], where: ki, ks — constant stiffness coefficients estimated from
static characteristics of both elastic elements (linear springs), l;v(t) — unknown implicitly
state-dependent function of stiffness of the rotational connection (see the joint s in Fig. 1b),
which is created by the ball bearings and the pendulum mounted in the bearings, é,(t)
— unknown implicitly state-dependent function of overall coefficient of damping in both
symmetrically situated rotational joints.

Equation (1) can be represented in a classic form of a non-forced traditionally damped
harmonic oscillator

w

y+Qy+w2y:o, (2)
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where the damping component at ¢ is written in canonical form by means of a quality factor

Q@ — a dimensionless parameter of strength of viscous friction in motion of the pendulum [1].
Our oscillator has small mass and is fairly small damped, so factor @ is defined by

2rE/|AE|, where E is the energy of oscillation, AE is the energy loss per cycle of the

oscillation because of dissipation [17]. The dissipation is expressed either in terms of the

dimensionless quality factor or by a damping ratio §, which has the dimension of frequency.
Then, by a definition [17]

269 = 5 (3)

Applying in Eq. (3) the definition of period T' = 27/w between time instances of every
two adjacent turning point amplitudes A; and A;;1, one finds, that constant logarithmic

decrement of damping, called the damping ratio § is given by

1
é_flnAiH Q

If we check the successive period durations of the free decay oscillations shown in Fig. 2,
then all points are irregularly distributed as shown in Fig. 5. Therefore, some usage of any
constant damping ratio of the real free response of our single pendulum is not well justified.
In consequence, constant damping ratio ¢ is to be substituted by 5(75), which will exhibit a

non-linear characteristics dependent on time going in the free decay test.
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Figure 3. A discrete FFT of a time series y, (t) of the pendulum’s linear displacement ac-
quired from the measurement of angle ¢ on the experimental stand. One dominant frequency

is found as marked by the dashed line.
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Analysing in Fig. 3 the frequency spectrum of vibrations from the experimental time
series ym (t) of our single pendulum, one observes, that the body vibrates with the dominant
frequency fr ~ 10.9 [Hz] corresponding to wr =~ 68.45 [rad/s].

Let us now select two adjacent turning point amplitudes separated by one period T  of

motion, i.e.: A1 = 0.421, A2 = 0.371 [cm].

0.4
’ e o T},
0.3 — Yn |
..... 5
0.2 S — Y
0.1 ‘ R :

y(t) [om)
- :
-
>
.

—0.: ‘ ‘ ‘ ‘ ‘ ‘
b 0.2 0.4 0.6 0.8 1.0 1.2 14

Figure 4. A comparison of two time histories confirming discrepancy between the experi-

mental trajectory ym (t) and correspondingly the analytical solution ye ().

Then, let us calculate the angular frequency w with respect to the period T related to
the time elapsed between two successive measurements of peak amplitudes A; and A;. We

get constant angular frequency, period of oscillations and a damping ratio as below:

W= 67630 rad/s], T =ta, —ta, = 0093, 6= InAL = 1481 [1/s.
T T A

Comparable values of both angular frequencies, i.e. w =~ wp are confirmed, so after

that simple calculus the exact transient response y.(t) [cm] of the oscillator with exponential

decay
b.(t) = Ar exp (~6t), (4)
and constant angular frequency w takes the analytical form

Ye(t) = 0e(t) cos(wt) = A1 exp (—dt) cos(wt) = 0.421 exp (—1.481¢) cos(67.63t). (5)

The solution y.(t) given in Eq. (5) is drawn in Fig. 4 using a red line.
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We see in Fig. 4, that the obtained estimate solution y.(t) bounded by the line of the
exponential decay d.(t) passing through turning point amplitudes of the solution, does not
coincide with the experimental trajectory ym (¢) (black line) representing the measurement.

Drawing a conclusion, the estimated parameters of the investigated transient response
given by Eq. (5) are not valid at each successive constant period T'. Therefore, the highest
inaccuracy in the coverage of both compared time trajectories is visible at the end of the
pendulum’s free decay oscillations, i.e. at final time ¢, = 1.4 [s], when y.(¢) should much
closely tend to zero.

The procedure of searching for the new approximating function 5 #(t) — a state-dependent
polynomial decay, which replaces the standard exponential decay with a constant damping
ratio, as well as for an approximation of @(t), resulting from T(t) is proposed below. Tilde

over the symbols make them distinguishable from constants w, 7' and function d.(¢).

2.1. Estimation of a polynomial decay Sf of oscillations

The polynomial decay is an important function in context of the initiated dynamical analysis
and the frictional phenomena observed on a stick-slip contact surface of the block-on-belt
model investigated on the experimental stand. Moreover, it has significant influence on
evaluation of damping properties of the pendulum vibrating at significant velocity variations
as observed during experiments [2,4,5,18].

The quality factor introduced in Eq. (2) is expressed by [17]

™

Q) = :
T(t) <a18f(t) + as + S?(i)) (6)

We obtain the first sought approximation in a form of the polynomial decay (see black

doted line in Fig. 4 and 8)

5 (0) — 200 1)+ r(p(t) + 1)

2a(l=plt) )

2a1A1+as—r
2a1A1+ag+r

v/a3 — 4aias, and a1 = —3.45, as = 2.52, a3 = 0.05 are numerically estimated.

where: §(t) is the polynomial decay of oscillations, p(t) = exp(—rt), r =

2.2. Estimation of variable angular frequency @

Now, we search for an estimation of the second system parameter that is directly connected
with the unknown variable stiffness coefficient, i.e. @ — the implicitly state-dependent angular
frequency of motion.

As it is shown in Fig. 5, the polynomial function T'(t) of period instances can be

obtained from a continuous approximation of measurement points Trn (i) = ta() — tagi+1)
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for s = 0...16 with the use of the following polynomial of third degree

T(t) = vst® +72t> + vt + 70 for Fs.0) = [~2, 28, —147, 9385] x 107°. (8)

T

0 2 1 6 8 10 12 1 16

i
Figure 5. Non-smooth distribution of periods Ty (i) (green circles) calculated between
time t4(;) and ts(;41) of appearance of the successive peak amplitudes A(:) and A(i + 1)
of oscillations in the experimentally acquired series ym, (t) versus i-th cycle number. Third

degree polynomial approximation T'(¢) of the distribution is matched by solid line.

We have observed that fitting of the trajectory ym(t) at its final stage for t € [1.2,1.4]
[s] regarded to small-amplitude vibrations of the pendulum could be more precise. There-
fore, the free response’s approximation was checked for a replacement of the polynomial

approximation @(t) by a logarithmic one @;(t) (see Fig. 6), that reads
@i(t) = b1 (t) + b2 log@(t) + bs  for by 3y = [2.57, 0.13, 93] x 1072, 9)

Figure 6 illustrates a time-dependent function &(¢) that results from the polynomial
approximation T'(¢) given by Eq. (8) with its logarithmic fit @;(¢) for the purpose of im-
provement of the stage of small-amplitude vibrations of the pendulum. After checking the
resulting effectiveness of approximations @(t) and @;(t), the first one has been selected.

If 6 7(t) given by Eq. (7) states for the desired approximation of turning point amplitudes
of free decay oscillations of the analysed pendulum, then using the obtained polynomial

approximation (8) an implicitly state-dependent angular frequency reads

a(t) = ;(7;) for t € [0, ). (10)
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Figure 6. A polynomial approximation of the angular frequency &(t) (black line) and its

logarithmic fit &;(t) (red line).

2.3. Estimation of implicitly state-dependent parameters of the pendulum

This section takes into account the obtained estimates (6) and (10) to provide definitions of
parameters for the investigated dynamical system.

Comparison of terms at state variables y and ¢ in Eq. (1) divided by m and in Eq. (2)

yields: y
o) _ () k@) _ -2
m oW and =w"(t),
and after rearrangement:
Go(t) = %S) and  k(t) = m@(b). (11)

The non-linear functions of system parameters, i.e. the variable damping coefficient
¢, (t) and variable stiffness coefficient k(t) have been drawn in Fig. 7. These parameters are
denoted as functions of time, but it is only valid for the time going in the free decay test.
Therefore, the parameters will be implicitly state-dependent when one will need to apply
them in the simulation of dynamics of full mechanical system shown in Fig. 1 composed of
the block-on-belt subsystem and the identified pendulum forced by motion of the block.

It is worth reminding that by obtaining the stiffness coefficient k(t) in Eq. (11) we have
identified the overall stiffness of the pendulum (see Sec. 2) that includes constant components
k1 and k2 of springs. Unknown at the beginning the state-dependent stiffness l;:(p(t) of the
rotational connection of the pendulum at point s (see Fig. 1b) is found ky (t) = k(t) — ki —ka.
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Figure 7. Non-linear functions of system parameters: a) the variable damping coefficient
¢, (t) (dashed line), b) the variable stiffness coefficient k(t) (solid line).

3. Numerical verification of the non-linear approximations of parameters of the

pendulum

First case. Verification of accurateness of the analytical formula (see blue line in Fig. 8)

ys(t) = 8¢ (t) cos(wid(t)1), (12)

where: §(t) is defined by expression (7), @(t) is defined by (10), and w; = 1.02 is a non-
dimensional fitting parameter of angular frequency.

Second case. The identified non-linear approximations (7) and (10), respectively for
54(t) and @(t), are put into a numerical model of the analysed single pendulum to check
accurateness of the numerical solution y,(t) in comparison to measurement y, ().

A state-space representation of the single pendulum dynamics described by one second

order differential equation (2) is as follows:

- (13)
ya2(t) — wa@” (B)y ().

Solving numerically system (13) we obtain a numerical solution y,(t) = y1(t) — a linear
displacement of the pendulum matched in Fig. 8 by red line. Also here, a non-dimensional
fitting parameter of angular frequency we = 1.029 is applied in the numerical model to

obtain the computed time history y,(t) better fit to the experimental counterpart y.,(t).
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Figure 8. Time histories of a transient response of the pendulum in the free decay test:
ym (t) — measurement (thick grey line), ys(t) — numerical solution (red line), y¢(t) — analytical

solution (blue line) that takes into account the identified parameters of the pendulum.

Third case. Average displacement of the pendulum in i-th period of oscillations of the
time trajectories y(t) visible in Fig. 8 can be taken into account in the qualitative assessment
of the obtained approximations.

The average displacements (%) in i-th cycle period have been computed numerically for

the three time series ym (), ys(t) and y¢(¢) by means of the formula (bar over the symbol
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denotes the average value)

T(1)
y(i) = ;/ y(t)dt fori=1...16 and y = {ym, vs, ys} (14)
(i) Jo
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Figure 9. Average displacements of the pendulum in i-th cycle period of oscillations for

the measurement y.,(t) in relation to the approximates ys(t) and yy(t).

If we take a look at series ¥s(i) and g¢(i) drawn in Fig. 9, then interchangeably, an
average of §s(i) is closer to gm (), but sometimes an average of 37 (7). As it is seen, our mea-
surement series Y., (t) is irregular in the duration of each time period of its oscillations. One
would find the best result of our identification if §4(¢) or §¢(¢) could as much as possible co-
incide with g (7). Hereby, a qualitative method of assessment of the presented identification

a single pendulum’s parameters has been proposed.

4. Conclusions

The high degree of coverage of trajectories ym (¢) and yy(t) presented in Fig. 8 proves, that
the two system parameters such as damping ¢ and stiffness £ introduced at the beginning in
Eq. 1 have to be made dependent on the pendulum’s state variables. For that requirement,
the two implicitly state-dependent parameters &, (t) and k(t) are proposed.

The non-linear function of ¢, (t) drawn in Fig. 7 has an important property. Up to about
1 second of the free decay response, damping of the pendulum depends almost linearly on
time. In rough approximation it can be assumed as constant. In Fig. 4, the moment of

time points to the turning point amplitude of about 0.05 [cm]. One can use the linear piece
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of function ¢, () while the oscillator’s angular velocity is high enough. When the vibration
body exhibits an irregular dynamics by reaching low velocity regimes of motion, then the
whole non-linear characteristics visible in Fig. 7 has to be used.

The identified parameters of irregularly damped single pendulum’s motion have signif-
icant influence on dynamics of the entire dynamical system, which also includes the block-
on-belt model. For the practical use of the identified functions of both system parameters,
it is necessary to use a transition from the phase space of the free decay to the phase space
of full system dynamics including self-excited vibrations of the block on the moving belt. It
will regard to much deeper analysis supported by a dedicated numerical methods and will

be presented by the authors in further extension of the work.
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An explanation of water acting on rails wear
using finite elements method
(NON054-15)

Henryk Bgkowski

Abstract: The article presents, in a complex way, the impact of most essential
operational factors upon tribological properties such as the wear and friction
coefficient being the main cause of fatigue-contact wear in the rolling-sliding contact
both in the presence and absence of water. Operational curves have been elaborated to
predict the character and intensity of the wear in various operational conditions.
Obtained the wear debris from rolling-sliding contact provided to creation the models
3D of the real contact with defects. However, the performed laboratory research on an
Amsler testing stand in the rolling- sliding contact of the roller-roller system made it
possible to determine the mechanism and intensity of the wear taking into
consideration railway stock, road profile and some constraints along railway tracks
i.e. load, skid and speed as well as weather conditions. The paper attempts at
explaining the wear mechanisms of wheel-rail in laboratory test with the Finite
Elements Method (FEM). Numerical analysis allow to determine local stress values
which are essential for understanding the wear mechanisms of the analyzed contact.
The obtained results of operational investigations prove that cracks and spallings of
the micro and macro scale appear in areas with maximum stress and deformation. On
the basis of the conducted simulation tests, FEM was found to be the right tool used to
identify the areas of special wear hazard. This seems crucial for the improvement of
safety of rail vehicles.

1. Introduction

The wear of wheel-rail couple is an extremely complex and difficult process to analyze.
Continuous change and the presence of diverse factors over the short period of time make the wear
difficult to interpret. However, the performed laboratory research on an Amsler testing stand in the
rolling- sliding contact of the roller-roller system made it possible to determine the mechanism and
intensity of the wear taking into consideration railway stock, road profile and some constraints along
railway tracks i.e. load, skid and speed as well as weather conditions. The so far carried out
researches have been run in a sectional procedure, investigating the impact of skid, selected stresses
or speed upon the wear of rolling-sliding contact and rolling contact fatigue which do not permit
complex analysis to be performed. Moreover, the effect of railway stock type, different values of
skids with most frequently found road profile or speeds depending on the introduced constraints or
purpose have not been taken into consideration. The article [1] provides the description of the
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research which aim at determining the values of axial and tangent forces as well as presents the
results of tribological tests on the railway wheel. The values of contact stresses in the presented article
are convergent with the results featured in the paper (645-882 MPa) [2]. Papers [2,3] feature the
description of laboratory tests performed in dry contact at the skid values of 2.5-25% or 0.06% at the
assumed value of speed of 500 rpm. The tests with the presence of lubricating medium have been
described in papers [4,9] where the skid was appropriately reflected for the operational conditions
(0.5-5%). However, the authors did not do any tribological research with the effect of rotational speed
to be taken into account since the constant value of 400 rpm had been suggested beforehand. More
extreme conditions were suggested by the authors of the paper [4,5] where the speed ranged between
160-300 km/h at the load of 16000-25000 N. Lower speed results in greater depth of plastic strains
than it is observed in case of higher speed. Thorough analysis of load impact prove that fatigue cracks
occur at lower load values (16000 N) whereas longer cracks have a tendency to develop at higher

speed which pose a real risk since crosswise cracks propagation might appear.

1.1. The effect of water

Another fundamental operational factor which changes the mechanism and intensity of the wear
is undoubtedly the presence of lubricating medium in a wheel-rail couple [6]. The research on a real
object have been described where the presence of lubricating medium (oil) resulted in twofold
decrease in mass decrement. Unfortunately, rainwater impact has been disregarded here.

According to official statistics the presence of water upon the rails surface in Poland lasts 130
days (April to October) which means the annual rainfall ranges between 500-700 mm i.e. 500-700
liters per m? [8]. In the overwhelming part of Europe (Table 1) annual rainfall amounts to 300-800
mm ( 300-800 liters per m?).

Table 1. Annual rainfall in Europe [4]

Europe
The value of precipitation, mm | Mountainous areas Coast Lowland areas
1000-2000 3000-4000 400-600

More attention should be focused on the presence of water from melted snow upon the rolling
surface of rails in winter season. Thus the number of days when water stays upon the rail surface
increases which significantly effects tribological properties of wheel-rail contact (see figure 1).

Water accumulated upon the rail rolling surface penetrates cracks and pores and in consequence
increasing the length of subsurface fracture [6,7]. The most dangerous case is observed when cracks

propagate not on the surface but deep into the material (see figure 2).
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Figure 1. Delamination character of the wear: a) rolling surface of a rail, b) wear model according to
Suh’s flakes wear theory [10]

Figure 2. The 3D distribution of stresses in the rail

2.  Experimental details

2.1. Test apparatus

The studies have been performed in a rolling-sliding contact in the conditions of dry friction and
the presence of water. Amsler testing stand with a roller-roller friction center, where both the
specimen and specimen-counter were of a roller shape, was used (see figure 3a). As the result of
rotational motion the rollers, sharing the same contact area, generated the phenomena of surface
fatigue or abrasive-adhesive wear of the material (depending on the values of operational factors).
Friction coefficient was measured with tensometric force transducer mounted in the bottom part of the

arm loaded with weights. Fig. 3b shows the scheme for friction force calculation.
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b)

Figure 3. Friction center (a) action of forces in a rollin-sliding contact on Amsler stand,
scheme mashine (b): 1- specimen, 2 - specimen-counter, 3 — water pipe

Friction force T was determined on the basis of formula (1) resulting from the condition of
equilibrium of flat converging forces:

m:ppz:w:@ M)

where:

T — friction force, N

F — countervailing force of friction force N

r —radius of specimen-counter, m

R —arm of force F, m

Laboratory investigations performed reflected the most significant operational factors

present in a real object which effect the durability of wheel-rail contact. In real conditions the
minimum wheel load upon the rail occurs during the ride of an empty freight train, whereas the ride
of a fully loaded freight train corresponds to the maximum wheel load i.e. 20000N/wheel and
100000N/wheel. The minimum sliding value (y =0.3%) occurs at the ride of a train along the straight
section of the railway track, whereas the maximum value (y =5%) along a curve with a slope and/or
elevation. The third parameter is speed and two values were analyzed: ca. 40 km/h and over 100
km/h. All values are the regulations and provisions in force at Polish Railway. Laboratory
investigations were performed both in dry and lubricated contact on Amsler stand in roller-roller
system. The measurement of mass decrement of the tested specimens was run in cycles but the values
of friction coefficient were registered constantly. Laboratory tests feature one peculiarity which is the
fact that monitoring the impact of one selected factor is possible here. This cannot be done in real
conditions. These all data allowed to carry out a simulation using Finite Elements Method.
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3. Results and discussion

To carry out simulation studies for Finite Elements Method was to perform experimental tests to
determine the tribological properties (eg. coefficient of friction). This allowed the knowledge of wear

mechanisms operating in the contact area by carrying out simulation studies.

3.1. Testwear

Figure 4 present the impact of operational conditions upon the wear and friction coefficient.
Laboratory tests aimed at reflecting the impact of operational conditions upon the intensity and
mechanism of wear in relation to diverse operational conditions.

Dry contact Wet contact
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Figure 4. The relation of mass decrement and friction coefficient in a rolling-sliding contact following
the tribological test versus skid and speed of the train ride : a) on the curve, b) at the speed

of maximum
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On the figure 4a observed high value of wear in the contact wet reflecting a train passenger or
cargo unloaded at a low coefficient of friction. Under such conditions, the intensity of wear is not too
large and may lead to the phenomenon of surface fatigue running surface.

The ride of a fully loaded freight and passenger train in the straight section and on the curve in
the wet contact can lead to the intensification of wear. With increasing value of the wear of the train
load is slightly reduced, but it increases the coefficient of friction and does not damage the
appearance of RCF at the running surface. With the increase the speed reduces the wear value in dry
and wet contacts, is dictated by the formation of a hydrodynamic lubrication. Effect of speed on wear
mechanism is significant, because it changes the intensity wear.

The most alarming signals come in tribological research, reflects a train passenger or freight straight
length at the maximum speed (see figure 4b). Wear value is close to the maximum wear. This can
lead to the appearance of fatigue damage on the surface friction.

3.2. Surface layers

After the tribological tests had been performed upon the specimens, they were again subjected to
microscopic studies in order to explain the essence of wear mechanism and to examine discrepancies
between the dry and wet contact. Figure 5 presents the illustrative surfaces after tribological test was
performed. Discrepancies in the wear process upon the friction surface were observed and show the
change in wear mechanism with the same operational parameters i.e. load, skid and speed. Cracks
which occur in wet contact lead to the development of ragged flakes protruding upwards. The
phenomenon of wear pitting reflected in the form of wear products being torn off the friction surface
does not occur in a dry contact (see figure 5a,b,c).

Friction surface in a wet contact features the roughness and numerous crevices which might also
be penetrated by water leading to further propagation of cracks as the result of closing the liquid
inside. Water pressure is so high that it causes crack propagation which results in large craters
developing upon the surface (see figure 5d).

On the figure 6 presented wear mechanism occurring in wheel-rail contact. The wear mechanism
in the presence of water occur under the influence of the propagation of fatigue cracks as a result of
action space fluid. This process is closely related to the so-called. the effect of closing the fluid in the
gap, resulting in a crack of the contact area comes to closing the gap present in the fluid. Closing of
the liquid occurs as a result of contact between the edge of the gap influenced by the forced contact.
At the time of closing the gap between the edge of the parted walls located below the edge of the fluid
which has entered the gap from the outer contact surface. When closing the gap inside of it, there is a

high pressure fluid which acts on the wall of the gap, causing to increase of crack.
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Figure 5. Friction surface of specimens made of rail steel after rubbing: a) stereomicroscope, b) SEM

microscope, ¢) surface topography in a dry contact, d) surface topography in a wet contact
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Figure 6. The wear mechanism in rolling-sliding contact in the presence of a liquid represented by the

surface analysis: 1 - railway rail 2 — roughness, 3 - liquid reservoir, 4 - railway wheel

3.3. Simulation test

Simulation tests were performed by the Method of Finite Elements in rolling-sliding contact. The

designed geometrical models were equipped with a crack identical to the one which occurs during

it also make them accumulate at the tip of a crack which might result in crosswise fracture in
wear.

operation. In order to compare the distribution and values of stresses/strains, the studies in dry and
consequence leading to rail braking at the defined operational conditions which enhance the fatigue

wet contact were carried out (see figure 7). The presence of water decreases the value of stresses but
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Figure 7. Distribution of reduced stresses according to von Mises (a) and strains (b)

4. Conclusions

On the basis of the performed tribological, metallographic and prophilographometric tests the
following was found:

- destruction of the surface layer in rolling-sliding contact takes the form of the delamination wear
mechanism in the form of the flake wear debris,

- in a dry contact, directly proportional correlation between the wear and friction coefficient is found
which results in the increased wear intensity or change of wear mechanism,

- in a wet contact, inversely proportional correlation between the wear and friction coefficient is
found which results in RFC damages upon the rolling surface,

- in a wet contact during the train ride along a straight section, the wear mechanism changes for
maximum speed and load values which might lead to contact fatigue damages (RCF rolling contact
fatigue),

- for minimum speed, the wear is much more threatening (real possibility of fatigue wear) than in

case of higher speed due to lubricating film which appears,

tearring off wear debris have a shape and size appropriate to the material and operational factors
influencing to the process of the formation and propagation cracks,
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- size and shape wear debris are a reflection of the surface layer states. By means of an efficient
system for the collection and identification of the wear debris and friction surface condition can

successfully monitor the status of the technical system,

it is advisable to monitor the execution of state of mobile device surface layer of the diagnostic
criteria proposed in this work. Additional studies using the above device is a rapid, non-invasive
and inexpensive solution complementary ultrasonic and magnetic allow to make the right decisions
about the technical condition of the object.
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A study on the effect of human running cadence based on the
bouncing ball model
(LIF099-15)

Laszlé Bencsik, Ambrus Zelei

Abstract: Running is a very popular sport on professional and especially on
hobby level. Professional athletes improve their body motion carefully, while
hobby runners usually do not focus on the energy efficient and injury preventing
running form. The running form is characterized by some fundamental param-
eters, like step size, stride frequency and strike pattern besides many other
kinematic parameters. Much information can be found on the internet and in
magazines about the correct running form, although these information are not
based on scientific investigation in most of the cases. The main reason is that
the running has a quite complex dynamics with many parameters leading to
highly complex mechanical models. Thus it is hard to accomplish quantitative
investigations that provides useful and practical conclusion. Although the run-
ning form characteristics can be investigated by pure mechanical calculations
if a proper model exists. We propose a simple bouncing ball model to prove
that runners should choose relatively high stride frequency. Cadence should be
always kept around 180 steps/min according to the experience, while running
speed should be modified by varying the stride length. We show that higher
stride frequency implies lower risk of injury and energy efficiency. The model
based estimations are supported by a large sample measurement data.

1. Introduction

Many works like [2,23] contribute to the thorough understanding of bipedal locomotion,
human walking and running. Several approaches have been developed which try to realize
the healthy, injury preventing, energy efficient and natural way of running in practice [16-18].
Many papers study the effect of foot strike pattern and footwear experimentally [1,7,10,13,
15,19, 25].

A lot of complex high degree of freedom (DoF) mechanical models exist, which are suit-
able for motion capturing, dynamic and kinematic analysis of the human body and running
motion carefully. However these investigations are hard to use for prediction regarding the
effect of a parameter modification. A simplified dynamical model can be more predictive
than a very complex model with large number of parameters. Starting from the most com-
plex models, e.g. [21] towards the simplest ones, we can mention some low DoF segmental

models [15,26,27] and some spring legged models [20, 24], besides many other examples.
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Increasing the complexity of the model, the number of parameters can grow exponen-
tially. The most fundamental parameters, with which the running form can be characterised,
are the running speed, step size, stride frequency and strike pattern besides many other kine-
matic parameters. Many articles study the effect of cadence ¢, which is considered to be one
of the most important parameters, when running form is analysed [4,5,9,14,22]. This work
also focuses on stride frequency which is also common to call cadence.

At a certain speed, an infinitely many variations of stride length and stride frequency
can be chosen. The experiments explained in [4] showed that the optimal cadence, when
the oxigen uptake (the indicator of physical loading of the body) is minimal, and the freely
chosen convenient cadence are not the same for everyone.

In this paper we show by means of a simple dynamic model that cadence has a direct
effect on energy efficiency and impact intensity. The estimations are based on the bouncing

ball model. The bouncing ball model itself is validated by measurements.

2. The bouncing ball model

In order to achieve the minimally complex model, the mass of the body can be shrunken
into one point mass when it is in flight phase. The model is valid if external forces, like
aerodynamic forces are neglected. The parabolic path of the CoM during flight phase is
depicted in figure 1. The motion of the centre of gravity (CoG) in flying phase is described

Pllee
- ~.

Figure 1. Idealized path of a runner’s CoG.

by a parabolic curve:

:If(t) = xo + Zot, (1)

y(t) = yo+ ot — 587, (2)
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where xo and yo are the initial position coordinates and %o and go are the initial velocity
components represented in a Cartesian system, depicted in figure 1.

The time period Ty of the flight phase can be expressed based on time derivative of
equation (2). The vertical velocity is zero, when the CoG is on the top of the parabola at

t =Ty /2, so that we can write:
. T
0= 90— g%- (3)

Besides, we can apply the principle of conservation of mechanical energy in vertical direction,
from which it is easy to determine the initial vertical velocity magnitude as the function of

the height h of the parapolic path.

Jo = /2gh. (4)

Combining equations (3) and (4) we obtain the height h of the parabola as a function of the
flying phase time period:
1

= —gT7.
h = 2975 (5)

Equation (5) clearly shows that the height of the parabolic path is a function of the time
period of each step hence it is a parameter of cadence.

The total time period T'[s] of one step is in direct relation with cadence ¢ which possesses
[steps/min] unit:

60

and the time period T} of the flying phase and cadence has the relation:

(7)

where ry = Ty /T is the ratio of the flying phase time duration. Its typical value is in the
range ry = 0.4...0.7. In this work we assumed r; = 0.6 airborne phase ratio. The path in

the flying phase is depicted in figure 2 in case of different cadence values.

3. Measurements

In order to prove the validity of the bouncing ball model we accomplished an experiment,
when the motion of 41 runners was video-captured. Every investigated person was hobby
runner in the age from 15 to 50 and from both sex. The measured people were told to run
a distance of 5km with a convenient speed on an open air running track. Their motion was
recorded on a 3m long distance by a high resolution video camera after the first 4 km. The

speed of the camera was 50 frames/s and the resolution was set to 1920 x 1080 pixels.
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Figure 2. Parabolic path of CoG during flying phase in different cadence values (150...190).

The foot landing position and the vertical elevation A of the head was registered based on
the video frames. The vertical displacement A of the head gives an acceptable estimation of
the vertical displacement of the CoG of the body, however reference [8] provides a comparison
of methodologies and the results of a large scale data experiment which aims to measure the
vertical displacement of runners. Besides, the characteristic time durations, like stride period
T, and flight phase duration 7y was determined based on the frame indices. The velocity
of each person was determined based on the time duration that was needed to complete a
2.5m predefined distance. The parameters listed in table 1 were determined in case of each

runner: horizontal speed v, stride length s, cadence ¢ and vertical displacement A.

4. Validation of the model and discussion of the results

In order to validate the model, the measured data was plotted in figure 3 in which the
theoretical height h of the parabolic path as a function of cadence ¢ is shown by solid line.
The measured values are depicted by dots, while the a curve fitted on the measurement
data is plotted by a dashed curve. Qualitatively good coherence can be observed between
the measured data and the theoretical curve, however the quantitave data have 20% error in
average. The average of the measured displacement is larger than the theoretically predicted
value. The possible reason is the further vertical displacement in reality when the leg is
grounded. For the investigation of this phenomena many researches are available, e.g. [20,24].

The relation between the parabola height h and the vertical velocity component v, = o

right before the impact is given by (4). It is shown by [12] and [6] that the impact forces
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Table 1. Measured data of 41 people: running speed v, stride length s, cadence ¢, vertical

displacement A

no. Ve s c A no. Vg s c A
km/h m 1/min | mm km/h m 1/min | mm
1 16.1 1.45 176 65 22 12.3 1.27 167 76
2 13.6 1.3 167 80 23 8.0 0.8 171 52
3 9.4 0.9 171 52 24 8.8 0.97 150 76
4 9.2 0.9 176 76 25 8.3 0.845 162 73
5 9.8 0.975 167 74 26 8.2 0.945 146 104
6 9.4 0.875 188 70 27 10.6 0.95 182 46
7 9.8 0.96 167 66 28 9.4 1.05 146 85
8 9.4 0.91 171 74 29 9.5 1.0 158 65
9 11.0 1.125 158 93 30 7.3 0.725 167 38
10 8.8 0.975 150 88 31 10.3 | 0.925 182 55
11 13.6 1.3 171 91 32 9.8 1.075 150 107
12 10.6 1.11 162 96 33 7.5 0.835 150 70
13 7.5 0.725 171 63 34 9.6 0.995 178 64
14 9.6 0.901 171 40 35 11.5 1.105 171 69
15 10.2 | 0.975 176 59 36 9.7 0.99 162 85
16 9.7 0.99 162 86 37 8.0 0.79 171 66
17 6.8 0.725 150 56 38 10.6 | 0.995 176 44
18 6.8 0.725 150 44 39 11.4 1.08 176 68
19 13.8 1.375 167 91 40 12.9 1.23 171 87
20 9.8 0.88 171 85 41 7.6 0.855 150 70
21 9.8 1.08 150 92

correlates with the kinetic energy content which is absorbed due to the foot impact. It
is called constrained motion space kinetic energy (CMSKE) in the literature. CMSKE is
directly proportional to the impulse of the contact reaction force and also to the peak reaction
force [11,12]. The related effective mass concept for foot impact is introduced in [3] for a
one DoF model. The cited studies showed that foot strike intensity can be characterised by
the CMSKE which depends on the pre-impact configuration and velocity and the effective
mass matrix. All in all, the lower the vertical velocity is, the smaller the impact intensity is.

Since, the vertical direction motion is constrained by the ground in the bouncing ball

model, CMSKE is calculated from the vertical velocity component only:

E, = %mgjg. (8)

We substitute equation (4) into (8) which provides the relation between the pre-impact

velocity and the height of the parabolic path. We obtain the following linear relation between
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Figure 3. Height h of the parabolic path as the function of cadence is plotted by solid line.

The measurement data for the vertical displacement A is depicted by dots. The dashed line

shows the curve fitted to the measurement data.

CMSKE (E.) and parabola height:
E. = mgh. 9)

Equation (9) shows that all of the potential energy of level h is absorbed by the constraint
that arises when the foot touches the ground at the end of the flight phase. The main
message is that that the impact intensity is in linear relation with the vertical displacement
of the body. The vertical displacement values A on figure 3 are directly proportional with
the impact intensity, that can be characterised by the impulse I of the vertical component

of the contact force:
A= Yy, (10)

where ~ is a scale factor. The the impulse of the contact force is obtained by integrating it

on the time duration of the impact:

Ipy = /Fy (11)

Figure 3 shows that infinitely high stride frequency and zero stride length should be
chosen theoretically in order to reach minimal energy cost and impact intensity. It is obvious,
that it is not feasible in reality. The optimal stride frequency is limited by the muscular

activity that depends on the stretch-shortening cycle of the muscles, which is not included
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by the model. Nevertheless, the model predicts correctly, that higher cadence should be kept

in order to achieve better energy efficiency and lower risk of impact induced injury.
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Figure 4. Running speed (v.) versus cadence (c): measured data and the best fit line.
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Figure 5. Running speed (v.) stride length (s): measured data and the best fit line.

As a secondary result shown by figures 4 and 5 the measurements confirmed that people
tend to chose a larger stride length and they do not change the cadence, when they are
running in different speed. So in case of the examined people, the running speed is set by

changing the stride length and not the cadence. The dashed line shows a line fitted on the

measured values.
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5. Conclusions

The bouncing ball model was proposed and large scale experimental data was collected in
order to validate the model. It is experimentally confirmed that the bouncing ball model
is the minimally complex dynamic model when cadence and its effect on ground impact
intensity and energy efficiency of running are studied. According to the model, the vertical
displacement is directly proportional to the impact intensity, characterized by the impulse of
the ground-foot contact force. We showed by means of a very simple dynamical model that
stride frequency has a direct effect on energy efficiency of human running and impact intesity
when foot collides with the ground. The model verified that higher cadence is preferable,

when energy efficiency and injury preventing running form is developed.
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Optimization of accuracy on alow-cost 3D mapping
system for indoor navigation
(MTR200-15)

Yves Bergeon, Vaclav Kfivanek, Jean Motsch and Alexandr Stefek

Abstract: This paper focuses on the possibility for a robot to retrieve its position
relatively to a previous map created in a preliminary pass. To be able to find a
position of a robot, the common solution is to use costly sensors (mostly lasers) to
recalibrate the position evaluated by low cost onboard sensors (in order to deal with
drifts of the low cost sensors). Our work evaluates the possibility to use a low cost 3D
sensor (Microsoft Kinect or Asus Xtion) in an unknown environment, creating a 3D
map in a first pass and using this map to estimate the position of the robot. This paper
describes the tools used and presents some optimizations to improve accuracy.

1. Introduction

Nowadays, robots begin to be widely used and near future will see newer robots for new usages,
especially at home for supplying old people in their daily tasks. One of the challenges about such
robots is the ability for them to know where they are in rooms (in a flat or inside a house). To get its
position, robot should use a map of every room. On the other hand, to get a low cost robot, the map
can’t be furnished for each house by the manufacturer. The robot needs to be able to build its own
map alone or under the supervision of an operator the first time the robot discovers the house. Then,
after this first operation to create the map, low cost sensors are commonly used on robots to compute
its position. This process is not straightforward as its looks like. Several artefacts make it difficult to
achieve a high degree of accuracy: odometry on wheels lost position if robot slips on the floor,
accelerometer or gyroscope sensor drifts over time due to a double integration to get position from
acceleration. Even if these sensors were perfect, in a house, the robot can be hurt by an opening door
or a walking pet.

Such problems are already known, especially in industrial plants. When autonomous robots move
in an industrial environment, different kinds of low cost sensors are onboard (odometry, inertial
measurement unit, infrared and ultrasounds sensors) but also lasers which allow to recalibrate the
position each time the robot comes near specific targets, dispatched in strategic locations along the
moves of the robot. The main drawback of this method is that an analysis had to be done beforehand

to find these strategic locations.
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Robots for security application face the same problems. To inspect buildings, robots can be
brought by people to inspect a specific place. In this case, the robots have to find their correct position
to be able to inspect the different rooms with the programmed algorithm which define the different
moves.

For such problems, we developed an entire system to be able to build the map of the different
rooms (using autonomous moves or supervised creation of the map) and we evaluate in practice the
accuracy of our localization. We also identify some drawbacks of our method and optimize the

system to improve accuracy after examination of preliminary results.

2. Architecture of the system

We focus on using open solutions and relying only on non-free tools to evaluate the accuracy of our
system. The robot chosen is originally based on the RDS Reference Platform from Microsoft
(Parallax Eddie Robot). This platform was created to be integrated with Microsoft Robotics
Development Studio [RDS], at that time a complete integrated development system for robots.
Unfortunately, RDS has been discontinued. As a consequence, we moved to a different system: Robot
Operating System, aka ROS. ROS is a meta-operating system which can work on top of Ubuntu
Linux system (its primary development), Android system and Microsoft Windows partially. ROS was
developed at its debut by Willow Garage and is now maintained by the Open Source Robotics
Foundation (OSRF) and by many contributors around the world. The simulator maintained by OSRF
was used in last DARPA challenge.

ROS allows to use packages coming from different sources and to communicate from one
package to another one using asynchronous messages (publisher/subscriber system) or services
provided by other packages. This quite loose coupling eases the use of packages from different
sources, like a package provided by a manufacturer, another one developed by a free contributor, and
your own package. Currently, more than 1900 packages are available for ROS on its indigo version.*

For our robot, whose structure is not far from the turtlebot robot from Willow Garage, we used a
modified package for the turtlebot to be able to get our robot moving, to control its moves and to

avoid obstacles.

! http://www.ros.org/debbuild/indigo.html

58



Turtlebot ”

Figure 1. Microsoft Reference Development Platform (left) and
Turtlebot 2 from Willow Garage? (right)

We are looking for more than to move the robot in the different rooms of a building, but we also
want to be able to create a map of the different rooms as the robot is moving. For this, we use a low-
cost RGBD Camera (Microsoft Kinect for Xbox 360) that doesn’t use a laser, but only infrared
sensors to measure depth.

Figure 2. Microsoft Kinect for Xbox360

The building of such a 3D Map is performed using the RGBDSLAM package developed by
Freiburg University. This package performs localization and mapping simultaneously. We developed
a strategy of moves for our robot to be able to compute a 3D Map. Reflecting the Kinect sensor own
limitations, our map is restraint to an angular view of 78° about the z-axis.. This building of a global
map is based on the fusion of successive RGB images, using points of interest in the images (found
by SIFT [3] or SURF). We also need to get the depth of each of these points of interest to create a 3D

map.

2 https://www.willowgarage.com/turtlebot
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Our first implementation of such this architecture was used to move the robot allowing the
creation of the map of 2 rooms in 3D. The strategy of moving is not covered by this article. The result
of the creation of the map of these 2 rooms is provided in figure 3 in 3D and in figure 4 in 2D.

Figure 3. Creation of the 3D Map in RGBDSLAM in the first room

¥ (meters)

# (meters)

Figure 4. Map of the 2 rooms in 2D

As you can see on the map in 2D on figure 4, it seems that walls are not well detected as large
lines for these walls are found. In fact, the artefacts are created by shelves that are against the walls

and get detected. They look like some walls. We can conclude that the walls are indeed well detected.
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3. Development of localization

After the first pass of creation of the map, we want to be able to localize the robot with respect to the
map stored. To do this, we stored all the points of interest detected during the creation of the map.
Each point of interest is defined as a quasi-unique key-point including x, y, z coordinates and a local
description. The descriptor associated is a collection of 128 double values computed from gradient in

the vicinity of this point (see figure 5).

%YAML:1.0
Feature_Locations:
- { x:1.9235734939575195e+00, y:9.1164451837539673e-01,
2:8.4125488996505737e-01 }
Feature_Descriptors: lopencv-matrix
rows: 394
cols: 128
dt: f
data: [ 2.83587305e-03, 2.81927316e-03, 6.62827045e-02,
2.08859712e-01, 1.70482565e-02, 6.17182814e-03, 3.56298918e-03,
1.79634208e-03, 6.66413130e-03, 5.77429961e-03, 1.11864410e-01,...

Figure 5. Descriptor of key-point in YAML format provided by RGBDSLAM.

When we put the robot on the floor, we choose to get only one picture to detect few points of
interest and to compare them with points stored during the creation of the map. To evaluate if a new
key-point is similar to one stored in the map, we need to evaluate for each new point the closest key-
point in the map and to reject points too far. This is performed using the method developed in [4]. Of
course, the more points you get, the more computations you have to perform. The process may be

costly both for time and energy.

4. Results and optimization

The first results of this work were published in [1] with an average of accuracy of 60 cm. To improve
accuracy, we optimized some points of our algorithm. This optimization is done offline on another
computer, compared to the mapping that is performed using an onboard computer.

The first problem is due to descriptor provided for SIFT points. In specific cases, some values of
descriptor are not determined and RGBDSLAM provide NaN (Not a Number) in place of values. This
affects our algorithm because some false key-points are detected which influence the precision of the
position. In our new algorithm, all of the SIFT points that contain NaN were removed from the points

detected in the new picture.
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The second aspect we optimize is about the range of detection. Even if Microsoft doesn’t provide
accuracy data about his Kinect sensor (in term of volume of detection), this sensor was developed to
be used in a range from 2m to 4.5m. We therefore remove all key points outside this range for the
new picture.

Figure 6 presents the position of the robot (black triangle) without optimization, figure 7 with
optimization and figure 8 shows the comparison with real position.

Eile  Edit Vjew |nsert Tools Deskiop MWindow Help ¥
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Figure 6. Position of the robot detected (triangle) without optimization
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Figure 7. Position of the robot detected (triangle) with optimization
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Figure 8. Position of the robot without optimization (light triangle), with optimization (strong

triangle) and black circle for the real position.

As expected, the accuracy of detection is better with optimization. This come at a reduction of
the number of key-points detected. For example, without optimization, 450 points were detected. In
our tests, we have generally one fourth of the initial key-points that are kept. In some cases, as for
larger room, depending of position and orientation of the Kinect sensor, we get only a few key-points.

One further comment is about the nature of the key-points detected. The key points detected on
the last picture are not always the ones detected in the initial map. It depends heavily on luminance,
position and orientation of the robot and even occlusions. With optimization, we observe that some
case of no common key-points appeared. To be able to get more matching points, we can increase the
distance of the matching comparison. As the method used [4] offer, we can modify a parameter to
accept matching of farthest points. This ensures more key-points that can be matched but also induces
a higher probability of wrong matching. In that case, there is a trade-off to find between accuracy and

matching key-points detection.

5. Conclusions

In this paper, we presented the architecture of our 3D mapping system and the approach we chose. At
this time, we are able to create a 3D Map and to localize the robot in the room. We added a
refinement step to our algorithm to detect the position of the robot in the room. These optimizations
allow getting a better accuracy at a price of rejecting many key-points detected, and in some cases no
detection is possible. The result of increasing the number of matched key-points doesn’t look like a

good solution, because the effect on accuracy is not easy to assess.
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The future work will focus on using multiple views with the robot on the floor. The first idea will
be to take pictures using only rotation of the robot to see if this improves detection of key-points and
to check if accuracy is improved.

The other point we had to work on is the CPU consumption. Detecting SIFT points and showing
in 3D the result with RGBDSLAM is a heavy task that is relatively slow. We have to improve this
part and to implement all part of our algorithm of detection directly onboard on the robot.
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Study of dynamic forces in human upper limb in forward fall
(LIF281-15)

Pawet Biesiacki, Jerzy Mrozowski, Jan Awrejcewicz

Abstract: Knowledge of dynamic forces acting on the upper limb is useful, and
sometimes even necessary, in its treatment and rehabilitation after injuries, during
prostheses designing, as well as in optimization of the sports training process. In this
work an attempt to determine the quantity of the inertia forces generated in forward
fall has been undertaken. For this purpose a simplified mechanical model of the
human body biokinematic chain has been prepared. Geometric data and mass of each
element have been taken from anthropometric atlas for the Polish population.
Kinematic data necessary to perform the analysis was calculated using fundamental
laws of Mechanics. In this way accelerations of the selected points necessary for the
determination of inertia forces acting on the individual links of the model were
yielded. For validation of the obtained results a numerical model was constructed
using SimMechanic module of the Matlab Simulink software. It made possible to
compare the results obtained in both simulation methods. To make joints model more
realistic a values of the viscous friction were assumed.

1. Introduction

Approximately 90% of all fractures of the distal radius, humeral neck and supracondylar region of the
elbow are caused by the forward fall onto the outstretched hand [1]. The mechanism of joint
interaction, the forces distribution within the joint and the contributory effects of elbow joint
disorders must be fully understood in order to prevent and minimalize those injuries.

Chiu and Robinovitch [2] applied a two-degrees-of-freedom (2-DOF) lumped-parameter
mathematical model for simulations of a fall on the outstretched hand with full elbow extension.
Their model analysis suggested that fall from a height greater than 0.6 m carry significant risks of
wrist fractures. The effect of elbow flexion at the moment of impact was investigated by Chou et al
[3]. were considered elbow loads for models between elbows full flexion and full extension during
a forward fall. The results of valgus-varus elbow analysis showed that shear force for the elbow full
flexion model is 68% lower than in the case of the elbow full extension. Investigations of the ground
reaction forces during forward fall showed that the first peak force value is reduced during an elbow
flexion movement, while the impact peak force is postponed to the second peak force. From this
follows conclusion that the elbow flexion movement may reduce the risk of injury during a forward
fall. An experimental model for elbow load during a simulated one-armed fall arrest for three
different forearm axially rotated postures and the relationship between the elbow flexion angle and
different axially rotated postures were investigated in [4]. The results indicated that a fall on the
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outstretched hand with externally rotated forearm should be avoided in order to reduce excessive
valgus-varus shear force on the elbow joint.

A 2-DOF impact model of bimanual forward fall arrests, basing on in vivo data of experimental

falls, was constructed [5]. Its validation was confirmed by response simulation with separate
experimental data. Results of its analysis indicated that the rapid arm movement towards the ground
alone could be a major risk factor for fall-related injuries and that prolongation of the impact time
through decreasing relative velocity between hand and ground allows to decrease the ground reaction
force. In the study [6] authors investigated a stress contribution in the human upper limb during
forward fall on the outreached hands. The results indicated that less risk of the fracture is supination
position of the forearm.
Dynamic models of human movement help researchers identify key forces, movements, and
movement patterns that should be measured. It was found that the muscle function depends strongly
on both shoulder and elbow joints position. Using Lagrange’ a method an at-home resistance training
upper limb exoskeleton was designed with a 3DOF shoulder joint and a 1DOF elbow joint to allow
both single and multiple joints upper limb movements in different planes [7]. The contribution of
individual muscles motion of the glenohumeral joint during abduction and the examination of the
effect of elbow flexion on shoulder muscle function was investigated by Ackland and Pandy [8].

The fall simulation studies have investigated the biomechanical analysis on elbow extension and
elbow flexion models. However, there is very little information about dynamical forces acting on the
upper limb. Thus, the present study performs an numerical investigations to evaluate the torque in
each joint during forward fall. The numerical results may provide useful insights into potential

reduced risk of injuries during forward fall.

2.  Methods

Computer modeling is an effective tool to accelerate and improve the design of new mechanical
system. Matlab and Simulink module are appropriate tools for creating computer model. To
investigate the velocities and accelerations of the mass center of gravity (CG;) of each parts of the

proposed simplified model of the human body developed was the mathematical model by.
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Figure 1. Mathematical model of human body

Human body was modeled as a three parts system including: torso with legs (link1 - dimension ry),
arm (link2 - dimension r,) and forearm with hand (link3 - dimension r3). Each part is represented as a
rigid link with length proportions and mass distribution corresponding to the Polish population. The
dynamic equations of such a mechanical system were derived using energy method. Lagrangian L of

this system is defined as:

where T is the total kinetic energy and V is the total potential energy of the system,  and g are the

generalized coordinates and generalized velocities of the system, respectively. The equation of motion

is given by:

dfa) a__a "
dtlog) oq o

where A(q, q) is the dissipation function.

A three links system has three degrees of freedom (3-DOF), and hence three generalized coordinates
are needed to describe it in arbitrary configuration. The generalized coordinates are 6,, where
n=1,2,3.
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In formulation of the dynamic equations the following designations were used:

ri- length of jth body part, where i =1,2,3,

CGi — locations of the center of gravity of i link, where i = 1,2,3,
a — distance from joint 1 to CG2,

b - distance from joint 2 to CG2,

¢ - distance from joint 3 to CG3,

m; — mass of i body part, where i = 1,2,3,

I;— moment of inertia of i"" link about CG;, where i = 1,2,3,

k; - friction factor of i link, where i = 1,2,3.

The position vectors for the center of mass for parts 1, 2 and 3 with respect to the fixed coordinate
system are as follows:

e  torso with legs

lLg; =acos6,i+asing, j, (3)
e arm
e, = (1,C0S6, +bcosa,)i+ (r,sing, +bsing,) j , 4)

e  forearm with hand

Fs = (F,COSH, +T, €086, +CCOSH, )i +

. . . . 5
+(r,sing, +1,sin G, +csinb;) )
Differentiation of the equations (3), (4), (5) gives the velocities of the CGi:
e  torso with legs
Toor =—(siN6,6)i +a(c0s6,6) (6)
e arm
Fe, = (-1,5in 6,0, —bsin 6, ,)i + (r,cos 6, 0,+ bcos6,6,) j , @)
e forearm with hand:
Foss = (=1, Sin6, i1, sin 46, — csin g, 0s)i + @
+(1,C0S6, 01+ 1,5iN 6, 0>+ CSin 6, 63) |
The total kinetic energy of the whole system is given by:
. 1 2 2 2 / / /
T(q,q) =§(m1vl + MV, + MV + 1, O+ 1, 02+ 1,63) 9
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Where vy, vy, V3 are the absolute velocities of CG;, CG, and CGs, respectively. They was

found by solving the equations (4), (5), (6). After simplification we have:

2
v,=\a’6 (10)

v, = \/rf 01 +b? 02 +2rb 6,02 cos(62— 61) (1)

Vv, = \/I‘l2 o + rzz 02 +¢%0s + 21,0102 c08(02— 61) +
(12)

+\/2r1c6’1 05 cos(fr +63) +2r ¢z Oscos(02+ 03)

Substituting equations (10), (11), (12) into equation (9) we get following equation for the total
kinetic energy of the system:

ol 2 2 v e 2 2 e L 2
T(q,q)_E(mla +m2rl +m3r1 +I1)01+E(m2b +m3r2 +I2)02+E(m3c +I3)03+
+1,(m,b +m3r2)cos(02—01)0203+ (13)

+m3r1 ccos(61+63) é1 é3+ m3r2 ccos(f2+ 63)&2 ég

Potential energy of the system is expressed by the following formula:

V(a) = m,ghee; +Mygheg, +Myghess, (14)

where h.,i=123Iis the height of center of gravity of i link. The respective values are as

follows:
g, =asing, (15)
heg, =18IiNG, +bsing, (16)
Regs =1 SING, +1,8in0,+csing, 17)

Substituting equations (15), (16), (17) into equation (14), we obtained the total potential energy

of the system as:

V(q) =(ma+m,r, +m,r,)gsing, + (m,b+m,r,)gsing, + m,gcsing,) (18)

The Lagrangian of the system has the form:

L(a,9) =T(a,9) -V (a) (19)
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Substituting equations (13) and (18) into equation (19) we get

2
Nl 2 2 2.1 2
L(q,q)_E(mla My +m3r3 +|1)e +E(m2b +m3r2 +I2)92+
1 2 02 -
+E(m3c +1 3)93 + +r1(m2b +maf, )cos(62—61)62 03+ (20)
3 1c cos(01 + 63)61 93+ m3 5 ccos(62+63)02 63—

+(mla +m,n + m3r1)g sin 91 - (m2b + m3r2)g sin 62 —magesin 63)
To find the dynamic equations of the system we have to compute partial derivatives of the

Lagrangian (20):

aL i . .
- rl(mzb + m3r2)sm(92 - 91) 0162—-
! (21)
3rlcsm(é? +6, )91 03— (mla Myl + m3rl)g cos 6’1
a_ —r,(Mm,b+m,r,)sin(6, — 6,) 6. 6,—
60 (22)
+M,1,Csin(, + 6,) 62 63— (m,b +m,r,)g cosb),
oL . . . o
- —m,resin(, + 6,) 61 6s—mgr,csin(6, + 6,) 82 63— m,gccos 6, (23)
3
oL
— =(ma*+myr’ +m,r, 24161+
26, (24)
+1, (M,b +m,r,)cos(6, — 6,) 2+ mrccos(d, + 6,) 03
oL 2 2 .
—=(m,b*+m,r; +1,)02+ 1, (M,b+myr,)cos(d, - 6,) 02+
20, (25)
+m,rccos(d, +6,)6s
oL 2 i : :
— =(mC® + ;) O3+ myr, ccos(b, + 6;) 61+ m,r,ccos(6, + ;) 62 (26)
06,
d aL , s e "
i =(ma” +m,r° +myr” +1,)6, + r,(mb +m,r, )cos(9, - 6,6,
@7)

—1, (M, + mjr, )sin(8, — 6,)(62— 61) G2+ m,, cos(6, + 6,)6,

—m,r,csin(6, + 6,)(01+ 0:)6,
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d( oL ; ;
E[%J =(mb+m,r,? +1,)8, + r,(m,b+m,r, )cos(b, —6,)6,
2

—1,(m,b +myr, )sin(6, — 6,)(62— 1) 61+ m,r, cos(6, + 6,)6, (8)

—m,r,esin(6, + 6,)(02+ 0:)6,
dfeL 5 ;
3[676’3] = (m,c® + 1,)6, + myrccos(é, + 6, )6,

—m,r,esin(f, + 6,)(01+ 03) 61+ m,r,ccos(d, + 6,)6, (29)

—m,r,csin(6, + 6,)(B2+ 63)6,
Assuming that the dissipation of the system comes from friction in the joints, we get the

following relation:

1. o U
A@@)= E[kﬂf +ky (65 = 67) + ks (65 = 67)] (30)
Partial differentiation of the equation (30) yields:

oA S
o7 = k)0 —k0, (31)

1

A . R R
i = (kz + k3)c92 - k291 - k393 (32)
6,

oA C
e k,(6; - 6,) (33)

Substituting equations (21)-(33) into equation (2), one gets the following dynamic equations of

three parts human body model:

(mlaz + mzrlz + m3r12 + Il)gl + r;l(mzb + m3r2 )COS(QZ - 91)92
+m,r,ccos(6; + 6,)6, — r,(m,b + myr, )sin(6, — 6,)6, (34)

—m,resin(, + 6,)6% + (ma+myr, + m,r,)gcosd, =—(k, +k,)6, —k,6,

(Mb? +m,r,” +1,)d, +r,(mb+m,r, )cos(6, — 6,6,
+r,(m,b+myr, )sin(0, - 6,)0, + (35)
m,r,ccos(d, + 6,)6, —m,r,csin(d, +6,)0% +

+(m,b+m,r,)gcosd, = —(k, +k,)0, +k,6, +k,6,

(Myc? +1,)d, + m,r,ccos(6, + 6, )6,
. 2 .
—myr,csin(é, +6,) 01+ m,r,ccos(d, + 6,)6, (36)

—m,r,csin(d, +6,)0% + m,gccos b, = -k, (6, - 6,)

71



Figure 2 presents the Simulink diagram used to solve the equations (34), (35) and (36). The
results obtained in this way was validated using Simmechanic module of Matlab (Figure 3).

1] ‘ ol duit ol duiet
From Dervaive Dervaive
Workspace2

Torso To Workspace
fu) mM2s
2y2] L Am To Workspace1

From Dernvative2
Workspace

Ebow+ To Workspace2
Hand

From
Workspace

Trensform  PodporaFrzegub_RIGID

—

Purkt cbrotu PS-Simulinic To Works pace
Converter 7

[t1.y1] » 523'

From

Warks Simulink-FS

Comerter3

f ]
—» EE f B
Wu:mm . simamees o), Lin31_RIGID
space’ Comverter et | I
tokiet =

PS-Simulink To Warkspace1
= [ ConverterS

-—>['2.y21 SPS i
- > PSS
From Simulink-PS P
Workspace PSSimulne o Waorkspace2

ConverterZ Converter1

Figure 3. Simmechanic diagram used to simulate the dynamical system.
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3. Results

A sine function has been used as an input for calculation of the angular position of each link at the
time. The sine input function is presented in Figure 4. Each joint is actuated individually with the sine
function as an angular displacement about rotational axis z;, where i=1,2,3. Continuous line (y1)
represents angular position of link 1 (torso with legs), dotted-dashed line (y2) denotes angular

position of link 2 (arm), and fine dashed line (y3) shows angular position of link 3 (forearm with

hand).

Input sine functions

0 ... T T T T T T T /I/ ‘/\'-——
//.'i_,
R 0
-05([ il )
7

/s yl
L A IERE y2 |

-1 /2 B y3

/

Angular position [Deg]

1

0.2

0.25

0.3

0.35

04 0.45

Time [9]

Figure 4. Angular input function.

The figure above shows the simulated movement of the torso with legs, where ankle, shoulder
and elbow joints are actuated. The functions were chosen in order to reflect the movement of the
human body during the forward fall. The simulation time corresponds to the movement of the body

without external forces, only under the action of the force of gravity.
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Table 1. Model parameters of the simulated system.

Body parts
Torso with legs Arm Forearm with hands
ri[m] 1.80 0.3 0.4
a[m] 0.861 - -

@ b [m] - 0.15 -

I

% ¢ [m] - - 0.2

S m; [ko] 66 2.4 1.9

I; [kg m?] 21.564 0.015 0.017
k; 0.01 0.01 0.01
Acceleration of the link1 Acceleration of the link2
40 T T T T 40 T T T T

30r

'g 'g 10
-10
-20 [
-30

40 L L L 1 1 1 1 -40 L L L L L L L L
0 005 01 015 02 025 03 035 04 045 0 005 01 015 02 025 03 035 04 045
Time (s) Time (s)
a) b)

Acceleration [m/s2]

-20

30t

-40

L
0.15

. . . . .
02 025 03 035 04 045
Time (s)

c)

Figure 5. Accelerations of the links’ centers of gravity: a) torso with legs, b) shoulder, c) forearm with

hands.
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Torque [Nm]

Torque of the link1:

Torque of the link2:

100

40 L L L L L L L L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Time (s)

a)

100

Torque [Nm]

-20

-40

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Time (s)

Torque of the link3

40
30

20f-"

Torque [Nm]

a0 b

50 L L L L
0 0.05 0.1 0.15 0.2

Time (s)

c)

L L L L
0.25 0.3 0.35 0.4 0.45

Figure 6. Torques applied to the links: a) torso with legs, b) shoulder, c) forearm with hands.

The diagrams on the figures 5 and 6 present accelerations and torques, respectively. Figures 5a

and 6a refer to CG; of torso with legs body part, figures 5b and 6b to CG, of arm, figures 5c and 6¢ to

CG; of forearm. The subscripts m and s occurring in diagrams’ description denote values obtained

using Simulink and Simmechanic programs, respectively.

4.

Conclusions

Modelling of the upper limb is important for better understanding of the relationship between

different kinds of motion parameters and generated internal forces. The proposed model, although

very simplified, gives some insight on the possible human dynamic behavior under the influence of
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various forces acting on a man, during his locomotion, for example. The model discussed in this study
was built to identify the problems arising from modelling in general and the issues concerning the
forward dynamics simulation. In the results of the forward model, it could be seen that the initial
conditions are of extreme importance. The aim of this research was to develop a dynamic model of
the human upper limb and to evaluate this model by adopting an appropriate motion analysis system
to verify hypotheses of the established motion during forward fall and to determine the torque in each
joint of the upper limb for further verification studies.

Comparison of the results of the motion simulation during forward fall, obtained using both Simulink
and Simmechanic methods, showed good consistency. The little discrepancies in the results may be
due to minor differences in the geometric model built in Simmechanic and its mathematical
description.
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Investigation of motion of a freight wagon aimed to
identify the forces acting on the side wall of the wagon
(VIB235-15)

Andrzej Buchacz, Andrzej Baier, Krzysztof Herbus, Michat Majzner, Piotr Ociepka

Abstract: In the work is considered the modification of the cargo space of a freight
wagon of the 418V type. On the basis of the conducted inspection of the state of
plating of freight wagons, carried out under the project number PBS2/A6/17/2013
realized as a part of the Applied Research Program, funded by the National Research
and Development Centre, it is possible to state that the main causes of damage and
therefore repairing of wagon plating are chemical interactions of the carried material
and the wagon body as well as mechanical damages. The introduced structural change
consists in the use of composite panels which should protect the steel plating of
a wagon body. Therefore, it is necessary to carry out a series of studies to check,
among others, the strength parameters of the adopted constructional solution. For this
purpose it is necessary to determine the maximal value of the force, derived from
transported freight, which acts on the side walls of a wagon. In the work is presented
a series of tests related to motion analysis of a freight wagon of the 418V type. The
aim of numerical analysis was to determine the maximal permitted speed at which the
car does not go off the rails. These tests were performed using the “Motion
Simulation” module of the software of the CAD/CAE/CAM class Siemens PLM NX.
It has been created a model prepared for motion simulation, in which have been
defined joints necessary for the proper mapping of the wagon motion on a track way.
The cycle of numerical tests was preceded by determination of the expected value of
the permitted speed limit. This allowed narrowing the range of numerical
investigations.

1. Introduction

The introduction of various modifications in constructional solutions of the existing technical means,
which aim is to improve their chosen properties, requires every time additional tests. In this study is
considered the technical mean, which is a dumping freight wagon of the 418V type (Fig. 1). The main
components of the analyzed system are: wagon box (1) mounted on the frame, two-axle bogies (2),
the axes with mounted wheels (3) and a track (4), after which moves the considered wagon. Plating of
the wagon box is constantly exposed to chemical interaction related to the harsh environment of the
transported cargo and to mechanical influences associated mainly with the wrong process of loading
and unloading of the wagon [1]. The mentioned groups of interactions could adversely affect the

length of the life cycle of the wagon. Eliminating or reducing the listed interactions should allow to
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extend the time of operation of the wagons, as well as reducing the costs of repairs. In the research
project, realized by the team of investigators, is considered the idea of utilization the composite
panels to cover the interior of the plating of the wagon box. The introduction to the wagon
construction these changes forces conducting a series of strength tests regarding the modified system
components. For this type of researches is necessary to know the maximal force with which the
carried load acts on objects entered into the system. The analyzed force reaches its maximal value at
the time when the freight wagon is moving, at the maximal permitted value of the speed, on the arc-
shaped raceway. Therefore it was attempted to determine the maximal speed of movement of the
wagon on the raceway in the form of an arc.

Figure 1. Object subjected to virtual investigations (freight wagon of the 418V type)

The considered object of investigations has the following characteristics: the length of 12,54 [m],
width of 3.08 [m], height of 3.2 [m], wagon weight 27 000 [kg], loading capacity 31 [m®] payload 52
000 [kg].

2. Analysis of motion of the freight wagon

The first step of investigations of the freight wagon was to create a model prepared for motion
simulation. For this purpose was used the “Motion Simulation” module of the system of the CAD /
CAE / CAM class (Siemens PLM NX) [2,3]. The model, prepared to motion simulation, was created
on the basis of a solid model, which imitates the geometrical form of the 418V dumping, freight
wagon. The model preparation consisted of defining: the objects of the “link” type (representing the
geometrical form of particular components of the wagon); the objects of the “joint” type (specifying
possible ways of movement mating between objects of the “link” type by receiving a certain number
of degrees of freedom); objects of the “connectors” type (defining the nature of the contact between
the wheels of the wagon and the rails). During creating the model, prepared for motion simulation, the
following assumptions were made:

o all objects of the “link” type are perfectly rigid - they do not undergo a deformation,

e geometric objects, being a part of a single object of the “link” type, do not change its position in
relation to other objects belonging to the same object of the “link” type,
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e assumed model of the track maps its ideal state of the geometric form without deformation
resulting from the manufacturing process and exploitation,

e model of the track including its tilt,

e wagon moves independently on the track, without regarding the contact with other wagons or a
locomotive,

e part of the track, which is a straight line, is designated to accelerate the wagon to the required
speed value,

e main motion analysis is carried out on the part of the track in the form of an arc.

In the first developed model it was created 8 objects of the “link” type, 7 objects of the “joint”
type and 16 objects of the “connectors” type. The first model, prepared to the motion simulation,
contains the following groups of objects (Fig. 3). Objects of the “link” type:

e L_Wagon - representing the geometrical form of the wagon box, with a frame and all elements
which, during the movement, do not change their position relative to each other,

e L_Tor - representing the geometrical form of the track on which moves the investigated wagon,
e L Os WP 1, L Os WP_2, L Os WT_3,L_Os WT_4 — representing the geometrical form of
particular axles with wheels,

e L_Wozek_P, L_Wozek_T — representing the geometrical form of two-axle bogies 25TNa.
Objects of the ,,joint” type:

e J Fix (fixed type) — defining the behavior of the L_Tor object by limiting him 6 degrees of
freedom (restrain),

e JOs 1P, JO0s2P,J0s3T, JOs4T (revolute type) — defining the possible move
between the objects L_Os_WP_1, L_Os_WP_2 and L_Wozek P and L_Os_ WT_3, L_Os_WT_4 as
well as L_Wozek_T by limiting three degrees of freedom associated with object translation and two
degrees of freedom associated with object rotation (it provides the rotation of the bogie axis together
with wheels in relation to the body of the bogie),

e J Wozek_P-Wagon, J_Wozek_T-Wagon (revolute type) — defining the possible move between
the objects L_Wozek_P, L_Wozek_T and L_Wagon (it provides the rotational move of bogies in
relation to the wagon box).

Objects of the ,,connectors” type:

e G_Prosta_Koloi-osj — i=1..8, j=1..4 (3D contact type) — defining the nature of the 3D contact
between the objects L_Os WP_1, L_Os_WP_2, L_Os_ WT_3, L_Os_WT_4 and L_Tor on a straight
part of the track,

e G_Luk_Koloi-osj — i=1..8, j=1..4 (3D contact type) — defining the nature of the 3D contact
between the objects L_Os WP_1,L_Os WP_2,L_Os WT_3,L_Os_WT_4 and L_Tor on the section
of track in the form of an arc.
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In order to introduce the extortion in the analyzed system it was defined the object of the ,,driver”
type, which was linked with the J_Os_1_P object of the ,joint” type. This link allowed to apply the
extortion force in the form of the angular velocity of the front axle of the wagon, on which are
mounted wheels. Forced in this way rotational movement of the bogie axle, through the use of the
objects of the 3D contact type between the track and wheels of the wagon, and the objects of the
revolute type between the axles of the bogie and its body as well as the bogie body and the wagon
box, is transferred into the linear movement of the whole wagon. The extortion, introduced to the
system, is defined as follows (Fig. 2):

STEP(timet,,w,.t,, ), @)

where:

to — the beginning of the time interval in which the rotational speed of the L_Os_WP_1 object reach
the value ®y,

t; — the end of the time interval in which the rotational speed of the L_Os_WP_1 object reach the
value ;.

Between the value of the rotational speed o related with the L_Os_WP_1 object and the value of the
linear speed V of a moving wagon is the following relationship:

V=wr, @

where: r — the radius of the L_Os_WP_1 object in the place of a contact with the L_Tor object.

(0]
A

L

o

to t “time
Figure 2. Graphical representation of the utilized extortion

To map the behavior of the wagon running on a trackway were created the objects of the 3D contact
type. These objects characterize the way of mating between the wheels, included in the objects
L Os WP_1, L Os WP_2, L Os WT_3, L_Os_WT_4 and rails belonging to the L_Tor object. It
was assumed that the wheels with axles and rails are made of steel with the following basic
parameters: density 7.8 * 10" [kg/mm®], Young's modulus 210 000 [N/mm?], Poissons ratio 0.3. On

the basis of the documentation it was assumed that the created contact will be characterized by the
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following parameters: stiffness (k) 100000 [N/mm], stiffness exponent (m) 1.5, material damping
(Crmax) 50 [N*s/mm], penetration depth (g) 0.1 [mm], stiction velocity 0.1 [mm/s], friction velocity 10
[mm/s], static coefficient of friction 0.3, dynamic coefficient of friction 0.25. Basing on the presented
parameters the model of 3D contact calculates the contact normal force (F,). Normal force of the

contact is expressed as the following relationship:

Fn = Fns + Fnd ! (3)

Fns =k- gm ' (4)
dg

F,=c- 39 °

nd dt ( )

CZSTEP(g|010| gmax’cmax)’ (6)

L Wagon

L Wozek

Revolute joint

5

Driver Revolute joint 3
3 €% ..
%% ’ | ‘ | 3D contact
| ‘ | |

3D contact
/\ L_Tor

Figure 3. Model prepared for the motion simulation

In order to accelerate the wagon to the required speed it should be created a straight section of the
track with the length of 200 [m] (Fig. 4). The length of the acceleration part of the track is resulted
from the assumption that the tested object moves independently along a track-way, wherein is only
driven the front axle of the wagon (to the desired speed and then it is kept constant value during the
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motion on the arc-shaped raceway) according to the expression 1. Due to the occurrence of the slip
between the wagon wheels and the rail, in the start-up phase, it was increased the static coefficient of
friction and dynamic coefficient of friction to the value that guarantees the target speed in the
assumed period of time. It should be noted that these coefficients were changed only on the straight
part of the track, and the move on the most dangerous part of the railway in the form of an arc took
place in accordance with the previously adopted values of the parameters of the o 3D contact object.

Railway part Strait part of the railway
in the form of an arc L =200 [m]
R =240.8 [m]

Figure 4. Graphical representation of the railway

Firstly it was realized the analysis of the movement of such elaborated model, without taking into
account the carried load. The simulations were performed taking into account the motion parameters
listed in Table 1.

Table 1. The list of values of parameters related with the extortion (wagon without the cargo)
V [km/h] | to[s] ty [s] g [°/s] o1 [°/s] Simulation result
70 0 15 0 2422 Without derailment

80 0 15 0 2768 Without derailment
90 0 15 0 3114 Without derailment
95 0 15 0 3287 Without derailment
100 0 15 0 3460 Derailment

Figure 5. Exemplar results of the movement simulations of the wagon without the carried cargo:

a) without derailment, (b) the wagon derailment
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Then it was analyzed the wagon model with the carried cargo. For this purpose the object L_Wagon
has been modified and it was introduced the body with a volume corresponding to the volume of the
cargo space, equal to 31 [m°]. It was assumed that the wagon is transported gravel with an average
density of 1 650 [kg/m°]. It was obtained the value close to the maximal capacity of the wagon of 52
000 [kg]. For the model taking into account the carried load also was conducted a series of
simulations, with regard to the parameters in Table 2.

Table. 2. The list of values of parameters related with the extortion (wagon with the cargo)

V [km/h] | to[s] ty [s] g [°/5] o1 [°/s] Simulation result
70 0 15 0 2422 Without derailment
75 0 15 0 2595 Without derailment
77 0 15 0 2665 Without derailment
78 0 15 0 2768 Derailment

Figure 6. Exemplar results of the movement simulations of the wagon with the carried cargo:

a) without derailment, (b) the wagon derailment

The obtained results of the analysis, on the basis of visual evaluation of derailing of the wagon, let to
eliminate the ranges of speed values above which explicitly comes to wagon derailment from the
track. However, with regard to the positive results of the simulation it should be examined the level of
safety of the wagon movement on the track in the form of an arc. Accordingly, in the work is assumed
that in the cases in which there has been no explicit derailment, it should be calculated the index of
derailment danger, shown in [4,5]. The authors of these works suggest that the safety of wagon
movement on the track is dependent on the relationship of forces F,/F, (Fig. 7). Where F, force is
described as a lateral, guiding one and the F, force is described as the force of a vertical pressure of a
wheel on the rail. Due to the geometry of the rail head and existing components of friction forces
between the wheel and the rail head, it is assumed that the movement of the wagon along the track is
safe if the ratio F,/F, < 0.78. Whereas this value is exceeded, it should be checked the vertical

displacement of the wagon wheel, which should not be greater than 5 [mm].
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Figure 7. Graphical representation of the guiding force F, and the force of vertical pressure of the
wheel on the rail F,: (a) safety case, (b) danger case [comp. 4]
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Figure 8. Values of the derailment index of the wagon at the speed equal to 70 [km/h]
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Figure 9. Values of the derailment index of the wagon at the speed equal to 77 [km/h]

84



Due to the considered, in this work, the area of the problem the more interesting object of
investigations is the wagon carrying the cargo. Figure 7 and 8 show diagrams which present the
derailment index for the wagon with the transported load. In both presented cases, the value of this
index is greater than the limit value. It could be seen that in the case of a wagon moving at the speed
of 70 [km/h], the maximal value of the index is 1.2 and relates to wheel4 moving on the outer rail on
the arc (wheell,3,5,7 - the wheels moving on the internal rail, wheel2, 4,6,8 - the wheels moving on
the outer rail). When the speed increased to 77 [km/h] maximal value of the ratio has increased to
approx. 1.9 and relates to the same wheel. In the next step the displacement characteristics of the axle
with wheel4 was examined. Fig. 10 shows that the characteristics of the wheel4 is within the range of
the allowable displacement in the vertical axis (value referred to the reference value equal to 634
[mm] in the absolute coordinate system).

Wheel4

639.37 ™

X 21.90

Real = 638.97

636.40

633.40 _/_/\/_v—\_,__/z—\/—’ \/V \/\/A\

630.36 = " " N " N " L "
17.70 18.50 19.50 20.50 21.50 22.50
Time |sec]|

lacement [mm]

isp

D

Figure 10.  Displacement of the wheel4 in the vertical axis

during the wagon movement on the arc at the speed equal to 77 [km/h]

On the basis of the two criteria it could be assumed that the maximal safe speed value at which moves
the investigated wagon with the cargo, on the arc-shaped track, is 77 [km/h]. It should be noted
however that in the case of analyzing the movement of a wagon moving at high velocities, besides to
the phenomenon of climbing the wagon wheel on the rail head is also dangerous the phenomenon of
detachment of the wheels of the wagon moving on the inner rail due to the occurrence of a centrifugal
force. Therefore, in the work it was decided to examine the course of the value of the force F,
pressing the wagon to the rail. If the value of this force is equal to zero then the vertical movement of
the wheels should be checked. In Figure 11 it could be seen that at approximately 22 second of the
movement the force F, is equal to zero. This means that the wheels wheell1,3,5,7 of the traveling
wagon completely detached from the rail. This is illustrated in Fig. 12. The maximal displacement of

the wheel in the vertical axis amounted to 25 [mm].
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Figure 12.  Vertical displacement of the wagon wheels

3. Modification of the model prepared for motion simulation

The next phase of the work included operations aimed the detailing of the virtual model of the wagon
movement on the trackway. For this purpose, the model prepared for motion simulation was
complemented with the elastic elements. The introduced change forced also the remodeling of the

same model. In the analyzed model was adopted an elastic element with a line characteristics:
F =k (x(t)- (). U]

where: k — stiffness 1*108[N/m], x.(t), x,(t) — displacements of the ends of the spring as a function of

time.
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Figure 13.  Introduction of elastic elements to the virtual model

For the modified wagon model, a cycle of motion simulation has been carried. Simulations were
conducted in accordance with the previously described procedure for the speed values equal to 70
[km/h] - no derailment, 75 [km/h] - no derailment, 77 [km/h] - no derailment, 80 [km/h ] - wagon
derailment. Subsequently, the value of the wagon derailment index, at the maximal speed equal to 77
[km/h], has been determined. In the described case, the maximal value of the index amounted to 7.
Accordingly, it was verified the vertical displacement of wheels which run on the outer rail. All
values of vertical displacements of these wheels does not exceed the value of 5 [mm]. Then it was
verified the variation of the pressing force F, and the vertical displacements of all wheels. On the
basis of Fig. 14 it could be concluded that the maximal vertical displacement of the wheels was 8
[mm] with respect to the initial displacement equal to 634 [mm] in the absolute coordinate system.

V=77 [km/h]
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638.70
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2 634.70

1

17.20 18.50 19.50 20.50 21.50 22.50
Time [s]

Figure 14.  Vertical displacements of wagon wheels (detailed model)

4, Conclusions

As the result of conducted investigations was obtained the value of the safe speed movement of

a wagon transported a cargo on the trackway equal to 77 [km/h]. The simplification, used in the work,
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in the form of the lack of a trackway slope allows assume that the adopted model provides a margin
of the safe speeds. As the result of model detailing it was obtained the model with lower values of
vertical displacements of the wagon wheels, at the same speed of movement of the wagon on the track
in the form of an arc. In order to obtain a proper fit of operation of the virtual model to the real object

the research aimed at identifying the real object properties should be continued.

Acknowledgments

The work was carried out under the project number PBS2/A6/17/2013 realized as a part of the
Applied Research Program, funded by the National Research and Development Centre.

References

[1] Buchacz A., Baier A., Swider J., Jamroziak K., Majzner M., Zotkiewski S., Wrobel A.:
Experimental Tests of Chosen Fibre-metal Laminates. Monograph 374. Silesian University of
Technology Press, Gliwice 2012. ISBN 978-83-7335-936-9.

[2] Gwiazda A., Herbu$ K., Kost G., Ociepka P., Motion analysis of mechatronic equipment
considering the example of the Stewart platform, Solid State Phenomena 220/221 (2015) 479-484..

[3] Banas W., Gwiazda A., Herbu$ K., Kost G., Ociepka P., Reclik D., Analysis of the dynamic
properties of the mechatronic integrator of control procedures of the vehicle driven by persons with
disabilities, Solid State Phenomena 220/221 (2015) 3-8.

[4] Matej, J.: Symulacyjna metoda oceny poziomu zagrozenia wykolejeniem wagonu towarowego
na torze prostym. Przeglad Mechaniczny, Nr 1/2011, s. 20-25 (in Polish).

usza M., Zboinski K. Doktadne wyznaczanie predkosci krytycznej modelu pojazdu szynowego
5] D M., Zboifiski K. Doktad i dkosci kr; j modelu pojazd
— poroéwnanie metod. Czasopismo Techniczne. Mechanika, 109(14), str. 71-80, 2012 (in Polish).

Andrzej Buchacz, Professor: The Silesian University of Technology, The Faculty of Mechanical
Engineering, The Institute of Engineering Processes Automation and Integrated Manufacturing
Systems, 18A Konarskiego Street, 44-100 Gliwice, Poland (andrzej.buchacz@polsl.pl). The author
gave a presentation of this paper during one of the conference sessions.

Andrzej Baier, Professor: The Silesian University of Technology, The Faculty of Mechanical
Engineering, The Institute of Engineering Processes Automation and Integrated Manufacturing
Systems, 18A Konarskiego Street, 44-100 Gliwice, Poland (andrzej.baier@polsl.pl).

Krzysztof Herbu$, Ph.D.: The Silesian University of Technology, The Faculty of Mechanical
Engineering, The Institute of Engineering Processes Automation and Integrated Manufacturing
Systems, 18A Konarskiego Street, 44-100 Gliwice, Poland (krzysztof.herbus@polsl.pl).

Michat Majzner, M.Sc. (Ph.D. student): The Silesian University of Technology, The Faculty of
Mechanical Engineering, The Institute of Engineering Processes Automation and Integrated
Manufacturing Systems, 18A Konarskiego Street, 44-100 Gliwice, Poland
(michal.majzner@polsl.pl).

Piotr Ociepka, Ph.D.. The Silesian University of Technology, The Faculty of Mechanical
Engineering, The Institute of Engineering Processes Automation and Integrated Manufacturing
Systems, 18A Konarskiego Street, 44-100 Gliwice, Poland (piotr.ociepka@polsl.pl).

88



Negative elements optimization and realization in synthesis
of discrete mechatronic systems
(VIB151-15)

Andrzej Buchacz, Damian Gateziowski

Abstract: In the paper, authors the known problem of vibration control, have studied
in case of elements which can exhibits negative values and are applied to mechatronic
discrete systems. Structures have been combined from piezo actuators, connected
electric networks and mechanical discrete models. Depending on the phase of the
synthesis process, chosen damping configuration of the piezo with the electric
network, negative elements have been identified and described. Subsequently with the
study on selection of corresponding negative stiffness and damping, presented in the
graph form, optimal values for the systems can be read. Additionally, as the result
limits and constrains in physical application and realization can be determined. The
study has been done based on two degrees of freedom replacement model of cascade
system.

1. Introduction

In general, the technological development results in the automation and robotisation of several
different processes and productions in various kinds of industrial branches. Nowadays, all engineering
works depends on the design that should correspond as much as possible to the real models. With help
of the surrounding digitization, computer aided modeling, calculations, and smart materials, it’s
possible to determine new and consistently cheapest solutions for known physical problems. The
unwanted effect of vibration which is related mainly with machines, devices creation, work or their
usage in divers conditions, is also one of the most important problems. That is due to the influence for
the durability, maintenance and costs it can generate. This means an optimization in the parameters of
modeled systems, in the assumed simplification level, will lead to calculable benefits and advantages
in the reality. As a consequence it will lead to the optimization of the costs in the fabrication and
production of the proper goods.

In the paper, authors the shortly introduced problem of vibration control, have studied in case of
elements that can exhibits negative values and have applied them to mechatronic systems that have to
comply with given requirements in form of the resonant and antiresonant frequencies. These systems
have been combined from piezoelectric stack actuators, electric external networks, mechanical
discrete models and have been synthesized [1]. The usage of piezoelectric materials for vibration

control is commonly known [2, 3]. With the semi-active damping method that utilize the negative
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capacitance elements it’s possible to improve damping performances of vibrating systems [3-5].
Following achievements [1, 3-5] authors investigated the possibilities of determination and usage of
parameters that will lead to negative value elements in the considered structures, what has been
introduced in [6]. Negative stiffness [7], or damping elements, which can be obtained from
dimensionless transformation and retransformation of mechanical replacement models are leading to
negative capacitance and resistance elements in considered final mechatronic structures.

The work extends and continues the works done in Gliwice Research Centre related with
designing, analysis and synthesis of various types of mechanical and mechatronic vibration systems
[1, 2, 6]. Based on last world-wide studies and achievements connected with negative value elements
the work is giving a new approach to the problem of synthesis, going out of known frames. Negative
capacitance [3-5], negative resistance [8, 9] connected within specific circuits might be new
interesting solutions in vibration isolation area. Applying these achievements to the synthesis issue,
it’s possible to shorten design time for the new systems that should work under specific and required
conditions and widen the field of practical application in vibration control area.

2. Negative elements in mechatronic discrete systems

Considered mechatronic systems in each case are excited by the force F(t) and contain:
mechanical part, piezo stack actuator connected to external electric network. Elements that can obtain
negative values in these systems during solving the reverse task, have been introduced by the authors
in [6]:

- in mechanical replacement model: stiffness and damping,

- in final mechatronic structure: negative capacitance and resistance.

All of them depends on the structure type, complexity of the system (number of degrees
of freedom - DOF, piezo elements) and selected synthesis method. What is important, the ones related
to mechanical replacement models, are used indirectly. This is connected with the algorithm
of synthesis [6], that contains transformation to dimensionless model and retransformation to final

mechatronic structure phases.

3. Key parameters identification and study

Due to complexity of the problem, the study has been done based on the cascade discrete
mechanical replacement model with 2 DOF, received from distribution of the dynamical
characteristics function U(s) into continuous fractions, fig 1. The slowness function U(s), has been

written as:

ds' +d, s +...+d, (1)

U(s)=H K k-2 '
¢ sk +¢,_,5"? +..¢;s
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where: | — odd degree of numerator, k — degree of denominator,| —k =1, H — any positive real
number.

Dynamical equation of the systems, and further analysis is done in dimensionless time t:

T = ,t. 2
To transform the electric parameters that comes from piezo element characteristics from non-
dimensional model to final mechatronic one, piezoelectric equation are used:

o=Kg5—¢E, (3)

D=es+¢,E, (4)

where: o — mechanical stress, Kg — Young Modulus, s — mechanical strain, D — electrical
displacement, ¢ — electrical permittivity, E — electrical field, e — piezoelectric constant.

)

1Fe
my

C1 C1 C1 ﬁRx

x Cx Cx

-
>

Y

Figure 1. Mechanical replacement models with 2 DOF and their final mechatronic structures with

piezo stack actuators

Synthesis process, while receiving the mechanical replacement model has been algorithmized.
Key parameter during the distribution, is the stiffness ¢, which is the first element obtained from

solving the reverse task.
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This value impacts on the rest of the elements inside the mechanical replacement model
and indirectly for connection of piezo with electric circuit. Following of (1), in general selection

range of c,, is defined as:

[0, H do} (5)
Cl

From the other side, parameters related with applied piezo stack actuator, has been limited to the
capacitance C,s. That is needed to calculate the values of corresponding elements in the connected
external circuits: LRn, LCn, LRCn (symbol n in written configuration types refers to negative values
inside the network). The influence of the selection of both parameters that are leading to the optimal

values and application constrains has been shown in next subsections.

3.1. LRn configuration

To obtain system represented in the fig. 1A, stiffness c; has to be equal to the upper limit (5).
That generates in total the system with two inertial and stiffness elements in the mechanical

replacement model. Here damping element d, normally should be taken according equations:

d, =2hm,, 0<h<|e

Opin | # 0. (6)

min |?

However to receive it negative, it has to be treated separately and the value of parameter h has
to be taken out of the limits (6) and should be below the 0. That is generate after transformation and
retransformation negative value of resistance R,, which existence and usage in vibration damping was
shown in [8, 9].

The impact of selection of d, out of defined frames (6) for the resistance in the LR configuration

Ry.r Of considered systems has been presented in the fig 2.

—_ 005
£ (dp)
RXLR
9 XL p.
0
-005
=20 -10 0 10 20
dp
[Ns/m]

Figure 2. Resistance R,y in the electric circuit in the function of damping d,
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The capacitance Cy; of the piezo can get only positive values. This is related with the fact that
this value is connected with applied stack actuator. However in the fig. 3 it has been shown

the influence of C, for the values of the resistance R, written as:

d, U]
* C,C

ps~2

with positive and negative values of damping d, in the mechanical replacement model.

04
02
|y |
£ Rxp(Cps)
= — o
O, racps) |
~02)
~04
0 510 * 11073 154072 =
Cps
[F]

Figure 3. Resistance in the electric circuit in the function of damping, for: the positive value of d,—

Ryp» and negative value — Ry,

3.2. LCn configuration

The LChn, is one of the semi-active damping configuration of the system. Here the selection of c,,
determines all parameters in mechanical replacement model and what is the most important impacts
on appearance of additional c; stiffness in the system. Taking the value of c; out of required range (5),
it’s possible to determine negative values of stiffness c3, that with the stiffness ¢, determine the

dimensionless parameter J, which directly impacts on capacitance C, in the external electric network:

5= ®)
CZ
Cc

C, = ; : )

In the fig. 4 the impact of selection of ¢, to ¢, and c; stiffness has been highlighted. Then in the figure

5, behavior of the capacitance C,.
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Figure 4. The influence of selection of c; to ¢, and c; stiffness
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Figure 5. Capacitance C, in the function of c, stiffness

In case of LCn system, selection of the c;, impacts also on inertial element m,. That’s making

indirect influence on external inductance L,. To check that impact, following parameter 2 is defined in

the system as:
2
(10)

Based on (10), dynamical equations of the mechanical replacement model and transformations done

according (2-4), the inductance L, in electric network is written as:
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L4 (11)

X 2"
Cpsa)l

Final dependence of the inductance L, with constant Cy,, from selection of ¢, has been presented

in the figure 6.

0 2x10 410 6x10"
cl

[N/m]
Figure 6. Dependence of L,, from selection of the stiffness c;

Increasing the value of capacitance C,s with the selection of piezo type actuator, referring to the

equation (11) is causing the decrease of the value of L, in the system.

3.3. LRCn configuration
Relations between inductance L,, capacitance C, and the selection of c;, in case of the system
LRCn are equal to LCn configuration. The difference is coming from additional damping element,

which as opposed to LRn system is proportional to stiffness element:

dp=ZC3,O<;(<wi,a)max¢0. (12)

max

Therefore influence of c; to the external resistance R, has been investigated and shown in the figure 7.
The value is calculated following equation (7). Dependence of stiffness ¢, from ¢, is the same as in

the figure 4.
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Figure 7. Resistance R, in the external electric network in the function of ¢,

4. Discussion for physical realization

From physical realization side, during synthesis of considered systems, and the first phase
of creation of mechanical replacement model, selection of ¢, is the most important. As in case of LRn
configuration it do not have the influence on the parameters of the systems, in case of LCn and LRCn
it has to be taken into consideration while designing of structures that has to comply with given
resonant and antiresonant frequencies. However there are some constrains that comes from synthesis
process. Taking the value out of required range (5) results in negative value of stiffness cs.
Nonetheless this is realizable with the piezostack actuator connection with LCn or LRCn system, as it
is transformed to circuit with negative capacitance proposed in [3-5] . Taking the value too much
from defined range out of upper limit (5), is causing the value of c; gets again positive value, but c,
receives in the same time negative value, figure 8. That’s out of defined frames of considered
systems, which means systems with negative stiffness ¢, are not possible to be synthesized.

Another issue has been identified as damping, or resistance in LRn or LRCn system. As in case
of LRn, the value of damping has to be lower than zero from the definition, in case of LRCn it can be
as well but this is not a must. With the selection of c,, the value of d, can be adjusted to negative
value (figure 9) and used in the structure. The damping performance in each circumscribe case can be
tuned or adjusted by the designer needs according presented elements, parameters related and their

values.
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Figure 9. Damping d, in the function of ¢,

5. Conclusions

In the paper the negative elements and related most important parameters, to find optimal values
while designing of mechatronic discrete vibrating systems, have been studied and presented. Physical
realization constrains and range of the limits for described parameters following shown graphs can be
read. The paper is the verification and extension of latest achievements related with synthesis of
considered systems and usage of piezo and negative elements in vibration control. It is planned to
study the problem in further works focusing for stability conditions, and do the investigation of usage

directly the novel negative resistance isolators in vibration control.

97



Acknowledgments

This work has been conducted as a part of research project PBS2/A6/17/2013 supported by the
National Centre for Research and Development in 2013-2016.

References

[1] Biatas K., Buchacz A., Galgziowski D. Modelowanie dyskretnych uktadow mechatronicznych ze
wzgledu na funkcj¢ ttumienia. Modelowanie Inzynierskie, 2013, t. 16, nr 47, 31-35.

[2] Buchacz A., Ptaczek M. Damping of mechanical vibrations using piezoelements, including
influence of connection layer’s properties on the dynamic characteristic. Solid State Phenomena,
2009, 147-149; 869-875.

[3] Neubaer M., Oleskiewicz R., Popp K., Krzyzynski T. Optimization of damping and absorbing
performance of shunted piezo elements utilizing negative capacitance, Journal of sound and
vibration, 2006, Vol. 298, No 1-2, 84-107.

[4] Fukada M., Date K., Kimura and others. Sound Isolation by Piezoelectric Polymer Films
Connected to Negative Capacitance Circuits, IEEE Transactions on Dielectrics and Electrical
Insulation,April 2004, Vol. 11, No. 2,328-333.

[5] Han X., Neubauer M., Wallaschek J. Improved piezoelectric switch shunt dumping technique
using negative capacitance, Journal of Sound and Vibration, Volume 332, Issue 1, 2013, 7-16.

[6] Buchacz A., Gateziowski D. Designing of discrete mechatronic vibrating systems with negative
value parameters, Mechanical Systems and Signal Processing, 2015,
d0i:10.1016/j.ymssp.2015.02.003.

[7] Kashdan L., Conner Seepersad C., Haberman M., Wilson P.S. Design, fabrication, and
evaluation of negative stiffness elements using SLS, Rapid Prototyping Journal 2012:18 Iss: 3, 194-
200.

[8] Yan B., Zhang X., Niu H. Design and test of a novel isolator with negative resistance
electromagnetic shunt damping, Smart Materials and Structures, Vol. 21, No 3., 2012, ID035003.

[9] zhao J., Tang J. Amplifying damage signature in periodic structures using enhanced
piezoelectric networking with negative resistance elements, Journal of Intelligent Material Systems
and Structures, 2013, Vol. 24, No 13, 1613-1625.

Andrzej Buchacz, Professor PhD, DSc, Eng: Silesian University of Technology, Institute
of Engineering Processes Automation and Integrated Manufacturing Systems, The Faculty
of  Mechanical Engineering, Konarskiego 18a  Street, 44-100 Gliwice, Poland,
(andrzej.buchacz@polsl.pl).

Damian Gatgziowski, PhD, Eng: Silesian University of Technology, Institute of Engineering
Processes Automation and Integrated Manufacturing Systems, The Faculty of Mechanical
Engineering, Konarskiego 18a Street, 44-100 Gliwice, Poland, (damian.galeziowski@gmail.com).
The author gave a presentation of this paper during one of the conference sessions.

98



Two-axis mechanical vibration harvester
(VIB176-15)

Vytautas Bucinskas, Andrius Dzedzickis, Nikolaj Sesok,
Ernestas Sutinys, Igor lljin, Artur Kazickij

Abstract: Powering of various sensors and data transmitter in remote environment
requires power supply from batteries or installed power lines. In case of autonomic
devices this became technologically inconvenient and raises maintenance costs.
Ability of utilize mechanical vibration for small-scale power generation is known, but
there are many cases, when such devices are not available due to characteristics of
vibration. Applications like railroad cargo wagon, having no electrical equipment,
there is an excellent example of application of vibration harvester. Usually harvesters,
used in industry, are tuned to certain frequency and serve as source of power for many
sensor powering applications. In case of chaotic vibrations, especially low frequency
chaotic vibration, taking place in the space, requires special solution. This paper
proposes solution of two-axis harvester, operating as mechatronic system with two
mechanical and two electrical degrees of freedom. Research of such harvester is done
theoretically and experimentally. Theoretical research was performed using Simulink
model, build for all 4 degrees of freedom in different physical domains using original
methodology. Experimental research performed on special test piece, excited by
dynamic vibrator, using real vibration data from wagon frame accelerations in the trip.
Paper presents results of the research and comparison between theoretical and
experimental research. Finally, conclusion on research and obtained results are drawn.

1. Introduction

Harvesting of mechanical energy there is well known and widely used process in small energy
applications. It is necessary to state that mostly these devices are efficient in harmonic vibration cases
and they are tuned to single frequency. Non-tuned harvesters still are under research and harvesting of
energy from chaotic vibrations still is a challenge [1].

In XXI century technologies such as MEMS, MS and wireless systems, monitoring and
supporting systems are increasingly penetrating to human’s life. All these technologies requires
source of energy, which typically are batteries of different kind. Significant amount of different
batteries in these devices requires monitoring and change of these batteries on time. In order to make
systems more reliable and free from taking care of these sources of energy, there are possible to use
mechanical energy for fulfilling of such small energy needs [1-4].

Energy harvesting systems are known in nowadays life. They can supply energy in places where

conventional batteries is inconvenient to use of one or another reason. Mechanical energy is widely
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available in real life. Structural vibration of road from traffic, bridge vibration can be easily harvested
and used for mili- and microwatt energy supply. Human body also generates certain amount of
mechanical energy. For example, if one considers large networks of low powered sensors (such as
those, which may be attached to a bridge as part of a structural health monitoring system) then one
can envisage a scenario where energy harvesters are used to transfer the vibration energy of the bridge
into electrical energy for the sensors. This would alleviate the need for batteries, which, in this
scenario, would be difficult to replace. Low energy consumption devices are requested in the market
and will be more requested in the future [2-6].

This paper is dedicated to some aspects of building wagon frame generated mechanical energy
harvester, based on electromagnetic induction effect. Wagon frame motion has low frequency (<20
Hz) and chaotic directions. Classic vibration harvesters with low resonance frequency will have big
mass and size, so there exist mechanical problem to build a sensitive dynamic system, consisting from
high-frequency energy transforming systems and sensitive to low frequency mechanical system. In
order to create a harvester system is necessary to research dynamical properties of such system.
Research here is performed in few steps using dynamic and mathematical model of the system. Use of
such model allows finding values of the system stiffness, damping ratio, which will allow maximize
amount of generated power from railway wagon vibrations.

This paper is an attempt to create system for railway wagon sensor power feeding device, which

can give autonomy for sensors and other information transmitting devices.

2. Theoretical research

| B

Figure 1. The horizontal pendulum revolves freely around suspension point.

The pendulum revolves freely around suspension point, which is excitation aroused by
coordinates xq and y, (see figure 1). At a time, when the pendulum touches the lower spring, the
system get kinematic excitation y, from the spring in vertical direction. The movements of the
pendulum are described by coordinate 6;.

The coordinates of the pendulum concentrated mass:
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X =Xo +1,-c086,5 y; = Yo +1y -siné, - 1

The systems kinematic energy is:
T= %(mle +myy?) @

Considering that xo, Yo and 6, is function of time:

% =Xo — 1,6, -sin6,; y, =y, +1,6, -cos 6, - ®)
In this way, the kinematic energy expression, which is applied to any state of the system:

1 . - 2 1 . . 2 4

T =Em1(xo—|191'5'n 0,) +Em1(y0 +1,6, -cos, ) - Q)
The Lagrange equation of second type created for each state of the system is:

dfor|_or o ol _,. ®)
dt\ o4, | o6, a6, o6,

There are three state of the object in question:
1) The horizontal pendulum lying on the bottom affixed springs (see figure 2):

Figure 2. The horizontal pendulum in the lower position.
In this case, the potential energy is:
IT=mgy; +% ki Ay = b -6 = Yo ©)
Dissipation function is:
¢:%|1‘9.:I.2+%QA%.1;A11:|1'91_)70 Y
In this case, the equation corresponds to this condition:

myZ6, — mL X, -sin @, + m, ¥, - cos §, + (rl +hl? )91 +mygl, -cos 6, + k26, = ®)
=kil;yo +hk Y,
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Or taking into consideration that sin6,=6,; cos0;=1.
126, — myly%60, +myly§o + (1 + 1126, + mygl, + k26, = Kby +hyly Yo - ©)

2) Horizontal pendulum raised up from the rest position, as shown in figure 3:

Figure 3. The horizontal pendulum intermediate position.

In this case, the potential energy is:

IT=m,gy, (10)

Dissipation function is:

¢ = : no; (11)
2

This state of taking sinf;=01; cos6,=1 corresponds to equation:

myl26, —myl, %6, + ml, Vo + 1,6, +mgl, =0 (12)

3) Horizontal pendulum raised to the top for some reason and it compresses on the top the protective
spring (see figure 4).

Yo

Figure 4. The horizontal pendulum in the top position.

The potential energy is:

1
IT=mgy, + 5 Koip Ay = 6, (13)
Dissipation function is:

p :%rléf % h,A2,: AL, =16, (14)
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Corresponding to the equation:

26, — %o, + mily§ + (1, + hol2 )y + mygl, +k,126, =0 (15)

Figure 5. The vertical pendulum revolves freely around suspension point.

The pendulum revolves freely around suspension point, which transmits excitation along
coordinates X, and Y, (see figure 5). The movement of the pendulum describes the coordinate 6,.
The vertical pendulum additionally has two springs on the left and on the right, whose function -
to prevent the pendulum to rotate too much. (The pendulum is applicable structural limitations).
It is three condition of systems:

1) —Pendulum is in contact with a spring on the right side;
2) —Pendulums isn’t in contact with a spring;
3) —Pendulum is in contact with a spring on the left side.

The coordinates of the pendulum concentrated mass:

X, =X +1l,-8iN6,;y, =y, —1,-cos 6, (16)
The systems kinematic energy is:

T :%(mzxg +m2y§) a7
Considering that xo, Yo and 6, is function of time:

Xp = Xo + 1,6, -COS O; Y, = Yo + 1,6, -sin 6, (18)

Then kinematic energy expression any state of the system is:

T= %mz(xo +1,6, -cos 6, )2 +%m2(y0 +1,6, -sin 92)2 )
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The Lagrange equitation of second type created for each state of the system is:

dfar)_or o4 ol _, (20)
dtl o6, ) 06, 06, 06,
1 condition

Figure 6. The vertical pendulum is in contact with a spring on the right side.

Then vertical pendulum is in contact with a spring on the right side (see figure 6), the equation of
potential energy is:

I1=m,ay, +%k3A221 (21)
Where y2:y0'|2COS02; A21:|292.

I =m,gy, —m,gl, -cos 6, +%k3(|292)2 (22)
Dissipation function is:

¢ = % ro; + % hyA%, 23)

Where A2 = 1202

6=11,02 + I, (,6,f (24)
2 2

Corresponding to the equation:

: (25)

or taking everywhere sin6,=6,; cosd, =1:
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2 condition

Figure 7. The vertical pendulum is not in contact with a spring.

Then vertical pendulum is not in contact with a spring (see figure 7), the equation of potential
energy is:

IT=m,gy, =m,gy, —m,gl, -cos &, (27)
Dissipation function is:
1 .
¢==r,07 (28)
2
This state of taking sin6,=0,;cos8,=1 corresponds to equation:

m,l, %, + My, 5,0, + m,126, + m,gl,0, + 1,0, =0 (29)

3 condition

|

Figure 8. The vertical pendulum is in contact with a spring on the left side.
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Then vertical pendulum is in contact with a spring on the left side (see figure 8), the equation of

potential energy is:
Loa2 30
Hzngy2+§k4A22 (30)
Where 822 = 1202
I =m,gy, —m,gl, -cos 6, +%k4(|292)2 (31)
Dissipation function is:
¢=%r29'22 %m@z (32)

Where A, =1,0,.

Corresponding to the equation:

m,l, %, -c0S @, + M, 1,V -Sin @, +mM,126, +m,gl, -sin 6, + 1,0, +

(33)
+h,120, +k,120, =0
or taking everywhere sin6,=0,; cosd, =1:
Myl %o + ML, Yo, + myl28, +m,gl,0, + 1,0, +h,126, +k,126, =0. (34)

The horizontal pendulum transition conditions from one state to another.

The starting position of the pendulum is horizontal (see figure 2). The mass of pendulum m; lying
on the spring (ky, h;). Whereas the lower spring (k;, h;) bottom induction operates in a known
oscillation vy, is switching to another condition (the horizontal pendulum intermediate position see
figure 3) consider the condition (the lower spring not compressed and in which case it is disable
with):

L -6 - Y, >0.

The transition to another condition (the pendulum rise to achieve and presses the spring (ka, hy)

see figure 4) consider the condition:
6 > 0 max

It is assumed that 01,=10°.
The vertical pendulum slides mode condition during oscillation from one state to another.
The starting position of the pendulum is vertical. The main condition: the pendulum oscillate

between springs ks, hs and kg4, hy but not touch them (see figure 7).
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If pendulum moves in direction of coordinate @, and oscillation angle is bigger than &,y Spring
is compressed ks, hs (see figure 6). In this why condition of changing state is:
0, > 05 ax
When pendulum moves in direction opposite to coordinate 8, and pendulum reaches spring Ky, hy
(see figure 8), condition of changing system state is:
0 < Ormax
Accredited, that Oonax=10°; Oomax=-10°.
Equations are solved using methodology described in [7]. Equations are rewritten in operational
form after that in virtual MatLab environment is created SIMULINK model. In both system states
excitation coordinates is X, Yo.

The system of horizontal pendulum is described by coordinate 8;. Pendulum oscillation speed is

o kinetic energy of horizontal pendulum is T;:
2 A2
T, = w . (35)

System of vertical pendulum is described by coordinate #,. Oscillation speed is 92 kinetic energy

of vertical pendulum T,:
_my Ly
2 2

Simplified schematic of energy harvester with horizontal pendulum and harvester with vertical

(36)

pendulum is presented in figures 9 and 10.
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- Nonlinear damping

T [ W

0
NUL
A Xg -
8 -
5 . . .
g Main block of horizontal o,
£ pendulum
E
o T,

Mode switch block |—

Figure 9. The simplified block diagram of horizontal vibration harvester.

Nonlinear damping =1

? [ W

I

0
) X -
2 —
= ) } 6
g Main block of vertical N 72
E pendulum ¢
3 Yo
A - T,
'y A
ky hy
Mode switch block -

Figure 10. The simplified block diagram of vertical vibration harvester.
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Electromagnet, which is used in our system, creates nonlinear coefficients of resistance.

h= f(gl;el) and 27 f(HZ;‘gZ). In simplified diagrams this coefficients are represented by

nonlinear damping blocks.

3. Results of research

In order to determine optimal parameters of pendulum it was decided to change oscillating mass m
and coefficient of stiffness k. For the experiment were randomly selected free different masses
(m;=0,040kg; m,=0,030kg; m3=0,020kg) and free coefficients of stiffness (k;=5000kg; k,=10000kg;
k3;=20000kg). Using different masses and coefficients of stiffness were created 9 combinations for
calculations: miky; moky; msky; miky; moks; msky; myks; moks; msks. The Bests result are obtained

solving combination m;k; this results are represented in figures 11 and 12.
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Figure 11. Dependency of kinetic energy in respect to time.
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Figure 12.  The horizontal pendulum angular velocity dependence of time.

4, Conclusions

Performed theoretical research and modelling of horizontal and vertical pendulum of two axis
harvester behavior from kinematic excitation brings interesting and useful results. These pendulums

can be excited from movement of real transport mean suspension parts, railroad wagon bogie frame,
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for example. Such pendulum system can realize movement of wagon for energy harvesting in
efficient way. Given results allows drawing these conclusions:
o system efficiently excited from existing movement of railway wagon frame and bogie;
e amplitudes of excitation allows to harvest few miliwatts of electrical energy on coil;

e  proposed model is useful for such system analysis and definition of parameters.
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Analysis of vibrations of a cable-pulley system using the absolute
nodal coordinate formulation
(VIB086-15)

Radek Bulin, Michal HajZzman, Pavel Polach

Abstract: Cable vibrations can have an important effect on the motion of
a whole mechanical system and therefore it is reasonable to investigate the
dynamic behaviour of such systems including these structural parts. This pa-
per deals with the application of the absolute nodal coordinate formulation
(ANCF) used for the modelling of a system composed of a cable, a pulley, a
motor with prescribed motion and another rigid body, which is driven by the
motor with the cable. The ANCF was chosen as a suitable approach that can
allow to consider detailed interaction of a cable and a pulley with its nonlin-
ear behaviour. The ANCF uses absolute positions of nodes (reference vectors)
and slopes (reference vector derivations) as the set of nodal coordinates. An
in-house modelling tool in the MATLAB system was created based on the
proposed modelling methodology and the vibrations of the cable during the
motion of the whole system was studied with respect to different parameters.
The calculated results were compared with the measured results during real
experiments.

1. Introduction

There exist various machines and mechanisms, which are composed of the cables or wires
as driving elements. The motion control of such mechanical systems can be affected by
undesirable vibration of the flexible cable elements. Therefore, detailed modelling of such
systems is an actual problem in nonlinear dynamics.

Ways of the cable modelling can be divided into several groups based on complexity. The
simplest way how to incorporate cables in the equations of motion of a mechanism is the force
representation of a cable (e.g. [5]), where the inertia of cables is negligible with respect to the
other parts. The cable is represented by the force dependent on the cable deformation and its
stiffness and damping properties. A more accurate approach is based on the representation
of the cable by a point-mass model (e.g. [6]). In order to represent also bending behaviour
of cables their discretization using the finite segment method [10] or so called rigid finite
elements [11] is possible. Other more complex approaches can utilize nonlinear 3D finite
elements [3] or can employ elements based on the absolute nodal coordinate formulation
(ANCF) [10].
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This paper deals with the application of the ANCF used for the modelling of a system
composed of a cable, a pulley, a motor with prescribed motion and another rigid body, which
is driven by the motor with the cable. An in-house modelling tool in the MATLAB system
was created based on the proposed modelling methodology and the vibrations of the cable
during the motion of the whole system was studied with respect to different parameters.

The calculated results were compared with the measured results during real experiments.

2. ANCF cable model

A planar ANCF beam element of length [ with two nodes (see figure 1) will be briefly intro-
duced in this section. Global position r = [rs, 7, ]* of an arbitrary beam point determined

by parameter p can be written as

r(p) =S(p)e, e=[e1 ez ... eg]T, (1)

where S € R?? is a global shape function matrix, e is a vector of element nodal coordinates

and p € (0, 1) is a parameter of a curve.

y“

7(0)
"p) #(0)
I"(O) F (l)

=Y

Figure 1. ANCF planar beam.

Standard procedures (e.g. the Lagrange equations or the principle of virtual work) can
be used in order to derive a mathematical model of the planar ANCF beam element. Kinetic

energy of the element with material density p is
Lt Lo (1 aTaqa Lora, .
Ey,== [ pAr rdp=—-é pAS”  Sdpé = —é&" M.é, (2)
2 /o 2 0 2

where M. is the element mass matrix.
Strain energy F, of the element is used for the derivation of elastic forces in the ANCF

beam model and the form of an adopted elasticity model determines the complexity of
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the whole model. In [1], there are several approaches, which employ the separation of the
strain energy of longitudinal deformation E,; and the strain energy of transverse (bending)

deformation Ep: as

1 ! l
Eyp = Ep + By = 5 / EAe” dp + / EIx” dp, (3)
0 0

where F is Young modulus, A is the area of the cross-section and I is the second moment
of the area about a transverse axis. The possible models are then classified according to the
expressions for longitudinal strain € and curvature k. General expressions for these quantities
are

d?r

1T
-1 — | =
-1, k=g

; (4)

where s is the parameter of a curve. Berzeri and Shabana [1] introduced several suitable
models for both longitudinal and transverse elastic forces, whereas the formulation denoted
L2T2 is employed in this paper in order to investigate the cable-pulley interaction.

The whole model of the ANCF planar beam element [1] is of the form
M.é+ Kc(e)e = Qek (5)

and is characterized by constant mass matrix M., strongly nonlinear stiffness matrix Ke(e)
derived using the strain energy and by vector of external forces Q.r. The assembling of a
discretized flexible body (i.e. fibre, cable) model is straightforward and can be extended by

a suitable model of viscous forces.

3. Contact forces between a cable and a pulley

The presented cable model can be combined with the models of other bodies. The pulley is
modelled as a rigid body with one degree of freedom (rotation), the fibre is modelled as a
deformable body and it is discretized using the ANCF method to n elements. During the
interaction of these two bodies, the contact forces arise not only in element nodes and the
contact forces are distributed along the length of the contact arc. Therefore k points, which
correspond with the Gauss-Legendre integration points, are determined on each element
(k = 5 was used in this work). The contact forces are then evaluated for each of these point.
Let us have element e (e =1, ..., n) and point ¢ (¢ = 1, ..., k). In each time step, the
contact variables for each cable point are determined. The normal and friction forces can be
evaluated and then a Gauss-Legendre quadrature is used to obtain the vector of generalized

contact forces.
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3.1. Contact kinematics

Few contact variables, which are used in contact force models, are introduced. When each
cable contact point ¢ interacts with the pulley for the first time, new stiction point is; is
defined on the pulley. The initial position of stiction point is; is the same as the position
of contact point i. During the simulation, the position of these two points is not equal,
because contact point ¢ is rigidly attached to the cable and stiction point i¢s; moves with the
pulley. The position of the contact and stiction point can be defined by angles a; and o s¢,

respectively. Then the radial penetration de; is defined as
5ei:R—|I‘i—I‘0‘, (6)

where R is the pulley radius, r; is the position of contact point i of the cable (defined in
equation (1)) and ro is the absolute position of the pulley center. The tangential displacement

of the contact point with respect to the stiction point is defined as

Sei = R — ctiyst). (7)
Penetration velocity 5;51' and tangential velocity $.; are

i = —Tin e = —F; t — Rw, (8)
where n and t are normal and tangent vectors to the pulley surface at the contact point.

3.2. Normal contact force model

The well-known normal contact force formula was introduced by Hertz [2]. This model is
based on the theory of elasticity and describes a force between two perfectly flexible solids

with frictionless surfaces. The Hertz law can be expressed as
FNE’L':K(S;;» (9)

where K is the contact stiffness and n is the positive exponent, which reflects the shape of
contact bodies. This basic contact force model does not consider the dissipation of energy
during contact, therefore more complex models were developed. Hunt-Crossley’s model of

the normal contact force [2]
Fyei = Ko6g;(1+ D(S('-zi), (10)

where D is the damping factor, was proposed as a more complex modelling approach. It
is based on a simple dissipation model, where the damping coefficient is dependent on the

penetration. The resultant normal contact force vector is defined as Fnei = Fnein.
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3.3. Friction force model

The friction forces must be also added to the interaction model. At first, friction force model

based on Threlfall model [2] were tested. It is formed by equation
Fre; = CfFN (1 . e—3(s‘ei/vr)) , (11)

where ¢y is a friction coefficient, v, is a small characteristic relative tangential velocity.
This friction model is easy to implement, but it does not describe the stiction phenomenon
very well. Better stiction friction model can be found in [7]. This model uses two separate
tangetial force models, one for stiction force and one for sliding force and was tested in this

paper. The resultant friction contact force vector is defined as Fre; = Fre;t.

4. Whole multibody model

The cable model can be combined with the models of other flexible or rigid bodies and
with the model of kinematic joints. Due to the usage of absolute displacements as nodal
coordinates it is easy to define the kinematic constraint equations such as revolute or trans-
lational joints. The constraints between the chosen coordinates can be written using the

vector notation
®(q,t)=0 (12)

and for the use in equations of motion it must be differentiated to obtain the Jacobian matrix

@,

_ow_[om
dq 0q;

}, i=1,2,...,m, j=12 ..., n, (13)
where m is the number of constraints and n is the number of dependent coordinates. After
the introduction of vector of Lagrange multipliers A the whole system of equations, which
fully describe the problem of the coupled system of flexible and rigid bodies, can be written
in the matrix form

M & i | _|s@at | _| Q-B@aa-Kaaq | (14)

e, 0 -A v(q, g, t) v(a, 4, t)
Generally, vector g(q, q, t) contains the sum of all generalized, potential and dissipative
forces and appropriate other derivatives of a kinetic energy, while vector v(q, q, t) follows
from the differentiation of the constraint equations (see [10]). The approaches to the numer-

ical solution of equation (14) used practically in this paper are summarized in [4].
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5. Application

Experimental measurements focused on the investigation of the fibre behaviour were per-
formed on an assembled weigh-fibre-pulley-drive mechanical system (see figure 2), which was
described e.g. in [8,9]. A carbon fibre with a silicone coating is driven with one drive and it
is led over a pulley. The fibre length is 1.82 meters (fibre weight is 4.95 grams), the pulley
diameter is 80 millimetres. At the drive the fibre is fixed on a force gauge. In the other
end of the fibre there is a prism-shaped steel weight (weight of 5.035 kilograms in this case),
which moves in a prismatic linkage on an inclined plane. Drive excitation signals can be of a
rectangular, a trapezoidal and a quasi-sinusoidal shape and there is a possibility of variation
of a signal rate. The amplitudes of the drive displacements are up to 90 millimetres. In the
case presented in this paper the weight position angle « is 30 degrees and the pulley-fibre

angle ¢ is 150 degrees and it is changing during the motion.

W

drive

Figure 2. Scheme of the testing mechanical system composed of a drive, a pulley, a weight

and a cable.

The particular signal defining the motion of the drive is in figure 3 together with the
measured position of the weight with respect to time. The measured motion of the drive
served as an input signal (kinematic excitation) for the numerical simulations. Chosen
calculated dynamic response of the weight using complex cable-pulley interaction based on
ANCF beam elements is shown in figure 4.

In order to study the complex behaviour of the cable during the motion, figure 5 shows
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Measured motion of the motor and the weight
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Weight motion
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Figure 3. Measured motion of the drive and the weight during the experiment.

Calculated and measured weight motion

0.04 T : .,
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Figure 4. Measured and calculated motion of the weight for two different friction models.

time history of the transversal motion of the chosen node between the pulley and the drive.
This motion characterized transversal vibration of the cable which could be the problem
during the motion control of accurate mechanisms. Such character of the motion can be
seen also in figure 6, where the real trajectory of one chosen node between the pulley and

the weight is shown for two different friction models. Interesting information can be obtained
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Calculated transversal oscilation of the cable
0.015 T T

T
Calculation - Threlfall
— — — Calculation - stick-slip

Displacement [m]

_0.01 . . . .
0 0.5 1 15 2 25
Time [s]

Figure 5. Calculated transversal vibration in a chosen node of the cable between the pulley

and the drive.

Calculated trajectory of the selected cable node

T T T T vam
-0.395 i
-0.4f ]
E
2 -0.4051 E
i)
=
o
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0411 ]
-0.415
Calculation — Threlfall
= = = Calculation - stick—slip
. . . . .

-0.3 -0.295 -0.29 —-0.285 -0.28 -0.275 -0.27
Position x [m]

Figure 6. Calculated trajectory of a chosen node of the cable between the pulley and the
weight.

also from the parametric studies combined with state space plots for the motion of chosen

nodes (figure 7).
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Calculation - Threlfall

Velocity v, [ms‘1]

0.03 0.035 0.04 0.045 0.05 0.055
Position x [m]

Figure 7. State space trajectory of a chosen node of the cable.

6. Conclusions

The beam based on the absolute nodal coordinate formulation was used for the modelling of
cables, which could interact with pulleys or sheaves and demonstrate interesting nonlinear
behaviour. The cable-pulley interaction was studied by the weight-fibre-pulley-drive system
with prescribed kinematic excitation of the drive. Similar problem was also addressed e.g.
in [7] but the contribution of this paper is in the comparison with experimental results

measured on the real mechanical system and the focus on the transversal vibration.
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Robotic automation of the turbo-propeller engine blade grinding process
(MTR091-15)

Andrzej Burghardt, Dariusz Szybicki, Piotr Gierlak, Krzysztof Kurc,
Magdalena Muszynska

Abstract: This paper proposes a robotic automation system for the grinding of turbo-
propeller engine compressor vanes. This proprietary conceptual solution includes
a data acquisition system (a robotic 3D scanner), a neural control system and a robot
which executes the grinding process using force control. The proposed solution has
been verified on real-life components.

1. Introduction

The continuous development of a sensory and actuation system allows the extension of the useful
range of robotic systems into new areas of technology. The development of industrial robotics focuses
mainly on applications that require a high level of process-robot interaction. This includes the blade
or vane grinding process, where varying allowances must be removed. The key driver behind this
development (with the minimization of human labor costs aside) is to improve the levels of safety and
repeatability of product manufacture.

The available references provide noteworthy works from two companies: AV&R Automation of
Canada and JOT Automation of Finland. Moreover, the issue of blade and vane grinding and
polishing by a Yamaha robot is considered in [2]. An interesting approach to the problem is
demonstrated with an extensive ABB robotic station in [3]. The results of investigations into the
aspects of force distribution, tool wearability and allowance removal during robotic processing are
discussed in [4, 5]. The technology-related topics are largely confidential corporate information;

hence the number of works published on this matter is very low.

2. Genesis of the problem

Blades, vanes or airfoils are components of turbine engines, installed therein in cascades. The airfoil
form allows conversion of the energy of the passing fluid into mechanical energy. In reverse
applications of that solution, the airfoils allow conversion of mechanical energy into the kinetic
energy of the passing medium, as used in compressors, for example. The main users of currently
manufactured blades and vanes are the aerospace and power engineering sectors. There are a number
of blade airfoil manufacturing technologies: from the most advanced, such as single-crystal casting,

through CNC machining to electrochemical machining, a technique which has been used for decades.
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Electrochemical airfoil forming is economically viable; however, the technology is sensitive to
a number of factors that affect the processing parameters, e.g. temperature, electrical current value,
gap clearance, etc. The resulting unique airfoils require a manual grinding process, which must be
undertaken for every single piece produced, culminating in final polishing.

The solution presented herein has been delivered for, on request of and in cooperation with Pratt
& Whitney Rzeszow. It is a proposal for the automation of the blade/vane airfoil grinding process.
Airfoil grinding is a repetitive and tiresome process which demands high manual skills, and thus it is
fit for robotization or automation. Moreover, the solution discussed herein will markedly improve
occupational hygiene and safety in the work environment, while reducing the number of defects by
improving the finished product quality through elimination of the human factor (stress, fatigue and
other errors) from the process.

3. Process robotization

A blade from the Pratt & Whitney PT6 engine was selected as an example of the type requiring the
grinding process to be performed with robotic automation.

ATOS SOFTWARE
TCP/IP TCP/IP lStart
3D scanner
[ —
. Measurement
~ [/
PC Computer 4 +
Matlab/Simulink Decision Lookup table <
Neural Network 5
Toolbox Force/Speed/Position

IRB1600 +

Real robot grinding

PC Computer Tool - +
pL T Measurement
TCP/\P g
v Controlsignals 1 R +

Quality control Decision EiEE o

Contro\ signals

D lFinish
<:>|R8140ch

Controlsignals

IRC5 force measurement

controller

Figure 1. Diagram of the robotic processing station.
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The proposed robotic station will comprise an IRB 140 robot for processed component handling,
a grinding tool, and an IRB 1600 robot with a 3D scanning head. The measurement system cooperates
with the ATOS Professional software to exchange data with the robot controller (IRC5) over the
TCP/IP protocol. The RobotWare robotic controller software assures control over both robots, and
also features a force control functionality.

The processing parameter (pressure force) variable is determined by a neural network. Based on
a set of data produced from a number of test trials, the FVRL neural network makes decisions
depending on the information fed back from the measurement system. The final force value,
determined by the neural network, is transmitted to the IRC5 controller.

The proposed robotic processing station, as shown in Fig. 1, was used in a study into the
feasibility of automating the process of grinding turbine-prop engine blades.

3.1. Data acquisition system

The proposed robotic system enabled acquisition of measurement data representing the processed
shape established by 3D scanning (Fig. 2).

Figure 2. The measurement process.

The scanned 3D model is compared with a CAD master model to provide measurable information.
The data thus provided is then exported to Matlab/Simulink. The measurement process uses an
extension of the ATOS software, Professional Blade, which is intended for the measurement

inspection of all types of blades.
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Figure 3. Image of measurements in progress.

The measurement system allowed 80 points to be produced (Fig. 3), representing the relationship of
force to the amount of removed material.

3.2.  Neural process controller

The neural controller for the blade grinding process was built in Matlab with the use of the Neural
Network Toolbox library feature. A feed-forward network was applied to approximate the
relationship between tool pressure and material allowance, with learning occurring via an error
backpropagation algorithm [1]. A programming tool was developed for the study that allowed testing
of the quality of the network approximation in relation to the following parameters: number of hidden
network layers, number of neurons in hidden layers, neuron activation functions, teaching parameters,
etc. Tests were carried out by changing the number of hidden layers from 1 to 3 and the number of
neurons per layer from 3 to 30, while three types of neuron activation functions were investigated:
linear, unipolar sigmoid and bipolar sigmoid. Based on the results, a network was chosen having two
hidden layers and nine neurons in each hidden layer. The hidden layers featured unipolar sigmoid
functions for neuron activation, whereas the output layer had linear activation functions. The weights
for the neural network were learned using an algorithm based on the Levenberg-Marquardt
optimization method.

The teaching data were provided from the experimental measurements. The blade suction face
had 80 evenly spaced points, positioned at the intersection of the lines shown in Fig. 4, where the
geometrical features were measured in order to determine the material allowance. Next, the same
surface was machined at a predefined tool pressure force, followed by another measurement of the
surface geometry. The experimental procedure allowed the relationship to be established between the

removed material layer and the tool pressure force.
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Figure 4. Material allowance on the blade suction face.

The neural process controller was designed to learn the studied problem in reverse: the controller
generated the tool pressure force values at each of the 80 measurement points at a known value of
allowance for each of these locations. The input and output layer structures of the neural network was
related to the measurement data structure; hence the neural network had 80 inputs and 80 outputs (see
Fig. 5), equal to the number of measurement points.

Output layer
Input 1 higden layer 2" hidden layer Output
Inl (9 neurons) © neurons)/ —@ Out 1
In 2 £ ()1 e ou
In3 %M% ® Out3
79 I /dg/\ @ Out79
n 80 & @ Out 80
b

Figure 5. Neural network structure.
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The network input data vector contained the material allowance values for the 80 measurement
points, and the input data was standardized at an interval of [0-1]. The structure of the neural network
means that the material allowance value at any defined point affected the value of the force generated
at that same point as well as the pressure force values at other points. The advantage of this solution
was that the generated pressure force would not change rapidly between adjacent points. This was
considered important in order to achieve streamlined (smooth) machining. Moreover, it made the
process control system less sensitive to potential measurement errors.

Figure 6. Graphical presentation of the tool pressure forces required to remove the material allowance

at the individual measurement points.

Fig. 6 gives a graphic representation of the values of pressure force at the individual measurement

points as generated by the neural process controller for the blade shown in Fig. 4.
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Figure 7. Relationship between pressure force and allowance at selected measurement points, as

generated by the neural process controller.
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It is evident that where larger allowances occurred the generated pressure forces was higher than
at the points with a lower allowance. The exact dependences between tool pressure force and material
addition at measurement points C13 and C28 are shown in Fig. 7. The magnitudes of the relationships
were developed by the neural controller for the grinding process. The dependences were similar in
nature at the other measurement points.

The values of applied pressure forces were in the range 2.5-8 N. The applied tool pressure forces
were never below 2 N, which is the lowest limit of effective force control in the robot control system.
On the other hand, pressure forces above 8 N would result in overheating of the cutting tool surface,
which was considered unacceptable.

3.3.  Force controlled robot

The traditional approach to robotic processing of material involves the execution of preprogrammed
motion trajectories. In reality, there are a number of technological processes (e.g. casting or
electrochemical machining) that warrant the production of intermediates with an accuracy tolerance
high enough to require adapting the robot motion trajectory to suit the varying airfoil form. One of the
tools able to solve this problem is force control, where the robot controlled motions are adjusted
according to feedback from force sensors.

Figure 8. View of robot paths, RobotStudio software.

The solution proposed here applies the FC pressure functionality. Based on a number of test runs,
a solution was proposed that consisted of a fixed tool and a moving reference system for the work
object, attached to the robot arm. The IRC5 controller software of the robot, the program, and the pre-

set motion trajectories were developed in RobotStudio (Fig.8).
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Figure 9. Simulation of a station, RobotStudio software.

An advantage of the proposed approach is the reduced impact of disturbances from
electrochemical machining spindles. With the rotating tool installed on a robotic arm, a force sensor
records the force value and its disturbance (Fig. 9). In order to eliminate the latter, low-pass filtering
values are selected for each individual solution. The filtered measurement signal of the force values in
three axes operated with an electrochemical spindle mounted on a robotic arm is shown in Fig. 10.
The measurements were recorded at a preset stabilization of the force at 5 N using the ABB Test
Signal Viewer software.

Figure 10. Measurement values from the three axes.

The force control approach allows the system to be protected from the effects of long-term wear
of the tool, and the adaptation of the motion trajectory to minor variables on the component form.

4. Verification

The present study concerned the grinding of a blade suction surface. The robotic processing
station is shown in Fig. 11. The blade before and after grinding is shown in Fig. 12. The measurement

report for pre and post grinding is shown in Fig. 13, respectively.
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Figure 11. Robotically automated processing station.

Figure 12. View of a blade before and after grinding.

Figure 13. Measurement report before and after grinding.

The present study demonstrated that the grinding process could be completed within the preset
manufacturing tolerance ranges.
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5. Conclusions

The employment of generalizing properties in an artificial neural network has allowed the
generation of information that enables the tool to component contact force to be managed in a way
that assures grinding to the predefined specifications. The present solution is still at the laboratory
stage; further development work will focus on automation of the solution by integrating the network

algorithms within the robot controller instead of using a separate PC workstation.
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Nonlinear dynamics of waves in inhomogeneous media with
fractal structures
(NON244-15)

Anatoli Chigarev, Victor Polenov, Pavel Shirvel

Abstract: The wave propagation in an elastic inhomogeneous medium with
mechanical parameters which are functions of the spatial coordinates is considered. It
is assumed that the pore sizes or the including sizes are small compared with the
distance at which the kinematic and geometrical characteristics of the motion change
significantly. Generally, the mathematical models in the theory of wave propagation
are continuous, linear and smooth. Natural media are generally rough and
discontinuous. It is possible to determine the fractal dimension, which characterizes in
fact the irregularity of the real media. It is known that the fractal dimension exceeds
the Euclidean dimensions. An wave in an inhomogeneous medium is understood as an
isolated surface, which the stresses and rates of displacement are discontinuous. The
Fermat’s principle allows to construct ray trajectories, the principle of Huygens
allows to construct wave fronts. An acoustical energy in continuous media in
accordance with Fermat’s principle and principle of Huygens propagates along ray
tubes and locates at a surface front of the wave. In the paper is considered the
modification of the Fermat’s principle for wave propagation in the media with fractal
structure. In this case the differential equations for the ray trajectories have the order
which is equal to the dimension of the medium. Mathematical simulation of the
deterministic chaos for the behavior of the energy flux lines in the frame of nonlinear
dynamics of rays in the inhomogeneous medium is considered.

1. Introduction

The model of elastic stratified medium widely is applied in seismology geotechnique [1-4]. In the
case, if a medium constitutes from discrete layers, then it is necessary to solve the boundary problem
for each layer. It is enough a laborious investigation [5]. The dynamic equations for inhomogeneous
media are the differential equations with variable coefficients. As is known for solving of these
equations have not general analytical methods. The most famous methods which are applied for
solving of differential dynamical equations for inhomogeneous media are a ray method [6] and
method of effective medium [7]. For some time past a hypoplastic model is applied for an
investigation of seismic wave propagation in a soil [8, 9]. The model of hypoplastic medium allows to

describe many effects which are observed in granular soils. We consider a successive application of
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effective medium method and of ray method in order to receive of approximate analytical solutions
for description of shear wave propagation in stratified layer, which lies on a half space.

How it is known a real soil is inhomogeneous, it being knows that usually it is stratified in a depth.
We take the model of effective medium which has the same macroscopic properties as real
inhomogeneous medium. The effective model can be received on a basic of experimental results in
the form of phenomenological theory or on a basic of theoretical accounts. We take as effective
model a hypoplastic medium [8, 9], which describes a medium with initial stresses increased in depth

linearly. It is correct if a thickness I; (i =12,.., n) of each layer is comparatively less than a thickness
L of agreat layer (I; << L).

For a solving of constitutive phenomenological equations we apply a ray method. An application
of this method is correct if a wave length 2 (or a width of a wave packet) is less than a variation

scale of effective properties. It is mean that macroscopic properties change monotonically in a depth.

1.1. Formulation of problem

The layer of stratified granule medium lies on the surface x; > x;, (Fig. 1). A thickness of the layer
is L. At t=0 the plane x, = xyo (the surface S,) the velocity begins to move with the velocity
9 = 9(xqp,t) in the directions x,. Then there is the plane shear wave which propagates in the

direction x; . At first we consider a propagation of energy in any layer.

X1
L
Xa+l1+l2
IX1+I1
X2 q
TXI:Xm

Figure 1. The stratified layer L which lies on halfspace x < x;q .

2. Shear wave propagation in stratified granular layer with effective hypoplastic

properties
Let a layer of a thickness L be on a half space x; < x;o. The layer L constitutive from some layers
of thicknesses I;(i=12,..,n), it being know that I; << L, (i=12,..,n). For example it may be an

interchange of layers of sand and clay (Fig. 1).
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Let a shear wave be to incidences on a plane boundary x; = x;, and is propagated from the half
space x; < Xo. If we want to solve the problem exactly we must set boundary conditions (or

connected conditions) and describe wave propagation for each layer. There are very unwieldy
expressions especially for multiple scattered waves.

A method of effective medium allows to obtain a solution of this problem [7]. Applied an
averaging method (method of homogenization or energy continuation) we obtain a phenomenological
model of inhomogeneous medium [7].

Suppose that macroscopic (effective) conditions of layer medium are described of the equations
of a hypoplastic medium [8, 9].

In general case the equations of wave propagation in hypoplastic medium have the form [6, 7]

DivT +p*?:d§—ts, 1)

where f is a mass force vector, p§ is a vector of quantity of motion, 9 is a rate vector,

*_P1€+ps

Tre is effective (average) density, p, and pg are densities of liquid and hard fraction in a

soil respectively, T is a tensor of effective (total) stresses in an inhomogeneous medium, e is a pore
quantity.

The kinetic equations we write in the form of constitutive equations of a hypoplasticity [8, 9]
T=H(T,D,e), 2
where T is Jaunman’s derivative time.

T=T-To-oT, ®3)

in (3) T is material derivative time, D and o are atensor of rate and a spin tensor respectively.

L 09 .09
Dy == D1 T 2L T 4)
2 6XJ 8xi 2 6XJ aXi

A density p* satisfies the equation of continuity

*

dp [ x=
—+divlp 9J)=0, 5
D vivlp’5) ©)
and pore quantity e satisfies the equation

é=(1+e)trD. (6)
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We represent the each field value Tj;(X,t), 8;(X;,t), T (X,t), p(X,t), e(X,t) which describes a

dynamical state in hypoplastic medium in the form of the sum
T=T +T, §:§°+§, T=0 +0, p*=po+5, e =e"+¢,

o

where T°, 8, T, po, e” describe initial state and 1?, §, u, 5 e describe disturbances.

The initial stresses T* (x,t) satisfies to the equations of equilibrium
DivT —grad B“ +pf =0,
then the equations for disturbances have the form

DivT —grad R :d';s,
dt

Here and in the future the sign ~ we do not write.
Let Eq. (2) be the form

T=L(T,e)D+N(T,e)| D

fo f - - fofofeaF [ =] = _ Tjj
Lijkl = tr(hifg) [F 28ik6j| +a2Tika|], Lij =be—°‘hij +Tij , T

tr(T2)
R 3-sin
T =T; _15”, a:\/g_—%’
3 8 sing.

The equation for disturbances follows from Eq. (4) for case when 'I:,r is not enough

T=L(T",e)D+N(T ,e)|D].

Therefore the Egs. (1), (3), (5) describe a disturbance propagation in hypoplastic medium.

3. Shear wave propagation in effective hypoplastic medium

Set initial and boundary conditions on plane x; = %o in the form

82(%,t)]t=0 = 92(%4,0), 92(X1,t)| x=x, = 92(%10.1),

Ti2 (4, 8)|t=0 = T12(X4.0), Tia(x,1)

x=xp = 112(X10.1).

The motion equation Eq. (3) in this case has the form

0Ty, _Gj_o 0T 09y

: =0,
0% 0% X X1

and the definition Egs. (10) we write in the form [5, 7].

134

1T

0]

®

©)

(10)

(11)

(12)

(13)



0T K, 29, K, 09, —o, My Ks 98, K, 09, _o,
ot 0% 0% ot 0% 0% (14)
Moo 3%y 10%] o OTsg 0 095 [0%]
ot 0% 0% ot %1 0%,
The coefficients K; we write analogous [6, 7] in the form
Ky ==Tp5 + 5T, K, = \/Ehg(ffl —1/6)
K3 :1/3{&01 —T2°2]+ hy/2+ hz(ﬁz)z Kyq = V2hgTy, (15)
Ks =Tiz + hoTioTos, Ke = ‘/Ehs(Tzz —1/6)
Ky =hyTy5Ta, Kg = \/Ehs(T;3 —1/6)
. Ty
T =—o (16)
tr T'J
Suppose that for an initial state it has place the condition T1°2(x1) =0.
Then the coefficients Kq,K,4, Ks, K, vanish and we obtain from Egs. (13-16):
My, |92 _q &_Ksﬁzq
6Xl 8X1 at aX]_ (17)
@_KG& =0, 8T—33—K 99 =0.
ot % ot 0%
where
KZ = \/Eh3(1:;|_1 —1/6)
Ky =1/3[T;1 - Ty 2
3=l frn 22]+ h/2, (18)

Ke = ﬁhs(ﬁz —1/6)
Kg = ﬁh3(T;3 —1/6)
Combined Eg. (13), Eq. (16) we obtain the equations for wave disturbance propagation in the

layer with effective properties

B 29, o 29,
- 22|~ | K —2 | =0, 19
at(P(Xl) at j axl[ 3(x) axJ (19)
1 87T, a( 1 alej
== 2112 | _o. (20)
Ka(xa) a2 o\ plx) ox
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4. Solving of equations of shear wave propagation in layer

The differential equations Egs. (19),(20) have variable coefficients. It does not exist of general
analytical methods for a solving of similar equations. The ray method is the most effective among
different asymptotic methods for solving of differential equations with variable coefficients [6].

For nonstationary waves an application of this method is correctly, if a wave length A is more
less than a variable of a scale of effective layer parameters. It has place if an inhomogeneity of a layer
changes in a depth monotonic.

It is know that usually a stiffness of a layer changes local nonmonotonic in a depth, but effective
stiffness is monotonic function of spatial coordinate in a depth.

Let in the equations Eq. (19), Eqg. (20) be the coefficients K;(x1),p(x;) are effective parameters
of medium and a scale of variable K;,p is more greater than a wave length. An effective

approximation gives us principal estimation of wave field values caused of integral (average)
conditions of real medium.
Write the solution of the equations Eq. (19), Eqg. (20) in the form

95(%,t)= Z 95V (%)) fo (t = w(xq), (21)
Tio(x,t)= ZTl(Zn) (%) ot = w(x), (22)
n=0
ofa (&) _
(3?; - fn—l(&)v (23)

where \V(Xl) is eiconal, 9(2”)(x1),T1(2”)(x1) are unknown quantities.

n
If fn('[—q/(xl))zM then ray series Eq. (21), Eq. (22) have form

nt

950 0g,t) = > 94 (xl)[t“‘;#)]n (24)
n=0 :

04,0 =ZT1‘2”><X1)—[““;(,X1)] (25)
n=0 ’

If fy is Heaviside function H(t) then f, has form

fo = L0 ). 8)
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Let initial impulse be an impulse function fy(t) in the form

0, t<0
fo(t) = Jo(t,1)=11, O<t<t, (27)
0, t<t
where the function Jo(t, 1:) is expressed with a helping of Heaviside function
Jolt, )= Holt)— Holt—). (28)
The boundary conditions by ¥ = xq have the form
9 (x0.1) = 89 (x40) Jo t.7) 29)
9 040,t) =T, (40) Jo t, )
The wave which comes in the point x; is described with a registration in the formulas
Ka(40)p(a0) T d
X X X
89 (1) = ) (o) U0 C0) 5 fy [ P
Ks(x)p(%) : Cs(x)
10 (30)

Xy
Ka(x X dx
Tl(é”(xl,o=T1‘§’>(xlo)41/—3( w0P0) 50/ o [P
K3 (%10)p(Xe0) ; Cs (%)

The conditions allow to obtain a variation of wave profile. With a registration Eq. (29), Eq. (30)
we have

X
Jo(tl,r):4/MJo oo [ 29| for 90
K3 (x)p(x) : Cs(x)
10 (31)
Xy
K3 (x)p(x) ax 0
Jolty,1)= 4| —3P 5 [ 21| for T
o K3(X0)p(Xg) : Cs (%) 1
10

Integrated on t the left part of (31) from O upto r(xl) we obtain

o = g KsCR0D) -
K3(X10)p(¥10)

o = app o K020)P000) )
Ka(x)p(x)
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From Eq. (4.31), Eq. (33) it follows that if 4 Ks0ap(a) <1 then a wave profile takes place a
| Ka(x0)p(x40)

compression. Therefore the rate displacement wave has the compression and the shear stress wave has

the decompression (Fig. 2).

t T / Tw
1
x1/L
L 4 OHG—p
0 1 Xio/L Xiz/L X X5 Xie Xuz

Figure 2. The results of shear stress wave’s decompression.

Consider a propagation of shear wave which has triangular profile. In this case we can calculate
analogous to rectangular impulse. The results of these calculations are presented schematically on
Fig. 3.

Tt / Tt

xi/L

|9}
0 T 1 Xe/L X2/ L
Figure 3. The schematically results of propagation of shear wave which has triangular profile.

5. Oblique wave incidence on boundary of layer
Consider the oblique wave incidence on the boundary x; = g from the half space x; < Xq. In this

case the rays will be curve lines which satisfy to the equations [17].

" d(m):gradn, dv_ . (34)
ds ds ds
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where T is a tangential vector to ray trajectory, n is a refraction coefficient, s is a length along a
ray.

For the systems of differential equations we set boundary conditions on initial surface

X=X, T=X=X, ¥ =V, (35)
fOr S = SO (Xl = Xlo).
If ray trajectory is found so surface (eiconal)  is calculated along a ray accordingly do formula
Ml Ml
- ds - . . -
y(%)= j R jn(xl)ds [7,8,17,18]. Ray trajectories are orthogonal to surface (¥ )= const .
1
MO 0

Consider the Eq. (34) in plane x,0x,

d(nsin6) _ an

=—=0, 36
ds 0%, (36)

The equation for ray trajectory has the form [17]

dﬁ—tge— sin 6y
dx Jn?—sin?e,

Set L be 500 m then we have

2. [50 38)
500 x,

where n(x;,X,)=Cq/Cg (%, X,) is a refraction coefficient.

@)

The behavior of rays for different angles between an axis x; and rays is depicted on Fig. 4. How

it follows from Egs. (37,38) dn/dx; >0, then ray trajectories which have the angle 6, <g become

bent and drew near to the vertical. Therefore the wave front, which incidences on the free surface

X0+ L, is parallel to plane x =X+ L and a refraction wave is plane, too.
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Figure 4. The schematically behavior of rays for different angles between an axis x; and rays.

6. Conclusions
A combined application of effective medium method and of ray method allows to solve the
problems of wave propagation in a stratified medium. A model of a hypoplastic medium is applied in

the capacity of an effective medium. This approach is correct if thickness I; of each layer is more

less then L (Ii <lLi=12,., n). An application of ray method is correct if A << L, where A is wave

length. The most best approaching has place for I; <X .

The acoustical approach describes wave propagation in effective layer for condition Tj; <<TiJ°,

where Tijo is an initial stress state, T;; is disturbance stress state which propagates in the form of

shear wave in a direction of free surface.

A wave, reflected from a free surface, propagates in the direction —x; and is summed from a
direct and a reflective wave. From the energy conservation law it follows that an amplitude of a direct
wave decreases and amplitude of a reflective wave accumulates and increases in the direction of a

free surface.
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On the dynamic response of suspended footbridges
(VIB139-15)

Mariella Diaferio

Abstract: Several Authors have underlined the possible activation of large amplitude
oscillations of suspended footbridges due to the nonlinear behavior of the hangers,
which act as linear elastic springs in tension and do not react in compression. In fact,
in particular conditions the pedestrian- induced loads and/or the wind actions may
cause oscillations that, in some parts of the footbridge span, achieve amplitude higher
than the initial deformation of the hangers due to dead loads; in these cases such
hangers slack and, consequently, the stiffness of the footbridge decreases. Thus the
footbridge may undergo to unexpected large amplitude oscillations that the usually
utilized models cannot predict, as they assume a bilateral behavior for the suspended
system. Here, the response of suspended footbridges is evaluated introducing a
continuous model that is obtained adopting the nonlinear equivalent regularization
technique proposed for suspended bridges. The solution of the aforementioned
continuous model is evaluated in closed form by means of perturbation methods. The
dynamic analysis shows the possibility of the coexistence of multiple solutions, some
of which are characterized by high amplitude. In order to identify the conditions for
the activation of such phenomena, the evaluated responses are plotted for different
values of the mechanical parameters of the examined structure and of the considered
actions.

1. Introduction

Starting from the observation that during the collapse of the original Tacoma Narrows Bridge the
torsional oscillations, that have caused the failure, were associated with the slackening of some
hangers, many Authors [1]-[10] have study such phenomenon by considering the effects of the
unilateral behavior of the hangers, that react only in tension.
Such papers [1] —[10] focus the attention on the behavior of long span bridges and on the effects of
wind loads. In detail in [1]- [5] the Authors have underlined that for taking into account the unilateral
behavior of the hangers, the equations of motions have to be rewritten by expressing the hangers
restoring forces by means of terms which depends on the sign of the relative displacements between
main cables and the deck; consequently, the solution has to be evaluated by means of the numerical
integration of the equations of motion.

In detail, in [1]-[3] Mc Kenna et al., due to the difficulties in the numerical integration, have
focused their study on the no-node oscillations of the deck, i.e. relative displacements of the same
sign on the overall deck. This hypothesis allows to reduce the study of the entire footbridge to an its
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single transversal section with a single degree of freedom (the vertical translation of the deck) or two
degrees of freedom (vertical and torsional displacements). The same approach has been chosen by
other Authors [4][5][7][8] and the activation of large amplitude oscillations have been evaluated for
different load conditions and geometrical parameters of the bridge.

However the main limit of this approach is the necessity of a numerical integration of the
equations of motion that restricted the effective application of the procedure, for example, a
parametric study becomes extremely cumbersome.

In [6][9], the authors have proposed a different approach that substitutes the unilateral behavior
of the hangers with a smooth nonlinear one whose parameters are evaluated by minimizing the
difference between the variation of the global elastic energy due to a generic deformation associated
with the two considered behaviors.

The main advantage of this approach is the possibility of rewriting the equations of motion
introducing smooth nonlinear terms which allow the application of analytical integration procedure
even if approximated, as the multiple scale method.

Consequently, in [6][9], the solutions of the equations of motion have been analytically evaluated
and a parametric study has been performed in order to estimate the geometrical parameters and load
conditions which may activate the slackening of hangers.

More recently, some Authors [11]-[13] have underlined the possibility of large amplitude
oscillations, due to the nonlinear behavior of the hangers, also into suspended footbridges induced by
pedestrian loads.

In fact, as these structures are devoted to static loads smaller than the ones of suspended bridges,
and considering the wide spread of innovative materials, it has become possible the realization of
suspended footbridges extremely flexible and, as a consequence, more prone to large amplitude
oscillations.

In [11] the Authors propose a section model for suspended footbridges which is able to take into
account the unilateral behavior of the hangers, and they demonstrate that for a pedestrian load acting
along the torsional direction, the model may show large amplitude oscillations associated with the
slacking of hangers.In [12] Bruno et al. analyze the 3D finite element model of a suspended
footbridge subjected to a torsional load due to pedestrians, in this case the large amplitude oscillations
are obtained also for frequency forcing values smaller than the torsional frequency of the model.

In [13] the Authors extend to the suspended footbridges the approach proposed in [6] [9] for
suspended long span bridges, evaluate the solution of the equation of motion and plot the oscillation
amplitude for different values of the forcing frequency of the pedestrian load.

The present paper analyses the vertical and torsional oscillations of suspended footbridges by

considering a simplified continuous model that is able to describe the vertical and torsional relative
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displacements between the main deck and the cables. The study investigates the oscillations due to
pedestrian loads, which, as well known, may be represented by a n harmonic load acting or in the
vertical, or in the vertical and torsional, or only in the torsional direction.

The analysis reveals that, taking into account the nonlinear behavior of the hangers, the
footbridges in certain conditions (which are strictly correlated with the geometrical characteristics of
the footbridges and with the load conditions) may undergo large amplitude oscillations which cannot

be predicted by means of the “classical” models.

2. Suspended footbridge model

The model here presented has the aim of describing the relative oscillations between the main cables
and the deck, consequently in order to simplify the equations of motion, the main cables have been
considered fixed.

The hangers are assumed to be massless, vertical and able to react only in tension with a linear
law, moreover they are modelled as uniformly distributed along the span (i.e. the distance between
two consecutive hangers is much lower than the span length i<< L) (Fig.1). The reference equilibrium
configuration is characterized by the presence of dead loads, which are assumed to be balanced
mainly by the suspension system, as a consequence, the hangers present an in initial elongation of w,
which is considered constant along the span length.

A

SO [ L«

Figure 1. Continuous model of a suspended footbridge: a) longitudinal view, b) cross section.

On the basis of the aforementioned hypothesis, the deformed configuration of the system can be
describe by means of a vertical y and a torsional @displacements, and the equations of motion can be

written as follow:
my ¥ +kqy" +Cdy+kp[(y+€9+wo)+ +(y—€6?+wo)+]—2kpw0 = Fy(x.t) 1)

16 —ky0"+Cy0 + kp z[(y +00+w,) —(y—r6+ w0)+]= Fy(xt) @)
where the prime and the dot symbolize the time and space derivate respectively, my and | denote the

unit mass and torsional inertia of the deck respectively , while k,,k, the vertical and torsional
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geometrical stiffness of the deck per unit length of the bridge; C,,C, are the damping coefficients,
Fy , F, are the forcing terms, ¢ the deck half-width, the ()" denotes the “positive part” of the

function, L the bridge span.

In the present paper the forcing terms are due to pedestrian loads, that are modelled by means of
harmonic forces. The equations of motion are treated by substituting the piecewise terms (i.e. the
restoring force of the hangers) by an equivalent cubic approximation [6] [9], by rewriting the
equations of motion in a non-dimensional form, by expanding the unknown displacements as a linear
combination of sinusoidal function with unknown amplitude, and by adopting the multiple scale
method [14] to evaluate the analytical solution.

Here for sake of brevity, the application of the aforementioned procedure and the study of stability of
the obtained solutions are not reported, while the structural response is plotted for different loading
and geometrical parameters. The chosen geometrical parameters are here reported:

2 2
Wy = kd4 ' A:M’ /192=mde9 $q = S &g = Co 3)

Moreover, it has been introduced the parameter B that represents the ratio between the angular

frequency of the first mode of the footbridge and the one of the deck alone, that is the contribution of
the suspended system [6] [9].

3.  The dynamic response of suspended footbridges

The present paragraph describes the dynamic response of suspended footbridges induced by
pedestrian loads; which is modeled by means of a periodic function. To explore all the possible
dynamic behavior of the structure, different conditions of external and internal resonances are
investigated, varying the geometrical and load parameters.

Firstly, it has been investigated the response in the case of pedestrian load acting along the
torsional direction, that Bruno et al. [12] consider as representative of an out- of phase motion of
pedestrian walking in opposite directions on the two sides of the deck. In fig. 2 the frequency-
response curve of the elongation of the hangers is plotted for the case of a force acting along the
torsional direction and resonant with the first torsional mode of the structure and without internal
resonant conditions (o, denotes the detuning, i.e. the difference between the forcing frequency and the
externally resonant natural frequency of the system). The figure 2 shows that in a range of frequency
values there is the coexistence of multiple solutions, one of which is unstable and the other two are
stable. Considering the latest two solutions it can be observed that the greatest one, which is
associated with the activation of slackening of the hangers, may be also 5-7 times the smaller one. As
well known, the effective response of the structure depends on the initial condition of the motion.
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Figure 2. Frequency-response curves of elongation of the hangers: eccentric action on the deck nearly
resonant with the relative torsional mode with one halfwaves (frequency w4(1)); no internal

resonance with vertical modes: £=£4=0.006, p=6, A=2.71, Ay=17, F¢=0.01md g 0.6 I, F4=0

To verify the influence of some parameters on the structural response the aforementioned
external conditions have been investigated varying the intensity of the pedestrian load. In figure 3 the
frequency- response curve of the elongation of the hangers is plotted considering the torsional
pedestrian load acting with an eccentricity equal to 60% of ¢ the deck half-width, and varying the
intensity of pedestrian load: in detail two cases are taken into account: a load equal to 1% and to 0.5%
of the deck self-weight. The curves demonstrate that also in presence of load with no high intensity,
large amplitude oscillations may occur.

or T

w
o

F=1% mg

= stable solution
——unstable solution

0.15

Oy

Figure 3. Frequency-response curves of elongation of the hangers: eccentric action on the deck nearly
resonant with the relative torsional mode with one halfwaves (frequency ®4(1)); no internal
resonance with vertical modes: £=£,=0.006, =6, A=2.71, Ay=17, F4=0, two cases
Fe=0.01mq g 0.6 | and F¢=0.005my g 0.6 |
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In figure 4 the frequency- response curve of the elongation of the hangers is plotted varying the
eccentricity of the pedestrian load, it can be verify that an increase of the eccentricity of 30% of the
deck half-width induces an increase of 50% of the amplitude of the maximum amplitude of
oscillation, and of 100% of the amplitude of the frequency range in which multiple solutions are

possible.

aatas
datad
4.5+ .
ar¢ = stable solution
90% | ~— unstable solution
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Figure 4. Frequency-response curves of elongation of the hangers: eccentric action on the deck nearly
resonant with the relative torsional mode with one halfwaves (frequency w4(1)); no internal
resonance with vertical modes: £;=£;=0.006, =6, A=2.71, Xy=17, F4=0, two cases
F¢=0.005my g 0.6 | and Fy=0.005m4g 0.9 |

In figure 5 the solution for a torsional pedestrian load resonant with the first torsional mode of the
structure is plotted varying the load frequency; in this case there is also the presence of an internal
resonance between the first torsional mode and the third flexural mode of the structure (in figure 5 o3
denotes the internal detuning, i.e. the difference between the natural frequency 1:1 internally resonant
and the natural frequency externally resonant). Due to this circumstance, the structure manifests the
possibility of two kinds of response: one is similar to the ones described in the above reported figures
(that is the footbridges shows only torsional oscillations even if there is the coexistence of multiple
solutions), while the other is characterized by the activation of oscillations with both torsional and
vertical components. As can be seen, there is a frequency range in which 7 different solutions are
possible, three of which are unstable.

In this case the structure may show large amplitude vertical oscillations which cannot be estimated by

means of the “classical” models.
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Figure 5. Frequency-response curves of elongation of the hangers: eccentric action on the deck nearly

resonant with the relative torsional mode with one halfwaves 1:1 internal resonance with the
three half-waves vertical mode: £;=£;=0.006,=10,A=1.57,,_6=18,565=0.03,

Fy=0.015mg g0.8l, F4=0

4, Conclusions

This paper studies the nonlinear dynamic response of footbridges due to the unilateral behavior of the
hangers. In detail, the equivalent nonlinearization, proposed in [6][9], is here applied to study the
response of such structures.

The frequency — response curves of the elongation of the hangers have been plotted for different
load and geometrical parameters, showing the possibility of multiple solutions, some of which are
characterized by large amplitude and slacking of the hangers.

Moreover, in particular cases in which the geometrical parameters allows the activation of
internal resonances, the system may display large amplitude oscillations both in the vertical and in the
torsional directions, even if the force has only a torsional component.

The future research will analyze the structural response for a wide range of the geometrical and
load parameters, in order to verify the conditions that may inhibit the phenomenon of slackening of

the hangers.
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Inducing modal interaction during run-up of a magnetically
supported rotor
(MTR261-15)

Fadi Dohnal, Athanasios Chasalevris

Abstract: In general, introducing a parametric anti-resonance in a vibrating
system couples two of the many vibration modes and enables an energy ex-
change between those two. This feature is employed during the run-up of a
JEFFCOTT rotor supported by two active magnetic bearings. The vibration
performance at bearing stiffness modulation is compared to the well-known
performance at nominal bearing characteristics for a simple run-up at a con-
stant rate. It is shown that by introducing a specific periodic change of the
bearing stiffness coefficients, a mode coupling between two selected modes is
activated. This coupling impacts the maximum amplitude developed during
passage through resonance. At each critical speed transient vibrations of the
corresponding mode are excited. Due to the mode coupling, if one mode is
excited at a critical speed then energy is transferred to the other mode too.
On one hand, the maximum amplitude at the first critical speed is decreased
by modulation since some vibration energy is transferred to the highly damped
second mode where it is partly dissipated. On the other hand, the maximum
amplitude at the second critical speed is increased by modulation since some
vibration energy is transferred to the lightly damped first mode. The concept
is outlined briefly by numerical studies.

1. Introduction

The beneficial effect of a parametric anti-resonance on self-excited vibration was discovered
by TONDL in his pioneering work [15]. This concept was then transferred to general dynamic
systems [4], was interpret physically as an energy transfer between the vibration modes of
the original system and was validated experimentally for simple systems including a flexible
rotor [7]. A recent summary on this topic can be found in [5]. A parametric anti-resonance is
a specific parametric combination resonance which does not lead to a parametric instability
but enables an increased dissipation of vibration energy.

Active magnetic bearings as discussed in this paper offer the possibility to apply a desired
time-periodic variation of the bearing characteristics with an accuracy that enables a para-
metric anti-resonance phenomenon. In rotating machines fluid film bearings are commonly
used which inspired investigations on applying a variation of the fluid film bearing charac-

teristics via a bearing shell of variable geometry [1-3]. Journal bearings of variable geometry
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aim control the fluid film characteristic passively or actively. The recent works on the pas-
sive adjustment of the bearing geometry and thus of fluid film characteristics confirmed a
displacement reduction during passage through critical speeds. The promising concept of a
variable geometry bearing and its physical realisation via a moving bearing shell is followed
in very recent studies [10,12] and combined with the concept of parametric anti-resonance.
Adjusting bearing properties in a time-periodic manner has several benefits, like increased
stability limits that allow a larger operation range and decreased vibration amplitudes when
passing through critical speeds.

In the present investigation, a flexible rotor supported by bearings is investigated whose
dynamic properties are controlled semi-actively. Such a concept was proposed for active
magnetic bearings in [6,9] and validated theoretically and experimentally. It allowed the
steady-state operation of active bearings beyond the stability limit of the implemented PID
controller. The rotor configuration in [6] is summarised and its run-up characteristic at

parametric anti-resonance is discussed briefly.

2. System modelling

Preliminary theoretical investigations [8, 16] showed that introducing a periodic change in
the bearing stiffness is capable of increasing the rotor speed limit of a simple JEFFCOTT
rotor under the influence of a destabilising self-excitation. This approach is followed to
enhance the effective damping of an already stable flexible rotor shaft under the action of
unbalance and electromagnetic forces [9]. The experimental realisation is shown in Fig. 1: A
slender, flexible rotor shaft supported by two active magnetic bearings (AMBs). The shaft
is torsionally rigid and isotropic. A rigid disk (D) is attached to the shaft center and two
bearing studs (AMB1, AMB2). The disks are unbalanced. The total length of the shaft is

680 mm. The main system parameters are listed in Table 1.

AMBI1 D AMB2 coupling
ﬁl]ZIﬁ ﬁ[]Z[]ﬁ motor

680 mm

Figure 1. JerrcoTT rotor supported by two magnetic bearings [6]: (left) experimental test

rig, (right) corresponding dynamic model (taken from [6]).
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Table 1. Properties of the JEFFCOTT rotor.
bending stiffness of rotor shaft 41.4 Nm

total rotor length and diameter 680 mm, 8 mm

mass and axial moment of inertia of disc  1.20 kg, 1.40 - 10~% kg m?

mass of studs in AMB1 and AMB2 0.88 kg
radial bearing clearance 0.8 mm
specific load capacity 13 N/cm2

The electromagnetic forces generated in the AMBs depend on the rotor deflection and the
magnetic field. The magnetic field can be changed in a wide range by the current provided
to the electromagnets. The actual position of the rotor shaft is measured by inductive
sensors (two for each radial direction). These signals are processed by the real-time controller
hardware DSPACE which implements decentralised PID controllers to regulate the currents
provided by power amplifiers to each of the electromagnets and, hence, to levitate the rotor.
The parametric anti-resonance is implemented in parallel to this PID control by an open-loop

control of the proportional action,
kp(t) = kp (1 + esinvt). (1)

This realises a periodic change in the active bearing stiffness which is implemented in both

AMBEs in figure 1.

2.1. Nominal operation of an AMB

AMBs consist of pairs of electromagnets that are arranged, in general, in two perpendicular
axes enabling to control the rotor position within a plane. Since electromagnets can apply
only attracting but no repelling forces, two electromagnets are needed for each direction.
A typical arrangement of magnets in a radial magnetic bearing is shown in Figure 2. This
geometry has the advantage that the forces in z- and y-direction are (almost) uncoupled and
can be calculated separately.

The electromagnetic force generated by the AMB depends on its geometry parameters (cross-
section of the pole shoes, size of the air gap) and its electromagnetic properties (number of
turns, permeability) and is a strongly nonlinear function of these parameters. In practice,
however, the resulting force can be linearised close to a certain operation point. With the
rotor displacement from the centre position r and the initial gap width sg, the force-current-

displacement relationship of the magnetic bearing becomes

Fm—F+F—km<<#)2<80i_T)2>, )
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Figure 2. Geometry of the stator and forces in a magnetic bearing.

see [14] for more details. The magnetic bearing constant k., depends on geometry parameters
(cross-section of the pole shoes, size of the air gap) and electromagnetic properties (number
of turns, permeability). The nonlinearities of the magnetic force are generally reduced by
adding a high bias current ip to the control current i., so that the actuator currents are

given by
i+ =10+ and i =1ip — ic. (3)

It is common to set the bias current to half of the maximally available current (saturation or
limitations of the power amplifier) in order to exploit the full operation range. Linearizing
the magnetic force about the operation point (g, so) for small control currents and small

displacements results in

. 3 i2
Fl™ = 4k, (Z—‘;z - Z—gr> = kiie — ksr (4)
50 50

Herein, k; is the current-force constant and —ks the negative bearing stiffness,
io i3
ki = 4km—  and kg = 4kp—. (5)

Assuming a high bias current for pre-magnetisation and small control current 7. and radial
rotor deflection r. Herein, k; is the current-force constant and —ks the negative bearing

stiffness. Cross-coupling parameters are neglected.

The most widely used control concept for an AMB is a PID controller. The proportional

(kp) and the derivative actions (kp) constitute the stiffness and damping characteristics of
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the bearing while the integral action (k) assures that the radial rotor deflection r keeps

track with a predefined setpoint,

ic=kpr+kp 1'"+k1/rdt. (6)
Inserting into eq. (4) leads to

FN™ = et + dt + k‘ik‘l/r dt,  cm =kikp — ks, dm = kikp, (7)

with the active stiffness and active damping coefficients ¢, and d.,. Adjusting the control
parameters kp and kp determines the dynamic properties of the AMB. Both AMBs are
isotropic.

The discrete version of the control law in eq. (6) is realized on the digital real-time hardware
DSPACE by a processor board DS1103. Figure 3 shows the control loop of an active magnetic
bearing system in block diagram notation. It illustrates that the transfer functions of sensors,
filters, AD/DA converters and amplifiers have to be taken into account when analyzing the
system. In the most simple case, the transfer functions are all treated as constant and
independent of the frequency. This assumption can be made if the bandwidth of the hardware
is approximately ten times larger than the highest system frequency of interest, and if the
discretisation errors of the AD/DA converters are reasonably small.

The rotor position is measured by four eddy current sensors, two for the z- and two for the
y-direction. Collocation of the sensor and actuator is achieved by placing one sensor on each
side of the stator. The exact displacement in the centre of the bearing is found by averaging
both signals. This improves the control performance significantly. Before the sensor signal

reaches the AD converter, it is filtered by a low pass filter with Butterworth characteristic.

Controller hardware

[ [
[ [
! 1i(A) ic | Fme (N) r(m)
‘ psp [ DA Ll Amplifier | Magnetic > Rotor >
| Converter | Bearing
| | A
[ [
[ [
[ " [
A/D Lowpass Position
[ -—] -—] -
| Converter Filter Sensors |

Figure 3. Control loop of an active magnetic bearing system, see [14].

2.2. Equations of motion of a continuous shaft with discrete disks

The flexible, continuous shaft is discretised using finite beam elements. For a finite beam

element of length [;, bending stiffness EI, cross-section A and density p, the inertia and
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stiffness matrix become [11]

156 F22l; 54 +13l,
Mz/y:pAzi F22l; 412 F13l; 312
‘ 420 54  F13l;, 156 +£22I;
+131; =312 4221,  4l?

and

6 :F3l1 —6 :FBZZ
.y 2EI| F3lL 207 £3l, I
Ci” =5 9)
i -6  +£3l; 6 +31;

F3l; 2 +31;, 27
with respect to the element coordinate vector in z-direction and y-direction, respectively,

T T
qf:[zi Pyi  Rit+1 Qoyi+1] , qg:[yi ©zi  Yit1 Qozi+1] . (10)

Rigid disks of mass m, and moment of inertia ©, are attached at discrete positions along
the shaft. Their symmetry axis is aligned with the central rotary axis. For rigid disks that
are attached to the end points of a finite beam element, the corresponding mass and stiffness

matrices have diagonal form and read

Mrq
@ .
M, = " . (11)
Mrit+1

@ri+1

The element matrices in egs. (8), (9) and (11) are assembled to the global system matrices

Mi/y, Ci/y and M, with respect to the global coordinate vectors

Y

T T
qZ = |: 21 Py1  Zn Pyn :| y AT = |: Yyr Pz1 0 Yn  Pzn i| . (12)

Adjusting the control parameters kp and kp determines the dynamic properties of an AMB.
With the mechanical properties in eq. (7), the stiffness and damping matrices with respect

to the global coordinate vector have diagonal form with entries at the location of the AMBs,

0 0

Cm1 dml
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(13)

The rotor system is excited by unbalance forces originating from eccentricities g; of the five

rigid disks of mass m; (including the bearing studs). The unbalance force vectors can be

written as
. T
f. = —(cos (1)) [ mier 0 moea 0 ... mses O ] s
T
fy = —(sin (p(t))“ [ miel 0 moae2 0 e ms5Es 0 i| 5 (14)

where ¢(t) is the rotary angle of the shaft counted positively in negative z-axis according to

the definitions in [13].

The element matrices from egs. (8), (9) and (11) are assembled to global system matrices with
respect to the global coordinate vectors in eq. (12). Together with the global system matrices
in eq. (13) describing the electromagnetic actions and the unbalance forces in eq. (14), the
equations of motion of the rotor system at constant speed 2 with respect to the global

coordinate vector q = [q*7,q¥'7]7 become
M§+Dg+Cq="f (15)

with the assembled coefficient matrices and the global force vector

P+ M, 0 D,, -QG,
M = , D= ,
0 MY + M, QG, D,
i+ Cpn 0 £
c=| &7 , f= . (16)
0 C!+C,, £

The only source of damping is the control strategy in the AMBs. The lateral vibrations in
y- and z-directions are coupled by gyroscopic effects of the rigid disks, however, within the
present investigation, the influence of gyroscopic effects on the first is negligible. For safety
reasons, retainer bearings acting at discrete positions along the rotary shaft are applied but
these are not in the focus of the present study. The operational deflection of the present
rotor is assumed to be sufficiently small such that rotor-stator contacts are excluded and the
linearisation of the electromagnetic force in eq. (4) remains valid.

A time-periodic stiffness variation in the rotor system is realised in the AMBs by introducing
a time-dependent proportional action kp(t) in the PID controllers [9]. This control parameter
is changed periodically for both AMBs simultaneously according to eq. (1) resulting in the

global time-periodic stiffness matrix
C(t) = Co + £ Cy sinvt, (17)

where Cyp, C; are constant coefficient matrices.
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3. Parametric anti-resonance at steady-state operation

Numerical calculations are performed in order to find a proper parametric anti-resonance
for this system. The discretised continuous shaft is excited by unbalance forces originating
from the rigid disk. The discretised equations are solved by direct numerical integration for
different values of the control frequency v of the time-periodicity introduced in eq. (1).

Initially, the rotor shaft rests at the centre position q = 0. Since unbalance forces f acts on
the rotor system, the rotor shaft is deflected from this initial condition to a new deflection
that rotates with the rotor speed ). The transition between these two states is described by

free vibrations. A sample time history for the radial deflection of the disk D

Irpl = \/yb + 2b (18)

at constant, nominal AMB characteristics (¢ = 0 in eq. (1)) and at a constant rotor speed
of © = 60 rad/s is shown in Fig. 4. This rotor speed is below the first critical speed.
Transient vibrations of the rotor are introduced by an initial deflection of the rotor from
the steady-state deflection due to unbalance. The first three natural frequencies obtained
from an eigenvalue analysis of the undamped system in eq. (15) at rest are listed in Table 2
together with the resulting parametric anti-resonance and resonance frequencies. Evaluating
the analytical predictions in [8] reveals that for the present system, parametric anti-resonance
can be only achieved at the difference type v ~ |wi — wi|/n. Note that the time history in
Fig. 4 describes the radial deflection of a disk in a coordinate system that is fixed to the

disk. Consequently, the frequency components observed are modulated by the rotor speed.

Now, the periodic open-loop control in the AMBs is switched on following the control law
in eq. (1). First, the vibration behaviour is investigated at a control amplitude of ¢ = 0.20
and a fixed control frequency v in the range between 0 and 300 rad/s. Numerical integration
of the equations of motion in eq. (15) at ¥ = 0 rad/s results in the time history already
shown in Fig. 4. All time histories in the frequency range of interest are summarised in

the contour plot in Fig. 5. Light areas depict low values and dark areas high values of the

defl. 7p in pm

time in s

Figure 4. Rotor deflection of disk D under the action of unbalance forces for ¢ = 0.
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disk deflection |rp|. Additionally, frequency lines of parametric resonance and combination
resonance frequencies are plotted for the orders n =1 up to n = 5 on the right hand side of
the figure. Their line thickness is scaled by the order n. The frequencies listed in Table 2

are of order n = 1 and are plotted as lines with the largest thickness.

300 A
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200 A

150 A

control parameter v in rad/s

—
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0 2w wi tw fwp —wi
time in s n n n

Figure 5. Numerically calculated radial deflection rp in dependency of the control param-

eter v at e = 0.20 (taken from [6]).

All possible frequency combinations v, are divided into three sets corresponding to the three
block on the right hand side of the figure: the two sets 2w;/n and (wr + wi)/n that corre-
spond to parametric resonances while the set |wi — w;|/n which corresponds to parametric
anti-resonances. These frequency lines help encoding the complex distribution of the time
series. At each of these frequencies a dense frequency interval exist within which the system
vibrations are either excited or damped. If these frequency intervals overlap, it depends
which effect dominates. In general, the destabilising effect at frequencies 2w;/n dominates
over the damping enhancement at parametric anti-resonances.

The transient behaviour of the nominal rotor in Fig. 4 corresponds to v = 0 in Fig. 5.
Switching on the periodic open-loop control of the AMBs following the control law in eq. (1)
changes the transient behaviour. Destabilising effects, a decrease in effective damping, are
found where the control parameter v is in the vicinity of the frequencies (w; + w;)/n. The
corresponding parametric resonance frequencies can be identified by comparison with the
frequency lines on the right hand side, e.g. the shaded area at 218 rad/s corresponds to the

frequency (w1 + w2)/2. Indentations in the distribution towards lower time values in Fig. 5
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Table 2. First natural and parametric frequencies of the JErFrcoTT rotor at rest, Q = 0.

natural frequencies

w1 = 164 rad/s, we = 272 rad/s, w3 = 339 rad/s

main parametric resonance frequencies
2w1 = 328 rad/s, 2wy = 544 rad/s
w1 + w2 = 436 rad/s, w1 4+ ws = 503 rad/s

main parametric anti-resonance frequencies
|wi — wa| = 108 rad/s, |wi —ws| =174 rad/s
|we — ws| = 67 rad/s

give hints for a parametric anti-resonance. The main parametric anti-resonance is found at
the white region close to the frequency 170 rad/s. This is the optimum control frequency to

be chosen for the proposed open-loop control in eq. (1) for this specific rotor system.

4. Parametric anti-resonance during run-up

The run-up characteristics of the JEFFCOTT rotor supported by two active magnetic bearings
whose proportional control action is varied periodically are shown in Fig. 6. At constant
run-up acceleration, the first critical speed is passed at 2 s showing a major amplitude peak
and the second critical speed at 6 s at very small. Activating the optimum parametric
anti-resonance w3 — w; identified in the previous section with a strength of ¢ = 0.2 mode
coupling is introduced and energy transfer between the corresponding modes is activated.
This coupling leads to an equal distribution of the maximum amplitudes at both critical
speeds during run-up. At each critical speed transient vibrations of the corresponding mode
are excited. Due to mode coupling, one mode is excited at a critical speed and energy is
transferred to the other mode. On one hand, the maximum amplitude at the first critical
speed is decreased due the highly damped second mode. On the other hand, the maximum
amplitude at the second critical speed is increased due to the lightly damped first mode.
Note that the decrease of maximum amplitude is not only achieved at the disc position but

also at the stud positions (semi-active concept).

5. Conclusions

During run-up of a rotor, transient vibrations are introduced when passing through critical
speeds which excite the corresponding vibration mode. A mode interaction is artificially
achieved by employing a parametric anti-resonance via the bearing controller. Due to this
mode coupling, if one mode is excited at a critical speed then energy is transferred to

the other mode, too. On one hand, the maximum amplitude at the first critical speed is
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Figure 6. Passage through critical speeds at constant acceleration: (top) speed charac-
teristic, (centre) time histories at nominal, constant bearing characteristic, (bottom) time
histories for induced parametric anti-resonance at 170 rad/s and e = 0.2. Disk deflection

(black) and bearing studs (gray) are shown.

decreased by modulation since some vibration energy is transferred to the highly damped
second mode where it is partly dissipated. On the other hand, the maximum amplitude at the
second critical speed is increased by modulation since some vibration energy is transferred
to the lightly damped first mode. It has to be highlighted that the decrease of maximum
amplitude is not only achieved at the disc position but also at the journal positions (semi-

active concept).
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Modelling of mechatronic systems using bond graphs
(MTR029-15)

Peter Frankovsky, FrantiSek Trebuna, Darina Hroncova, Alexander Gmiterko,
Jan Kostka

Abstract: The work shows the use of Bond Graph methodology of modeling electromechanical
system consisting of DC motor and gearbox. As an example the electromechanical model is solved by
this approach at the level of its physical behavior. This paper introduces a graphical, computer aided
modeling methodology that is particularly suited for the concurrent design of multidisciplinary
engineering systems with mechanical and electrical components, including interactions of physical
effects from various energy domains. In contrast with the classical method, where the equations for
individual components are created first and then the simulation scheme is derived on their basis, the
described method uses the reverse procedure. Inthis paper the method of generation of system
equations is discussed. From a bond graph diagram of the system, using a step-by-step procedure,
system equations may be generated. As a starting point a model of electrical and mechanical is taken.
The differential equations describing the dynamics of the system are obtained in terms of the states of
the system.

1. Introduction

The methodology of bond graphs and algorithmic progress of creation describing state equations
is useful in analyzing dynamic systems with the transformation of various forms of energy (mixed
energy systems) occurring in mechatronic systems. Principal advantages of the method are the ability
to anticipate formulation properties before writing equations, the availability of a simple check
for correctness of the initial system relations, and the specification of a systematic reduction
procedure for obtaining state equations in terms of energy variables. Using a multi-energetic approach
that allows the modeling of interdisciplinary models, it explores the theory and method to automate
the process of the generation of the state equation. This paper explores the bond graph technique
as a modeling tool to generate state models. Mechatronic design requires that a mechanical system
and its control system be designed as an integrated system. This contribution covers the background
and tools for modeling and simulation of physical systems and their controllers, with parameters that
are directly related to the real-world system. The theory will be illustrated with example of typical
mechatronic system such as electromechanical system. We will discuss a systematic method for
deriving bond graphs from electromechanical system in this article. How to enhance bond graph
models to generate the model state equations and for analysis is presented. The state equations

generation and block diagram expansion of causal bond graphs is treated.
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2. Electromechanical system

This chapter describes the procedure for compiling the bond graph, and then power equation of state
of an electromechanical system. Electromechanical system (Fig. 1) is composed of a DC motor
and gearbox. Formalism of bond graphs and algorithmic approach to generating differential equations
describing is just useful in analyzing dynamic systems with the transformation of various forms
of energy (mixed systems - mechanical, electrical and other) occurring in mechatronic systems.
Furthermore, this analysis electromechanical system using the bond graphs proves it.

The aim of the simulation using Bond Graph is for us to build the model of electromechanical
system. The article describes to use graphical formulation of system modeling techniques
for engineering systems involving power interactions which in English literature are named Bond
Graphs to solve system with electrical and mechanical parts. In various parts of the contributions
is given formalism making procedure for establishing performance graph electrical power
and mechanical parts of system and subsequently derived an equation of state of the system. Solving
electromechanical model consists of a voltage source, motor, gearbox, as shown in Fig. 1.

4

Voltage

source

Motor Gearbox
Figure 1. Model of the electromechanical system.

At first the electric part of the model is simulated and secondly the mechanical part
of the electromechanical system [1], [3].

Voltage source Motor r, G2

of the motor of the motor

Figure 2. Parameters of the electromechanical system with domain information.

Scheme of model components is illustrated in the following figure (Fig. 2) where: u, - voltage
source, U; - induced voltage, o, - angular velocity in the motor output, M;, - drive torque at the output

of the electric motor, 1, — moment of inertia of the rotor engine, R;; - mechanical resistance of the
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motor, Ry, - gearbox mechanical resistance, ®,- angular velocity of the gearbox output, 1, - moment

of inertia of the load.

3. Electric domain of the motor

In this subsection is shown the procedure for establishing bond graph from previous task. Description
of the flow of current and voltage in the scheme of DC motor and schematic diagram of electric
domain of the motor is shown in Fig. 2. The electrical part of the model and the description of voltage
and current flow are shown in Fig. 3, [4]. The process of construction of the bond graph and
consequently the equation of state is described in the steps below [1]:

Step 1 - We identify the individual components of the system according to the first step
of construction of the bond graph. This electrical system contains a source of effort SE
with voltage uz (SE: uz), inertia element | with inductance L (I:L), the resistance R with resistor R
(R:R) and gyrator GY — DC motor as the inverter electrical power to mechanical power of acting
rotary motion.

Step 2 — We indicate in the ideal-physical model per domain a reference source — effort voltage
Urs (reference voltage with positive direction) in Fig.3. The references are indicated in the ideal
physical model: the ideal velocity u,,=0.

Step 3 — Identify all other efforts (voltages) and give them unique names uy, u,, uz (Fig. 3).

Figure 3. Electrical system — efforts with unique names uy, u,, uz and reference voltage Ups.

Step 4 — Draw these efforts (electrical: voltages), graphically by 0-junctions (Fig. 4), [5].

Step 5 — Identify all effort differences (electrical: voltage = effort) needed to connect the ports
of all elements enumerated in step 1 to the junction structure. When checking all ports of the elements
found in step 1 linear voltage differences, u;, and uy; are identified: us-u,=ujy, Up-Us=Ups.

Step 6 — Construct the voltage differences using a 1- junction and draw them such in the graph.
We connect 1-junction with O - junction. After this step individual elements are connected to this
structure. The result is the following bond graph of the electric motor in Fig. 4.

Step 7 — Connect the port of all elements found at step 1 with the 0-junction of the corresponding
voltages or voltages differences (Fig. 4).
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Figure 4.  Connecting elements R, I, GY, SE with 0-junction and marking reduction at 0-junction

applying the simplification rules.

Step 8 — Simplify the resulting graph by applying the simplification rules (Fig. 4). A junction
between two bonds can be left out, if the bonds have a through power direction (one bond incoming,
the other outgoing). Two separately constructed identical effort or flow differences can join into one

effort or flow difference.
R:R

uRfi

uy=u, u; M,
SE:uy _IVI 1i |TV GY TVl
1

uLLi

LI:L

Figure5. Complete bond graph of the electrical part of motor with signal direction and causality.

Step 9 — Determine the signal direction and causality. Causality establishes the cause and effect
relationships between the factors of power. If voltage u; = ug then applying the reduction in 1-junction
and complete bond graph of the electrical part of motor with signal direction and causality as shown
in Fig. 5.

In bond graphs, the inputs and the outputs are characterized by the causal stroke. The causal
stroke indicates the direction in which the effort signal is directed (by implication, the end of the bond
that does not have a causal stroke is the end towards which the flow signal is directed).

There are two ways of describing an element's behavior (e.g. effort in, flow out vs. flow in, effort
out) as different causal forms. Note that the two alternative causal forms may, in general, require
quite different mathematical operations. The causal form we use, i.e. which variable we select
as input and which we select as output, can make a lot of difference. For example, the required

mathematical operations may be well defined in one causal form, but not defined at all in the other.
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The causal bond graph of this system can be derived, in which the inputs and the outputs
are characterized by the causal stroke. This is the starting point, from which we continue toward

the differential equations describing the dynamics of the system.

4. Mechanical part of the motor and gearbox

In this part we consider a model of mechanical part of the motor and gearbox (Fig. 6). Components
of model is illustrated in Fig. 6 where: w;- angular velocity of the motor output, M, - drive torque
at the output of the electric motor, I, — moment of inertia of the rotor engine, R;; - mechanical

resistance of the motor, R, - gearbox mechanical resistance, o, - angular velocity of the gearbox

output, Iz - moment of inertia of the load. Weight of the gearbox is neglected.
Gearbox

domain
of the motor

Figure 6.  Schematic diagram of the mechanic domain of the motor and gearbox.

This part shows the procedure for establishing bond graphs step-by-step. We identify
the individual components of the system according to the first step of construction of the bond graph:

Step 1 - We identify the individual components of the system according to the first step
of construction of the bond graph. This electrical system contains a source of effort SE with moment
of drive torque at the output of the electric motor My, (SE: My), inductor | with inductance L (I:L),
mass m (I:m ), moment of inertia of the rotor engine Iy (I:1; ), moment of inertia of the load 17 (I:13),
the resistance R with resistor Ry, , R, ( R:Ryz, R:Ry ), and transformer TF — in the electromechanical
system it is gearbox (TF:ry/ry).

Step 2 — We mark the reference angular velocity ws in rotational movement and the reference
velocity v, in translational motion (Fig. 7). The references are indicated in the ideal physical model:
the ideal velocity e =0 and Ve =0.

Step 3 — In the model of the mechanical system to identify and select all junctions with different
velocity (flows) and give them a unique name. In the solution model to name and mark velocity: o,
).

Step 4 — Mark significant points with common speed (the velocity reference is not because

itiszero) by the type of junctions. Velocity detected in step 3 draw using 1-junction as
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in the mechanical system. The reference velocity is not rendered because it has zero velocity.
Velocity marked using 1-junction.

Step 5 — Differences in velocities are identified. These are used to connect the ports. We have
no differences velocities in the system.

Step 6 — Mark junction 0 and construct difference velocities using the junction 0. We have
no difference velocities in the system and we have not connected 0-junction. Junction structure is now
ready and can be connected to individual elements. Connect the transformer to the junction 1. Source
of effort, SE: M, , is connected.

Step 7 — All elements are connected to the appropriate junctions, as shown in Fig. 7.

Step 8 — Bond graph is simplified according to rules of simplification.

Step 9 — Integral causality is marked in simplified bond graph (Fig. 7).

I‘IM LI,

MIM ®, MIZ‘F(BQ

1 |_V TF l_V 1
-r2/r1 ®2
MRII‘LUL)I MRlz‘sz

electric domain
of the motor

R:R,, RiRy,
Figure 7. The final bond graph of the electromechanical system with connecting the individual

elements to the 1-junction and marked causality.

The inertia characteristics of the load are contained in the moment of inertia I,. This section
derives the bond graph of reduced mechanical parts. We assemble to the signal diagram and then the
state diagram. The results of bond graphs applications are shown in the bond graph diagram of the
mechanical part of motor and mechanical part of gearbox (Fig. 7). Informulating the dynamic
equations that describe the system, causality defines, for each modeling element, which variable is
dependent and which is independent. By propagating the causation graphically from one modeling

element to the other, analysis of large-scale models becomes easier.

5.  Model of the mechanical part- causality collision

In this part we derive the bond graph of a DC motor and of gearbox, from which we create block
scheme. According to the rules for the compilation of bond graph of the electromechanical system
designed bond graph marked with integral causality. The resulting graph of motor and a mechanical
part of gear box is after editing in the form (Fig. 8).

In this system the load is fixed at the end of a long shaft. At the end of the shaft is the same

angular frequency o, as in output from the gearbox. Power bond is connected to junction 1 at the end
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of the transformer. Final bond graph of the electromechanical system with conflict of the causality

in 1-junction is shown in Fig. 8.

Conflict
R:R LIy of the causality
ukfi MIM‘FQ)1 My =M,-
uz=u u; M M M
SE:u, Z—% 1 I—IV GY —hV| 1 |_IV TF |_27 1

! v @1 @, @1 -r2/r1 @ ©>

U, }1 MRll‘Lwl MRlz‘L(‘)z

L.L R:R,, RRy,

Figure 8.  The resulting bond graph of the electromechanical system with designating the conflict
of the causality.

There are two ways to resolve this problem of conflict of causality. The first method assumes
a certain torsion flexibility of a long shaft to the gearbox output. This is physically justified because
it is a perfectly rigid body. The second way is used if we want to have a model with fewer equation
of state. In this case we accept a derivative causality by drawing it in the state diagram.

If in the first case of the solution causality collision problem is assumed a certain torsional

flexibility of a long shaft gearbox output, then in Fig. 9,
Gearbox

|_ ®, k @y
.V,
Y¥V L

]

Figure9.  Long shaft with torsion flexibility.

where: k — is constant stiffness of the shaft, », a m; — are the angular velocity of the long shaft.

R:R LIy C:k LI,

N L

_ ; M M, M,
SE:UZ% 11|LIVGYThV|1|TVTFITV]_ 'TZVOTBV'1

Y = @,
up, Li Mm.L‘A’. L
LL RR, RiR,

Figure 10. Bond graph of the electromechanical system assuming that we consider compliance

torsionally long shaft gearbox output.
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In the second method solving the problem of causality accepted the derivative causality, which
is plotted in the block diagram. We get the model with fewer equations of state. Bond graph of motor

and gear with consideration of the derivative causality in inductor I: I, is written in the form (Fig. 11).

Derivative

R:R LIy causality
M, =M,-
ulel MIM‘F(OI 1Z 2
z=1y, i Mh 1 M2
SE:uy; ——pi 1 — GY —i 1 F—p TF F— 1

O Y < @ ©>

uLRLI MRh‘Lﬁh Rlz‘sz

I:L R:Ry, R:R,,

Figure 11.  Final bond graph of the electromechanical system with derivative causality.

6. Expansion to block diagrams

The next section describes a three-step transition from the bond graph to the block diagram for the
model of the electromechanical system consists only of the motor and gearbox (Fig. 3). Block
diagram will be prepared for the bond graph in Fig. 11. We consider the ideal source effort SE:u,
and derivative causality in integrator I: 1. All symbols of nodes and elements of the bond graph shall
be marked as shown in Fig. 12, [6].

Individual edge bond graph will be replaced by a pair of signal edges and circled symbols nodes
shall be connected by these pairs of signal edges (Fig. 12). The orientation signal edge is done
in accordance with the marked causality (Fig. 11). Where it is intended that the ideal source of effort

is the voltage already is a bond graph with the pair of signal edges in the form shown in Fig. 12.

(D (D @

N—1 N—1 N—%
ur, i M Wy Myz s
Uz, Uy My M, M,
6B (1) G o (1) w T8 w1
N—1
URr i Mg (O] Mgl o

®) ®) ®

Figure 12. Expansion of bonds to bilateral signal flows of the elevator model.

All nodes are replaced by the block structure. Using the rules set out in the literature will be set

up state diagram shown in Fig. 13, which serves as a basis for drawing up the equation of state.
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Figure 13.  The resulting block diagram of the model in standard form.

Drawing up models of dynamic systems is always based on certain assumptions. Any real system
can be complicated. In engineering practice is an effort to assemble the simplest models as possible.
But simplification must be to the extent that the model gave us the answer to the problem studied.
Therefore, when compiling models it is necessary to decide whether some of inductors, capacitors
and resistors can be neglected. Such a simplification, if bad, may lead to such a final model,
that might be difficult in next applicaton. In bond graph it shows up as algebraic loops or we cannot
avoid using a derivative causality.

Collision of the causality is called situation, it can not be in one or more junctions defined
integral causality and must be assigned the derivative causality, which is a non-preferred.
This is a sign that the appropriate inductor and capacitor does not represent the state variable. Such
elements are also called dependent energy storage as they are in a certain relationship with some
algebraic stock positions. An example of such a situation with derivative causality is well designed
system Fig.13.

7. Transition from state scheme to state equation

In the state diagram of Fig. 13 has the inductor I, differential causality. Energy variable momentum
L, is not a state variable. State variable for this dynamic system are: inductance ® and momentum L;.
Energy variable L, is with state variable in algebraic relationship. Therefore, before we write the

equation of state, we must see this relationship.

dL(t)_ 1, dut)
dt  n.a,  dt ©)

From block diagram (Fig. 13) for state variables we write (marked IM=1,;):
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at =UL, (6)
dL
dlt(t): My - )

We obtain from block diagram:
u (t)=uz (t)-ua(t)-ui(t). ®)

First state equation is in form:

), )R 0)-C-1,0). ©

From block diagram:
M (t):Mh(t)*MRll(t)*Ml(t)- (10)

Second state equation is in form:

CI>(t)—w-ti(t)

d)_c | a
dt LOQ 0
where: Q=|1+ 2|z . (15)
n?ly,
The equation of state of the electromechanical system are in the matrix form:
R C
do(t)] |+ 7 ot)] 1
o L Iy
t
= . +| _|.ult). 15
L) Ruy Re g0 0 )
| | S o nly
LQ Q

The state variables for this dynamic system are the inductance ®(t) and the momentum L(t)

and their another solution may be for example in Matlab/Simulink [2, 7].
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8. Conclusions

This article presents techniques for representing elements of combination systems mechanical
and electrical in the abstract form of bond graphs instead of the schematic diagrams usually used
to show electromechanical system. For some this may seem to be an unnecessary step away
from physical reality, but it has useful consequences. Bond graph is a precise way to represent
a mathematical model of the dynamic system. Often schematic diagrams are not entirely clear about
whether certain effects are to be included or neglected in the model. For many systems involving two
or more forms of energy, such as mechanical and electrical, there are no standard schematic diagrams
that clearly indicate assumptions made in the modeling process. The methodology of bond graphs
and algorithmic progress of creation describing state space equations is useful in analyzing dynamic
systems with the transformation of various forms of energy (mixed energy systems) occurring
in mechatronic systems [8, 9]. Principal advantages of the method are the ability to anticipate
formulation properties before writing equations, the availability of a simple check for correctness of
the initial system relations, and the specification of a systematic reduction procedure for obtaining
state equations in terms of energy variables. Using a multi-energetic approach that allows the
modeling of interdisciplinary models, it explores the theory and method to automate the process
of the generation of the state equations. These are typical of mechatronic applications. This paper
explores the bond graph technique as a modeling tool to generate state models. The theory will be
illustrated with example of typical mechatronic system such as electromechanical system. We present
a systematic method for deriving bond graphs from electromechanical system in this article. How
to create bond graph models to generate the model state equations and for analysis is presented. The

state equations generated from block diagram and causal bond graphs is treated.
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Nonlinear transverse vibrations of a beam under an axial load
(VIB106-15)

Pawet Fritzkowski, Krzysztof Magnucki, Szymon Milecki

Abstract: The paper is devoted to transverse in-plane vibrations of a beam
which is a part of a symmetrical triangular frame. A mathematical model
based on the Hamilton principle, formulated for large deflections of the beam
subjected to dynamic axial excitation is presented. A nonlinear ordinary differ-
ential equation for the vibration amplitude is derived by means of the Galerkin
method. Dynamics of the system is studied numerically for various values of
the system parameters, including the excitation amplitude and frequency. The
amplitude is taken to be below or above the static critical load. The effect of
the parameters on behaviour of the system is analyzed. Several tools are used
to specify the vibrations type, e.g. the Poincare maps and the Lyapunov ex-
ponents. The regions related to regular and chaotic vibrations are determined
in parameter planes. They are compared to the stable and unstable regions of
the abbreviated (linear) dynamical system.

1. Introduction

Behaviour of elastic structures like beams/columns under axial loads is a classical problem,
studied mainly in the context of static or dynamic stability. Timoshenko and Gere [7]
discussed elastic buckling of a wide variety of structural elements, including bars and frames.
An extensive review of stability problems was presented by Bazant and Cedolin [1]. Virgin
[9] focused attention on the interplay between vibrations and stability in axially loaded
structures. Parametrically excited systems of this type, described by linear or nonlinear
time-periodic models, were considered by McLachlan [6], Gutowski and Swietlicki [3], and
Buczko [4]. The general theory of dynamic stability of elastic structures and its applications
were presented by Bolotin [2].

This paper is devoted to nonlinear vibrations of a beam which is a part of a symmetrical
triangular frame. Recently, Magnucki and Milecki [5] studied static buckling of such a
system. However, closed planar frames, including the triangular ones, are rarely analyzed
in the literature related to the field of dynamics. Moreover, vibrational problems for frame
structures are usually solved by using the finite element approach (e.g. see [8,10]). In what
follows, the cross-beam of the triangular frame is appropriately isolated from the system,

which simplifies both the model and analysis.

175



2. Mathematical model

Consider a symmetrical triangular frame (see Fig. la) whose arms (1) of length L, are
connected via a cross-beam (2) of length Lo. The arms have a rectangular cross-section
(b x ¢), whereas the cross-section of the latter member has the shape of a circular ring:
its outer and inner diameters are denoted by di1 and do, respectively. The vertex C of the
frame is fixed while the others, A and B, are simply supported out-of-plane and subjected

to in-plane load.

2)

Figure 1. The mechanical system to be considered: a) the full triangular frame, b) the

cross-beam isolated from the system

In paper by Magnucki and Milecki [5] one can find, among others, the relations between
the load F' and the internal forces related to the cross-beam: the axial force N2 and the
bending moment M,. Now, in-plane vibrations of the system are considered, i.e. the load
is assumed to be a function of time, F' = F(¢). To simplify dynamic analysis, the beam
is isolated from the structure as can be seen in Fig. 1b. The beam is treated as simply
supported but subjected to the axial force N2(¥) and opposite end moments Ma2(t). For
simplicity energy dissipation is neglected.

In case of large deflections w(x, t) the normal strain is given by

? ow
€z ) with  u(z, z, t) = —Zo— (1)

w1 (0w
T o 2\ oz
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where u denotes the axial displacement. The elastic strain energy of the system has the form

v L7 Pw\® 1, (ow\
_ 1 2 — = gw - ow
U_2E//Edi2da; 2E/ Jy2<&r2> +4A2(ax>:|dx, (2)
0 Ay 0

in which E is Young’s modulus and A = 7(d} — d3)/4, Jy2 = 7(d} — d§)/64 are the area of

the cross-section and its moment of inertia. Kinetic energy of the beam and the work of the

load can be expressed as

L ow? o
w w
0 0

where p denotes the material density. Note that the effect of the moments M4z are not

included at this stage. Applying Hamilton’s principle

ta
5 [(T-U+W)dt=0 (4)
1

t

leads to the following equation of motion:

pAQ o2 +EJy27 — —FA 8758 022 +N2('L’) 922 =0 (5)

*w w3 ow\? 9w w
ox*t 2 2

We focus on the first mode of vibration and approximate the displacements by

w(z, t) = walt) p(@)  with o(z) = — {sin (%) — aosin (3%'”)} ©6)

T 14 ap 2

where g is a positive constant. Such a mode shape, ¢(z), allows to incorporate (indirectly)
the effect of the end moments M2 into the model. Using the Galerkin method we obtain

the approximate equation for the modal amplitude:
g+ c [1—N2(t)}Q+C3q3 =0, (7

where ¢ = we/d1 and Ng is the relative (dimensionless) axial force. The coefficients ¢; and
c3 are dependent on the beam parameters, and can be determined by considering the static

case (§ = 0) and the relationships given in [5]:

14902 =2 31— 4o + 3602 + 8lag n*Ed?
C1 = p) 72N2cr7 C3 = = p) p) 1 (8)
1+ a5 pA2L; 8 (I+a)*(1+af) pL;
where
1 /k—1 Noacr E WzEJzﬂ
== = Nooy = 9
@o 3 97/{’ Nir ) 2cr L% ( )
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Note that NQEO is the Euler critical axial load for a beam/column, while N, is the critical
force that corresponds to the static critical load F¢, calculated for the triangular frame
(see [5]). The quantity Ny in (7) is related just to Nocr, that is, Na(t) = Na(t)/Nocr.

In the example below we take Na(t) = asin(wt). It is convenient to write Eq. (7) for

this particular case in the fully non-dimensional form:
i+ [1—asin(Q7)]q+7v¢" =0 (10)

in which 7 = wit, @ = w/wi where w1 = /c1 is the first natural frequency of a load-free
beam and hence v = c3/wi = c3/c1. Now obviously, ¢ = ¢(7) and ¢ denotes the derivative
with respect to the dimensionless time 7. Without the nonlinear term (y = 0) Eq. (10)

reduces to the well-known Hill’s equation.

3. Vibrations due to a harmonic load

We focus attention on a symmetrical triangular frame with the following parameter values:
Ly = 1352 mm, dp = 50 mm, d; = 60 mm, « =7/9, £ =2- 10° MPa. The area of the arms’
cross-section is constant, A; = 1000 mm?, while the dimension b (and ¢ = A1 /b) is altered.
This particular set of values is used in the railway industry. We assume that the structure is
subjected to harmonic load and the axial force on the cross-beam is Na(t) = a sin(wt) where

w = 27 f. Equation (10) is solved for the initial conditions: ¢(0) = 1073, ¢(0) = 0.

5

Figure 2. Regions of stable (white) and unstable (grey) motion of the beam (b = 20 mm)

and the stability boundaries of the linear system

First, the results obtained for b = 20 mm are thoroughly presented. Figure 2 shows

the parameter plane (€2, a) with regions of stable and unstable motion of the system. More
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Figure 3. Maximal value of the quantity X,, and the stability boundaries of the linear

system

precisely, the areas filled with grey relate to positive values of the maximal Lyapunov ex-
ponent (MLE), A\;. The map has been computed with steps Af = 1 Hz and Aa = 0.1.
The Lyapunov exponents have been evaluated using the Gram-Schmidt orthogonalization
procedure and renormalization. Taking into account relatively slow convergence of the nu-
merical computations in the analyzed undamped case, vibrations are classified as chaotic if
A1 > 0.02.

For comparison purposes, stability boundaries for the abbreviated system (y = 0) are
shown. The curves correspond to 17-periodic (solid line) and 27-periodic solutions (dashed
line) where T' = 1/f [2,3,6]. Here, the dependencies a(2) have been determined by means
of the Rayleigh method, by assuming the solutions in the forms [3]:

q(1) = Bo + C2sin(Q1) 4+ D2 cos(Q7) + C4sin(2Q7) 4+ Dy cos(29Q7) (11)

q(1) = Cisin <%T) + D1 cos <%7‘) + Cy sin (?T) + D5 cos <?T> (12)

As can be seen, the curves coincide considerably with the numerical results based on the

and

nonlinear model. However, these two cases are not fully comparable. Unstable solutions
of the Hill equation (or the Mathieu equation) increase unboundedly with time, while the
nonlinear term ~y¢® causes amplitude limitation [6]. Thus, deflections of the beam become
very large but remain bounded.

This type of behaviour can be detected by analysis of the displacement and velocity
amplitudes. Let X = [q, 4|7 be the state vector of the system. Character of the system
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Figure 4. Quasi-periodic and chaotic vibrations of the beam for f = 160 Hz: a) a = 0.5,
b)a=12,c)a=138
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Figure 5. Periodic vibrations of the beam: a) 8T-periodic motion (f = 160 Hz, a = 4),
b) 2T-periodic motion (f = 195 Hz, a = 4.5)

evolution can be assessed, for example, by the measure

X))l

Xrei(7) = ; (13)
IX(0)l

where || - || denotes the Euclidean norm. The maximal values of X;e1(7) found in the range

0 <7 <5-10* are plotted in Fig. 3. The contour line corresponding to X, = 100 fits well
with the curves a(f2), especially for lower a. As the load amplitude increases, Xye1 grows
significantly but does not exceed 4 - 10%.

Naturally, the beam exhibits a rich spectrum of behaviour. Selected responses of the

system for f = 160 Hz (Q =~ 1.48) are illustrated in Fig. 4 in the form of phase portraits

181



22
1100
1000 20+ -
900 18- ]
éh 800 > 16+ 4
= 700
1.4+ 4
600
12+ 4
500 ]
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
b [mm] b [mm]

Figure 6. The effect of the dimension b on: a) the critical axial load, b) the coefficient

and the Poincaré maps. Similar to the linear case, the stable region is dominated by quasi-
periodic vibrations (Fig. 4a). This kind of motion can also be found for larger values of
the load amplitude a, however, the displacement and velocity are much higher (Fig. 4b).
An example of chaotic solution is depicted in Fig. 4c. Note that ¢ > 1 means w, > di,
i.e. large deflections of the beam, which definitely goes beyond the classical (linear) beam
theory.

As results from Fig. 2, there are scattered subregions of regular motion for a > 1, above
the curves corresponding to the linear system. In fact, subharmonic vibrations can be easily
found there. For instance, taking the same frequency as before and a = 4, one can obtain
quite complex 8T-periodic solution (see Fig. 5a). For f =195 Hz (2 = 1.8) and a = 4.5, in
turn, 27 -periodic behaviour arises (Fig. 5b).

In engineering practice the width b of the arms is one of the most important parameters.
In the static case, for example, flat buckling of the triangular frame can occur for small values
of b (at the given data: b < 18 mm); otherwise the system undergoes lateral buckling [5]. As
presented in Fig. 6, the static critical load of the beam, Na¢,, increases with increasing b. At
the same time, such a strenghtening of the arms in respect of in-plane bending decreases the
coefficient of the cubic term, 7. The question is how it affects the dynamics of the beam.

By analogy to Fig. 2, the regions of regular and chaotic motion for b = 50 mm are
shown in Fig. 7. As in the previous case, the critical value of A1 has been set to 0.02.
Again the lower boundary is quite well approximated by the curves determined analytically

for the linear system. Nevertheless, it seems that an increase of b gradually enlarges the
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Figure 7. Regions of stable (white) and unstable (grey) motion of the beam (b = 50 mm)

and the stability boundaries of the linear system

scattered regions indicating regular dynamics, and shifts them towards lower values of both
the load amplitude and frequency. More detailed studies of numerical solutions could show

an occurance of harmonic and subharmonic vibrations of large amplitude within these ranges.

4. Conclusions

The problem of dynamics of the symmetrical triangular frame has been reduced to the
problem of parametric vibrations of the cross-beam. The mathematical model of the sysstem
has been formulated by means of the Hamilton principle and the Galerkin method. The
regions of regular and chaotic vibrations have been determined in the ’load frequency —
amplitude’ plane. The lower boundaries of the chaotic regions are well approximated by the
curves specified for the abbreviated dynamical system. Within its stable region the vibration
amplitude of the beam increases significantly but remains bounded. Moreover, the scattered
regions of regular motion become larger as the width of the frame arms increases.

This kind of analysis, focused on both the vibration type and amplitude growth, is
crucial in the formulation of safety conditions for the structure, i.e. certain criteria for the
so called technical stability. However, from a practical viewpoint, the dynamic stability
problem is associated mainly with behaviour of a system under suddenly applied loads (e.g.
an impulse or step load). Since the problem is of great importance in the particular case of

brake triangles, it merits special attention in further studies of the mechanical system.
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Mathematical model of a multi-parameter oscillator based on a
core-less three-phase linear motor with skewed magnets
(MTR070-15)

Jakub Gajek, Radostaw Kepinski, Jan Awrejcewicz

Abstract: This paper uses the example of a three-phase core-less linear motor to create
a mathematical model of single-dimension multi-parameter oscillator. The studied
linear motor consists of: a stator, an U-shaped stationary guide-way with permanent
magnets placed askew to the motor’s movement’s direction; and a forcer, a movable set
of three rectangular coils subjected to alternating external electrical voltage. The
system's parameters are both mechanical (number of magnets and coils, size of magnets,
distances between magnets, size of coils) and electromagnetic (auxiliary magnetic field,
permeability, coil’s resistance). Lorentz force allows for the transition from
electromagnetic parameters to mechanical force and Faraday’s law of induction creates
a feedback between the forcer’s speed and coils voltage. An Ampere’s model of
permanent magnet is used to determine the simplified function of auxiliary magnetic
field distribution throughout the stator. In the model the external voltage applied to each
coil serves as the excitation while displacement of the forcer is the output parameter.
The solution to the introduced mathematical model of the system is compared with the
experimental results showing a good coincidence.

1. Introduction

Over the years linear motors have been taking on bigger and bigger shares in the market for precise
positioning systems. They provide a dynamically superior although costly alternative to standard drives
such as feed screw conveyors. For a motor to correctly project a desired motion profile a specific
close-looped controller should be introduced between the motor and mains. The quality of such system
depends on, amongst other things, the precision of motor’s model used for building the controller. Most
industrial controllers today use simplified models while this paper focuses on construction of a model
for a simple core-less motor from scratch.

A lab stand, with HIWIN's coreless linear motor and Copley-Controls' servo-drive, is used as both
a physical base for constructing the model and a platform for its validation. The forcer (inductor) is
capable of moving at speeds of up to 5 meters per second with a load of 45N. An analogue optical linear
encoder can read the forcer's position with a resolution of 0,1 um and the entire system's positioning
error not trailing far behind. Three U-shaped stators with permanent magnets were used to create the
motors magnetic guide-way giving the stand a theoretical maximum stroke of 830 mm and an actual

stroke of 780 mm. Two high quality linear guide-way provide for a swift and quiet motion. The stand
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program allows it to work with both manual input and automatically based on a signal from external

devices, [1].

Pusher Beads’
\ guides

(] [

Cable chain

4 -_._

A

Linear

Linear guide
motor

Linear guide Optical linear
encoder

Figure 1. Lab stand’s diagram

As the most interesting scientifically only the motor will be modeled in this paper. The stand will

serve merely as a validation platform.

2. Model construction

To construct the motor model a simple base model, consisting of a single winding and single magnet,
was built first. The force acting on such a coil was calculated with respect to its position and of magnetic
field strength. The field’s distribution for a single magnet and an infinitely long guide-way was then
evaluated using Ampere’s model. The entire model for three windings inside the guide-way is then

presented and encapsulated to a single ODE.

2.1. Base model

A single motor winding can be modeled as a perfectly rectangular conductor loop, with a certain voltage
function Ug applied to it. The means and exact spot of this application is omitted as unimportant for the
workings of the model. Let this loop be placed in the vicinity of a C-shaped magnet in a way depicted

in Figure 2.
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Figure 2. Model of a single winding

Assuming that the loop cannot deform or rotate and can only move along the direction of y-axis it
shall always remain a rectangle with a center placed on y-axis and with shorter sides parallel to the
direction of motion. Every infinitely small slice of the coil is subjected to Lorentz force acting

perpendicularly to its side (see Figure 3).

a) b)

Y B(X1,Y1)
® |

dF

Yo
Y1

X1 X

Figure 3. Single loop overview: (a) - coordinate system; (b) - Lorentz force of the elemental slice

The value of that force equals

dF =B x1, (D
dﬁ=1§xd7, )
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where i and B are the vector of electric current and magnetic induction respectively. In every point of
a conductor loop the i vector's direction is parallel to the coil while its value can be treated as constant

equal to I.

Since the model cannot move in any direction other than along y-axis, the only significant

component of the Lorentz force is one parallel to that axis. It is defined as
dF' = dF cos ¢ = B'Idl cos ¢, 3)

where ¢ is the angle between dl and the direction of motion. After integration, the equation takes the

form

F = f B'I cos ¢ dl. )
L

In equation (4) F is the y-component of total force acting on the coil, B’ is the z-component of magnetic
field acting on dl, and L is the conductor loop’s path. The above method can be used for calculating the
force working on any other closed loop conductor coils as well. For a specific case of rectangular shape

the closed-loop integral can be rewritten as a sum of two definite integrals in the following form

2
Ly
F=1 fB x,yo—? dx —

L -
2

Al
=

"N|

Ly
B x,y0+? dx |, 5)

nf

where B(x,y) is the function of the magnetic field’s z-component distribution, [2].
The electric current I is the result of the external voltage function U (t) and the voltage U; induced

in the loop due to Faraday’s law of induction. The second component can be calculated as

d
U=—-——|| B ds 6
1= | Bwyas, ®)
N
where S is the area inside the conductor loop. For a rectangular coil (6) can be recast to the following
form
b b
2 2
d
v=-5 | [ By ™)
by L
-2 -3

Equation (5) can then be rewritten in the form
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L

B(x,yo—%y) dx — fB(x,yo +l—y) dx), (8)
i

™

\Nl

by L L
oot [ frrn|[
F = R, \UG ) o __L {; B(x, y)dxdy} \7

where R, is the electric resistance of the coil.

2

W

2.2. C-Shape magnets’ field distribution

With accordance to [3] the value of magnetic field of a permanent magnet can be approximated by
using Ampere’s model, that is by assuming that a magnet’s magnetic field is the same as that of a
perfect, tightly wound solenoid. Then Biot-Savart’s law can be applied to calculate the exact value of

magnetic field at any point P in the vicinity of the magnet via the following formula

. dfx?
B®=?IF:T, ©
S
where
S_a_7 (10)

and 7 is the distance between point P and the center of the magnet, [is the distance between the magnet’s
center and the infinitely small solenoid length dl and p, is the magnetic permeability of the magnet’s
environment.

In case of a C-shaped magnet the field can be calculated as a resultant fields of two bar magnets
placed perpendicular to each other with opposing poles facing each other. For a single bar magnet the

field can be then calculated by solving the following integral equation

i
B(xp'yp'zp) = %(Bl(xp'yp'zp) + BZ(XV'YP'ZP) + 33("17'3’17'217) + B4(xp'Y17'Zp))' (1
where
Iz Ix o
2 2 ~ Y\ A
z—zy)V+\y, —5 )2
Bl(pryvap) = ( p) ( L > 2) 3 dde, (12)
o
—% —%\/(xp —x)z + (yp _Ty) + (zp - z)2
Iz Ix o
2 2
(z=2z)9+ (yp +£)2
Ba(%p) Vs 7p) = = )9+ (0 +3) 7 dxdz, (13)

O 2
F5 oo (5 + D) + o)
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A fy (z—zp)9?+(xp—%)z”

_ 3 dydz, (14)
52 ((0-3) + 03 + (o=’

BS(xp'yp'Zp) =

z z (z—zp)9?+(xp+%)z”
2
_%_%J(xp+%) +(p+9)" + (2 - 2)°

and (xp, ¥y, Zp) are the coordinates of point P, gy, dy,0, are the bar magnet dimensions in their

By(xp, Y 2p) = — 3 dydz, (15)

respective axes, X, J, Z are the unit vectors of axes x, y and z and i is the current density over the diameter
of wire of the solenoid.
Figures 4-5 show the C-shaped magnet’s magnetic field’s z-component distribution in a yz-plane

calculated with equations (11) - (15) for a sample magnet.

Figure 4. Z-axis coefficient of magnetic field distribution of
a C-shaped permanent magnet (in Teslas)

L

Oy

ol
Rl

Figure 5. Distribution of C-shaped permanent magnet’s magnetic field (z-axis coefficient) on a line
ran parallel to y-axis in between the magnet’s poles, highlighted part marks
the position of magnet’s poles
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For the ease of use and because of the good coincidence with actual values, the magnetic field’s

distribution on a xy-plane (coordinate system set as in Figure 3) will be approximated with 2D Gaussian

function in the following form

X2 y? (16)
B.(x,y) = Bye <"’% iy)

where By is the given magnet’s constant.

2.3. Magnetic guide-way field distribution

An infinitely long magnetic guide-way can be modeled as a set of C-shape magnets placed in equal
distance y from one another along the y-axis. All of the magnets are placed askew from the x-axis by

the angle ¢ and each two neighboring ones have their poles set oppositely (see Figure 6).

\ \

TR T ——
Figure 6. Magnetic guide-way modeled as infinite set of C-shaped magnets
For such a guide-way the magnetic field distribution can be written as
M X(y+n)('r)

Bg(x,y) =Boe_[#] Z (—1D"e [ ays? Oxys® , 17)

n=—oo

where

1 oy? sin($)? + sz cos(¢)?

Oys? 0,20,2 ) (18)
1 gy cos($)® + o, % sin(¢)?

Os? B ay?0y” ' (19)
1 sin(2¢) (g,° + 0, )

o 7= 0,20, ’ (20)

are the relative pole sizes for tilted magnets.
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After introducing a correlation factor between the relative pole size in y (o,s) and magnets’

displacement () in the form

_x
K=o @1

the equation (17) can be rewritten in the form

x2
By = Booe (#)0(x, ), 22)
where
1 (o 1 _ Bovr (23)
o2 40.xy4 o.2) G0 = Top

and O(x, y) is the sum of two Jacobi theta functions of the third kind (93(z, 7)) in the form

1
0(x,y) = [193 (xzx + yzy,TM) — U3 (xzx +yzy, — E,‘L’M) ] (24)
where
TOys s _m
= = = 4k?, (25)
Zx 40,52’ Zy 2koys’ tm =€

2.4. Three-phase motor model

For a set of three same size, stiffly connected, rectangular conductor loops inside the magnetic guide-

way the total force acting on this set can be calculated as a sum of forces acting on each coil. That is

3
Fy = F, (26)
=1

where F; is calculated with (8) assuming the filed distribution is equal to (22). This single force can be

written as

L

_ Bgo -5 L L
F = R—E(UGj(t) —-uy)| |7 (6 (x, v~ 5) -0 (x, y; + 5) dx |, (27)

8

—
—

1o

where y; is the position of individual coil and is equal to

yi =yot+a(j—2), (28)

and yy is the position of the motor’s forcer and a is the displacement of coils in the forcer. The induced

voltage for j-coil (Uij) is equal to
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7" +
Uy = ~Bgzyy f f ()01 yydxdy. (29)

e
Xy

Yj

The ©'(x, y) is the sum of two Jacobi theta prime functions of the third kind

1
0'(x,t) = [ﬂsl(xzx + Y2y, Ty) — 95’ (xzx +yzy, — E'TM> ] (30)

The complete model’s ODE can be written as

3
1
Jo©) ==, G1)
=1

where m is the mass of the forcer. (31) can also be written in developed form

L
2

il
Ugy (6) — Bazy 3o f
_y
2

,,x_
2 Vi~

1
|
9 (xy0 +a( — 2))dxdyi
|

1 % I[
0 =mREZ|[

=

(32)
|[fe_%2<9(x,yo+a(/‘—2)—%y)—9(xy0+a(/—2)+ ))}
| |

As the integration of Jacobi theta functions @ (x, y) and Jacobi theta prime functions ©'(x, y) over
x and y are analytically insolvable, it is likewise only possible to solve (32) using numerical methods.

The nature of Jacobi theta function makes the equation highly non-linear.

3. Validation

Based on the equation (32) a computer simulation was created and conducted in Wolfram Mathematica.
The external voltage functions Ug;(t) were used as excitation while the position of the forcer y,(t)
was the output parameter. The size and displacement of magnets and coils, magnet’s skew angle and
magnetic field constant and coils’ resistance, were treated as constant parameters.

Mathematica gives a wide variety of possible excitation functions to be supplied to the model.
Likewise the stand's servo-drive can be set in "maintenance mode" giving, amongst other options, a
direct control over the motor from a PC desktop. This function function allows subjecting the coils to
a given voltage function. The variety of functions available from the servo-drive manufacturers is scarce

but sufficient. All of them have the form of
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Ug; () = Uy (£) sin (wt + (- 1)2?"), (33)

with Uy, (t) (maximum voltage) and o (angular frequency) changeable in time along a step, a sawtooth
or a sinusoidal function. For the purpose of validation a step function of maximum voltage was used.

The computer model was supplied with the following set of parameters, taken from the motor's
documentation as well as from direct measurement, so that they resemble the actual motor as closely

as possible.

Table 1 - Parameters used for the model

Parameter Symbol Value

Coils” width Ix 5.2 [mm]
Coils’ length L, 49 [mm]
Coils’ displacement a 7,36 [mm]
Magnets' field strength By L5 [T]
Magnets' width (x-axis) ox 4,7 [mm]
Magnets’ length (y-axis) ay 53 [mm]
Electrical resistance R, 6,7 [Q]
Magnets' displacement correlation k 2,35 [-]
Forcer’s mass m 0,31 [kg]
Maximum voltage Uno 1,5[V]
Voltage frequency W 20 [rad/s]
Voltage step function frequency f 1 [Hz]

Figure 6 displays the function of maximum voltage and the resulting voltage on one of the coils

taken from the simulation.
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Figure 7. Function of maximum voltage (top most graph) and voltage
on the first coil (bottom most graph)
Exactly the same function of voltage was applied to actual motor coils. The result of both the experiment
and simulation are presented below.

S [mm]

150

75

Figure 8. Response of computer simulation:
the position and velocity of inductor
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Figure 9. Response of the actual motor

In light of the result above further validation was abandoned.

4. Conclusions

The prepared and studied model does not yet reassemble actual motor with satisfactory precision. Most
likely cause of this is the usage of documentation data for parameter identification. Instead the
parameters should be identified with numerical methods. The model clearly expresses interesting
chaotic behaviors, however the complexity of Jacobi theta functions necessitate a largely time

consuming simulations. A further simplification of the model might be required to better study it.
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Power consumption analysis of different hexapod robot gaits
(MTR308-15)

Dariusz Grzelczyk, Bartosz Stanczyk, Jan Awrejcewicz

Abstract: The paper is focused on the power consumption analysis of different gaits of
our constructed hexapod robot controlled by different Central Pattern Generator
(CPG) models. There are a lot of gait patterns in the literature constructed either by
different CPG models or using a series of oscillations with adjustable phase lag. The
mentioned models, as well as those proposed in our previous paper are used and
compared from the viewpoint of energy demand. In general, power consumption of
the constructed hexapod robot is experimentally analyzed based on the current
consumption in the applied servo motors, which drive the robot limbs. For this
purpose the suitable drivers allowing a simple measurement of electric energy
consumption of servo motors are used. The obtained experimental results show
different energy demand for different robot gaits. Because power consumption is one
of the main operational restrictions imposed on autonomous walking robots, we show
that the performed energy efficiency analysis and the choice of the appropriate robot
gaits depending on the actual situation can reduce the energy costs.

1. Introduction

From the point of view of engineering applications various kinds of mobile six-legged robots
(hexapod robots) are suitable for exploration of unknown, broken and unstable places [1]. The legged
robots can go where it is impossible for the wheeled robots, however they require extra effort for their
locomotion control. As the electric power is a limited resource in autonomous systems, the power
consumption in autonomous walking robots is one of the main operational restrictions. This is why
during the last few decades various types of hexapod walking robots (and other multi-legged
machines) have been manufactured, modified and analytically/experimentally investigated in order to
reduce their energy demand. Energy costs analysis and power consumption optimization in hexapod
robots are analyzed in detail, for instance, in papers [2,3]. In paper [2] authors assume that the
energetic cost during locomotion is given by the sum of positive mechanical work and the heat energy
loss, which is proportional to the square of joint torque. Next, they examined the optimal locomotor
robot gait by the energetic cost using computer simulations of simple dynamical model of the
analyzed hexapod robot. In turn, in recent paper [3] an energy efficiency analysis (including the
effects of the gait patterns and the mechanical structure of the robot) were performed for a hexapod
walking robot to reduce these energy costs. In order to meet the power saving demands of the
analyzed robot, the appropriate torque distribution algorithm was established with a formulated
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energy-consumption model. The presented in the mentioned paper numerical results show that the
proposed method can be applied for reduction of the energy costs during walking of the robot.

There are also numerous other papers devoted to optimization of the energy demand in the
walking robot through adjustment other gait parameters [3]. For instance, in order to optimize
(minimize) energy demand, in [4] the author optimized the protraction movement trajectory of the
robot leg using a modified version of the gradient descent based optimal algorithm of control.
Moreover, in this paper the results of optimization were compared with the observations of
protraction of stick insects, and it was concluded that a direct biological imitation of protraction is not
energy efficient. In papers [2,5] a simulation model of a two-joint six-legged robot is considered.
Energy cost analysis is performed with respect to the stride and stance length, the walking velocities,
and duty factor of the wave gaits. The paper [6] is focused on the structural parameter analysis, where
the foot force distribution for a six-legged walking machine is obtained for minimum energy
consumption over a full cycle for regular wave gaits. In addition, in the mentioned paper geometric
work loss for a walking machine with articulated legs is minimized by controlling interaction forces
at the foot-ground interface. Minimum energy foot forces are also studied for various duty factors,
lateral offsets, link proportions, as well as friction between the ground and the robot leg tip. Authors
of the paper [7] proposed an energetic model for walking robots based on dynamic and actuator
models, which allows the evaluation of the influence of the leg configuration, body weight, or gait
parameters on power consumption. The presented in this paper technique is used to find the optimum
stride length for the minimum energy expenditure of a biped prototype depending on the speed and
payload, taking into account level and slope walking. Various parameters (defining the trajectories of
the robot limb tip) aimed on optimizing energy costs of the robot during walking on non-regular
terrain are also tested in paper [8]. In turn, the paper [9] is focused on the analysis of the torque
contributions of different dynamic components in real leg trajectories taking into account backlash,
friction and elasticity effects in the gear reduction system. The authors of this paper propose a new
method to derive the dynamics of a robot leg as a function of parameters of the leg-trajectory. The
experimentally found simplified equations of motion reflect the reality of the physical system and can
be used in a real-time dynamic-control system.

In this paper experimental investigations regarding an energy consumption of our constructed
hexapod robot as the sum of the energy consumed in all of the joints are considered. The DC motors
of applied servomechanisms in the joint of the leg are used for obtaining the power consumption
experimental data from the required voltage and current values. It should be noted that experimental
studies of motor mechanisms are especially challenging - they are characterized by a high degree the
task of integrating influences from the surrounding environment. Our investigations involve various

trajectories of the robot leg generating via different central pattern generator (CPG) signals, namely
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Hopf oscillator, van der Pol oscillator, Rayleigh oscillator, and stick-slip induced vibrations. Both
direct and inverse kinematics of the robot leg, as well as the mentioned CPGs are considered in detail
in our previous paper [10].

The rest of the paper is organized as follows. First biologically inspiration and constructed
prototype of the hexapod robot are briefly introduced. Both direct and inverse kinematics of the
hexapod robot leg, as well as chosen oscillators as a CPGs signals are presented based on our
previous paper [10]. Next, the experimental stand, including the electronic system for measuring
energy consumption (taking experimental data from the voltage and current values of the supply) is
briefly described. In result, experimental energy consumptions for the mentioned above CPG signals
are compared and discussed. The last section contains conclusions of the performed investigations
and possible outlook for future investigations.

2. Prototype of the hexapod robot and modeling of the leg tip movements

Construction of the entire body and its six limbs of our hexapod robot was motivated by the
morphology scheme of the stick insect presented in Fig. 1. On the basis of the mentioned morphology
scheme we consider first a kinematic model (Fig. 2) and finally construct the prototype of the robot
(Fig. 3). All six identical limbs are manufactured by aluminum, whereas as the actuators standard
servomechanisms are used and applied. The actuators are independently controlled via Pulse Width
Modulation (PWM) technique described in [11]. The most important details of the constructed robot
legs are presented in Tab. 1.

PEP

AEP

Figure 1. A morphology scheme of a leg of stick insect with coxa (cx), femur (fe) and tibia (ti) as three functional

segments. Three mentioned segments are connected through hinge joints: the thorax-coxa joint ( « ),
the coxa-femur joint ( £ ), and femur-tibia joint (7 ). The dashed lines denote swing movement and

stance movement. PEP (AEP) denotes the posterior (anterior) extreme position, respectively [12].
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a)

Figure 2. Kinematic structure (a) and location of the hexapod leg in the global base coordinate system (b).

Table 1. Parameters of the hexapod robot legs.

Name Symbol Value
coxa Iy 27 mm
femur I, 70 mm
tibia I3 120 mm
thorax-coxa joint » 0-7
- -7/2
coxa-trochanterofemur joint ®,
)2
. ibi 0...
emur-tibia @3 57/6
Figure 3. Constructed prototype of the hexapod robot.
Direct kinematics of the robot leg can be expressed as follows (see [10])
x=cos¢, (I, +1, cose, +1, cose, cose, +1,sine, sing,),
y =sing, (I, +1, cos¢, +1, cose, cos @, +1, sing, sine,), 1)
z=1,sing, -1, cose, sin g, +1,sin, cose,,
while the inverse kinematics has the form
arctan(y/x if x>0
/%) . a+f if Jx*+y? -1 >0,
@ =17/2 if x=0, ¢, = _ —
z—arctan(y/(-x)) if x<0 a=(z=p) it yx"+y" -} <0,
2 2 2
c -1y -13
=arcco§y ———=——= |, 2
?3 { 7 @
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|2_|2_ 2 7 2
where: o =arccod > 2 ° |, p=arctan ———— | and c= 22+(,/x2+y2 —|1) :
—2l,c X +y2 -1

In our studies we use the method to control the hexapod robot’s leg by planning out the leg tip
trajectory and the velocity for transfer phase and support phase. The shape of the trajectory of the
robot leg tip is generated by CPG. The appropriate positions of the phase trajectories of individual
points are converted into joint space by the inverse kinematics relationships. The corresponding joint
angles finally give a predetermined shape of the trajectory of the robot leg tip by employed direct
kinematics. There are numerous models to generate the central oscillation presented in the literature
[13]. In our investigations we use four different oscillators, namely: Hopf oscillator, van der Pol
oscillator, Rayleigh oscillator and stick-slip oscillator. Both equations and system parameters
governing the mentioned oscillators are presented in Tab. 2. Moreover, time series of angles in the
appropriate leg joints and trajectories of the robot leg tip are presented in Tab. 2. The presented
results are used in our experimental investigations in order to comparison different energy demand for

various robots gaits.

Table 2. CPG models applied to the control of the hexapod leg movements, time series of joint angles and leg

configurations with the stable trajectory regarding the leg tip of the robot.

dX/dt=(u-X?-Z*)X +Z,

=6, =2, X(0)=0, Z(0)=1.
dz/dt=(u—-X%?-2%Z - X, a © ©

a) Hopf oscillator: {

2

%

Joint angles [rad]

o
o
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dX/dt=2,

b) van der Pol oscillator: ) )
dz/dt=pu(l-X)Z -w

i H=6,@=2,X(0)=0, Z(0)=1.

Joint angles [rad]

92

dX/dt=2,

c¢) Rayleigh oscillator:
) Rayleig {dz/dt:,u(l—zz)Z—a)ZX,

1=6, =2, X(0)=0, Z(0)=1.

-
‘5M
E 1
éo.sr
04
@2
0 1 2z 3 4 5 & 7 8 8 1
t(s]
dx/dt=2 E v
d) Stick-slip oscillator: ' d.=0,01, Fq(v,)=—-=—tanh -~ |,
) P {dZ/dtz—dCZ—X+Ffr(v,), ¢ (V) 1+6|v, | ’-(e

Vp=Vy —Z, F;=1, 5=3, v4 =05, £=1072, X(0)=0, Z(0)=0.

1.8
1.6
1.4
1.2
1
08
0.6
0.4
0.2
0
-0.2

Joint angles [rad]

92

012 3 45 6 7 8 9 101112 13 14 15 16 17 18
tls]
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3. Experimental results

Power electric energy demand in servomechanisms of the robot has been performer using computer
program created in LabView environment. Figures 4-7 show time series of angular positions and
electric power consumption of the appropriate servomechanisms of single hexapod leg. Experimental
results are performed for four mentioned earlier different CPG models, namely: Hopf oscillator, van
der Pol oscillator, Rayleigh oscillator, as well as stick-slip oscillator. In all cases the stride length of
the robot and number of stride lengths are the same. During experimental measurement the obtained

total length of the road is 80 cm during time equal 22 s.
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Figure 4. Power consumption analysis of the hexapod movement generated via Hopf oscillator.
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Figure 5. Power consumption analysis of the hexapod movement generated via van der Pol oscillator.
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Figure 6. Power consumption analysis of the hexapod movement generated via Rayleigh oscillator.
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Figure 7. Power consumption analysis of the hexapod movement generated via stick-slip oscillator.

A comparison of the total energy demand of all servomechanisms of the robot, which obtain the same

road length in the same time using different CPG models, are presented in Fig. 8.
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Figure 8. Comparison of the total energy demand of the hexapod robot for different CPG models.

4. Conclusions

In this paper the power consumption analysis of different gaits of our constructed hexapod robot

controlled by different CPG models is experimentally investigated. Although there are a lot of gait

patterns in the literature constructed via different CPG models, in our investigations we consider three

well known CPG models (Hopf, van der Pol and Rayleigh oscillators), as well as proposed in our

previous paper CPG model (mechanical stick-slip oscillator). In order to compare electric energy
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consumption of the robot for various gaits (based on the electric current consumption in all hexapod
servo motors), the appropriate electronic and computer system is proposed and used. The relatively
simple experimental measurements of electric power consumption show different energy demand for
different robot gaits. Investigations of motor mechanisms are especially challenging because they are
characterized by a high degree the task of integrating influences from the environment. As can be
seen, from the energy demand point of view the proposed mechanical stick-slip CPG model is more
efficient in comparison to other applied CPG models. In this CPG model in the stance movement the
distance between the leg tip of the robot and center of the robot coordinate system positioned on the
body of the robot at the point of attachment leg is constant. This is a result of keeping the center of
gravity of the robot at a constant level, and finally the servo motors placed in leg joints robot do not
have to perform extra electric energy, which significantly decreases the energy demand. It should be
noted, that the development of multi-legged robots was always restricted by the problem of their high
power consumption. This is why the proposed movements of the legs of the hexapod robot can be
used to overcome long distances, particularly in the regular terrains in a more efficient way. Power
efficiency optimization is this field without improving the power supply unit allow to increase of
mission time of the robot.
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Towards the exploitation of local resonances for novel MEMS
devices
(VIB028-15)

Thomas H. Hanley, Barry Gallacher, Harry Grigg

Abstract: An investigation into potential exploitable behaviour of localised modes and
local resonances in linear periodic structures is presented. This behaviour lends itself
towards functionalization as the basis for a MEMS transistor or sensor. The particular
device described herein operates via excitation of a local resonance. A phenomenon
that occurs due to localised forcing of a periodic array at a frequency within the stop
band. The resonant region is bordered on one side by an array with tuneable
transmission properties. This array couples the forcing region to a sense region. The
transmitted wave amplitude through the ‘coupling array’ is used as the output of the
system. Methods of operation and functionalization of the device are described in
detail. A continuous model of the system is presented and the forced response found.
The subsequent insight into the wave dynamics is used to inform device design and
assess the potential performance.

1. Introduction
The proposed configuration for investigation consists of two surface acoustic wave (SAW)
resonators, separated by an N-period grating. A local resonance is excited by forcing a region of a

periodic array at a frequency within its stop band. The resonance is maximised if both the length of
the forced cavity and the wavelength of the surrounding arrays are equal to % where 2,, is the
wavelength of the excited wave and n is an integer. N-periods away from the excitation region is a

sense IDT, enclosed on one side by the coupling array and on the other side by an enclosing array.

The basic arrangement is depicted in figure 1.
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Figure 1. Schematic of the proposed device.

The theory of operation is that the wave-speed within the coupling array is perturbed by some

external influence. Therefore, at fixed frequency operation, the wavelength is also perturbed. This
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mistunes the coupling array from the Bragg condition, allowing a signal in proportion to the external
influence to pass to the sense IDT. In the limit, the array is moved into the pass-band, and the cavity
enclosing both IDTs becomes resonant.

Two envisaged exploitation routes are proposed: functionalization as a MEMS transistor, and as
a magnetic field sensor. Functionalization depends entirely upon the means in which the wave-speed
within the coupling region is perturbed. The transistor will utilise the effect of piezoelectric stiffening
to alter the wave-speed. Whereas the magnetometer utilises the change in wave-speed induced by a
magnetostrictive thin-film in the presence of a static magnetic field. Both of these effects are known
to be small, with reported Rayleigh wave-speed alterations of 1.5% [1] and 0.8% [2] for piezoelectric
stiffening and magnetostriction, respectively. It is shown in the sequel that the properties of periodic
arrays can be used to enhance the performance of such devices.

2.  Mathematical model

Within this section some general expressions will be derived for the ratio of the displacement
amplitudes  within  each  cavity, as a function of the device parameters.
It can be seen in fig.1 that the device has been divided into five sections. The solutions within each
section will be gained separately and then combined using a ray-tracing method. The reflection and
transmission properties of each array are all independent of one another with the exception of the
coupling array. It is asserted that the proportion of reflection and transmission across the array is not
dependent on the direction of wave travel, due to the symmetry of the coupling array.

In order to analyse the performance of the device, the displacement field arising from a localised
forcing is required. More specifically, the displacement amplitude within the forcing and sense
cavities are sought for varying parameters in the coupling array. The derivation of the model will
follow a similar procedure to that conducted in reference [3], with the added complication of the
transmission of waves between the two cavities. The forcing and sense cavities will be considered
separately to begin with, and their connection through the coupling array modelled using the transfer
matrix approach as described in reference [4].

The two-dimensional elastodynamic equations [3-6] (equations 1.1,1.2) govern the wave motion
in every section. The differences between each section arise in the boundary conditions, which are
defined by the shear, and normal, stresses at the free surface. For the forcing cavity, this incorporates
the inhomogeneous equations 1.3 and 1.4. The sense cavity boundary conditions are that of a free
surface, given in equations 1.5 and 1.6.

& 0%uy

_ (1.1)
oxay P oz

0%u 0%u
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The solutions sought are the steady-state Rayleigh wave solutions, assuming a harmonic solution
at the forcing frequency. The forced solution has been presented in references [3] and [5]. The sense
cavity does not undergo direct forcing and therefore the free wave solutions are applicable. The free
Rayleigh wave solutions are well known, and presented in references [5] and [6]. However, the
transfer matrix method applies rigorously only to one-dimensional solutions [7]. As the majority of
the displacement field is confined to the surface, a one-dimensional approximate solution, achieved
by assuming depth behaviour and relating the two orthogonal displacements by a phase operator, A;,
has been shown to provide accurate results [4]. The depth behavior, a;(y), is found from the free
wave solutions in the plated and un-plated substrate. The obvious limitation of this is that bulk waves
generated from the forcing, or scattered from the discontinuities, are neglected. However, for plated
regions whose thickness is small in comparison to the incident wavelength, the bulk scattering is
minimal. The one-dimensional approximation is given in equation 2. Where a single surface

displacement variable, ¥ (x), is introduced, that will be used in the transfer matrix method.
uj(x'yr t) = ‘1’;()’) lp(x)e_iﬂt (2)

The displacement fields in the forcing cavity and sense cavity, neglecting reflections, are now
defined in equations 3.1-3, where the convention that the physical wave is the real part of the

expression is adopted.

Yr(X)yco = FLe™* (3.1)
PYr(X)yso = Frer* (3.2)
Ps(x) = AeV™* + Be™r* (3.3)
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It can be seen that the field within the sense and forcing cavities is described by the sum of a
leftwards and a rightwards propagating wave. The amplitudes of each, the constants A and B, are to
be determined. This is achieved by a ray-tracing method and consideration of the physics of the
problem. For brevity a highly condensed version of the method is presented here, highlighting the
important steps in the reasoning.

Consider a wave originating at the coupling array boundary. Each route that this wave can take

before arriving back at its starting point can be made up of three fundamental paths, depicted in figure
2.

-a 0 a a+b
-X€ } >X

Figure 2. Diagram detailing the routes of the fundamental reflection paths.

Any future wave originating at the coupling boundary is made up of the original wave multiplied
by some amount of any, or all, of these paths. Each path is represented mathematically by a phase
change due to distance travelled, and an amplitude coefficient due to the partial reflections and
transmissions. Note that the phase and amplitude change due to the wave traversing the coupling
array is accounted for in the transmission coefficient T, to be determined from the transfer matrix
solution. The expressions for the paths are given in equations 4.1-3, each path expression will be
denoted as y,.

Path A = Xa = RLH(l - Tc)ei4ya (41)
Path B = yp = R,y T *Rpye'r42+2D) (4.2)
Path C = y¢ = Rgy(1 — Tc)e'?P (4.3)

Where R, and Rgy are the reflection coefficients for the left- and right-hand enclosing arrays
respectively.

Repeating this reasoning for a wave originating at the other boundaries leads to the same
conclusion, with identical path expressions. The solution within each cavity can therefore be said to

be some product of some initial waves at each boundary and a combination of the path expressions.
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The path expression products in the forcing and sense cavities are found to take the forms shown in

equations 5.1 and 5.2 respectively.

GNP EIEE
o R 1

It is of note that the path expressions have all been placed within an infinite sum. This is due to
the fact that, neglecting damping effects, the waves will repeat each reflection and transmission
pattern indefinitely. Some simplifications of the expressions can be made to aid with interpretation.
As the summations are infinite geometric progressions, it is well known that these can be evaluated as

below.

irkzlir )

k=0

Therefore, equations 5.1 and 5.2 simplify to equations 7.1 and 7.2.

7.1
D = [(1— )™ (4 = ) ™M1 + sp2e (L = 20 ™) 7
Iy = [(1 = x2) ™' (1 = x0) ™M1 + 2axp(1 — xa) )] (7:2)

The path expressions have been derived to represent the cycle a wave undergoes before arriving
back at its starting position. The initial waves, however, are defined as the forcing waves, plus the
initial reflections that occur before one full cycle of the paths has been completed. These waves can

be found to be those given in equations 8.1 and 8.2 for the forcing and sense cavities respectively.

X
e ( ) | ' _ ‘ (8.1)
_ (e"*(Fg + RyyFLe™r®) + e (R Fre'?% + Tc?Rpy Fre(@+0)); x > 0
R,y F eit+2va) 4 e—iyx(FL + RoFrei?re 4+ TCZRRHFReizy(aw)); x<0
(8.2)

ns(x) — Tc{eiyx(RLHFLeiZ}/a) + e—iyx(RRHFReiZV(a+b) + RRHRLHFLeL‘y(4a+2b))}

The path expression products and the initial waves can now be combined to provide the

displacements within the forcing and sense cavities. These are given by equations 9.1 and 9.2.
Yr(x) = Trnp(x) (1)

Ps(x) = Tens(x) (9.2)
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3. Device design and analysis

In order to use the model derived in the preceding section, the transmission and reflection coefficients

of the arrays are required. These have been found from the transfer matrix method presented in

references [1] and [4]. The derivation is, however, too extensive to be repeated here. The closed form,

non-dimensionalised expression for the transmission amplitude across an N-cell array, Ty, is however

shown in equations 10.1-3.

— 1
Ty = — — —
N ‘(We‘”foN_l(() — Uy—2({))eimNes

wucf wucf B
w= Cos< I’,lvcf>—ie+5in<%f> elmucf

[ [

{ = Re(W)Cos(nf) + Im(W)Sin(rf)

1/, 1
E+=z("c+vf)
C

(10.1)

(10.2)

(10.3)

(10.4)

Where Uy({) is the Nth Chebyshev polynomial of the second kind and @ is the non-

dimensional form of the upper left component of the single cell transfer matrix. For further detail the

reader is encouraged towards the aforementioned references.

The simplest way to find the design parameters, such as operating frequency and dimensions, are

to reason them from the transmission amplitude plots of the different arrays and cavities that

constitute the devices. There are 5 independent non-dimensional parameters to describe each array,

these are listed in table 1 for the example of the coupling array.

Table 1.
Original Description and Dimensions Non-Dimensional Symbol | Relationship
Parameter

. . 1 ~ ZSCf
Q/f Device operating frequency (rad s~/Hz) f >

1

v Wave-speed in the perturbed regions e Ve

¢ within the coupling array (m/s) ¢ vy

S

S¢ Period in the coupling array (m) Se vc—f

1

dc : o . dc

— Plating ratio in the coupling array Uc —

SC SC

N, Number of periods in the coupling N, N,

array
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The device is operated at a fixed frequency and the amplitude ratio is altered by a change in the
transmission amplitude across the coupling array, T;, due to a change in 7, by some external
stimulus. There are several ways in which the design parameters could be specified. However, it is
likely in a SAW device that the starting point will be a known substrate Rayleigh wave velocity and a
known perturbed velocity within plated regions. For this reason, the parameters have been normalized
to the unperturbed (substrate) wave-speed v;. The maximum wave-speed perturbation within the
coupling array is set arbitrarily following guideline values from references [1] and [2] at -1%.

The Rayleigh wave-velocity in Y-Z Lithium-Niobate is widely reported [9] and given in eq.11.
v, = 3488 m/s (11)

The values of v, for 200nm thick Aluminium strips on YZ-LiNb03 is approximately 95% of the
free wave velocity [4]. With a wave-speed change of -1% this gives the range of 7, as shown in
eq,12.

U, = 0.94 — 0.95 (12)

It can be seen from equations 10.1-3 that in order to plot the transmission amplitude across the
coupling array for a given range of f, it is necessary to specify the additional parameters uc and N,.
These are the plating fraction and number of periods respectively. Initial trial values of these

parameters are specified below for all arrays, to be refined with the aid of the transmission plots.

He (initiary = HE (initiary = 05

(13.1)

N, 25

(initial) — NE(initial) =

(13.2)
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0(9.80 0.85 0.90 095 1.00 1.05 1.10

Figure 3. Reflection spectrum plots with initial parameter choices for increasing Nz. Plotted for
Ny = 25 (light-dashed), N; = 50 (dashed) and Ny = 125 (full).
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The iterative design adjustments are exemplified in figure 3. These detail the frequency
dependence of the reflection amplitude for the enclosing arrays. It is shown that the desired non-
dimensional operating frequency is f = 0.975, this can be tuned by altering frequency, or period
length and therefore can be different in the coupling and enclosing arrays. In addition, sufficiently
increasing Ny enforces the reflection coefficient to be equal to unity. This enforces the assumption
used in the model derivation that there is zero transmission from the cavity through the enclosing
arrays.

It is implicit in the results of the mathematical model and the initial assumptions that the device
sensitivity is proportional to the transmission amplitude across the coupling array, T.. The final
parameters to be found are u- and N.. These parameters will be selected using a plot of transmission

across the array for the range of ¥;values that will be encountered in operation (fig 4.).

0880 0.85 0.90 095 1.00

Figure 4. Transmission coefficient plotted against the wave-speed in the plated region expanded
around the range of interest. Plotted for f = 0.975; N, = 50 (light-dashed), N, = 125
(dashed) and N, = 200 (full).

The proposed operating region is located at an edge of the stop-band seen in fig.4. It can be seen
that the upper edge of the stop-band responds more uniformly to an increase in N,. This plot can be
used iteratively to choose the parameters that locate the operating region in the desired location in
wave-speed space. It can be seen that increasing the number of periods (N.), increases the gradient of
the transmission coefficient change, and reduces the range of the operating region. The operating
region is indicated on the N, = 200 plot in figure 5.
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Figure 5. Representation of predicted device operation. The iteratively selected non-dimensional
operating frequency is f = 0.95. The proposed operating region is shown for the N, = 200
(full-line) case. Values of N, are displayed as in fig. 4.

4. Conclusions

The design for a novel surface acoustic wave MEMS device has been presented and potential
functionalization routes discussed. It has been shown that the number of periods in the coupling array
can be used to enhance the sensitivity of the device, at the sacrifice of device range. The analysis has
provided dimensions for an initial design to be further explored using numerical, or experimental,
methods. In addition, the work provides a reasoned design route that could be applied to find
dimensions for different choices of materials, plating thickness or operating frequency.

The effect of bulk wave generation on device operation is not accounted for in the design
method. It has been shown in the literature [4] that the effect is negligible if the plating thickness is
small in comparison to the wavelength; this constitutes a stipulation on device design. This stipulation
necessitates the use of long periodic arrays; the length of these arrays in conjunction with

manufacturing tolerances will inevitably determine minimum device size.
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Deformation work of Zona Pelucida in process of fertilization
(LIF223-15)

Andjelka N. Hedrih, Katica R. (Stevanovic) Hedrih

Abstract: Zona pelucida (ZP) is an extracellular mantel that surrounds mammalian
oocytes. This structure is important for fertilization, especially for gamete recognition
and integrity of the embryo. ZP is highly sulfated and glycosylated polymer gel that
exhibit visco-elastic properties and changing in diameter in different maturation
stages. In the process of fertilization numerous spermatozoa impact its external
surface giving some energy to the structure. The aim of this paper is to present a
possible approximate mechanical model of the ZP in the form of elastic body bound
by two concentric spherical surfaces loaded by discrete continuum distribution of
spermatozoa impacts in radial directions. Using theory of elasticity for this
approximate model, expressions for component stresses and strains are presented, as
well as expressions for specific and total deformation work of the model deformation
under external constant pressure. On the basis of obtained expressions an analysis of
possible stress and strain state and a model of ZP deformation work some conclusions
are derived. A specific deformation work as criteria for determination area of possible
open put for passing spermatozoa through ZP is proposed.

1. Introduction

Zona pelucida (ZP) is an extracellular, 3D mash —like structure that surrounds mammalian oocytes. It
is highly sulfatated glikoprotein gel 2-6% (w/v) where the glikoproteins are interconnected with non-
covalent bounds [1]. The structure is important for fertilization, gamete recognition and integrity of
the embryo. It is formed during the process of oocyte maturation [2] and change mechanical and
structural properties during oocyte maturation and fertilization process [3]. During these processes it
change its diameter. In fully-grown oocyte ZP is the thickest. This structure exists till the early
blastocyst stage of an embryo. ZP is mechanically responsive structure [3, 4]. Using atomic force
microscope and Arruda—Boyce eight-chain model visco-elastic properties of ZP could be modeled
[4]. A computational model of impact of one sperm to the ZP was done in [5]. The ZP can be
considered as an oscillatory structure that exhibits transition in oscillatory behavior before and after
fertilization [6, 7]. Dissipation of its oscillatory energy occurs when it exhibits visco-elastic properties

[7].

1.1. Effect of sperm velocity and its arrangement on mouse ZP oscillatory behavior

During the process of fertilization many spermatozoa will influence the surface of ZP. Spermatozoa

are motile cells and in ejaculate there are many spermatozoa (in range of 10°) with different velocities
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and morphological characteristics. Only 10% are functionally capable of fertilizing the oocyte.
Number of progressively motile spermatozoa is crucial for fertilization success. "Different
distributions of spermatozoa with same/different kinetic parameters result in different distributions of
external forces acting on the ZP surface. Each individual spermatozoid generates certain force that
acts upon the ZP surface [8] and their joint action will give specific distribution of force on the ZP
surface"[9]. Currently valid opinion in science is that distribution of spermatozoa upon ZP surface is
stochastic process. The schematic representation of hypothetical sperm distribution upon the ZP
surface is presented in figure 1. "A symmetric or asymmetric distribution of forces produced by
action of spermatozoa upon ZP surface will cause different oscillatory states of the ZP."[9]. Impact of
spermatozoa upon ZP surface is not only mechanical but also involved receptor-recognition

mechanism.
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Figure 1. Hypothetical arrangement of spermatozoa on ZP surface. a. Symmetrical arrangement
of spermatozoa having two different swimming velocities and same impact angles. b. Symmetrical
distribution of areas with same mechano-chemical impact on ZP surface. c. Asymmetrical
arrangement of spermatozoa having three different swimming velocities and different impact angles
arbitrary arranged. d. Asymmetrical distribution of areas with same mechano-chemical impact on ZP
surface. Different colors of spermatozoa (pink, blue or green) on a and c. denote their different
swimming velocities. Different colors on b and d denote areas with different mechano-chemical

influence of corresponding spermatozoa.

During the external impact of spermatozoa certain amount of kinetic energy is transfer to ZP.
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The aim of this paper is to present a possible approximate mechanical model of the ZP in the form of
elastic body bound by two concentric spherical surfaces loaded by discrete continuum distribution of
spermatozoa impacts in radial directions. Using theory of elasticity for this approximate model,
expressions for component stresses and strains are presented, as well as expressions for specific and
total deformation work of the model deformation under external constant pressure. On the basic
obtained expressions an analysis of possible stress and strain state as well as model of ZP deformation

work some conclusions are derived.

2. Stress and strain in mechanical model of ZP as a elastic body

Determining the Young modulus of mouse oocyte and embryo, using micropipette aspiration
technique, Khalilian et al modeled the oocyte as an elastic shell of defined thickness. [10]

a* b* c*

Figure 2. Mechanical model of ZP loaded by central symmetric pressure.

To determine the deformation work of ZP in the state before starting of the process of

fertilization with impact of numerous spermatozoa ZP was considered as deformable ideal elastic
body, bounded by two spheres with radiuses R, and R, with thickness 6 = R — R, in natural and

no loaded state.
We made some assumptions of the model: spermatozoa form uniform arrangement on ZP
surface. All spermatozoa have same velocities and sperm impact angles, which result in uniform

arrangement of external pressure upon the ZP surface. In definite time moment sperm impact is in
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~ r "
form of constant external pressure P, = —P, — = — P, in radial direction on the outer surface of

S

ZP external contour. Pressure on the inner spherical surface of the ZP we can use in the form:

~ r -
P, = P, —= P,Iy. (see Figure 2.a* and b*). For special case we can use that this pressure on
r

other sphere is equal to zero, P, = 0. The thickness of the ZP & = R, — R, in unperturbed state

is uniform. The model and the external discrete continually distributed pressures are centrally
symmetric. After deformation the ZP remains symmetric. Displacements of material particles of ZP
and on inner and outer ZP surface are central symmetrical and only in radial direction. There is no
shearing stress. In this model we take into account only two static configurations: one in natural
stationary case before actions of numerous spermatozoa impacts and final deformed configuration of
the ZP under static centrally symmetric pressures. Similar model is presented in Figure 2.

Taking into account previous assumptions and determinations the problem could be treated as
kvasistatic and according to the model from Theory of elasticity solved in the books [11], [12] as
model presented in Figure 2 with an element of the ZP in the form of element in spherical coordinate
system, with three main normal stresses in radial circular and meridian directions, we can present
there expressions for these elements of stress tensor of stress state in the points of zona pelucida, in
the form (see References [11] and [12]):

1 3 R? s R?
o, = 1-—|p,—|1-v" — , 1
r 1_1//3 4 r3 pU 4 r3 ps 1)
1 o, RS . R?
0.=0,= 1+—=|p, | 1+y° — , 2
c c 1_(//3 l// r3 pu l// r3 ps ( )

where | = R—“ Pg -pressure on the outer contour surface of the sphere. [, - pressure of the

S

inner contour surface of the sphere. Tangential components of the stresses are equal to zero.

For the case when specific shear deformations are equal to zero 7,, =0, 7,,, =0

and 7, = 0, strain-dilatation of line elements in radial, circular and meridian directions are defined

by following expressions (see References [11] and [12]):
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1 3 o o R3
gr — - 4 p| po _l//3 p| po _g ’ (3)
Gll-y®)| 2@L+3uk) 2 T
1 3 o o R3
E. =&, = 3 v pl po +l//3 pl po —g , 4
2G[1-y°)| (L+3uk) 2 r
: : : : 1 :
where G - is shear modulus ££ - Poisson ratio of lateral contractions, K = 1-24 Previous
—2u

component present approximate elements of the strain tensor of specific deformation line element in

the point of the zona pelucida in defined model.

Volume dilatation &,, of material element around material particles of the ZP on distance I
from the center of the sphere is expressed in the form:

3 v'm-n,
20+3uk) 1-y°
Volume of an elementary part of ZP (Figure 2c) in spherical coordinates is with sides: dr,

rcosyde and rdy is: dV =r? cosydrdedy .

& =& &, +¢&, = , (5)

By previous expressions (1)-(2) and (3)-(4)-(5) is possible to analyze quazi static stress and
strain around each point inside of ZP including points along the boundary contours inner and outer
sphere of the model of ZP in proposed deformed configuration loaded by discrete continuum

distribution of spermatozoid impacts.

3. Deformation work of deformed configuration of defined mechanical ZP model

Deformation work of volume unit of ZP could be determined through component stress and
component strain. The specific deformation work (elastic potential) of volume element of the defined

mechanical model of ZP in deformed configuration should be determined first. It is in the form:
Al =G ( 2 2 2 ) » 1 ( 2 2 2 )
def — & Té &, +ﬂk5r +§ Vet Vim T Vem ) s (6)

expressed by elements of strain tensor. Taking into account that for considered case of stress and

strain are ¥, =0,7,,, =0 and ¥, =0, specific deformation work is possible present in the

' 2 2 2 2
form: Ayer = G[(Er +é&, té, )+ ke ] If we introduce the following notations:
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1 _‘//Spi_po 3P — P,

= ,b——, = )
TGh—y) " 2emk) - Y 2 "

the specific deformation work of defined model of ZP could has the following form:

) c) _a? ¢y 2
A::Ief =G| a (b——sj +27(2b+—3) +ﬂk(3ab) ) (8)
r r
and its final form is:
, 3a’ c?
def = > (2+3ﬂk)b2+F ) ©)

Previous expression of specific deformation work of produced under model of ZP up to deformed
configuration explicitly expressed by pressures applied along boundary contour surfaces is in the
following form:

, _ 3 (2+31k)
def 26(1-1//3)2 4(1+3,Uk)2

We can see that specific deformation work - elastic potential of the deformed configuration of the

6 (pu — ps)2 i

yamrcl B

(w2p,—p.f +v

model of ZP is function of radiuses of boundary contour spherical surfaces, inner and outer spherical
surfaces; inner and outer continually distributed pressures, with quadratic. Also depend of point

position in model depending of distance I from centre of spherical surfaces in opposite
proportionality with sixth step r°. Also with ratio of the radiuses of inner and outer spherical

radiuses l//e. Taking into account that this considered model is static, and that real system of ZP

dynamic under the action of spermatozoa impacts specific deformation work in the corresponding
point can be consider as a elastic potential for rejecting some of next spermatozoa impact or for
passing through ZP one of these spermatozoa through zone with point with minimal specific
deformation work - elastic potential. One of the aidea in analogy with plastic deformation to
introduce hypothesis of minimal or maximal value of specific deformation work for destruction od
some zone of ZP for put of passing one spermatozoa after deformation ZP bay invasion of numerous
discrete continuum distribution numerous spermatozoa impacts. This is open ida for discussion and

evaluations!
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To obtain expression for total deformation work for whole mechanical model of ZP the
deformation work for all volume units should be summed and present by following volume integral

along all volume of the proposed mechanical model in the following form:

Ry 27

=[]

2 2
e {2+3yk) +—}r cosydrdedy, (11)

oly N

and its final form is:

3
A, =-6Ga’ (2+3yk)b2Ri31 3‘// ~3c? V/RZ 3 (12)

The total deformation work — elastic potential of the whole model of ZP explicate expressed by
all geometrical and material influent parameters, and in the case that model of ZP is loaded by
discrete continuum distribute pressures along inner and outer boundary contour spherical surface, is:

_ 6 (2+34k) 03X, 3 s 3 6 2 el (13)
Ao = G(l—w)ZLZ(HBm)Z(l 78 N LSS SV (Y RJ,

The total deformation work — elastic potential of the whole model of ZP explicate expressed by

all geometrical and material influent parameters, and in the case that model of ZP is loaded by

discrete continuum distributed pressures along only outer boundary contour spherical surface, is:

3 6 (2+3uk) .
Adef_G(l—yxs){12(l+3yk)( vYe.) R_"/’( Y.y } ()

4. Dynamical model of ZP

Let consider a oscillatory model of ZP presented in Figure 2, and loaded by continually
distributed pressures along boundary contour surfaces, inner and outer surfaces in radial direction in
the case that pressures are function of time, it is visible to conclude that mass particle of ZP oscillate
central symmetrically in radial direction, Partial differential equation of radial oscillation of mass
particle of a model of ZP shell is:

2=
G(AS +kgraddivs)+F, = pgt—f, (15)
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- r
where S(I‘,t) = s(r,t)— is displacement in radial direction of material particles of the model of
r

2=
specific volume force that could be neglected, p W specific force

zP, G is shear modulus, F,,
2=
of inertia of ZP mass, o density of ZP biomaterial, ? acceleration of mass unit of ZP,

1

, M is Poisson ratio, grad -gradient differential vector operator, 0iV - scalar
1-2u

k =

differential operator, while A -Laplace-differential operator in spherical coordinate system has a form
differential operator :

2 2 2
¢, 1 & 10 20 wyd )

or® r’cos’y 0p® r’ow’ ror  r’ oy

A:

We suppose that displacement of the mass particle of the model of ZP is in the form of product
of two functions §(r) and T(t) and that solution of the partial differential equation (15) is possible

to suppose in the form:

§(r,t)=s(r,t)€=§(r)‘l’(t)£, a7)

and after introducing (17) in (15) we obtain:

TG0+ k)graddivF(r)ﬂ - PO () 9
G(1+k )grad div[§(r)ﬂ = pit)’sT(r);, (19)

T()

or in the form:

G(L+k) (;jr<§’(r)+ 2r> Tl __ .

P 5(r) T(t)
in which we introduce unknown parameter @* which is constant. After introducing that
G(l+k
o* =X Gli+k) : @1)
Y2
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from equation (20) we obtain the following two ordinary differential equation, each along only one

variable — coordinate and time in the following form:

T(t)+’T(t)=0, (22)

%<§’(r)+ 2$>+f§(r)= 0, (23)

or in the form:

T(t)+’T(t)=0, 24)

First ordinary differential equation (24) is known and with solution in the form:
T(t)= Acos et + Bsin at, (25)

in which @ is eigen circular frequency of free vibrations, and A and B are integral constant defied

by initial conditions.
Problem is to solve second, nonlinear differential equation (25). Solution §(r) present eigen

amplitude function, which must to satisfy boundary condition on the boundary contour spherical
surface. This ordinary differential equation (25) is similar to Bessel differential equation, and it is
necessary to find some change of variable if possible to solve this nonlinear differential equation.

At this moment, the question how to solve this differential equation analytically is open or it

could be solved by using some numerical method and computer software tools.

5. Conclusions

In conclusion, we can point out, that specific deformation work - elastic potential of the deformed
configuration of the model of ZP is function of radiuses of boundary contour spherical surfaces, inner
and outer continually distributed pressures, with quadratic, depend of distance I' from centre of

spherical surfaces with proportion ro , with ratio of the radiuses of inner and outer spherical radius

/8 ® The total deformation work of the whole ZP model is inversely proportional to the shear

modulus. Taking into account that the considered model is static, specific deformation work of ZP in
the corresponding point, during fertilization process, can be consider as an elastic potential for
rejecting some of incoming spermatozoa or for penetration through ZP at the point with minimal
specific deformation work. The idea is the analogy between plastic deformation and minimal or
maximal value of specific deformation work needed for destruction of some zone of ZP. This critical
deformation work in certain point of ZP could lead to weakening of the material (ZP) and its plastic

flow. It is possible that this local plastic flow of ZP could initiate the process of sperm penetration.
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Dynamics model of the four-wheeled mobile platform
(MTR033-15)

Anna Jaskot, Bogdan Posiadata, Szczepan Spiewak

Abstract: The dynamics model of the prototype of four-wheeled mobile platform has
been presented. The problem has been formulated with consideration of the contact
phenomenon between foundation and drive wheels and the possibility of slippage is
also included. The model enables to analyze the forced and free motions of the
platform with consideration of the changes of drive module positions during the
platform motion. The formulated problem has been solved numerically with the use of
Runge-Kutta method of the fourth order.

1. Introduction

Analysis of the issue of dynamics of the mobile platforms consists on the motion studies taking
into account the forces which are causing this movement and to study the causes and effects of the
motion. Considerations about the trajectory tracking and path generation both for kinematics and
dynamics of the robots for two-wheeled [3], three-wheeled [1][2][5], or one-sphere [9] are the subject
of widely described in the literature. The solutions for the different possible configurations of the
wheeled platforms in terms to dynamics is considered and solved in [4].

The aim to know the conditioning of platforms work, the solution of the description of the
dynamics of the mobile platform is proposed. The trajectory tracking problem for a 4-wheel
differentially driven mobile robot moving on an outdoor terrain is considered in [6]. The design of
a four-wheeled mobile platform for a indoor terrain (production halls, factories), which model allows
for an analysis of the planar motion, including a progressive and rotational motion of the platform is
presented in this paper. A constructional model allows to the change the length between the wheels
along the longer side of the platform. Description of the dynamics of the platform in the classical
approach ultimately allow to provide the velocity and acceleration, taking into account the cause of
the motion and allow to know the position of the platform at a particular point in time.

Solving the problem of the dynamics is based on knowing the relevant motion equations, in the
purpose of the studies of the motion trajectory. Knowing the differential equations of motion the
simple or inverse task of the dynamics can be solved. Due to the complex form of the equations
describing the motion of the system in the inverse task of the dynamics, the solution of it can make
aproblem. This paper presents a solution to the inverse problem of dynamics. Knowing the

differential equations of motion the motion parameters can be determined by using the Eulers
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parameters and Kane’s method [1], Maggie equations [5], Langrange method [4][7][9]. In this work,
the appropriate calculations were made by using the Runge — Kutta method of the four order. The
effect of this is generating and implementing the trajectory of the platforms motion.

The examples of the results of platforms motion simulation due to the driving torque applied to
the wheel of the platform and simulation of position changes of the platform while in motion are also

presented in this work.

2. Model of the prototype of the platform

Figure 1. Scheme of the prototype of the mobile platform

The system of the chassis of proposed solution of the mobile platform is pictorially presented in
Fig. 1. The modular construction of the design solution has been adopted. Creating configurations of
selected positioning of the platform wheels is possible by the using the drive member with electric
drive. This allows the realization of the preset trajectories of vehicular transporter.

Body chassis is mounted to the chassis frame. The torsion system of the platform, according to
the initial assumption, is dependent in pairs, and is realized through an electric motor conjugated to
the worm gear (2), a rod system (9) and a rack and pinion gearing (8). The presented version of a bare
chassis of the platform is constructed from a rigid frame (5) on the sides of which the main hitches (4)
of stub axle (7) are attached in a clamping method.

Changing the distance between the axis of the driving wheels (6) along the longer side of the
frame is possible by the configuration of hitches. Each wheel has an independent drive system
constituting the coupling of the electric engine (3) with a planetary gear in co-axial system (3). The
symmetry axis of the stub axle (7) passes through the center of gravity of the motor assembly, the

planetary gear, driving road wheel, and a driver (1), through which the torque is transmitted.
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Additionally, it is possible to embed an independent stub axle drives on hitches (2) in order to
study a tracking motion trajectory, when the stub axles are immobilized. The provision of possibility
to separate the selected wheel drives has been made. To prepare a model of prototype Autodesk
Inventor has been used. The possibility of rotating the wheels of the 360 deg is a big advantage of the

system, since it enables the execution of all of the possible maneuvers of the mobile platform.

3. Geometric model of the mobile platform

In this work the description of the dynamics, which includes the determination of the motion
equations have been resolved.
In order to describe the dynamics of the mobile platform in a coordinate space the model shown
schematically in Fig. 2 is adopted.

! "-.y

O ’
Figure 2. The geometric scheme of the mobile platform
The motion parameters are determined with respect to the global reference frame OXY, according
to designations:

A, B, C, D —the points corresponding to a position of the center of rotation for each wheel,

Xi, ¥i — coordinates of the i-th point (respectively for points: A, B, C, D),
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S — the point corresponding to the centre of gravity and the centre of mass of the platform,

L; — the lengths of sections from the centre of gravity (point S) to following points A, B, C, D.

£ — the platform inclination angle relative to the X axis of the global reference system.

The global and local coordinate systems, and the geometric relations between the position of the
respective drive modules are shown in the model scheme.

The motion of the robot occurs in one plane in a planar surface. Instantaneous motion is
composed of the progressive motion with the velocity of the centre of the mass and the rotational
motion with the velocity around the center of mass of the mobile platform. To determine the sample
motion parameters based on the forces that cause the motion the following assumptions have been
taken into the account:

— the platform moves on a flat surface,
— during the movement does not occur the phenomenon of detachment of wheels from the ground,
— during motion, the mass of the platform is not changed.

In Fig. 3 the forces occurring in the wheels of platform during the movement are presented. The
force N;, as a reaction on the weight of the platform wheels are considered. In the figure the driving
torque M; which later is a base to determine the active force F; are also shown.

WM.

-

Figure 3. Distribution of forces acting on each wheel of the platform

In Fig. 3 the following forces are presented:

M; — the drive torque,

F.— the active driving force,

T, — the friction force in the longitudinal direction,
Tpi — the friction force in the transverse direction,
N; — the reaction force of the i-th wheel,

w; — the angular velocity of the i-th wheel.
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4. Description of the dynamics of mobile platform

In determining the forces occurring during the motion there is a need to take into account the
drive torque and the friction, which is consequent from the contact of the wheel from the roadway. It
is necessary to determine the values of wheel loads on the roadway, W; force vectors and M; moments
to the points A, B, C, D.

Figure 4. Distribution of forces in the platform wheels

The scheme of the calculation model is presented in Fig. 4. The values of the resultant forces W,
have been calculated as follows:

@
W, =F, +T,, +Tp2, @
W; =F3+T3 +Tp3, )
W, =F, +T,+Ty, (4)
The active forces acting on each one of the wheel were calculated by the formula:
Fa= % (5)

where: M,; — the drive torque of an i-th wheel,

r — radius of a driver wheel.
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It is necessary to establish the value of the force N;, which is a reaction to the weight of the i-th
wheel (Figure 3).

In addition to the active forces which cause motion of the system, the passive forces should be
determined. The passive forces are the resistance forces such as friction forces T,; in the longitudinal
direction, and the friction forces Ty, in the transverse direction. The friction force values are different
from zero during the platform motion, because the active force F; is different from zero. The whole
values of those forces are described below:

Twi =Hy - Ni 'Sign(VW) (6)
Ty =u, - N, -sign(v,) @

where: u,, — coefficient of friction for the longitudinal direction,
up — coefficient of friction for the transverse direction.

Considering the formulated formulas (1-7) representing the active and passive forces the
translational motion equation can be formulated in the form:

ma = iwi 8)
i=1

where: m — the mass of the whole object,
a — the acceleration of the centre of mass of the platform,
W, — the i-th resultant force.

This equation enables to determine the motion of the center of mass under the influence of
known external forces. The progressive motion of the center of mass is described by Eq. (8) and the
rotational motion around the center of mass for the platform should be also described.

The equation of the rotational motion around the center of mass for the platform can be written in

the form:
dK 4
E:Z‘,Si XWi+ZMi 9)
i=1 i=1

where: K — the angular momentum vector of the whole platform,

s; — the location vector of points: A, B, C, D in the global coordinate system.
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By using the derived equations of motion, written in the form of differential equations, the rate of
change certain physical quantities (ex. velocity, positioning) can be defined. The dynamic equations

of motion can be written in case of the planar motion in the form:
mX =W, (10)

mX =W, 1)

p== (12)

The set of equations (10-12) can be used to formulate the initial problem by adding the initial
conditions according to the starting values of the motion parameters. The formulated initial problem
has been solved by using the Runge - Kutta method of the fourth order.

5. The exemplary simulation results of platform motion

The description of the dynamics has been drawn up with assumption that the drive torque is

given as a trapezoidal function as shown in Fig. 5.

2

M, [kNm]

0

Figure 5. Drive torque as a trapezoidal function (M; max = 1 kNm)

The movement should be considered in three time periods: starting = 2s, established= 6s,
braking = 2s.

Solutions for the straight line trajectory according to the principles is presented in Fig. 6. The
considered results have been obtained for such values of active forces that no slippage of any wheel

has been observed.
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Figure 8. The motion trajectory of the mobile platform
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6. Conclusions

The proposed dynamical model of mobile platform motion is useful to examine the different
implementation of the active forces and the realization of motion in different configurations of the
drive wheels.

Built on the basis of the description of dynamics the calculation model enables understanding of
the determinants of platforms work, which in turn allowed the determination of the parameters
affecting the movement of both the platform and its components.

The presented in the work the design solution of the mobile platform is designed to enable
further research, both experimental and theoretical of the dynamic phenomena that can occur during
movement of such facilities, particularly in an effort to investigate the behavior of the platform while
slippage and to refrain from falling into the skid.
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Free vibration of cantilever beams of various cross-section
(VIB042-15)

Jacek Jaworski, Olga Szlachetka

Abstract: The topic of this study is the first mode of natural transverse vibrations of
isotropic, homogeneous and elastic columns (or beams) with clamped bottom and free
head. The columns are shaped as tubes with linearly variable wall thickness and with
different inclination of lateral faces, from cylinder to cone. The first frequency of free
vibrations was determined using the energy method. The deflection line of the column
axis during the vibration was assumed in form of the bending line of the column axis
subjected to a uniform load. Resulting frequencies (or periods) were compared with
these obtained with the use of FEM (ANSYS) and a good compliance of results was
observed. As the expression for the energy of an elementary slice of material was
integrated over the length of the beam, the formula for the frequency was obtained in
form of an integral equation. In the case of a truncated-cone column, an exact solution
of integral equation was obtained, however for a tubular column with variable cross-
section only a numerical solution was possible.

1. Introduction

The frequencies of subsequent modes of free vibrations of a beam can be obtained by solving the
equation of a Bernoulli-Euler beam for specific boundary conditions. The way of proceeding which
enables to obtain a numerical solution for a beam having the shape of truncated cone and wedge is
presented in [1]. Other methods and further results for bars (beams or posts) with variable cross
sections are discussed and presented in [2].

Authors of this paper have set themselves a target to derive, using the Rayleigh method, formulas
for the first frequency of natural (transverse) vibrations of cantilever bars having the shape of conical
tube, i.e. hollow truncated cone. It has been assumed that the vibration amplitude is small, the
material is homogeneous, isotropic and ideally elastic, and the mass is continuously distributed.

In the Rayleigh method, the shape of deflection line of the oscillating bar axis is being assumed.
If the shape is assumed in a form of parabola, trigonometric function or a static deflection line being
a result of action of an external transversal force applied in its top, the obtained results for cantilever
bars with circular cross section are not proper, especially for the bars having the shape close to cone
[3]. The results consistent with the FEM calculations and with the solution according to [1] have been
obtained with the assumption that the axis of an oscillating post assumes a form of the line of static

deflection evoked by a continuous load [4]. The assumption of a continuous mass distribution
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sometimes leads to serious difficulties in integration. However, if an exact solution can be found, as it
is for example in case of a truncated cone cantilever bar [4], the obtained formula is so simple that a

pocket calculator is enough to calculate the first frequency (or period) of free vibrations.

2. Derivation of formulas

2.1. Bar scheme and basic dependences

Free vibrations of a conical tube cantilever bar have been considered. The bar is loaded with
a continuous load of a constant value q (Fig. 1). There are introduced the denotations:

D

an! (1)

a-=, @
5

B:E' (3)

q

I EEF TR TR R R R ET TR TR

o| AJ: D = = Fofd+

(%) I
| TN\

_—Xu‘dx
L

y

Figure 1. Cantilever beam in form of a uniformly loaded hollow cone tube.

The external and internal diameter of the bar as well as the second area moment in any cross

section, given by a coordinate x, are equal respectively:

D-d

D(x)=D- X, (4)

A)=a-2=8y, 5)

3(0=2 [0 ()~ 4 () ©)
where

X, y —coordinate axes,
D, d —bigger and smaller external diameter of the bar,

A, & —bigger and smaller internal diameter of the bar,
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n — quotient of the diameters describing a convergence ratio of external walls of the truncated cone,

L — bar length,

J —second area moment of the bar cross section.

2.2. Bar deflection

A deflection has been calculated by integration of the differential equation of bar elastic deflection

curve:
d?u qL? qx?
EJ(X)—=-M(X)= ——-glLx+— 7
() =-M()=T--ax+=3 ™)
where
u — deflection,

E — longitudinal modulus of elasticity,
M — bending moment in the bar section given by a coordinate x ,
g — continuous load of a constant value.

The above equation can be transformed to the form which is convenient to integrate:

2rED* d2u L2 —2Lx+x? oy a, ByX+B,
2 2 - + tT 2 ®)
649  dx (ax+b)(cx+e)(fx +gx+h) ax+b cx+e  fx2 +gx+h

where a, b, c, e, f, g, h areequal:

L _nl-a)-(-p)
nL '
b=1-aq,
coo n(1+a)—(1+]3)
- nL '
e=1+a, 9
( n2(1+a2)—2n(l+aB)+(l+Bz),
n?L2
g :—ﬁ[(1+(x2>1—(1+(x[3)],
h=1+0?.

The symbols «,, a2, B;, B, are the quotients of the determinants:

239



o, = W y
W
Ay = *2 y
W (10)
Wﬁl
Pr=—7"
W
W
B2 :_V\[;Z
resulting from the application of the Cramer method for the set of linear equations:
aqcf +oa,af +p,ac=0,
oy (ef +cg)+a,(bf +ag)+ B, (ae+bc)+prac=1, "
a4 (eg +ch)+a,(bg + ah)+ B;be + B, (ae + bc)=-2L, (1)
a,eh+o,bh+p,be=L2.
After two integrations of Eq. (8), the bar deflection is obtained in the following form:
32q
ulx)= Qlx (12)
(0= —2-Ql)
where:
Q(x)=Cyx+C, +a—;(ax+ b)In(ax+ b)—1]+a—22(cx+e)[l n(cx+e)-1]+
a c
Bix Bu(fcrg) Bt In(fx2 + gx+h )+ (13)
f 2f?
. [31,/4fh—g2 J{B Blgj 2fx+g arctan 2fx+g
LR ST Y Jec LA (L AL S _LiTY
212 2f ) ¢ Jath-g? Jath—g?
and the integration constants C, and C, are equal:
(o2 Oy By B.9 2 g
C, ———In(b)——ln(e)——ln(h)—(ﬁ2 ——J—arctan —_—
a C 2f 2f th_gz th_gz
c, :—a—f(ln(b)—l)—a—f(ln(e)—l)—%In(h)+ (14)
a c

_ —B”“h_gz 4{[}2 Bl_gJ—g arctan —9—_ |
2f? 2f )t Jath—g? Jath—g?
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2.3. First natural frequency

With the assumption that the bar axis (Fig. 1) deflected during vibrations has a shape described by

(12), the potential energy for the deflected bar and the kinetic energy for the non-deformed bar have

been calculated. The potential energy is equal:

L

£1 1 32
E == -2 .
s = o= 022 ol

If the mass of a material slice with a thickness dx is denoted as m(x), ie
m(x)= pTit [D2 (x)— A2 (x)}]x = % D?(ax+b)cx+e)dx

then the kinetic energy of the post is determined as:

€, - [ Lot o)~ Lo 2 02 2 T e elg?hod
k_z[zwu XmX_EmT ot !ax+ cxX+e)Q°(xjdx.

The energy comparison enables to determine the frequency. The period is equal:

L
[ (ax+b)ex+e)Q? (x)dx
728 _AT 20 o

o DVE IjQ(X)dX

0

where

T — vibration period,

o — vibration frequency,

p — mass density,

E — longitudinal modulus of elasticity,
D — diameter in the clamp,

L — bar length.

(15)

(16)

a7

(18)

Remaining quantities are described with Egs. (9), (10) and (13). Expansion of the terms in the

integrations in the root in Eq. (18) allows to note that the integrated terms take i.a. the form:

x3In(ax+b)arctan(cx +e),

x3ln(ex2 + fx+ g)arctan(cx+e).

241

(19)



These functions are not integrable analytically, therefore the values under the root in Eq. (18)
have been calculated numerically using the program MATHEMATICA 9.0. In this aim, the command

X1
Nintegratd f,{x, Xo, % }] has been applied, which gives the numerical value of an integral I f(x)dx,
X0

[5].

3. Special cases
As the denominators in the Egs. (8), (10) and (13) cannot be equal zero, the four special cases
presented in Fig. 2 must be considered individually. The proper formulas for calculation of the

vibration period for them are presented below.

a) b)

X R ——— X
T L
y y
c) . d Hy 9 .
L | rﬁ L |
y y

Figure 2. Special cases: a) cylindrical tube, b) conical tube, o=, c) hollow cone, d) conical tube with

constant wall thickness.

A)Cylindrical tube d =D, 8=A (Fig. 2a). It is a simple case where:

T_4n? | 26

4 20
9 D \Ef+a?) (20)

B) Conical tube where the generatrices of the internal and external cone cross in the point placed
on the longitudinal axis of the bar, a=p (Fig. 2b). This case can be described by the

vibration period formula for a truncated cone derived in [4]:

C4nl? \/E F(n)+60G(n)in(n)
Ttmnc.cone_ 3D (n—1)2 E 10H(n) (21)

where:
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=11n® —87n% +375n* —1184n°% +321M? — 4281 +2817-1080n ' +234n2 —24n3,
=14n* —33n? +15n-3-6n°In(n) (22)
H(n)=3n"*+10n°-18n% +6n-1-12n°In(n).

The vibration period formula is obtained after multiplication of the term (21) by a correcting
factor [4], taking into consideration the hollow of such type that oo =f:
T=T !

trunc.cone ° .
1+a?

(23)

C) The external surface creates a cone, d =0 (Fig. 2¢). If this case is considered as a cone [4]

with a hole and o =J3, then the vibration period formula takes a form:

2
T 4nl fllp.f 1 (24)
3D V30E V1+a?

D) Conical tube with the constant wall thickness (Fig. 2d). The projection of the wall thickness g

on the transversal surface is denoted as t:

o VAl +(D-d) 25)
-9 2L '
Further procedure is analogical to that in Section 2. The second area moment is determined as

a function of t:

3(-Z4(D ~sx—tf(D-sx)2 —2(D - s)t+ 22, (26)
n-1
=D )

After substitution to the differential equation of bar elastic deflection curve (7) and two

integrations, it has been obtained:

n—Etu(x)= R(x)=C;x+C, +D;2_Sxoc3ln(D—t—sx)+wm(sz + Bx+C)
4q s 2A
, (28)
Aag —SB; . BZBg + AB(Bax —v)— 2A(CB; + Ayx) B + 2Ax
+ X—= arctan ———
As A2J4AC - B? Jaac - B?
where:
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A=s2,
B=-2s(D-t),
C=D?-2Dt+2t?,

[sL-(b-t)f
BT (29)
B3:[SL7(D7t)]27t2

st? '

 L%s%t? —[sL—(D—t)Z(DZ —2Dt+2t2)
- s2t?(D-t)

and the integration constants are equal:

Clz%ln(D—t)—E—Sln(C)— 2Ay P48

B
arctan ,
AV4AC - B? [\/4AC—82]

(30)
- BB, — A B2B, — ABy — 2AC
CZ:—DZta3In(D—t)—B3—2yIn(C)+ Ps — ABy Ps arctan .
s 2A A2\Janc - B2 Jaac - B?
If the mass of a material slice with a thickness dx is determined as:
m(x) = prt(D —sx—t)dx (31)

then the energies can be compared and the dependence is obtained which enables — similarly as from

Eq. (18) — to calculate the vibration period in a numerical way:

I(D—sx—t)Rz(x)dx

T= 4n\/é - (32)
[ R(x)dx

0

4. Examples of calculation and comparison of results

The examples of dependences of vibration period on the geometrical parameters of a cantilever bar

with the shape of conical tube are presented in Fig. 3.
The following data have been assumed: L=2m, D=0,06m, ,/p/E =7-10*s-m™ (plastic).
The convergence ratio of the bar walls varies within the range between the value for a cone (n=o0,

d=0) to the value for a cylinder (n=1, d=D), the values of the parameters o and [ are

diversified.
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Figure 3. Vibration period for conical tube: a) a=0,5 b) a=0,7¢c) aa=0,9. The cases are considered

for B=09c, p=10c , p=1,1c.
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The curves for o=f concern such a conical tube (considered in Section 3) where the

generatrices of the internal and external cone cross in the point placed on the longitudinal axis of the
bar. The points of these curves have been calculated from the formula (23) which presents the
concordance with the results according [1] and with the FEM results what was proved in [4]. It has

been also checked that the obtained results exactly correspond to the vibration periods calculated

according to Eq. (18) if instead B=o it has been taken B=0+0, where 6 is a quantity much

smaller than o . For the tube (n=1) and for the cone (n=o0), the values of vibration period have
been calculated from the Eqgs. (20) and (24), respectively. In this case, the approximated solution can
also be obtained from Eq. (18) if there are placed the convergence ratios close to n=1 and n=o0,

respectively.
T[s]

1,44:

1,20 4

0,96 4

0,721

0,481

—oio— acc. (18)

0,24 1 2 1
--O--—-0- FEM (ANSYS)

0 . . : . . D[m]
2 4 6 8 10

Figure 4. Vibration periods of a ferroconcrete sheet construction calculated: 1 — acc. (18), 2 — with FEM.

Fig. 4 presents the results of calculations of a vibration period of a ferroconcrete stress-skin
construction (assumed +/p/E =35-10*s-m™) with the height L =48m, convergence ratio n=2

and wall thickness in the base 0,27m and in the head 0,06 m. Five diameters in the base have been
considered, from D=2m to D=10m. In this range of diameters, the first natural frequency

corresponds to bending vibrations. For the diameters D>12m, the first natural frequency
corresponds to other forms of vibrations. The results of calculations according Eq. (18) have been
compared to the results obtained with use of FEM (ANSYS). The great concordance of results is

visible. For the diameters D <4m — what corresponds to the slenderness ratio (understood here as
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A=L/D) greater or equal 12 — the differences between these results are lower than 1%. As the

slenderness ratio diminishes, this difference increases and e.g. for D=10m (A =48) is equal 5,6%.

T [s] D=0,12m

7 d=0,06m
0,304
0,281

D=0,14m

0,26 4 d=0,07m
0,24 ]

- D=0,16m

0,22 A A//A/A/A d=0,08m

] D=0,18m

- <>/O/Q/O/O/o d=0,09m
0,181

0,16 : " T y : - g[mm]
1 2 3 4 5 6

Figure 5. Vibration periods of a steel post with a constant thickness

Fig. 5 presents the results for a post made of steel sheet — such solution is very widely applied in
practice. It has been assumed: /p/E =194-10*s-m™, height L=6m, diameters by the base D

from 0,12 to 0,18m, convergence ratio n=2. Various thicknesses g of the sheet have been

considered, from 1 to 6 mm. The calculations have been performed using Eq. (32).

5. Conclusions

The formulas for the first natural frequency of bending vibrations of conical tube cantilever bars,
derived from the Rayleigh method with the assumption that the axis of the bar deflected during
oscillations assumes a shape of a static deflection evoked by a constant continuous load, show high
concordance with the FEM solution. Full concordance between the results for a tube having the shape
of cone and truncated cone has been also stated.

In the case of truncated cone, an analytical solution of integrals has been found, thus the formula
for vibration period (21) is so simple that a pocket calculator is enough for calculations. For the

conical tube, the formulas (18) and (34) demand to calculate the integrals in a numerical way.
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The scheme of derivation of the formulas for natural frequencies for conical tubes and for hollow
regular truncated pyramids is analogical. The analysis of quotients of areas and second area moments
of the figures under consideration, which quotients are functions of a diameters or a side length,
enables to determine correcting factors which allow to apply the formulas, derived in this paper, for

the regular truncated pyramids as well.

Acknowledgments

The authors would like to express their sincere thanks to Jan Grudzinski, Ph.D. Eng., for his help in
the FEM calculations in the ANSYS.

References

[1] Conway H.D., Dubil J.F. Vibration Frequencies of Truncated-Cone and Wedge Beams, Journal
of Applied Mechanics (ASME) 32 (4), 1965, pp. 932-934.

[2] Ece M.C., Aydogdu M., Taskin V. Vibration of variable cross-section beam, Mechanics
Research Communications (Elsevier) 34, 2007, pp. 78-84.

[3] Jaworski J., Szlachetka O. Drgania wlasne stupéw w ksztalcie $cigtego stozka (Free Vibration of
Truncated-Cone Columns), Journal of Civil Engineering, Environment and Architecture, tom XXXI,
zeszyt 61 (nr 2/2014), 2014, pp. 33-42.

[4] Jaworski J., Szlachetka O., Aguilera-Cortés L.A. Application of Rayleigh’s method to
calculation of the first natural frequency of cantilever columns with variable cross-section, to be
published.

[5] Glinski H., Grzymkowski R., Kapusta A., Stota D. Mathematica 8, Wydawnictwo Pracowni
Komputerowej Jacka Skalmierskiego, Gliwice, 2012.

Jacek Jaworski, Ph.D., Eng.: Warsaw University of Life Sciences — SGGW/Faculty of Civil and
Environmental Engineering/Department of Civil Engineering, Nowoursynowska 166, 02-787
Warsaw, (jacek_jaworski@sggw.pl)

Olga Szlachetka, Ph.D., Eng.: Warsaw University of Life Sciences — SGGW/Faculty of Civil and
Environmental Engineering/Department of Civil Engineering, Nowoursynowska 166, 02-787
Warsaw, (olga_szlachetka@sggw.pl)

248



The dynamics of vertical transportation systems: from deep mine
operations to modern high-rise applications
(VIB240-15)

Stefan Kaczmarczyk

Abstract: High speed and high capacity lifting installations move heavy payloads and
passengers from depths in excess of 3000 m to heights of nearly 1000 m. This paper
discusses mathematical models to predict transient and steady-state resonant
vibrations taking place in deep mine and high-rise applications. In these systems long
slender continua (LSC) such as steel wire ropes and composite belts play pivotal roles
as suspension means and weight-compensation members. The natural frequencies of
these systems are slowly varying, rendering them non-stationary. The nonlinear
dynamic interactions involve exchanges of energy between various modes of
vibration. An adverse situation arises when the host structure is excited near its
natural frequency and one of the slowly varying frequencies of LSC approaches the
natural frequency of the structure. The models are represented by a system of
nonlinear partial differential equations defined in a slowly time-variant space domain.
The nature of loads acting upon the lifting systems is often nondeterministic
(stochastic) so that the methods of stochastic dynamics need to be employed to predict
the dynamic behaviour of the system. The results and conclusions presented in this
paper demonstrate that a good understanding and prediction of the dynamic behaviour
of vertical transportation systems are essential for developing vibration suppression
and control strategies to minimize the effects of adverse dynamic responses so that the
installation will operate without compromising the structural integrity and safety
standards.

1. Introduction

The design and operation of high-performance systems for passenger transportation in the modern
built environment and haulage operations in deep underground mining present many technical
challenges due to adverse dynamic responses that often arise due to various sources of excitation
present in these systems.

Typically, in deep-mine applications drum winding systems are deployed. The most significant
sources of excitation are load due to the winding cycle acceleration/deceleration profile and a
mechanism applied on the winder drum surface in order to achieve a uniform coiling pattern. In a
deep-mine installation a hoist rope passes from the drum over the headsheave, forming an inclined
catenary, to the conveyance forming a vertical (head) rope section. A rope storage mechanism on the

drum (normally a Lebus drum liner) imparts a periodic three-dimensional excitation to the system due
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to the cross-over motions of the rope on the drum. Often, this results in the catenary whirling motion
(‘rope whip”) which is coupled with the longitudinal and lateral vibrations of the vertical rope and
conveyance assembly [1,2].

In the modern high-rise built environment traction drive lift (elevator) systems are used. The
underlying causes of vibration in lift systems are varied, including poorly aligned guide rail joints,
eccentric pulleys and sheaves, systematic resonance in the electronic control system, and gear and
motor generated vibrations [3]. Tall towers and buildings can be substantially affected by adverse
environmental phenomena. These include strong wind conditions and earthquakes that cause tall
buildings to vibrate (sway) at low frequencies and large amplitudes. When the host (building)
structure sways a broad range of resonance phenomena occur in the lift system with large whirling
motions of ropes and cables being developed that often result in damage caused by the impact against
the lift equipment located in the shaft and/or against the shaft walls [4].

This paper presents an overview of mathematical models developed to predict transient and
steady-state resonant vibrations taking place in deep mine and high-rise VT installations. The models
are discussed and results of numerical simulation tests are shown and analysed to demonstrate their
applications.

2. Vertical transportation systems dynamics

A vertical transport (VT) system may be considered as an assemblage of axially moving elastic one-
dimensional long slender continua (LSC) divided into p=1,2,...,P sections of slowly varying length
[5,6], constrained by discrete elements such as rigid-body masses and rotating inertia elements. Its
response can be described by a system of nonlinear partial differential equations of the following
form

py(X, U5 +CPIUST+ LP[UP] = NP[U]+ FP (1,6, ), X, €{0<x, <L,(r)}, O<t<e, (1)

with the boundary conditions given as

BP(U)=0atx,=0, BJ(U")=0atx,=L,() @
where x, denotes the spatial co-ordinate, UP(x,t) :[Uf(xp,t),Uz”(xp,t),U;’(xp,t)} is a local
(component) dynamic displacement vector representing motion of the component p in the lateral and
longitudinal directions, () designates partial derivatives with respect to time t, z =&t represents the
slow time scale, where & is a small parameter [7], and C® and LP are local linear operators.
Furthermore, NP is an operator acting upon the global displacement vector U , and representing non-

linear couplings and inter-component constraints in the system. FP is a forcing function with
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harmonic terms of frequency ép =, where the overdot indicates total differentiation with respect

to time. The local (component) mass distribution function is defined as

pp(Xp)zmp+§:Mi5(Xp—Lp) ®

In the model given by Eq. 1 the Lagrangian coordinates or Eulerian coordinates may be applied
as the spatial coordinate x,. If the Lagrangian formulation is applied then it is convenient to refer the
dynamic elastic deformations of LSC to a moving frame associated with the overall axial transport
motion of the system. Otherwise, a fixed (inertial) frame is used to describe the deformations. In order
to discretize the continous slowly varying nonlinear system (1) the following expansion can be used

Np

UP (%) = DY (x5 L, (7))al (1) 4

n=1
where Y,(x,;L,(z)) is the nth eigenfunction of the corresponding linear system and g (t)

represent the nth modal coordinate. This expansion leads to the following first-order ordinary
differential equation (ODE) system given as

y() = At,2)y(®) + N(z,y) + F(t,7) ®)
where y is the system state vector, A is a slowly varying linear coefficient matrix, N is a vector

function which represents the non-linear coupling terms, and F is the external excitation vector. This
system cannot be solved exactly. An approximate solution can be sought using asymptotic
(perturbation) methods and/or numerical techniques. Alternatively, in some cases, the system of
partial differential equations Eq. 1 can be treated directly without discretization and perturbations
methods (such as the method of multiple scales) can be applied to investigate the non-stationary

behaviour of the system [8,9].

3. Deep mine environment

Figure 1 shows a typical configuration and vibration model of a drum drive hoist system used to carry
payloads in deep-mine haulage operations. A LSC member, typically a steel wire cable, of mass per
unit length m, modulus of elasticity E and effective cross-sectional area A passes from the drum over
the sheave, forming a horizontal or inclined catenary of length L., to the conveyance of mass M
constrained to move in a vertical shaft, forming the vertical rope of length L, hanging below the
headsheave. The end O, of the cable is moving with a prescribed winding velocity V(t) so that the

length of the cable coiled onto the drum is given as I(t):I(O)iJ';V(e:)dg where signs *
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correspond to ascending and descending respectively, and 1(0) is the initial length. A cable storage
mechanism on the winder drum is applied in order to facilitate a uniform coiling pattern. This system
can be treated as an assemblage of two connected, continuous substructures, namely the catenary
cable and of the vertical rope, with the sheave acting as a coupling member, and with the winder drum
regarded as an ideal energy source. An important feature of this system is that the hoisting cable is of
time-varying length. However, the rate of change is small and the length is said to vary slowly.
Consequently, the dynamic characteristics of the system vary slowly during the wind, rendering the
system nonstationary [1,2].

The mathematical model of the system is developed by applying two frames of reference: a
moving frame attached to, and moving with the drum end of the cable, and a stationary inertial system
(see the diagram shown in figure 1 [1]). The dynamic response of the system is then described by Eq.
6, in terms of the in-plane and out-of-plane displacements of the catenary cable, denoted as

V(s,t) and W(s,t), respectively, measured relative to the rigid-body cross-over motions at the drum,

and the longitudinal displacements u(s,t) of the vertical system comprising the headsheave, vertical

rope and conveyance, where s is the Lagrangian coordinate of the cable section in its undeformed

configuration.

mvtt - ﬂchivsst + /lzmvt _Tcivss = EAe(t)vss - m|:vl (1_ SLC_I) + 2VI LL+ Vi Il_a:|v

C C

— i —
mw, — /ich Wast

L

C C

+ 2,mi, — T W, = EAe(t)W,, — m{wI - SL:') F20 ” ©)

Pl = AU + o pU, — EAU = ol + K [uy (0) = £, (0] - Mg, (I} (s - L),

InEq.6 u,, v, and w, are the boundary excitation time functions, prescribed by the geometry of
two diametrically opposed cross-over zones on winder drum circumference. The parameters 4, and 4,
are the coefficients of lateral damping and 4 and p, denote the coefficients of longitudinal damping.
It is assumed that the catenary cable stretches in a quasi-static manner and e(t) represents the spatially
uniform catenary strain. The catenary slowly varying mean tension is denoted by Tci, the elastic
effects of the catenary on the longitudinal system are represented by the equivalent coefficient of
stiffness k. and function f; (1), respectively. The mass distribution function in the vertical substructure
is given as p=m+M 6(s—L)+MdS(s—L,) where L =Il+L, (see figure 1), Ms denotes the
headsheave effective mass, and ¢ is the Dirac delta function.

Figure 2 shows the slowly varying vertical (longitudinal) and lateral natural frequencies of two
catenary-vertical rope systems. The first system (figure 2a) is a double-drum Blair Multi-Rope (BMR)

rock winder of maximum depth of winding 2100 m, nominal winding speed 15 m/s, equipped with a
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conveyance of total mass (with rated load) M = 17,600 kg. The second system (figure 2b) is a single-

rope double-drum rock winder of maximum depth of winding 2200 m, nominal winding speed 16

m/s, equipped with a conveyance of total mass M = 23,650 kg.

headgear sheave
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L.
y YT/I,PN
0 x O x|V u
catenary ’ ’
V_ Zl}:’ \‘V(Pﬂ M
z P L : !
windng L, P
drum vertical rope _
0, Ry, O -
2
conveyance M E
Figure 1. Drum drive hoist system and the catenary — vertical rope model [1]
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Figure 2. Slowly varying frequencies of the catenary — vertical rope systems: vertical (—-)

and lateral (—), (a) V=15 m/s M = 17,600 kg; (b) V =16 m/s M = 23,650 kg.
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The first four longitudinal and four lateral natural frequencies of the system are plotted versus the
vertical rope length. The horizontal dashed lines denote the first and the second harmonics of the
excitation frequency corresponding to the nominal winding velocity and vertical dotted lines indicate
the layer change locations. During the ascending cycle the longitudinal frequencies increase, and the
lateral frequencies decrease, with the decreasing length of the rope. A number of resonance conditions
may arise during the wind. They include resonance phenomena due to the non-linear interactions
among different modes of vibration.

The resonance and dynamic interactions are demonstrated by the simulation response plots
shown in figure 3 and figure 4, respectively. One-to-one (1:1) lateral internal resonances occur
throughout the wind in both systems, since the in- and out-of-plane lateral natural frequencies are the
same. It is evident that the large in-plane response is a direct consequence of this autoparametric
resonance and of the energy exchange between the lateral modes, with the out-of-plane motion being
a parametric excitation for the in-plane motion. One could note that the response plots in figure 3(a)
and 3(b) show that the lateral response remains large beyond the 600 m length level, due to cascading
energy exchanges among the modes, and consequently a full ballooning motion is developed, which
persists till the end of the wind.

Furthermore, upon close examination of the frequency curves for the first system, one can notice
that interesting frequency tunings occur in the region L, = 900-700 m. For example, when the vertical
length is about 900 m the fourth longitudinal and the second lateral natural frequencies are in the ratio
2:1, and a two-to-one internal resonance condition takes place. A primary external resonance exists
simultaneously with this condition, since at this level the second harmonic of the cross-over motion at
the drum directly excites the fourth longitudinal mode. Considering the frequency plots of the second
system, they reveal that the second harmonic of the excitation is near the third lateral frequency at
approximately L, =~ 800 m. At this depth the third longitudinal frequency is tuned closely to the third
lateral frequency, implicating also a one-to-one internal resonance. Also, at the beginning of the wind
a passage through the fundamental longitudinal resonance takes place.

The plots shown in figure 3(c) and figure 4(c) demonstrate that the catenary lateral motions result
in adverse behavior of the headsheave. However, due to damping in the system the conveyance
response, illustrated by plots in figure 3(d) and figure 4(d), respectively, is largely unaffected by the
dynamic behavior of the headsheave.

4. Modern built environment

In the modern high-rise built environment high-speed high-capacity traction drive lift systems are

used. In these systems the lift car/ counterweight system is driven by tractive forces developed
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between the traction shave and the suspension means, such as steel wire ropes (SWR) or composite
LSC [3].
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Figure 3. Displacement response V = 15 m/s M = 17,600 kg: lateral (a) in-plane and (b) out-
of-plane motions at the first quarter of the catenary; longitudinal responses (c) at
the headsheave and (d) at the conveyance [2].
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Figure 4. Displacement response V =16 m/s M = 23,650 kg: lateral (a) in-plane and (b) out-
of-plane motions at the first quarter of the catenary; longitudinal responses (c) at

the headsheave and (d) at the conveyance.
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SWRs or composite cables/ belts, tensioned by the weight of the compensating sheave, are then
used for the compensation of tensile forces over the traction sheave. A schematic diagram of the
dynamic model of the lift system is shown in figure 5. The modulus elasticity, cross-sectional metallic
area and mass per unit length are denoted as E;, A;, m; and E,, A,, m, for the compensating ropes and
the suspension ropes, respectively. The compensating ropes are of length L, at the car side and the
suspension ropes are of length L, at the counterweight side, respectively. The length of the suspension
rope at the car side and the compensating rope at the counterweight side are denoted as L; and Ly,
respectively. The lengths of suspension ropes and compensating cables are slowly varying

L =L(7), i=1...,4[10,11]. The masses and dynamic displacements of the car, counterweight and

the compensating sheave assembly are represented by Mes, Moy and Meomp, Qw1 Omz and O,
respectively. The acceleration/ deceleration of the car is denoted by ac,-

When the building structure sways at low frequency due environmental phenomena such as
strong wind conditions the suspension ropes and compensating cables suffer from large dynamic
displacements [4]. Due to the slow variation of their lenghths the natural frequencies vary during
travel, rendering the system nonstationary. An adverse situation arises when the building is excited by
wind near its natural frequency and vibrates periodically. This in turn may result in a passage through
external, parametric and internal resonances in the lift system [12]. The nature of loading caused by
wind is usually nondeterministic (stochastic). The excitation is then represented by a stochastic
process so that the methods of stochastic dynamics could be employed to predict the dynamic
behaviour of the lift system. The motion of the structure can then be expressed as a narrow-band
process mean-square equivalent to a harmonic process [10]. However, deterministic models yield
results that that can be used to gain an understanding of the behaviour and to predict the fundamental
dynamic phenomena that occcur in the system.

Eqs (7) represent the mathematical model, based on the diagram in figure 5, with the excitation

mechanism expressed by deterministic functions given in terms of the structure deformations due to

the tower sway defined in terms of the shape function ¥ (z/Z,) [13]. Consequently the response of
the system is treated as a deterministic. In this model V; (x;.t).W; (x;.t), i = 1,2,..., 4 represent the

dynamic displacements of the ropes and cables, T;, i = 1,2,..., 4, denote the rope quasi-static tension
terms, V is the speed of the lift, and a; i = 1,2,..., 4, are the acceleration / deceleration rates of the car
[/counterweight. The continous slowly varying nonlinear system (7) is discretized by using expansion
(4) and the resulting ODE set of nonlinear equations is solved numerically.
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where m, =m,, m,=m,, a, =a,,, 8, =-a,, 8, =a,, 8, =3, and E;A =E,A, E A =EA .
The curves presented in figure 6 (a), (b) shows the variation of the first two natural frequencies (

w,,m,) of the compensating cables at the car side and counterweight side, respectively, in a lift

installation servicing a 250 m tall building structure. The frequencies are plotted against the cable

length, with the in-plane and out-of-plane excitation frequencies (denoted as (2,42, , respectively)

represented by red horizontal lines. It can be seen that in the length region of about 130 — 170 m
passages through the fundamental resonance take place in the system. The displacements of the cables
are shown in figures 7 and 8, respectively. The scenario is that the car travels upwards from the
bottom level stopping at the highest landing level. It is evident that at the car side the displacements
of the cables grow after the passage through resonance, when the cables become fully stretched. On
the other hand, the cable displacements at the counterweight side decrease with the shortening length.
The lateral responses of the cables are coupled with the vertical motions of the car, counterweight and
the compensating sheave assembly. These motions are shown in figure 9 vs time. It is evident that due

to autoparametric couplings substantial motions of the vertical masses occur.

5. Conclusions

Dynamic interactions that take place in VT systems deployed in deep-mine hoist systems and high-
rise built environment result in adverse behaviour of their components compromising the structural
integrity and safety of the entire installation. A VT installation is a slowly varying nonstationary
dynamic system. When one of the slowly varying natural frequencies becomes near the frequency of

the excitation a passage through resonance takes place.

257



Frequency  Hr

Frequency Hr

V(1)

w
Z /)
;'/ ()
X N ':
I
g L | N
| )
N
I %
I
1
J’acar At Mear I L
v 2
\ v [.'I Vs, 7
: 0
| R z
X : R EA
s
iy (Y ™
ll M
L, vi[rw owt
| ! Jqu
E1A1 | h
m : 1
: 1] %4 |La " ground
g i ‘7 - Ii
1 l ’ Mcomp
Oms

Figure 5. Dynamic model of a lift system.
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Figure 6. The lateral frequencies of the compensating ropes (a) car side, (b) counterweight
side.
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In-plane Out-of plane

Figure 7. Displacements of the compensating ropes at the car side.

In-plane Out-of-plane

Figure 9. Displacements of the car, counterweight and compensating mass.

Vibration models and simulation techniques can be used to predict a range of dynamic interaction and
resonance phenomena. Then, suitable strategies, such as the active stiffness method [14], can be
developed to minimize the effects of adverse dynamic responses of the system.
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Nonlinear inverted pendulum model with time delay control for postural sway
in humans
(ViB241-15)

Natalya Kizilova

Abstract A model of human body as multi link inverted pendulum with nonlinear
viscoelastic springs in the joints is proposed. The control function is introduced as
torque in each joint produced by synergy of groups of flexors and extensors with dif-
ferent time delays provided by neurological diseases or age-related degenerative
changes in the neuromuscular coupling. The system of nonlinear ODEs for deflection
of each segment of the pendulum from the vertical line is obtaines. Its solution is
found via non-linear normal modes. The influence of geometry of the pendulum, vis-
coelastic parameters of the springs, torques in the joints and time delay on the trajec-
tory of the centre of mass of the pendulum is studied. The results are applied for bio-
mechanical explanation of the differences between the postural sway in young healthy
volunteers and elderly patients with spine, joint and neurological problems.

1. Introduction

Posturography is widely used in medicine for diagnostics of the locomotory system and balance con-
trol. The quantitative assesses the ability of an individual to produce muscular torques in joints ac-
cording to the balance control and nervous systems is important for prediction sudden fall and trauma
in elderly. Steady stance is supported by somatosensory, vestibular and visual information relevant
for balance control. Improper changes in sensory integration determined by age-related degenerative
processes, congenital impairments or diseases lead to the lost of control which might be detected by
increased and asymmetric postural sway. Stabilography has gained wide-spread acceptance in reha-
bilitation of the patients with sclerosis, Parkinson disease, for recovery of the locomotor function and
speech after the stroke, for development of the individual training regimes and sport positions of
weight-lifters, figure skaters and shoots. Progressive decrease in sway amplitude is observed in the
course of training of the sportsmen and the patients with balance impairments on the force platform.

The test is carried out by the force platform that measures the components of the ground reaction

~ N
forces {Ri }i—l produced by the front and rare parts of the left and right feet. Using the measured
ground reaction forces coordinates (X P yp) of the centre of pressure and the centre of mass COM of

the body (Xc,Yc) can be calculated. Since the physiological mechanisms with different characteris-

tic times are involved into the balance control, the curves (X (t), Y. (t)) exhibit quite complex be-

haviour [1]. The maximal amplitudes of the sway in the saggital and frontal planes and asymmetries
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of the amplitudes are used for primary medical diagnostics. The more detailed studies include tests
with different two-leg postures, one-lag balancing, and tests with closed eyes, moving walls, addi-
tional support, sudden hits or acute sounds are used for diagnostics of vestibular apparatus, nervous,
visual acoustical, tactile and other mechanisms of the balance control [2-8].

In the present paper the mathematical model of the human body as a complex inverted pendulum
developed in [7,8] and validated by the posturographic studies [5,6] is modified accounting for
nonlinear properties of the muscles and time delay in the physiological functions controlling the pos-

ture.

2. Materials and methods

The posturographic studies was carried out on a control group of young healthy volunteers (20 male,
20 female, age=24 + 3 years, body mass 67.3+19.2 kg, height 1.72+0.2 m) without neuromuscular
disorders were asked to keep a quiet vertical stance on the force platform during 30 s (fig.1a). The

force platform “Statograph-67’ of the laboratory of biomechanics Kharkov institute of spine and joint
_ 4
pathology has been used. The components of the reaction forces {Ri }i—l were measured for each

foot and COP trajectories (X (t), Yc(t)) were automatically computed. The second test were based

on the relaxed two-leg stance with transfer of the body weight onto the right and then on the left leg
(30 s each). The third test was a step forward off from the force platform on a support of the same
thickness starting with left and then with right leg (fig.1b). The same set of tests was repeated after 15
min rest with standard orthopaedic holders was fastened at the knee or/and ankle joints of one of the
leg or both. The holders are marked by ‘f” in fig.1. The presence of the holders allows decrease the
number of degrees of freedom (DOF) of the body. Fixation of the joint is a good opportunity to model
the pathologies connected with restriction of movement in separate joints. The corresponding data-
base of the patients with different impairments of the low extremities, joint pathology and trauma has

been collected and analyzed using the same force platform [5,6].
As an illustration the time series (X¢ (t), Y¢(t)) obtained for one of the volunteers are presented

in fig.2. Oscillations of the centre of mass for the normal vertical two-legged stance (fig.2a, central
rectangle), for the two-legged stance when the body weight is transferred onto the right (fig.2a, right
rectangle) and left leg (fig.2b, left rectangle) and for the step off from the platform (fib.2b) exhibit
variations in asymmetry and sway amplitudes in different healthy individuals, but the common feature
is location of the centres of the three rectangles almost at the same horizontal line. The sway ampli-
tudes in the frontal and saggital planes were determined as the X and Y dimensions of the correspond-
ing rectangles. Fir instance, in the case presented in fig.1a the sway amplitude in the saggital plane

becomes bigger in the relaxed two-leg stays with noticeable asymmetry with bigger oscillations when
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the right leg was used as the main support. The sway amplitude in the frontal plane was slightly
smaller for the left and right legs, which is normal for young individuals.

Analysis of the results of the same set of tests with holds applied to the joints revealed different
types of behaviour. Most volunteers with one leg locked by the holders exhibited significant asymme-
try in the COM location (fig.2¢). The sway amplitudes in the frontal plane were almost the same as
without the holders, but in the saggital plane the sway amplitudes were either noticeable bigger
(fig.2c) or smaller. The step off trajectories were asymmetrical and significantly changed when both

knee and ankle joints were locked. In the case of the two legs locked the same differences were more

QO

by &
L

a b c d
Figure 1. Position of the body during a series of tests: symmetric two-leg (a); two-leg stances with

clear (fig.3e and 3f accordingly.

body weight shifted onto the left (b) and right (c) foot; a step forward off from the force
platform on the plate of the same thickness (d)
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Figure 2. Trajectories of the COM of a healthy person without any holds (a,b), with the hold on the
right leg (c,d) and both legs (e,f) joints at 3 two-leg stances (a,c,e) and steps off towards
from the force platform (b,d,f)

3. Mathematical model of the inverted pendulum

The is considered as inverted three-link (fig.3a) and 2-link (fig.3b,c) pendulums. The lengths and

masses of the segments Ly_3 1 My_3 are known from the measurements on the volunteers. Position
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of the centre of mass of segments Cy_3 is determined by distances d;_3 from the beginning of the

segment along z-axis. The upper extremities are tightly pressed against the trunk so that the trunk to-
gether with the head and extremities may be considered as a single segment with composed mass and

inertia parameters. Supposing that the bearing area (feet position) is unchangeable, we describe con-
figuration of the pendulum by angles ;_3 between the segments and the vertical line (z axis). Then

the motion of the pendulum is determined by Lagrange’s equations of the second kind.

G Cs c;
b0 PcC 4 a.PcC z c Q4
C C
) R, bR . Rop 4R Rt 4R
[y [y © [y
a b [¢

Figure 3. Model of the body sway in the saggital plane for the unlocked joints (a), the ankle (b) and
the knee (c) joints with holders.

The first body segment (shank) participates in the rotational motional round the fixed point (an-
kle-joint). The second (thigh) and third (trunk) segments are involved into the rotational motion round

their of mass and transportation motion of the of mass caused by motion of the previous segments.

For the case expressions for the corresponding energies T i I1 j of the separate segments can be writ-

ten in the form:
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T, =0.562(3y + mdf) , Tog =053 3625 +0.5mV7E5,
I, =mgd;(1—-cosé,), I1, =mgly(1-cosé;)+m,gd,(1—-cosb,), (1)
IT3 =mgly (1-cos@;) + mygl, (1-cosé,) + megdz(1—cosés),
where Jj is the moment of inertia of the j-th segment, Vj is the velocity of the j-th segment rela-

tively its of mass. The expressions for the velocities may be easily found from geometrical considera-

tions as
V7 = 1262 +d362 + 2L,d,6,6, cos(8, — 6,),
VE = 1267 + 1562 +d262 + 211,6,6, xcos(6, — 8;) + ©)
+211056,65 coS(6; — 63) + 2L,d36,65 cos(6, — 65).
After substitution (1), (2) into Lagrange’s equations of the second kind, using power expan-

sions of the trigonometric functions in the small angles 6; and neglecting the terms smaller than

0i2 , we obtain the following system of linear differential equations in the matrix form:

M-—25+N-§:0 3)
dt

where @' = (6,,6,,65), sing T denotes transposition, Mqq = J1+mld12 +(m, +m3)L%,
M22:J2+m2d22+m3|_%, M33:J3+m3d§, M12=m2|_1d2+m3|_1|_2,

My3 = M3y =mglyds, My =myLydy + malyls, Moz =Mz, = mslads,

mlg(d1+2L2) 0 0
N = 0 ng(dz +|_2) 0
0 0 m3gd3

Let us investigate the system (3) and determine the own frequencies of the pendulum substituting

0j =aj sin(et +y) in (3), where aj, o,y are amplitude, frequency and phase of the oscillations.

Then we obtain the system of linear equations for the frequencies a' = (. @y, 3) in the matrix

form:

(M@?+N)-@=0. )
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The solvability condition of the system (4) is det‘M @ +N ‘ =0 which leads to a polynomial

equation for computation of the own frequencies @ . Solution of the equation may be easily obtained
by numerical methods when all the parameters of the model are determined.
For the locked joints (fig.3b,c) similar computations give the following results
Ty 3=0.5J5 3025 +0.5mV 25,
IT, =mg(d; +dq cosb, — Ly coséh,),
I3 = mgg(Ly +d3 —d3 cosfz — Ly cosG,), (5)
V7 = 1262 +d?262 + 21,d, cos(6, + 6,)6,65,
V{ = 1267 +d362 +2L,d5 cos(6, - 65)6,65.

Substituting expressions (5) into Lagrange’s equations of the second kind, making power expan-
sions of the trigonometric functions and neglecting the small terms of the same order of magnitude as
in the previous case, we obtain the system of differential equations in the form (3) where

Myg = Jq +mdf + (M +mg)Ls, Mgy = Jp +mydf, Mgg = Jg+mgd3,

Mqp = Mgy =mlyd;, Myz =Mz =mglyds, M3 =M3; =0,

mlg(d1+ L1)+mgg|_1 0 0
N = 0 mlgdl 0
0 0 m3gd3

In the case it is also worth to investigate the free oscillations of the pendulum and compare the re-
sults for the one-legged and two-legged stance. Solution of the system can be obtained by the same

numerical procedure.

4. Results of numerical computations and discussions

Investigation of the free oscillations of the models has been carried out by numerical methods. The
lengths of the segments have been obtained during the measurements on the volunteers and mass,
moments of inertia and position of the centre of mass of the segments have been calculated basing on
the statistical data [1,7]. Mass and inertia of the segments are considered as an association of the sepa-
rate segments basing on the of mass theorem and using the measured values of the height and weight
of the body of an individual [7,8]. The same calculations have been made for the one-legged stance
when the low extremities have been considered as single links consisted of two separate segments.
The computational results of the own frequencies are presented in table.1. Comparison of the com-
puted values to the measured posturography data and the data presented in literature has revealed that

the calculated own frequencies f); correspond to three main oscillation ranges I-III of PSD (fig.4)
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that for the averaged posturography data gives f €[0.2;0.4] (I), f €[0.4;1] (I), and f €[1;1.4]
(I11) for sway in Oy direction, and f €[0.2;0.3] (I), f €[0.3;0.9] (II), and f €[0.9;1.3] (III) for

sway in direction of 0x axis. The low frequency component corresponds to mechanical oscillations
and the high frequency component corresponds to the physiological tremor [1].

Numerical results for the model of the one-legged stance give the values for the own frequen-
cies which are slightly bigger then the corresponding frequencies for the two-legged stance and relate
to the same frequency ranges I-III. The computation results on variations of the own frequencies in

the two-legged to the one-legged stance are in agreement with posturography data.

Table.1. Own frequencies of the human body oscillations for the two-legged stance.

N Height Weight f f, f;
(m) (kg)
1 1.82 80.75 1.51 1.88 4.95
2 1.56 52.45 1.35 1.83 4.98
3 1.72 60.95 1.38 1.83 4.98
4 1.80 61.1 1.41 1.88 5.63
5 1.69 557 1.35 1.91 5.57
6 1.90 84.75 1.51 1.98 6.65
7 1.74 61.5 1.41 1.89 5.65
8 1.82 82.5 1.41 1.81 4.52
9 1.56 50.5 1.34 1.82 4.82
10 1.74 68.9 1.39 1.83 4.88
11 1.83 81.2 1.42 1.86 5.33
12 1.59 54.9 1.55 1.92 5.59
13 1.62 66.5 1.28 1.89 4.92
14 1.90 79.3 1.61 1.92 5.66
15 1.59 58.7 1.65 1.94 5.47
16 1.81 83.5 1.58 1.93 6.65
17 1.73 67.5 1.49 1.88 5.75
18 1.86 81.7 1.54 1.87 4.92
19 1.64 56.5 1.45 1.85 4.94
20 1.79 62.5 1.27 1.89 4.28
Mean 1.75 65.3 1.42 1.89 5.49
value
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The computed data conforms with the mentioned hypothesis that any decrease in the support
area in both longitudinal and transverse directions leads to an increase in instability of the posture [6].
At definite critical values of the supporting area an individual may lose the posture stability. In that
case the sway amplitude increases in both sagittal and coronal planes and the low frequency rambling
component changes its behaviour, namely the average “free path length” increases that leads to sig-
nificant increase in maximal sway amplitude. The pattern of the trembling component is changed in a

different way.

4. Conclusions

Results of the posturography study of several sorts of two-legged and one-legged stances revealed
that the patterns of oscillations of the of mass and the corresponding trajectories Y (X) are different

for different healthy volunteers. Since some relationships in displacement of positions of the of mass
for the vertical stance and for the first step off the force platform are the same as have been obtained
during the 20 year experience of measurements of posturography data for the patients in the Institute
of Spine and Joints Pathology, it implies the state of the even young volunteers (students, schoolchil-
dren) is far from the real healthy and the stealthy spine and joint chronic pathologies have been ob-
served in many cases.

Single-meaning visual interpretation of the posturography data is usually impossible so the
mathematical models and biomechanical analysis and interpretation of the data are extremely impor-
tant in the field. Maximal and mean sway amplitudes may be proposed as separate diagnostic indexes
for the two-legged and one-legged vertical stance. Spectral power density is an important characteris-
tic of the own and forced sway frequencies.

Mathematical model of the human body as an inverted pendulum allows computation of the own
frequencies and describes correctly the increase in frequency values when an individual transfers
from the two-legged to the one-legged stance. The model can be generalized for different joint pa-
thology and for incorporation the feedback control mechanisms.

A comparative study of the posturographic data for the two-legged and one-legged models is a
promising way of medical diagnostics, because one-legged stance allows stimulation of the neuro-
muscular system controlling the body balance that may be significantly changed in entirely different
ways at the expense of the age-related and pathological processes.

The obtained results may be useful for biomechanical explanation of the differences between the
postural sway in young healthy volunteers and elderly patients with spine, joint and neurological

problems.
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The subharmonic Melnikov method for a class of planar
piecewise-smooth systems
(NON108-15)

Shuangbao Li, Xiaoli Bian

Abstract: In this paper, the well-known Melnikov method of subharmonic or-
bits for smooth systems is extended to a class of periodic perturbed planar
hybrid piecewise-smooth systems. In this class, the switching manifold is a
straight line * = 0 and divides the plane into two zones, the dynamics in
each zone is governed by a smooth system. When a trajectory reaches the
switching manifold, then a reset map describing an impacting rule applies in-
stantaneously before entering the trajectory in the other zone. We assume
that the unperturbed system is a piecewise-defined Hamiltonian system which
possesses two heteroclinic orbits connecting two saddle points on each side of
the switching manifold. Furthermore, we assume that the region closed by
these heteroclinic orbits is fully covered by a continuum of piecewise-smooth
periodic orbits, which cross the switching manifold transversally and whose
periods monotonically increase as they approach the heteroclinic orbit. Then,
we study the persistence of the continuum of periodic orbits under a nonau-
tonomous periodic perturbation and the reset map. To achieve this objective,
we obtain the Melnikov function of subharmonic orbits for the planar hybrid
piecewise-smooth systems.

1. Introduction

In recent years, there has been considerable interest in the study of piecewise-smooth dy-
namical systems. Such systems are widely used in applied science such as switching circuits
in power electronics [2], impact and dry frictions in mechanical engineering [8,9], walking
machines [13], relay feedback systems in control theory [7], etc. The study of bifurcations and
chaotic dynamics for piecewise-smooth dynamical systems has become very active in recent
decades. There is an enormous literature on this subject, in addition to the aforementioned
works, see, for example, the monographs [1,6,17] and the references therein for more on
this issues. The systematic discussion on bifurcations of fixed points and periodic solutions
in nonlinear discontinuous systems has been given in [18]. A survey about dynamics and
bifurcations of non-smooth systems was presented in [20]. However, there is a large disparity
to understand subharmonic bifurcations, homoclinic bifurcations and chaotic dynamics for

non-smooth dynamical systems.
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For smooth dynamical systems, the Melnikov method is a very powerful tool to study
the persistence of periodic orbits and homoclinic orbits for planar regular systems under non-
autonomous periodic perturbations [15,21,22]. This persistence is studied by the existence of
simple zeros of the subharmonic Melnikov function and the Melnikov function, respectively.
In recent years, a lot of efforts have been made to extend the Melnikov method to piecewise-
smooth dynamical systems, see [3-5,10-12,14,16,17,19].

In this paper, we want to study the subharmonic orbits of a class of periodic perturbed
planar hybrid piecewise-smooth systems. We assume that the switching manifold is a s-
traight line z = 0 which divides the plane into two zones and the dynamics in each zone
is governed by a smooth system. When a trajectory reaches the switching manifold, then
an reset map describing an impacting rule applies instantaneously before entering the tra-
jectory in the other zone. We assume that the unperturbed system is a piecewise-defined
Hamiltonian system, and possesses one saddle point on either side of the switching mani-
fold. Furthermore, we assume that two heteroclinic orbits connect both saddle points and
surround a region fully covered by a continuum of piecewise-smooth periodic orbits, which
transversally cross the switching manifold and whose periods monotonically increase as they
approach the heteroclinic orbit. Under a non-autonomous periodic perturbation and the
reset map, the persistence of the periodic orbits can be solved by obtaining the non-smooth
subharmonic Melnikov function for the planar hybrid piecewise-smooth systems. The key
technique in this paper is to choose the switching manifold = = 0 as a Poincaré section and
define an appropriate Poincaré impact map. The results presented in the paper are original

and interesting for the scientific community.

2. Statement of the problem
We divide the plane into two zones,

Vo = {(z,y) e R? | z <0},

Vi = {(@,y) €R? | 2 > 0},
which are separated by the switching manifold

s=2tUsTuU(0,0), (2)

where

St ={(z,y) eR* | z =0, y > 0},

S ={(z,y) €R* |z =0,y <0}
The normal of ¥ is given by

n = (1,0), at any (0,y) € X. (4)
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We consider the planar piecewise-smooth system

2 ) = faw) + eolot) = IDH= ) et e

Y JDH (x,y) + €g+(x, y, 1), (z,y) € Vi,
where (z,y) € R? and €(0 < € < 1) is a small parameter. We also assume the Hamiltonian
functions Hy : R? — R are O™ and satisfy H_(0,y) = H4(0,y) for any (0,y) € %, and
g+ : R x R — R? are C" with 7 > 2 and T—periodic in t. We note that D = (2, )
denotes the gradient operator and the matrix J is the usual symplectic matrix

01
-10

On the switching manifold 3, we also consider a reset map to describe an impacting rule

on the switching manifold for system (5) given as follows:
S xR -3
(0,9, €) = (0,7¢(y))

satisfying y - ne(y) >0 fory #0 and 0 < e € 1, no(y) =y € R and 7. € C"(R) with r > 1.
We also denote 77 (0,,¢) = (0,7 (y)) for any y € R and 0 < € < 1, where 1. *(y) is the

(6)

inverse mapping of 7¢(y).

Next, we give some notations which will be used in the following analysis. II, : R> = R
is a projection defined by Il;(z,y) = x. Similarly, we define II,(x,y) = y. The wedge
product of two vectors a = (z1,y1) and b = (z2,y2) is given by a A b = z1y2 — z2y:1.

In the aforementioned description, the switching manifold is a straight line x = 0 which
divides the plane into two zones, and the dynamics in each zone is governed by a smooth
system. We hope that if a trajectory crosses the switching manifold ¥ transversally at some
point (0,y) at t = t*, then before entering the trajectory in the other zone, the reset map
(6) will be applied and the trajectory jumps from (0,y) to (0,7.(y)) instantaneously. We
also assume that the trajectories are clockwise oriented without loss of generality. In order
to achieve this objective, the following assumption is necessary and presented as follows:
(H1) For any (0,y) € XTUX™, [n-JDH_(0,y)]-[n-JDH(0,y)] > 0, and [n-JDH_(0, y)]-y >
0 for y # 0.

In this work, we focus on the persistence of subharmonic orbits for the system (5)-(6).
It is natural to extend the classical Melnikov method of subharmonic orbits to the planar
hybrid piecewise-smooth systems. Hence, we make the assumptions about the unperturbed

system of system (5)-(6) as follows:

(H2) For ¢ = 0, Eq.(5) has two hyperbolic equilibria 2~ = (z7,y~) € V_ and 2zt =
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(z*,y") € Vi of saddle type. There exist a pair of heteroclinic orbits given by W*(z7) =
We(z%) and W*(z") = W*(2~) connecting the equilibria 2~ and z* on either side of z = 0

and belonging to the same energy level

{(@,9)| H(z,y) = H_(=") = Hy (x,y) = Hy (=) = c1 > 0}, (7)

(H3) The region enclosed by the pair of heteroclinic orbits is fully filled with a continuous

family of periodic orbits given by
Tc:{(l',y)|H_(fE,’y):H+({L',y):C>O} (8)
with 0 < ¢ < ¢1, and Y. intersects X transversally exactly twice.

(H4) The periodic T. of Y. is a regular function of ¢ with strictly positive derivative for
O<e< C1.
The phase portrait of the unperturbed system (5)-(6) is topological equivalent to the

one shown in Figure 1

v ¥ I

Wz )=W*(z") Te

Wiz )=W"(z")

Figure 1. The phase portrait of the system (5)-(6) for e = 0.

We want to determine the persistence of periodic orbits. In the smooth case, the Mel-
nikov method of subharmonic orbits [15] is a classical tool to solve this problem. Hence, it is
natural to check whether the classical method is still valid for the planar hybrid piecewise-

smooth systems described above and if any changes to the method are necessary.

2.1. Poincaré impact map

We let ¢~ (t;to, To, Yo, €) be the flow associated with system (5) restricted to V_, and t1 > to
is the smallest value of ¢ such that I, (¢~ (t1;to, Zo, Yo, €)) = 0. Similarly, ¢*(¢;to, z1,%1,€)
be the flow associated with system (5) restricted to Vi, and t2 > to is the smallest value of ¢
satisfying the condition II. (g™ (t2;to, 1, ¥1,€)) = 0. Hence, one can extend the definition of

a solution, q(t;to, o, Yo, €), of system (5)-(6) for all t > to by properly concatenating ¢+ or
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q~ whenever the flow crosses ¥ transversally. Depending on the sign of xo, one applies either
g~ (t;to, To, Yo, €) or ¢ (£; to, To, Yo, €) until the trajectory reaches ¥, and then one applies (6).

In order to describe the dynamics and study the periodic motions of system (5)-(6) more
clarity, we need to build the Poincaré impact map of the system (5)-(6). We first consider
time as a system variable and add equation # = 1 to system (5)-(6), and then we choose the

sections in the extended phase-space R? x R as follows:

ST ={0,y,t) eR*xR |y >0, 0< Hi (0,9) <1}, 9)
and

2T ={0,y,t) eER*xR |y <0, 0< H (0,y) <1} (10)

Here we note that the first coordinate of points in ¥ and X~ is always zero, so we will omit
its repetition in the following analysis without leading to confusion.
We firstly define a map
Pr.UCyt 5%

such that for (0,y0,t0) € U C BT
P (yo,to) = (Ly(q" (t13t0,0,90,€)), t1) == (y1,t1) € 7, (11)

where t; > to is the smallest value of ¢ satisfying the condition I, (g (t1;t0, 0, yo, €)) = 0.

Based on the assumptions aforementioned, we know that a trajectory crossing 3 transver-
sally at the point (0,y1) will jump from (0,y1) to (0,7.(y1)) instantaneously. Hence we can
introduce the following map

Re :RxR—->RxR

such that
Re(y,t) = (ne(y), 1) (12)

with R (y,8) = (0 (), 1)
Similarly, we define a map
P :Vcy —xt

such that for (0,y1,t1) € V. C X~
P;(yhtl) = (Hy(q_(tz;tl,O,y1,e)),t2) = (yg,tz) S 2+, (13)

where t2 > t; is the smallest value of ¢ satisfying the condition II, (¢~ (t2;t1,0,y1,€)) = 0.
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Hence, we choose ©7 as the Poincaré section and define the Poincaré map as the com-
position (see Figure 2)
P.:UcCTt -3t

such that

P.(yo,t0) = Re 0 P~ o Re o P (yo,to). (14)

y

P.(yesty)

VR,
(Vosty)

\\” X

RA,

~

sty)

Figure 2. Poincaré impact map (14) represented schematically.

In the unperturbed case, Ro(y,t) = (y,t) and the Poincaré map becomes

Po(yo, to) = Py o Py (yo,to) = Py (o, to + T (y0))

(15)
= (yo,to + T (y0) + T~ (90)) = (yo,to + Te(yo)).-

where T (yo) is denoted as the time that an orbit of the unperturbed system with initial
condition (0, yo,t0) spends going from point (0,yo) to point (0,9o), and T~ (Jo) is the time
that the orbit spends going from point (0, §o) to point (0,y0). Let us denote T.(yo) as the
period of a periodic orbit with the initial condition (0, yo,to) such that H4(0,y0) = ¢ with
0<c<ey,ie,

Te(yo) = T (yo) + T (go)- (16)

Up to now, we have defined the Poincaré impact map of system (5)-(6). We now use
solutions of system (5)-(6) with initial conditions (0,yo,t0) € 1 to define the sequence of

impacts (0,%,t!) (see Figure 3), if they exists, as

o Reo PH(yi~' #i7Y), ifyi ' >0
(ye,te) = , , , , 1>, (17)
R€ o P€7 (yzilat’éilx lf y271 < 0

where (y2,t2) = (yo,t0) and P and R, are defined in (11)-(13), respectively.
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Dorl) =510
(y;‘.t,,’)\\,

i)

Figure 3. Sequence of impacts defined by the Poincaré for system (5)-(6).

For the unperturbed case, for any point (0,y0,t0) € X, the impact sequence (17)

becomes

(yo, té_l +T_(90)) = (yo, to + %Tc(yo))7 if 7 > 2even

(%o, to) = , (18)

(0, to "+ T (y0)) = (go, to + 5+ Te(yo) + T4 (yo)), if i > 1odd
where §o, T—(go) and T (yo) are aforementioned.
Once the impact sequence (yi,ti) are defined , the solution of the non-autonomous
system (5)-(6) with the initial condition (0,yo,%0) € £V is given as
g (G,0,586), it <t <t
q(t;t0, 0,90, €) = . . . 120, (19)
g (&t270,0,y2 ), B 12T <t < g2
The periodic solution for the unperturbed system of (5)-(6) satisfying the initial condition
(0,90,t0) € X1 with H_(0,y0) = H1(0,90) = c is given as
q (63,0,58',0) == gl (1), it 65t <t <t

q(t;t0,0,50,0) = , _ , ~,i>0. (20)
q (20,437 0) = qo (1), if 2T <t < £t

2.2. Existence of subharmonic orbits

Next, we will employ the impact map defined in (14) to find periodic orbits. In term of this
map, a point in U C &F will lead to a periodic orbit of period n1 if it is a solution of the

equation
P™(yo,to) = (yo, to + nT) (21)

for some m. We take m to be the smallest integer such that (21) is satisfied. In that case,
q(t; to, 0,yo, €) will be a periodic orbit of period nT, which crosses the switching manifold >

exactly 2m times. This periodic orbit is called an (n,m)— periodic orbit.
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In order to study the existence of periodic orbits, we use the Hamiltonian function Hy
to measure the distance between the points (0,%2™) and (0,0) for m > 1. We first give a
notation which will be used below.
t2m
[ 7t t0.0.0,0) Astatsto, 0,30,y

t2L+1

=S D 00 M 520, 0. (22

€

t2 i+2

+ Z / e TPH- (@ (G058 ) Ag- (g (5 17,0,52 ), ).

Hence we have the following lemmas.
Lemma 1. Let m > 1 and (0,90,t0) € 7, and let (0,y%,t}), i = 0,1, ...,2m, be the

associated impact sequence as defined in (17). Then,

H4(0,y2™) — H(0,90)

$2m

—c / F(a(t; 0, 0,0, €)) A glalt: to, 0, 5o, €), 1)dt

to

+ ) [He(0,92") — Ho(q (8254271,0,52 7 €))]

-

Il
—

k3

3

+ ) [H- (0,52 = Hy (g7 (827582,0,57 6)].

o
Il
o

Lemma 2. Let m > 1 and (0,y0,t0) € 2T, and let (0,y,t!), i = 0,1,...,2m, be the

associated impact sequence as defined in (17). Then,

Hy(0,y2") — H- (¢ (£25¢271,0,92 71 )

(24)
=€[A5; — Ayl +o(e), (1<i<m),
H_(0,y2""") — Hy(qF (£275142,0,42" €))
(25)
:5[A;i+1 - A2+z'-~-1] +o(e), (0<i<m—1),
where
A3, =JDHL(0,30) A L(Oéi/m 0
i 26)
n(0,0) - D*i(0, 40, 0)JDHy (O,y0) 1 _ (
Ao, (1<3<
+ n(O,yo)-JDHf(O,yo) 24 ( _Z_m)7
_ N an(0, 9o, 0
Agiyr =JDH_(0,90) A %
(27)

n(0, o) - D*7(0, o, 0)J DH_ (0, §o)
n(07 QO) : JDH‘F(anb)

A27.4»17 (O S ) S m — 1)7
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iTe(yo)
AF = A5, +/ (JDH- A g )= ().t +to)dt, 1 <i<m),  (28)
(i—1)Te(y0)+T+ (yo)

iTe(y0)+T 7 (yo)
Agipr = A +/ (JDHy A g4) (gl (1), +to)dt, (0<i<m—1), (29)
iTe(Yo)
where Al = 0 and D*#(0,vy,0) denote the adjoint of D7j(0,y,0).
Lemma 3. Let m > 1 and (0,90,t0) € =7, and let (0,y%,t!), i = 0,1,...,2m, be the

associated impact sequence as defined in (17). Then,

Hy(0,y2™) — Hy(0,50)

to+mTe(yo)
—c / F(a(t;t0,0,50,0)) A gla(t: to, 0, o, 0), t)dt

to
m m—1
+ €[Z(A; —Ag) + Z (Agis1 — AZipr)] +0(e) (30)
i—1 i=0
MTc(yO)
e [ Halt:0,0,0,0)) A 9(a(t:0,0.50.0). ¢ + to)ds
0
m m—1
+ed (AL =A%)+ > (Agipr — AL )] +0(e)
i=1 i=0

where AE i =1,...,2m can be obtained by the iterative algorithm presented in (25)-(28).
Next, we will give a simplified form of (29) in a special case.
Lemma 4. Let m > 1 and (0,y0,t0) € I7, and let (0,y,t%), i = 0,1,...,2m, be the

associated impact sequence as defined in (17). Furthermore, we assume that

n(07 yo) ) D*ﬁ(07y070)JDH+(07y0) _ n(07g0) ) D*ﬁ(0>g070)JDH*(07g0)

= - - =1, 31
n(0, 30) - JDH_(0, yo) n(0.40) - JDH (0. §o) (31)
then,
H(0,y2™) — H(0,90)
mTe(yo)
26{ / f(q(t;t0707y0>0)) /\g(q(t;to,07y0,0),t+to)dt (32)
0

aﬁ(oa go? 0)

910.90:9) . 71pE (0, 0) A T)} ot

+m(JDH(0,y0) A =4

Theorem 1. Consider a system which is defined in (5)-(6) satisfying the assumptions (H1)-
(H4), and let T¢(yo) be the function defined in (16). Assume that the point (0, %o, o) € 3T
satisfies

Al T.(go) = oT  with n, m € Z relatively prime,

m )
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A2 T € [0,T] is a simple zero of

W
M™™ (to) :=/ f(q(t;0,0,90,0)) A g(q(t; 0,0, 40,0),t + to)dt
0

m m—1 (33)
+ [Z(A; = Ag) + Z (Azisr — Adi)),
i=1 i=0

where ¢.(t) = ¢q(¢; 0,0, %o) is the periodic orbit such that T.(go) = % with ¢ = H_(0,%o) =

H(0,7o). Then, there exists €y such that for every 0 < € < €p, one can find y5 and ¢; such
that ¢(t;t5,0,yg) is an (n, m)— periodic orbit.

3. Conclusions

In this paper, we have obtained the Melnikov function for a class of periodic perturbed
planar hybrid piecewise-smooth systems. Theorem 1 can be used to study the existence
of subharmonic orbits. The Melnikov function defined in (33) has a simple form but with

complicated iterative algorithm presented in (25)-(28). So if the condition in Lemma 4

n(0,0) - D*i(0,y0,0)JDH  (0,y0) _ n(0,50) - D0, 4o, 0)JDH_(0,) _ |
n(0,yo0) - JDH_(0, yo) n(0,go) - JDH(0, o)

satisfies, then we can obtain a simple form of the Melnikov function

mTe(yo)
M(y(htO) ::/ f(q(t7 t0707 Yo, 0)) A Q(Q(t, t07 07 yO»O)vt + t(])dt
0 (34)

+ m<JDH+(07 o) A w + JDH_(0, o) A M)
€ €

which is understood easily with great advantage for calculation and engineering applications.
The existence of an (n, m)— periodic orbit can also be given by using the Melnikov function
(34).
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Switched Reluctance Motor (SRM) mechanical faults and their
identification in frequency domain
(MTR297-15)

Jakub Lorencki, Stanistaw Radkowski

Abstract: In the paper the authors describe mechanical faults of SRM (rotor imbalance
and dynamic eccentricity) that were carried out on the test bench as experiments. The
SRM is a brushless electric motor with electronic commutation and due to its qualities
it can be applied in locations where reliability is highly important. The measured
signals were taken from the motor current sensor and from accelerometers from three
different axes. The results of these faults are mainly scrutinized as spectra, however,
time domain analysis is also possible. The concept of the research is to capture the
exact fault phenomena in the spectrum and its identification and distinction between
the eccentricity and load imbalance faults. Subsequently, the impact of these faults
onto the overall performance and efficiency of the motor will be observed. The results
can be compared to similar measurements taken from another electric motors (as
BLDC) and the comprehensive comparison can be made.

1. Introduction

The world economy and environment have experienced significant degradation in recent years.
Among those phenomena were global warming and greenhouse effect, depletion and price increase of
fossil fuels and strong accumulation of carbon dioxide in the atmosphere[1]. These facts resulted in
the idea of return to electric drive in motor vehicles since the 1990s. American and Japanese
manufacturers decided to resurrect electric and hybrid electric vehicles for everyday use (e.g. General
Motors EV1, Toyota Prius, Nissan Leaf, Tesla Roadster). Until now this technology is being
upgraded and every year new models of electric and hybrid electric cars have their own
premiere[2][11].

There are many different types of energy sources to supersede diesel oil or gasoline by
alternative fuels, however the most applied ones are hybrid electric (i.e. electric motor and engine)
and electric drive. For the electric drive almost every type of motor can be used, nevertheless, the
most common are induction motor and brushless permanent magnet motor. The induction motor (with
inverter) is applied rather for bigger vehicles (e.g. trams and trains). The permanent magnet (BLDC)
motors are generally used for electric cars and minor vehicles, but certainly there are higher energy
consumption applications for this motor. The BLDC motor has the great advantage of highest energy
density because of strong neodymium magnets. This motor has however some drawbacks as well:
high cost of magnets, its weight, peril of strong attracting metal force, possible demagnetization (e.g.
by high temperature in the close vicinity to combustion engine in hybrid cars). The availability on

Earth (especially outside China) of rare earth materials is also somewhat smaller than iron[3][4].
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There is however another modern electric motor used for different electric drive applications for
vehicles. The motor described in this study is Switched Reluctance Motor (SRM) (Fig.1). Like BLDC
motor, the SRM s also brushless and electronically commutated. The difference is that it is entirely
built from iron (rotor and stator). It has characteristic salient poles on stator and rotor with windings
only on the stator. It has less poles on the rotor than on the stator, the typical configuration of poles
ratio (stator to rotor) is 8/6 or 6/4. Because of its characteristic geometry the reluctance of the flux
path from a phase winding varies with the position of the rotor.

)

Figure 1. SRM construction [5]

From the scientific point of view it is important to find the influence of the specific faults on the
motor’s efficiency and on the measurement signals which will be useful for motor diagnosis. Special

test bed was designed and built in order to examine the interrelation between those phenomena.

1.1. Purpose of the study

The switched reluctance motor can experience several types of faults during its operating period in
the same way as another types of electric motors. There are different motor faults and they are
generally divided into electrical and mechanical ones.

From the electrical faults one can distinguish the short-circuit of inter-turn phases due to
deterioration of winding insulation which is a severe problem and can occur frequently. The damages
of power converter, controller or encoder can certainly also exist but all of these cases are beyond the
scope of this study.

The most common mechanical damages that can occur in almost all electric motors are:
misalignment, imbalance, looseness, bent shaft, cocked bearing on a shaft and bearing defects[7][8].

The area of this research is the profound study of various aforementioned mechanical faults in
the switched reluctance motor. The test bed designed for this study has mechanical elements that will

cause these faults.
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The purpose of the research is to determine which characteristics of measurement signal can be
associated with specific faults. These results can be compared with the similar experiments performed
on the permanent magnet motor - another DC motor with electronic commutation. The mechanical
faults can have negative effects on the overall efficiency of the electrical drive. Certainly the sooner
the problem is detected the better it is for the machinery because its downtime is reduced[8].

The diagnostics of this type of motors is usually made in two ways: by measuring the current
signal in the motor’s stator or by measurement of vibrations by means of the accelerometer. It is also
possible to measure the voltage on stator phases, the speed and angle by means of the encoder and the
temperature on the frame of the motor, but these methods are extremely rare and they will be omitted
in the scope of this study.

2. SRM mechanical faults

As it was mentioned before the faults that can exist in electric motor generally can be divided into
mechanical and electrical ones. The scope of the work are mechanical faults in switched reluctance
motor which are: bearing damage, eccentricity/misalignment (static and dynamic) of the air gap, rotor
and load imbalance. These are the damages that occur in any type of electric motor and can be found
commonly in everyday life of the machines. Each type of electric motor fault cause detrimental
symptoms that can be observed as higher vibration and thus noise, stronger torque pulsations, higher

losses, unbalanced currents and voltages within the machine circuit[9][10].

2.1 Eccentricity (misalignment)

Eccentricity is a very common mechanical fault that occurs often in all of the types of electrical
machines. Basically it causes the non-uniform air-gap between rotor and stator. This phenomenon can
be identified in the current spectrum as fault harmonics caused by varying inductances making
unbalanced magnetic flux in the air-gap. Should this problem be severe the stator can touch the rotor
causing the damage of both of them. There are two types of eccentricity: the static and dynamic (Fig.
2 and 3)

O (D (L)
—*rir— 5 ’:’|‘\ T ':' W o
/| \\ /

Figure 2. Static eccentricity
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Figure 3. Dynamic eccentricity

In the static eccentricity the centerline of the shaft is at constant offset from the center of the
stator, thus non-uniform air-gap is also constant. In the dynamic eccentricity the offset between the
shaft’s centerline and stator varies in time changing the air-gap length in time. Because of irregularity
of the air-gap, magnetic flux changes values there and it results in the unbalanced currents which can
be found in the current spectrum. In reality, both static and dynamic eccentricity occur
simultaneously. The causes of eccentricity can be numerous as the faults of rotor construction
(noncircularity, imbalance), missing or damaged elements in its construction (e.g. bolts), bad
mounting or bearing damage.

The eccentricity can be easily detected in the line current spectrum because of its much higher
amplitudes in comparison to the signal noise.

2.2 Imbalance

Imbalance is a very common fault. It causes almost half of the machine problems directly or
indirectly. When the mass centerline and geometric centerline do not coincide then imbalance takes
place. The static, dynamic and coupled imbalance can be distinguished but in real life only coupled
imbalance exists with the majority of either static or dynamic imbalance.

The reason of the formation of this kind of failure is similar to the other types of faults, mostly by
manufacture defects, debris on the parts of machinery or additional unbalanced shaft fittings.

Because the imbalance produces dynamic loads, the bearing experiences fatigue from excessive

stresses.

3. Results

The experiments performed in this study were the dynamic eccentricity and rotor imbalance. The 1
one delivered more sophisticated results, thus is described more thoroughly.

3.1 Eccentricity

Dynamic eccentricity was performed on the test bench. It was possible to test 0.25 mm of
misalignment. The other parameters chosen to the studies were load of 1 and 2 Nm and rotational
speed 400, 1000 and 1500 rpm.
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f Torque 1Nm, speed 400 rpm
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Current[A]
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Figure 4. Comparison between the current frequency from healthy motor and with misalignment
(with 1 Nm load and 400 rpm).

In fig. 4 we can observe the current in the healthy motor and motor with 0.25 eccentricity. The
peculiar thing to these measurements was the highest peak of 40 Hz clearly visible in the healthy
motor and the motor with eccentricity results. This is due to fact of the thing that motor has 6 rotor
salient poles and the speed frequency of 6.67 Hz, thus 6.67x6=40Hz. Beside that this frequency is
multiplied as odd harmonics, 3th (120Hz), 5"(200Hz) and 7"(280Hz). The motor with eccentricity
however, can be clearly characterized with strong 4 and 5" harmonic, with 1%, 2" and 3" also visible
to some extent. This is due to the fact that in the healthy motor there is only a function of the speed of
the salient poles of the rotor. However, in the dynamic eccentricity phenomenon there is a rotor which
does another form of rotation that modulates the current output with another variable.

In fig. 5 we can see the similar experiment as in previous figure but here the measurement is the
vibration in X-axis. The results are significantly more vague than the data from the current. Because
of test bench characteristics there are numerous frequency harmonics with nearly no trend.

In fig. 6 we can see the comparison between different loads from the motor with 0.25
eccentricity. Since the motor has load, the differences between the 1 and 2 Nm are very minor, thus
increasing the load (once the motor has some) does not influence the overall output.

In figure 7 we can see the current from three different motor speeds with eccentricity. There are
only minor changes. However, increasing speed of the motor has only observable impact between 400

and 1000 rpm. At higher speeds the difference becomes insignificant.
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4.2 Rotor imbalance

The latter experiment executed on the test bench was simulation of rotor imbalance. This was
done by applying special shield with a screw bolt in one of two holes.

What can be observed from fig. 8 applying the shield has almost none effect of imbalance due to
the rigidity of the mechanical collar. The imbalance obviously did not manifest itself as strong as

dynamic eccentricity.

3 Load 1 Nm, Speed 1000 rpm

omm
25, 0.25 mm

o

Acceleration|m/s®

0.5,
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o ‘wuu 2000 3000 4000 5000 5000

Froquency [Hz]

Figure 5. Comparison between the acceleration from healthy motor and with misalignment (with 1
Nm load and 1000 rpm).

Ecoenticity 0.25 mm, Spoed 1000 pm

1 Nm
2Nm

GurrentiA|

Frequency [Hz]

Figure 6. Comparison between the current from 3 different loads from motor with eccentricity with
1000 rpm.
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Figure 7. Comparison between the current from 3 different motor speed with eccentricity with 1000
rpm
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Figure 8. Comparison between the current from 3 different rotor imbalances

4. THE EXPECTED RESULTS AND DISCUSSION

Switched Reluctance Motor might be a reliable candidate for the electric drive for vehicles. It
contains of numerous advantages that excel in performance. However, every electric motor has its

own disadvantages, they are prone to numerous faults: electrical and mechanical what can
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significantly reduce the lifetime of the machine. Fortunately, the modern methods of motor
diagnostics can detect the specific fault and alert the machine operator. He can anticipate the
downtime of machinery and repair or replace the motor without sudden accidents.

The results from all of the performed tests can be measured in non-invasive way in the line-
current signal and by accelerometers. The idea of this research is to compare those signals especially
in frequency domain. After that it is possible to determine how these faults affect the motor
performance and the efficiency of all drive. Results depict that even minor mechanical faults can have

significant effect on overall motor performance.
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Parametric study on implementation of viscous dampers
for adjacent buildings
(VIB073-15)

Elif Cagda Kandemir-Mazanoglu, Kemal Mazanoglu

Abstract: Adjacent buildings are under risk of damages during an earthquake due to
structural pounding. Viscous dampers are one of the energy dissipation devices which
can be implemented between two buildings to make them coupled or at the same
building to reduce interstorey displacements. In this paper, a parametric study is
presented by changing storey height of buildings and the parameters of the viscous
dampers such as the location and capacity so that the one-sided structural pounding
under severe earthquake vanishes. The buildings are considered as lumped mass
model whereas the pounding force is assumed as nonlinear elastic spring at the
contact point between the colliding structures. The vibration responses are obtained
by central difference method. The results are compared to clarify the effective
capacity and allocation of viscous dampers.

1. Introduction

The structural pounding due to severe ground motions is one of the major problems of adjacent
structures with insufficient gap between them. The impact force occurred on the surfaces of colliding
parts can cause serious damages on structures or even collapse of the structure. There are many cases
reported in the past that the major failure of structures were due to pounding such as 1985 Mexico
City earthquake and 1989 Loma Prieta earthquake [1-4]. The main reason of earthquake-induced
structural pounding is different dynamic characteristics of the neighbor buildings showing out-of-
phase behavior during an earthquake. To overcome this problem, there are a number of solutions
applied in practice and also proposed in the related literature. The coupling of the buildings by linking
with the impact preventing devices is one of them. Xu et al. introduces a parametric study about fluid
viscous damper application between adjacent buildings with different number of storeys under
earthquake excitation. The decrease in responses is identified as the notation for the effectiveness of
dampers [5]. Bhaskararao et al. implements friction dampers to reduce seismic responses of adjacent
buildings [6]. Raheem uses rubber shock absorber to prevent pounding [7]. Yang et al. performed an
experimental seismic study of adjacent buildings with fluid dampers [8]. Basili et al. studied the
optimal passive control of adjacent structures interconnected by Bouc-Wen model nonlinear
hysteretic devices under seismic excitations of a Gaussian zero mean white noise and a filtered white

noise [9]. Kim et al. analyzed the single degree-of-freedom (SDOF) systems connected by
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viscoelastic dampers at their seismic joints, subjected to white noise and earthquake ground
excitations in order to reduce earthquake-induced structural responses. They also performed dynamic
analyses for 5-storey and 25-storey rigid frames connected to braced-frames [10].

In this paper, the 15-storey adjacent buildings with floors in alignment are analyzed through
severe ground motion, 1999 Duzce earthquake (PGA 0.754g), in terms of earthquake-induced
structural pounding. The closure of the gap between buildings is concluded with the impact forces
between colliding surfaces. The time-domain seismic responses such as displacement time response
are obtained by using numerical integration method called central difference method to avoid
expensive solution procedure of other methods. The impact forces between adjacent buildings
modeled as nonlinear elastic spring are analyzed at first and then a study for prevention of pounding
effect is conducted by installation of viscous dampers. The optimum capacity and location of linear
viscous dampers are investigated. The capacity and location of viscous dampers are optimized so that
required damping ratio is added to the coupled system to vanish impact force between buildings. The
command of fmincon in Matlab Optimization Toolbox was used for optimization of viscous damper
capacity and location. The boundary and equality constraints are constituted according to the

supplemental damping ratio formulation proposed by Hwang et al. [11].

2. Formulation

2.1. Viscous Dampers

Viscous dampers are velocity-dependent passive energy dissipation devices which do not possess
inherent rigidity. Figure 1 shows a typical viscous damper. The kinetic energy of structure is
transformed into heat energy by the viscous fluid inside leading to dissipation of energy. The damper

force depends on relative velocity between damper ends as shown in Eq.1 as follows,

Compressible

Piston rod Cylinder /K(“],wnL ﬂuld[ Accumulator housing
SN Eﬁ A A |\
SN LL NN
= H
)

R T T D T T T TN DX T T T T T T T 2

Seal Retainer

Chamber 2 Rod make-up

Chamber 1
Seal accumulator
Sea

Piston head
with orifices

Control valve
Figure 1. Schematic view of viscous damper (Symans and Constantinou, [12])

a= Cda|5f|a59n(x) (1)
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in which ¢, is damping coefficient which depends on the dimensions of damper, a is velocity
exponent and takes values between 0 < a < 1. This constant value designates the damper type as; for
a = 0 it is friction damper, for @ = 1 it is linear viscous damper and for 0 < a < 1 it is called as
nonlinear viscous damper. Linear viscous damper is addressed in this paper as viscous damper
without linear term. In equation of motion of a single degree-of-freedom system with viscous damper

subjected to ground motion is written as follows,
mx(0) + (¢ + cq, )% (1) + kx(t) = —miy(t) 2)

in which m is mass, k is stiffness, c is inherent damping coefficient and x;; is acceleration of ground
motion. x(t) is displacement response at time t and overdots symbolize the differentiation with

respect to time. The damping ratio added to the system by viscous dampers is given by Eq.3 [11],

Ty ¥jcq;cos%(0;)(Pj—pj-1)?
fd = — AT Zi‘rr]z,igbi; : (3)

where T; is fundamental natural period, 6; is inclination of damper, ¢; is 1st mode modal
displacement of j*" floor, ¢;_, is modal displacement of (j — 1)* floor, m; is mass of i*" floor, ¢;
is the modal displacement of it" floor. i, indicates all the floors while j is the floors with the dampers
added. As for the adjacent structures linked by dampers, relative modal displacement (¢; — ¢;_1)
should be those where the two ends of dampers are attached. For example, in the case of two adjacent
buildings, formulation becomes (¢;, — ¢j_12). In addition to this, the fundamental period of the

coupled system is assigned as the largest one among the first natural periods of two buildings.

2.2. Analytical Impact Model

The impact force between adjacent structures can be modeled in various analytical models such as
nonlinear elastic model, linear viscoelastic model and nonlinear viscoelastic model. In this paper
nonlinear elastic model, i.e. the Hertz model, has been used. This model neglects the plastic
deformations during pounding and assumes that the nonlinear elastic spring become active when the
gap (a) between buildings is closed. The analytical impact model of adjacent SDOF systems is given

in Figure 2.
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Figure 2. Analytical impact model

The equation of motion is written as in Eg. 4 including the impact force term, F,. The force is
simply calculated as restoring force of the elastic spring with an exponential expression of relative
displacement value, 6. R indicates constant stiffness coefficient of the spring. It takes between
40 kN/mm*? and 80 kN/mm*? (1.2x10°-2.6x10° N/m*? ) according to experimental analyses on

concrete surfaces done by Van Mier et al. [13].

MX +CX + KX + F, = —-MX, )
_(R&()3? ,8(t) =0

() = { 0 ,8() <0 ®)

5(t) =x(t) —x(t) —a (6)

M is mass matrix, K is stiffness matrix and C is damping matrix of the coupled structural system.

In next section, the constitution of matrices is described in detail.

2.3. Construction of structural matrices

Building 1 and 2 are (m+n)-storey and (n)-storey adjacent buildings, respectively, and connected by
viscous dampers at each floor level. Structural properties are given in Figure 1. To conduct time
response analysis, the matrices should be constituted. The supplemental damper coefficient matrix in

addition to coupled mass, stiffness and inherent damping coefficient matrices are constructed as

follows;
[ [My] [0,] 7 [K,] [0,]
M _|mym) (m,n) K _|mym) (m,n) 1)
(m+nm+n) ~ | [0,] M,] | (m+n,m+n) ~ | [0,] K] '
L(n,m) (n,n)l (n,m) (n, n)J
[4] [0] [—4]
r[C] [04] 7 (n,n) (n,m—n) (n,n)
C _|mym) (m,n) cd _ [0] [0] [0] 72
(m+nm+n) " | [0,] [C,] (m+nm+n)” [(m—-nn) (m—nm-n) (m—nn) (72)
L(n,m) (n,n)] [4] [0] [—4]

l (n,n) (n,m —n) (n,n) J
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In these equations M; and M, mention the mass matrices of building 1 and building 2,
respectively. K; and K, indicate the stiffness matrices. The damping matrices for inherent damping C,
and C, are coupled in C matrix. The damping matrix provided by viscous dampers can be written in a
separate matrix, Cd. In this matrix, [A] = diag(cd) and [—A] = diag(—cd) in which ¢, is
supplemental damper coefficient vector, i.e. ¢q = {c4, €4, - €q,,}, 1 is number of storey of building

2. The time response analysis was carried out on Eq.2 with the term of the impact force in Eq.5.

Building 1

Building 2

Figure 3. Building models

2.4. Optimization of Viscous Damper Capacity and Location

The important task of installation of viscous dampers is to determine the capacity and location of
viscous dampers which can prevent structural pounding. The optimization parameters were arranged
to be compatible with the command of “fmincon” in the optimization toolbox in Matlab. In the

optimization algorithm the objective function is,

Min =1, Ca; ®)

where f is the function that minimizes the total damper capacity. i is the floor number. Also the lower

and upper bounds should be identified as /b < cq;, <ub in which /b, lower bound, is assigned zero to
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represent the case of no damper attached between the floors. ub, upper bound, can take various
values. Equality constraint is constructed based upon supplemental damping ratio equation (Eg.3)

without damper coefficient term;

2
Aeqy= m (¢i_ $s ) ©)
{Aeq} X{Cd}: fd (10)

{Aeq} is a vector including n terms in a row whereas {c;} has also n terms in a column. Their
multiplication should give &, that is increased gradually in every step of minimization.

In the location optimization, considering the maximum impact forces occurs at the top floor (top
floor of the shorter building among adjacent buildings), the dampers should be located starting from
top floors. In this sense, the damper coefficients, c,4, put in order from largest to lowest value and

located in the correct places in the matrix of [A].

3. Results and discussion

In this paper to carry out analyses, some assumptions have been done. The buildings analyzed are
assumed as symmetric in plan. The floors are in alignment and equal in height. The impact forces are
assumed to occur on the floor levels. The mass, stiffness and inherent damping coefficient are equally
distributed among floors. The buildings are linear multi-degree-of-freedom systems including lumped
masses at each floor and stiffness of columns. The plastic deformations during pounding are
neglected. Linear dynamic analysis is conducted. Building 1 and 2 are 15-storey buildings. In
following sections, however, the number of storey of building 2 is changed in order to observe the
effect of different natural periods on the impact force, supplemental damper capacity and location.
The damping ratio is taken as & = 0.05 for both buildings and the gap is assigned as a = 0.03m. The

spring constant in Hertz model for pounding force is assumed as 80 kN/mm?*?.

3.1. Natural period variation on impact force and supplemental damping ratio

Different vibration characteristics of closely located adjacent buildings result in out-of-phase behavior
due to strong ground motions which is the main reason of earthquake-induced structural pounding.
The impact force occurs when the gap between the buildings is closed. In this section two cases are
investigated in order to observe the effect of natural frequency differences on the impact force.
Firstly, natural frequencies obtained by only changing the number of stories of building 2 are
analyzed as Case 1. Mass and stiffness values are taken as m; = m, = 1 x 10°kg and k; = k, =
6.8 X 107N /m, respectively. In Case 2, the stiffness of building 2 is altered to k, = 10 x 108N /m

and the analyses were done again for the various number of storeys. The results were desired to be
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given in a comparative scale for two cases. To do so, instead of natural frequency ratio (w;/w5)
which depends on the characteristics of each building, nondimensional frequency parameter (Q) is

defined as follows;

Q= wsz\/% (11)

in which w is natural frequency of building, s is storey number, m and k are mass and stiffness
coefficient for one floor. Results are presented by the nondimensional natural frequency ratio,
Q. =Q,/Q,. Indices 1 and 2 denote two buildings in consideration herein. The decrease in Q.
indicates that the number of storey of building 2 is reduced. In this sense, Q. = 1 indicates that the
number of storeys of building 1 and building 2 are equal.

Figure 4(a) shows the maximum impact force variation in accordance with the nondimensional
frequency parameter ratio, 0, when there is no viscous damper attached to the system, &; = 0.
Markers on lines can be identified as the floor numbers, i.e. Q. = 1 indicates activity at 15th floors of
buildings. The floors in which maximum impact force observed are the top floor of building 2 and the
same level of building 1. As seen from the figure, the impact force gets maximum value when the
buildings are collided at 12th floors in case 1. Equal number of storey of adjacent buildings in case 1
oscillates in-phase which results in no impact force. In case 2, even if the buildings have the same
number of storey, the out-of-phase behavior is observed as expected. The maximum impact force
occurs at the 13th floors in case 2.

Figure 4(b) demonstrates the necessary supplemental damping ratio added by viscous damper for
each nondimensional frequency parameter ratio. Viscous dampers between adjacent buildings reduce
the displacement responses of coupled structure by means of increasing total damping ratio. This
graph clarifies the required supplemental damping ratio to vanish the earthquake-induced pounding.
With this knowledge in hand, the total viscous damper capacity can be found easily by Eq.3. As seen
from the figure, for case 1, the largest supplemental damping ratio is needed when the pounding
occurs at 10th and 11th floors. For case 2, the maximum impact force occurs at 13th floor also. Figure
4(b) is the reference graph to obtain damper coefficients that shows required supplemental damping
ratios which makes the impact force zero. There are various options to put damper between floors as
long as the supplemental damping ratio is provided. However, for each option, the damper
coefficients are varied. For example, the impact force occurs at 10th floor when the building 2 has 10
storeys. In this case the supplemental damping ratio is 40% to prevent structural pounding. The
damper can be implemented to all adjacent floors with the capacity of 1.58 x 10°Ns/m and the total
damper capacity becomes 1.58 x 10°Ns/m. In another option, the dampers can be installed only to

the top floor with the capacity of 7.72 x 10°Ns/m. Adding dampers to all floors gives smaller
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capacities for each damper however larger total damper capacity. In addition to this, adding only one
damper in larger capacity to effective location prevents pounding as well. In the optimization
algorithm, the relation between upper bound of damper capacity, total damper capacity and the
number of dampers can be stated as: an increase in the upper bound decreases total damper capacity
together with the number of dampers and vice versa. The decision about the amount of damper
capacity and number should be given by the designer and the manufacturer together in the aspect of
economical conditions.

5 X lO7
- - - T T T T
—+— Case 1 (m;=m,, k;=k,) 40| . case1 (m =m,, k,=k,)
y —o— Case 2 (m,=m,, k;<k,) ] g 35| —o— Case 2 (m;=m,, k;<k,) i
ko)
_ 5 30¢ '
s @ © (b)
3 3l 1 g 25+ '
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g o = ]
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g g 15F '
£ [}
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. { g 108
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» 5 ]
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Nondimensional frequency parameter ratio (Qr) Nondimensional frequency parameter ratio (Qr)

Figure 4. (a) Relation between impact force and €, for &g = 0 (b) Relation between supplemental

damping ratio and Q. for F, = 0

3.2. Installation of viscous dampers

Installation of viscous dampers as a linking element between adjacent structures has advantage in
terms of reducing seismic responses of both structures. Figure 5 shows the effect of viscous dampers
on the seismic behavior of adjacent structures in terms of reduced displacement responses. Building 2
locates at 0.03m-distance from Building 1. There is no pounding observed when the capacity of
viscous damper is 7.72 X 105Ns/m installed at only 10th floor or each adjacent floors with the
capacity of 1.58 x 10°Ns/m. This figure also verifies no pounding case since the displacement
responses do not intersect with each other. It can be observed that in addition to reduced displacement
responses of both buildings, they start to vibrate together after linked by dampers. For case 2, the
results are similar with case 1 with different damper capacities. Table 1 tabulates the damper
capacities and the locations for different upper bounds of damper capacity for case 1. It is clear that
reduction in upper bound gives smaller capacity for each damper; however, placing them to more
adjacent floor gives larger total damper capacity. It should be noted that each option providing same

supplemental damping ratio results in very close displacement responses. The results observed in case
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2, that will not be given inhere, gives smaller damper capacities since the building 2 is stiffer than
building 1.
0.08 T T 0.08

without damper-Building 1 b ’ ’ with damper-Building 1
0.06 - (a) p without damper-Building 2 0.06 ( )
0.04

— with damper-Building 2

0.02

0

-0.02

Displacement (m)
Displacement (m)
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Figure 5. Case 1 - Displacement time responses of building 1and 2 (a) before (b) after installation of

-0.08
0

viscous dampers between adjacent 10th floors (§q = 0.40, cq,, = 7.72 X 10°Ns/m)

Table 1. Damper capacity and locations for different upper bound values of damper capacities

Upper bound for damper capacity (ub) (x 10°Ns/m)
Adjacent 8.00 5.00 2.00 1.00
floorno. | 15&11 | 15&10 | 15&11 15& 10 15&11 15&10 15&11 15&10
storey storey storey storey storey storey storey storey

11 7.75 - 5 - 2 - 1.44 -
10 - 7.72 2.95 5 2 2 1.44 1.58
9 - - - 2.95 2 2 1.44 1.58
8 - - - - 2 2 1.44 1.58
7 - - - - 1.23 2 1.44 1.58
6 - - - - - 1.63 1.44 1.58
5 - - - - - - 1.44 1.58
4 - - - - - - 1.44 1.58
3 - - - - - - 1.44 1.58
2 - - - - - - 1.44 1.58
1 - - - - - - 1.44 1.58
P 7.75 7.72 7.95 7.96 9.23 9.63 15.8 15.8

4, Conclusion

The optimization procedure for the damper capacity and location is explained in this paper for
adjacent buildings. The estimation of supplemental damping ratio is essential task to control the
displacement responses. In the optimization algorithm, the relation between upper bound of damper
capacity, total damper capacity and the number of dampers is presented. The upper bound decreases
total damper capacity together with the number of dampers and vice versa. For two adjacent buildings
which have same mass and stiffness coefficient of each floor, the seismic responses are in-phase in
the case of equal number of storeys. On the other hand decreasing floor number and/or changing the

structural properties have a trend of increase in impact force until a peak value and then decrease to
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zero when no impact force occurs. This means that the structures are in-phase until some threshold of
natural frequency ratio. After exceeding this threshold, the out-of-phase behavior starts and continues.
The similar trend can be observed in required supplemental damping ratio as well. The threshold
values can be investigated in further studies. This paper contributes to related literature in terms of

effective solutions for structural pounding problem.
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Rayleigh—Ritz natural frequency analyses for centrifugally
stiffened functionally graded and tapered beams
(VIB089-15)

Kemal Mazanoglu, Ali Ceylan

Abstract: In this paper, flap wise vibration analyses of centrifugally stiffened tapered
and axially functionally graded beams are conducted by the Rayleigh—Ritz method
that directly finds a solution using the energy expressions. Euler—Bernoulli beam
model is used in calculations. Effects of taper ratio, hub radius and angular velocity
are inspected for the beams with several classical boundary conditions. Results given
as non-dimensional natural frequencies are compared to the results given in existing
literature, and good agreements are obtained. Effects of changes in axial grading
function for centrifugally stiffened Euler—Bernoulli beams are also reflected and
discussed.

1. Introduction

This paper is on the flexural vibration of tapered and axially functionally graded (AFG) beams
rotating around a hub. Beam type elements can rotate around a hub in many applications such as
turbine blades, wind turbines, propellers, crank and etc. Design of these components requires taking
mechanic, dynamic, aerodynamic and thermal limitations into account to supply the most proper
economic conditions and increase the energy efficiency. In order to do this, usage of functionally
graded (FG) beams has attracted researchers’ attention in recent years. FG components preserve
structural integrity by providing appropriate power and weight distributions. Smooth change of
material properties removes stress loads, which occur in layered composites, and accordingly
eliminates delamination faults. A centrifugally stiffened FG beam may be broken due to dynamic and
aerodynamic effects leading resonance although it has sufficient mechanic and thermal resistance. FG
beams should have appropriate modal characteristics to avoid resonance. Changes in modal
characteristics are easily followed by the natural frequency parameters. Therefore, calculation of
natural frequencies plays significant role in achievement of novel designs for rotating FG beams.
Researchers have paid great attention to the flexural vibration of uniform or non-uniform beams
rotating around a hub for three decades. Selected papers considering uniform Euler—Bernoulli beam
model are presented by Banerjee, Chung and Yoo, Yang et al., Yoo and Shin [1-4]. Beside this,
vibration of rotating non-uniform Euler—Bernoulli beams is analysed in some other research works
[1,5-8]. Rotating beam vibrations are also studied by the Timoshenko beam model [9-11]. Most of

these works use the finite element based analyses to reach approximate solution [2,3,6,8]. In addition,
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dynamic stiffness matrix method [1], differential transform method [7], Galerkin’s method [9], and
Rayleigh—Ritz method [4,10] are some other solution methods used in current literature.

Studies on vibration analysis of FG beams have tremendously increased in recent years.
Vibration of AFG beams is inspected in some papers [12-14]. Huang et al. [12] define an additional
function to obtain solution using power series method. Huang and Li [13] present a simple procedure
to find natural frequencies by the transformation of governing equation with varying coefficients to
Fredholm integral equations. Shahba et al. [14] introduce a new element type to reach solution using
finite element analysis. There are several papers on vibration analyses of transversely FG beams
[15,16]. In referred works, results are obtained by Rayleigh—-Ritz method [15] and Navier solution
procedure [16].

In current literature, there are a few studies on vibration of rotating beams made of FG materials
[17,18]. Rajasekaran [17] compares the differential transform and quadrature methods employed for
the flexural vibration analyses of Euler—Bernoulli AFG beams rotating around a hub. Ramesh and
Rao [18] consider the vibration of transversely FG rotating beams using the Rayleigh—Ritz method.

To the best of author’s knowledge, usage of the Rayleigh—Ritz method for the vibration analysis
of AFG beams rotating around a hub is firstly investigated in this paper. Beams are modelled using
the Euler-Bernoulli beam theory. The Rayleigh—Ritz solution method is applied using a simple and
fast computation technique presented. Simple polynomial shape functions are used in the method.

Comparative results are given for tapered and AFG beams rotating around a hub.

2. Theoretical background

In this work, material and/or cross-sectional properties of rotating beam are assumed to vary along the
length, L, of beam as shown in Figure 1. Cross-section changes of the tapered beams are expressed by

following functions representing height, h, and width, b.
X
h(x) = ho(l—ch Ij (1)
X
b(x) =b, [l—cb Ij (2

where h, and b, symbolize the dimensions at the root of beam. ¢, and c, are the taper ratios for

the height and width respectively. Thus, for the rectangular beams, cross-sectional area, A(x), and area

moment of inertia, 1(x), variations are written as follow:
A(X) =b(x)h(x) (3)

1(x) =b(x)h(x)* /12 4)

324



A
} - ! I z
\:/ ¢ > A
: X l y
Pl —> hw| L -
|

b(x)
Figure 1. Configuration of rectangular beam rotating around a hub.

Similarly, material parameter, p,,, which may be modulus of elasticity ( E ) or density (p), is

assumed to vary as:

P (%) = (Pt = P2 ) (X/L)" + P2 ®)

where p,; and p,, denote the parameters of two different materials. n is the material non-
homogeneity factor. Within this framework, energy expressions for flap-wise vibration of

centrifugally stiffened AFG beams and details of a technique implemented for the Rayleigh-Ritz
method are presented in following subsections.

2.1. Energy expressions for centrifugally stiffened beams

In this paper, vibration of centrifugally stiffened AFG and tapered beams is considered in only flap-
wise direction. It is assumed that bending-torsion and bending-bending coupling effects are negligible
for the beam selected. Since the rotating speed of the hub, Q, is constant, the beam has no angular
acceleration. Hence, there is no tangential inertia force active on the beam. On the other hand, while
the beam is rotating around a hub, centrifugal tension force, F(x), at a distance, x, from the origin is
given by:

L
F(x) = j P(X)AX)Q? (R+x)dx (6)

where R symbolizes the radius of hub. Under this centrifugal force, potential energy, U, is given as
follows [11]:

L
U (x) :% j {E(x)l W () +FW' (x))? }dx+ C, 7
0
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W* and W' stand for the first and second derivatives of flap-wise displacement W with respect to x
axis. The first term is the energy expression of the non-rotating Euler—Bernoulli beam and the second
term represents the effect of centrifugal stiffening. C, is the constant that can be found as,
1 L

> JEP[EMAM)dx.

0

Kinetic energy ( T ) of the centrifugally stiffened beams can be expressed as follows [11]:
1 L
T=> j @ p(X) AW (x) ) dx+C, ®)
0

where o is the natural frequency of flap-wise bending vibration. As is known, the first term is the

kinetic energy of non-rotating bending beam. In addition, constant rotation velocity leads constant

L
termas C, = %Ip(X)A(X)QZ(I’ +x)%dx . Note that the constant terms in Egs. (7,8) are ineffective on
0

results. In order to obtain results, flexural displacement, W, is represented in the form of function

series given as follows:
m
W) =" x;2;(x) ©
j=1

Here x denotes the coefficient of terms that indexed by j with total number, m. A(x) is a series of

terms that forms an admissible function satisfying the geometric boundaries at least. Table 1 shows
general terms of admissible polynomial functions satisfying some classical boundaries and used in
solution method detailed in following subsection.

Table 1. General terms of flap-wise displacement polynomials for classical end conditions.

End conditions A;(x)
Clamped-Clamped (/LY @—x/L)"*
Pinned-Pinned (x/LY@-x/L)
Clamped-Free (/L @-x/L)*
Clamped-Pinned (x/L)Pa-x/L)

Free-Free (/L @-x/L)™*
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2.2. A computation technique for the Rayleigh—Ritz method

The Rayleigh—Ritz method approximately finds modal parameters based upon the conservation of
energy law. The energy difference is partially differentiated by the coefficients of shape functions to

make the difference minimum.

i(u —T):O, ji=12--m (20)
oK

The energies are expressed in discretised form as follow:

1 L+R m m 1 L+R m m
U== j ECOIO0D &2 D kA dx+ = j FOOD &2 D kA dx (11)
2 R j=1 i=1 2 R = i=1
1 L+R m m
T :Ea)z f POVAM)Y K2, > ki dx (12)
R j=1 i=1

As a simple computation technique suggested in this paper, discretised form of the energy

difference expression is partially differentiated with respect to coefficients «; and «; .

82
b O 0K

U-T) i=12-m j=12--m (13)

This process leads to the elimination of the coefficients in resulting terms, d, ;, that are located into

ijr

the matrix, D, as follows:

dig dip dip
d [ PP d

p=| 2t 22 o fon (14)
dn 1 dn,2 """ dn n

Natural frequencies are found as a result of the singularity analysis carried out by equating the
determinant of matrix to zero (det(D)=0). A remarkable point in this computation technique is the

use of simple functions that allow one to do integration effortlessly and get results in considerably

short duration.

3. Results and discussions

Natural frequencies of centrifugally stiffened tapered and AFG beams are found by the Rayleigh-Ritz

method using simple computation technique presented. Results are given using following non-
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dimensional parameters expressing the hub radius, hub rotating speed, and beam natural frequencies

respectively.

§=R/L, (15a)
a=0L((PyAy)/(Eq 1)), (15b)
w=al?((PyAy)/(Egl))*®. (15¢)

The subscript “0” represent the properties at x =0. AFG beams considered in current literature
[17] are inspected to validate success of the method. Material properties of the beams made of
Aluminium and Zirconia (ZrO,) are given as: E, =70GPa, p, =2702kg/m’, E, =200GPa,
P, =5700kg/m?. Figure 2 shows modulus of elasticity variation for different n values. In following
analyses, the Rayleigh—Ritz method is applied using admissible mode shape functions having 8

polynomial terms.
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Figure 2. Modulus of elasticity variation for different n values.

Variation of non-dimensional frequency parameters reflecting the effects of non-homogeneity
parameter, n, is illustrated in Table 2. Parameters for hub radius, hub rotating speed and cross-section

are taken as 0 =0, =5 and c, =c, =0 respectively. It is seen that present results very closely

match with the results of Rajasekaran [17] who uses differential transformation and differential
quadrature element methods (DQEM). As is known, convergence capability of the Rayleigh-Ritz
method decreases as the vibration mode wanted to be obtained increases. Accordingly, negligible
error of the method can be easily eliminated by increasing the number of terms in mode shape
function. Results also show that the frequency parameters of non-homogeneous beams are lower than

those of homogeneous beams ( n = 0) for pinned-pinned and fixed-fixed boundaries.
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Table 2. Effects of non-homogeneity parameter on natural frequency parameters of rotating AFG

beam. (6 =0, =5, ¢, =c, =0)

Natural frequency parameters
BOU’?‘%'“V n Method d P
conditions w o s Ua
Rayleigh—Ritz 6.4495 25.4461 65.2051 124.7605
0
DQEM [17] 6.4494 25.4461 65.2050 124.5664
Rayleigh—Ritz 6.9716 25.6519 63.3087 119.6292
Fixed-Free 1
DQEM [17] 6.9717 25.6522 63.3094 119.5321
Rayleigh—Ritz 6.9289 26.0436 64.6727 122.2474
2
DQEM [17] 6.9289 26.0438 64.6733 122.1691
Rayleigh—Ritz 13.0953 43.3513 92.8744 162.2038
0

DQEM [17] 13.0953 43.3513 92.8561 162.0019

Rayleigh—Ritz 12.1032 40.6536 87.5369 153.4087
Pinned-Pinned 1
DQEM [17] 12.1033 40.6541 87.5317 153.0331

Rayleigh—Ritz 12.2333 41.3792 89.2306 156.2901
DQEM [17] 12.2334 41.3794 89.2251 156.0663

Rayleigh—Ritz 24.5442 64.8012 124.3683 203.5234
DQEM [17] 24.5442 64.8012 124.3667 203.4994

Rayleigh—Ritz 22.7495 60.6390 116.9549 191.9138
Fixed-Fixed 1
DQEM [17] 22.7497 60.6397 116.9560 191.8536

Rayleigh—Ritz 22.3541 60.6608 117.9536 194.2948
DQEM [17] 22.3542 60.6611 117.9543 194.2642

Another analysis is performed to validate Rayleigh—Ritz method for rotating AFG beams with
different taper ratios. Table 3 demonstrates good agreement between present results and the results
given by Rajasekaran [17]. It is obvious that natural frequency parameters decrease with increasing
taper ratio except for the fundamental frequency parameters of cantilever beams.

Success of the method is also investigated for tapered AFG beams with several hub rotating
speeds and hub radius. Results shows good harmony with the results of Rajasekaran [17] as illustrated
in Table 4. As may be expected, fundamental frequency parameters increase with increasing hub

radius and rotating speed due to the augmentation of centrifugal force.
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Table 3. Effects of taper ratios on natural frequency parameters of rotating AFG beams (& =0,

C,=C,=C, a=2,n=2).

Bour_@ary p Method Taper ratio (c)
conditions 0 0.3 0.6 0.9
Rayleigh—Ritz 20.8997 17.9485 14.7595 11.3024
)z
' DQEM [17] 20.8998 17.9486 14.7595 11.1558
Rayleigh—Ritz 58.5673 49,8115 40.1356 28.7144
)z
2 DQEM [17] 58.5677 49.8119 40.1354 28.1726
Fixed-fixed
Rayleigh—Ritz 115.6538 97.9304 78.1478 54.3656
Yz
’ DQEM [17] 115.6545 97.9305 78.1470 52.9865
Rayleigh—Ritz 191.8866 162.2092 128.7916 89.1723
Yz
! DQEM [17] 191.8569 162.1151 128.7647 85.8165
Rayleigh—Ritz 4.8142 5.3933 6.3690 8.5415
)z
' DQEM [17] 4.8142 5.3933 6.3691 8.5415
Rayleigh—Ritz 23.6961 22.0868 20.4740 19.9850
)z
2 DQEM [17] 23.6964 22.0868 20.4739 19.9830
Fixed-free
Rayleigh—Ritz 62.2940 54.6112 46.3376 37.7093
Yz
: DQEM [17] 62.2946 56.6118 46.3284 37.6610
Rayleigh—Ritz 119.8089 102.9809 84.8333 63.5064
Yz
! DQEM [17] 119.7205 102.9720 84.5343 62.8547
Rayleigh—Ritz 10.0556 8.3229 6.1982 3.2721
U
' DQEM [17] 10.0557 8.3230 6.1979 3.2612
Rayleigh—Ritz 38.8038 32.9243 26.6344 19.5282
)z
2 DQEM [17] 38.8040 32.9245 26.6332 19.4644
Pinned-pinned
Rayleigh—Ritz 86.5742 73.2563 58.7088 41.3334
Yz
’ DQEM [17] 86.5673 73.2562 58.7092 41.0533
Rayleigh—Ritz 153.5932 130.2473 103.2995 71.3854
Ha

DQEM [17] 153.3792  129.5636  102.2202 70.3164

4,  Conclusion

In this work, natural frequency analyses of rotating tapered AFG Euler—Bernoulli beams are carried
out using the Rayleigh—Ritz method with a simple and fast computation technique. The method

successfully identifies the effects of changes in boundary conditions, cross-section, functional
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grading, hub radius and rotating speed. These effects are clearly stated in the paper. Results can

encourage the researchers to apply the method in different analyses of rotating FG beams.

Table 4. Effects of hub rotating speed and hub radius on fundamental frequency parameter of tapered

AFG beam. (¢, =0.5,¢c,=0,n=2)

1 for several boundary conditions

“ o Method Fixed-free Fixed-fixed Pinned-pinned
Rayleigh—Ritz 4.7452 15.4096 6.8560
° DQEM [17] 4.7453 15.4096 6.8560
Rayleigh-Ritz 4.7638 15.4219 6.8810
oo DQEM [17] 4.7639 15.4220 6.8810
Rayleigh—Ritz 4.9280 15.5323 7.1018
' DQEM [17] 4.9281 15.5324 7.1018
Rayleigh-Ritz 7.2580 17.1609 9.5239
° DQEM [17] 7.2580 17.1610 9.5239
Rayleigh—Ritz 7.5504 17.4305 9.9482
° o DQEM [17] 7.5505 17.4305 9.9481
Rayleigh—Ritz 9.7875 19.6626 13.0630
. DQEM [17] 9.7875 19.6627 13.0628
Rayleigh—Ritz 11.8954 21.5971 14.8935
° DQEM [17] 11.8955 21.5971 14.8930
Rayleigh—Ritz 12.5889 22.4077 15.8943
ool DQEM [17] 12.5890 22.4077 15.8938
Rayleigh—Ritz 17.6147 28.5078 22.6643
. DQEM [17] 17.6148 28.5077 22.6624
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Anti-symmetric mode in-plane vibration analyses of several types

of frame structures
(VIB075-15)

Kemal Mazanoglu, Elif C. Kandemir-Mazanoglu

Abstract: This paper presents an analytical method for the computation of anti-
symmetric mode shapes and corresponding natural frequencies of frame structures.
Lumped mass-stiffness model is employed to define the effects of beam on equivalent
column system. Equivalent lumped mass and moment of inertia of beam are
determined using the principle of kinetic energy conservation. Rotational stiffness of
the beam is calculated by the aid of beam element moment equations and the principle
of superposition. Equivalent column, which is modelled using Euler—Bernoulli beam
theory, is considered by the contribution of compatibility and continuity conditions
stated at the beam locations. Applicability of the method is demonstrated on single
storey (portal), H type, and double storey frame systems. Results are validated using
the outputs of the finite element package and some results given in current literature.

1. Introduction

The vibration characteristics of a frame contain important knowledge about how the structure will
behave in vibrating environment such as vehicles, active fault zones, aircrafts and etc. The natural
frequency and mode shapes of a frame structure are of importance to provide physical insight into the
dynamic behaviour of mechanical and structural components. Especially, vibrations in anti-symmetric
modes are crucial in terms of reflecting dynamic behaviour of the systems under the effects of
horizontal loading. In view of theoretical aspect, simulating the frame structure into a simple model
generally becomes significant process of free vibration analyses. Fundamentals on vibration of
structures can be found in related books [1,2].

Numerous methods have been developed by the researchers to identify the natural vibration
characteristics and model the frame system in a simple form. Basically, many researchers consider
frame structures as multi-degree of freedom systems containing bending, linear or shear components
[3,4]. These models allow rough estimation of the modal parameters due to assumptions and
simplifications done for computing lumped parameters. It is for this reason that these models are
beyond the scope of this work. However, most of the neglected parameters can be taken into
consideration using continuous approaches. To the best of author’s knowledge, one of the earliest
works including continuous approach for the vibration of simple frames is introduced by Bennon [5].

Gladwell [6] presents the use of assumed mode method in the Rayleigh—Ritz analysis for the vibration
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of two-storey frame. Laura et al. [7] also use the Rayleigh—Ritz method to obtain fundamental mode
planar vibration of single-storey frames carrying concentrated masses. In another work, single-storey
frames are considered using differential quadrature element method [8]. Lee and Ng [9] introduce the
use of artificial linear and torsional springs together with the Rayleigh—Ritz method in order to
analyse in-plane vibrations of portal, T shaped and H shaped frames. These types of frames are also
studied using a wave based analytical solution method [10] that is adopted for analysing multi-bay
[11] and multi-storey [12] frames. A continuous-discrete model is presented by Zhang and Gargab
[13] who consider the beam as shear element. Sakar et al. [14] use the finite element method to carry
out vibration and stability analyses of simple and multi-bay frame systems. Finite element based
analyses can also be employed to inspect the vibration of damaged frames [15,16]. Some other works
include the vibration analysis of frames under the effects of additional rotational springs that supply
flexible connection between frame components [17,18].

Following sections of this paper present the analytical solution for the anti-symmetric mode in-
plane vibration analysis of frame structures. Continuous solution for columns and lumped mass-
stiffness approach for beams have been combined to conduct vibration analysis of frames. Presented
model and solution method are validated by using some results in current literature.

2. Theoretical background

2.1. Free vibration of a column

According to Euler—Bernoulli beam theory, following differential equation expresses the bending

mode free vibration of a uniform column.

a’w(z,t)
a

4
o'wizt) |

El
oz*

PA 0, (1)

c

where, E, I, A, and p represent modulus of elasticity, area moment of inertia, cross-section area,

and density of column respectively. Flexural displacement, which is symbolised by w, varies with the

axial position z, and the time t. By the separation of the variables z and t, solution form of the mode

shape, W(z) , is obtained as follows:
W(z) =C, cosfz+C,sinpz+C,coshpz+C,sinhpz 2

where C,, C,, C;, and C, are the coefficients of harmonic and hyperbolic terms. Frequency

parameter, 8, depends upon the natural frequency, @, as given below:
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An equation set is formed by using mode shape function and its derivatives satisfying the end
conditions of the column. The equations appropriate for some general end conditions are given in
Table 1. Singularity analysis for the matrix obtained by the harmonic and hyperbolic terms of

functions is needed to find natural frequency parameters.

Table 1. Equations for classical end conditions.

Ends Equations

Free W"=0, W''=0
Fixed W =0, W'=0
Pinned W =0, W"=0

2.2. Lumped mass-stiffness model for frame structures

In this section, vibration of frame structures is explained by lumped mass-stiffness model as shown in
Figure 1. First of all, equivalent column is considered to model antisymmetric mode vibrations of

frames. Equivalent area, A,, and inertia moment, |, , of the columns are taken as follows:

A=A+A, le=l+1g 4
@ ~— . OAT
AEYIE
AL,IL AR,IR
m,J k:

Figure 1. Lumped mass-stiffness model on equivalent column.

Subscripts | and r are employed to distinguish the properties of the left and right columns
respectively. Note that equivalent column model can be applicable for equal or very close sizes of left
and right columns. Mass, inertia and stiffness effects of beam are simulated by adding lumped masses
and rotational springs on corresponding locations of the equivalent column. Equivalent mass of the
beam can be taken equal to exact mass of the beam since the movement is dominant in horizontal

direction.

m, = pA L, =m, 5)
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where, A, and L, symbolise cross-sectional area and length of the beam respectively. Estimation of

vertical deformation form is necessary to calculate equivalent mass moment of inertia of the beam. It
is intuitively expected that time independent deformation form of the beam, U (y), resembles to one

period of a sinusoidal function as follows:
U(y) =U,sin(2zy/L,) (6)

where, U, denotes the maximum flexural deformation of the beam. It is known that the first
derivative with respect to beam’s coordinate axis, Yy, gives the slope of U(y). The maximum slope

occurs at y =0, leading unit cosine. Thus, relation between the maximum displacement and the

maximum slope is expressed as follows:

U,2r7

b

0(0) = )

Suppose that an equivalent beam having equivalent mass moment of inertia rotates in rigid body
mode at the centre (y =0). In this case, expression for equivalent mass moment of inertia, J,, is

found by equating time independent form of kinetic energies as follows:
Lp/2
1 1
3007 = [ U () dy ®)
“Lp/2

Egs. (6, 7, and 8) results in the following expression for the equivalent mass moment of inertia.

J = pAbLb3

e

_ Sphb I bxy (g)

2 2
Az T

where I, is the area moment of inertia for x-y cross-section of the beam ( 1,,, =d,Lj /12). h,, and

d, represent the thickness and depth of the beam respectively.

On the other hand, rotational stiffness of the beam is determined by using the moment equations
and the superposition principle. In order to apply the principle, it is assumed that while right end of

the beam is rotationally fixed, left end is flexible and vice versa. In each case, moments occur as

4Ely,, /L, at flexible side and 2El,, /L, at fixed side of the beam ( I,,, = d,h/12). Thus, total
moment affecting flexible column becomes 6El,, /L, [2]. Rotational stiffness can also be taken as

6El,,, / L, under the assumption of unit angular displacement. When these calculations are repeated
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for exchanged positon of fixed and flexible ends, equivalent rotational stiffness of a beam, k,, is

found as total stiffness written as follows:
k =12El,,, /L, (10)

As would be expected, longitudinal stiffness has very minor effects on lower vibration modes of
frame and thus it can be neglected. All the effects mentioned above are contributed into equivalent
column vibration to describe compatibility conditions at beam location. Resulting time independent
equations to be satisfied are given as follow:

W (25) + AW (2) =W (z;) (112)

W' (zy) + uW (z,) =W"'(z5) (11b)

where z, denotes the location of beam and zJ9" represents the locations just above or below the

beam. A and 4 can be defined as follow:

2 —
g e ke (122)
El,
2
m,o
~Mew 12b
M= (12b)

Note that right hand sides of the Eqgs. (11a, 11b) become zero if the beam is located at the end of
the columns. Besides, continuity conditions should be satisfied by displacements and slopes that are

assumed equal at just around the beam location.
W(z;)=W(zy), (13a)
W(z,) =W'(z;). (13b)
In order to analyse the vibration of n sectioned equivalent column separated by the boundary

effects of beams, Eq. (2) is rearranged with modified coefficients expressing vibration form of each

section, W; (2) .

W; (2) =C,i_3c082+C,_,8infz+C, coshpz+Cysinhfz, i=1..,n (14)

3. Results and discussions

In this section, present lumped mass-stiffness model is verified on several frame structures taken into
consideration. This model is easily validated by the results given in current literature in terms of anti-

symmetric mode shapes and corresponding natural frequencies. In addition, the finite element
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package called ANSYS® is used for validating the results of double-storey frame. In the program,
frame components are modelled as volume using solid meshing element called “Solid95”. Beam and
column blocks are attached together by using “vadd” command to shape frame. It is worth noting that
solid finite element model allows the area connection of columns and beams in contrast to the
continuous model considering beam effects concentrated on a point. Good convergence is provided
by using the “smrtsizel” command that is the most refined mesh option of the free meshing
procedure. Default edge length of the element is taken equal to the half of minimum edge size of the
frame. It is set using the “esize” command. At result, natural frequencies are obtained by using

“modal analysis” as the analysis type.

Table 2. Non-dimensional natural frequency parameters for the first anti-symmetric in-plane modes
of several single-storey frames.

Non-dimensional natural frequency parameter

Frame properties 0= a)l_ﬁ (pA/EI )0,5

Frame
figures El PA L. Sakaret Lauraet Kolousek  Present
El, oA Ly, al. [14] al. [7] [1] work
15 2.559 2.5621 2.5614 2.5611
0.25 0.25 3 3.327 3.3396 3.3379 3.3382
6 4.029 4.0791 4.0782 4.0779
15 3.933 3.9369 3.9350 3.9334
15 15 3 4.620 4.6299 4.6289 4.6292
6 5.030 5.0720 5.0719 5.0719
15 4.043 4.0446 4.0441 4.0416
6 6 3 4.567 45713 45710 45711
6 4.950 49772 4.9769 49772
15 1.236 1.2378 1.2374 1.2376
0.25 0.25 3 1.577 1.5837 1.5833 1.5835
6 1.867 1.8935 1.8931 1.8933
15 1.742 1.7435 1.7432 1.7431
15 15 3 2.047 2.0527 2.0523 2.0526
6 2.219 2.2446 2.2446 2.2446
15 1.507 1.5074 1.5072 1.5071
6 6 3 1.845 1.8485 1.8482 1.8485

6 2.084 2.1033 2.1030 2.1033

Success of presented theoretical model is inspected for following cases of the frames.
Case 1 — Single-storey frame: Fundamental modal characteristics of single-storey frames are

reflected with different dimensional properties of beams and columns. Frames with simply supported
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and fixed boundaries are both considered. Table 2, which includes the properties of the beams
considered, demonstrates the agreement between the fundamental non-dimensional frequency
parameters obtained by present method and those given in literature [1,7,14]. Besides, Figure 2 shows

equivalent column mode shapes when the column/beam length ratio is L,:/Lb =15, Effects of

changes in depth of beam and base boundaries can be clearly observed. As would be expected, slope
of column mode shape approaches to the slope near the fixed end as the area and inertia moment of

beam increase.

@ O
£ Y — Y
N 08f Y N 08f a
2 S 2 :

g 06 4 g 06 v am
£ 7 £
Ei Va Ei W
S 04 S 04F N
o7 p
E 4 E ,//
—_ L —_ L ',///
g 0.2 g 0.2 V%
o o
Z 0- - - - - Z 0 - - - -
0 02 04 06 08 1 0 02 04 06 08 1
Normalised amplitude Normalised amplitude

Figure 2. First anti-symmetric mode shapes of equivalent columns for single-storey frames (a) fixed

and (b) pinned to the base. L./L, =15, A./A, and I /1, ratios: (—) 0.25, (--) 1.5, (---) 6.

Case 2 — H shaped frame: In this example, first two anti-symmetric mode natural frequencies
and equivalent column mode shapes are found for the H shaped frame considered by Lee and Ng [9]
and Mei [10]. The frame is bounded from the base using simple supports. Non-dimensional properties
and frequencies of frame are given in Table 3 which exhibits the accuracy of present model.

Equivalent column mode shapes are also shown in Figure 3.

Table 3. Non-dimensional natural frequency parameters for the first two anti-symmetric in-plane

modes of the H shaped frame.

Non-dimensional natural frequency parameter

Frame Frame properties 2 05
figure Q:w(l-c/z) (pcAc/Eclc) -
El A L
c PR L Mode Mei [10] Lee and Present
El, PA L, number Ng. [9] work
L L 1 1 2 1 0.9 0.92059 0.9122
2 3.8 3.82212 3.8069
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Figure 3. (a) The first and (b) second anti-symmetric in-plane mode shapes of equivalent column
for the H shape frame.

Case 3 — Double-storey frame: Present method is also applied for analysing the vibration of
double-storey frame fixed to the base. Shape of frame, non-dimensional properties and resulting
natural frequencies are seen in Table 4. Results are validated by the natural frequencies obtained by
Brasiliano et al.[13] and the finite element package. Material properties are given as the modulus of
elasticity E =35GPa and the density o =2500kg/m®. Columns and beams have the same cross-
section as 0.14x0.24m? and their lengths are L, =5.6m and L, = 2.4 m respectively. Note that

Brasiliano et al. [15] take the shear effects into account with the assumption of Timoshenko beam
theory which is not considered in this work. On the other hand, point connection of columns and
beams are assumed in theoretical model while solid finite element model takes the area connection
into account. These are main reasons of admissible differences seen between the results. Equivalent

column mode shapes corresponding to calculated natural frequencies are illustrated in Figure 4.

Table 4. Natural frequencies for the first three anti-symmetric in-plane modes of the double-storey

frame.
Frame . .
figure Frame properties Natural frequencies (Hz)
Ecl. PcA Lo Mode  Brasiliano ell:e'r?:é?] ; Present
E,ly, Loy L, number etal. [15] analysis work
1 8.0633 8.54 8.4053
. F_L 1 1 5.6/2.4 2 26.2538 27.7 27.2177
3 87.6998 92.0 88.5189
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Figure 4. (a) The first (b) second and (c) third anti-symmetric in-plane mode shapes of

equivalent column for the double-storey frame.

4. Conclusions

In this paper, analytical solution of frame systems is presented by defining lumped mass-stiffness
parameters on equivalent columns. Continuous modelling allows using continuous solution method
that is easily applied when the continuity and compatibility conditions are properly stated as
represented in this work. Continuous solution presented needs matrices that have relatively small
sizes varying with the number of storey. This is a significant advantage resulting in decrease of
computational work load and processing duration.

Introduced model and solution method also have some limitations in terms of their applicability.
First of all, it should be noted that considered deflection form of the beam is valid only for low anti-
symmetric modes of frame structures. Secondly, columns should have close cross-sectional
dimensions. Finally, presented model is validated for limited type of frame structures. However,
model may be improved in future works by taking different beam deformation shapes into account for
obtaining both symmetric and anti-symmetric vibration modes of multi-storey and/or multi-bay

frames.
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