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The influence of a compressivc force on free nonlinear oscillation of thin-walled 
mcmbers is studied. The case of interna} autoparametric resonance is considered 
when the ratio of natural frequencies of global and local modes is close to 2: I. It 
is shown that in a vicinity of this resonance the oscillations become amplitude­
frequency modulated due to the energy exchange between linear modes. Two 
coupled stationary oscillation modes exist (which can be rcgarded as synchronized 
vibrations in overall and local mode). A bifurcational value of the energy is 
established after exceeding of which the uncoupled oscillation in overall mode 
becomes unstable, and stationary modcs can be only coupled. 

1. INTRODUCTION 

Dynamie behavior of thin-walled members under action of a compressive force 
was studied in a few works from various points of view. In [ 1] the response of a thin­
walled column to the suddenly applied end compression was studied, with particular 
attention to a decrease in the load carrying capacity due to the sudden application of the 
load. The equations of motion included cubic nonlinearities, and modulated 
synchronized oscillations in global and local modes with a single frequency were 
observed at not very large loads. In [2] the influence of in-piane forces on natura! 
frequencies and natural modes of thin-walled members was studied, in the framework of 
the linear theory. 

In this report we focus our attention on another aspect of the problem. Application 
of the axial force changes the ratio of natural frequencies for various modes - overall and 

local. Usually the ratio lV1 / lV2 ( m1 and m2 are the natural frequencies for global and 

local mode, respectively) is less than unity when the force is absent. If the critical stress 

o-2 for local mode is below than the critical stress for global mode a 1, then at gradually 

increasing compressive stress O" the frequencies ratio m1 / m2 rises and tends to 

infinity when O" approaches to a2 . So this ratio equals to 2: 1 for a certain O" (and 

close to this value in some interval of O" ). If the equations of motion include quadratic 
nonlinearities (f.e., in the case of thin-walled beams with one axis of symmetry) then the 
interna! autoparametric resonance occurs leading to specific features in the dynamie 
behavior. 
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In this paper free nonlinear oscillations of tbin-walled beams under cornpression 
are studied with account of interaction of global and local modes in the case of 
autoparametric resonance. Note that in paper [3] an autoparametric resonance in thin­
walled open-cross section beams has been studied which is caused by the interaction of 
another modes- global flexural and flexural-torsional modes. 

2. GOVERNING EQUATIONS 

Let us obtain the equations of motion of a compressed beam assuming that the 
natural modes of vibration coincide with the buckling modes (it is the case, in particular, 

for simply supported beams). Let A is a load factor, U i (j=l-N) are the linear buckling 

modes with critical load factor values A i close to the minimal critical value Amin . We 

assume the following expansion for the dynamie displacements field (Koiter's type 
expansion for the buckling problem): 

where (j is the amplitude of J'h mode (normalized, in given case, by the condition of 

equality of the maxima! deflection to wall tbickness t), U Jk are the second order 

displacement fields; summation is supposed on repeated indexes. Then, similarly to the 
Koiter's theory for the buckling problem, the potentia! energy can be written in the form 

1 2 I"' 2 A 
P = -co A +-~es ;s (t) ( 1- -)+cjkl ;j(t) ;k(t);/t)+ ... 

2 2 s As 
(2) 

where coefficients c0 , ci, c )kl are determined with known formulae [4,5]. 

The kinetic energy with account of expansion ( 1) and conditions of orthogonality 

for U i and U jk is as follows: 

p f ff z 2 2 d i L 2 T = - ( u 1 + V 1 + w 1 ) d A z = - ms;s t 
2 ' ' ' 2 ' 

z A s 

where A is the cross-section area, z is the longitudinal coordinate, p is the density, 

m1 = p f ff (uJ +v] +w7)dA dz 
z A 

Then the Lagrange's equations are as follows: 

J 
m1 ; 1,u +c1 (l-".l-:-);1 +ck/J;k ; 1 =0 

J 
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(j=I, ... N) 

(3) 

(4) 

(5) 



In the case of two interactive modes - global (i= 1) and I ocal (i=2) the equations of 
motion with account of symmetry and periodicity conditions for the local modes take the 
fonn (all terms in the potentia} energy (2) depending on odd degrees of the local mode 

amplitude (2 should vanish): 

(6) 

where 

(7) 

Denoting 

2 2 A 
m J = mo J (1 - T.) 

J 

(8) 

and introducing nondimensional time r = m2 t , rewrite equations ( 6) m the 

nondimensional form 

where 

2 ;t 
Wo2(l- --) 

~ 

3. SOLUTION BY THE MULTIPLE SCALES METHOD 

We consider the case w hen the frequencies ratio is close to 2: 1 : 

(9) 

(10) 

(11) 

where 8 is a the detuning parameter, & is a small parameter. The set of equations (9) is 
solved by the multiple scale method [6]. Introducing «slow» and «fast» times 

Tn =En r ( n = O ,1, .. .) , we seek the solution in the form of asymptotic series 

(12) 
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The standard procedure of the method gives the following first and second order 
sets of equations: 

d: 2 2 
Do ;11 + 4 ;11 = O, Do ;21 + ;21 = O 

DG ;12 + 4 ;12 = -2 Do D1 ;11 + d111 ;/1 + d221 ;i1 + 8* ;11 
2 

Do ;22 + ;22 = -2 Do D1 ;21 + 2 d122 ;11;21 

(13) 

(14) 

where Dn = 8( ... )/ oTn , 8* = 48 I w2 . Solution ofEqns (13) can be written as 

1 ( i2To -- -;2r, ) ;11 = ·2 A1 Cli )e + A1 (Ti )e O 
, 

I (A ('T' ) i r, - ( -t r, ) ;21=2· 211e o+A21i)e o 

(15) 

Substituting (15) into the right hand sides of (14), one obtains from the condition 
of absence of secular terms following two complex equations: 

d A1 2 
8 i------ - d A - 2 8* A = O d Ti 221 2 I , (16) 

Passing to polar coordinates As = as eif}_~ (s=l, 2) we obtain four ordinary 

differentia! equations with respect to amplitudes a1 and phases B1 {i=l,2): 

8 'd 2 · 2' d . a1 = 221 a2 s1ny, a2 = - 122 a1 a2 siny (17) 

8 a1 B{ == - d 221 aI cos r - 2 8* a1' 2 a2 B2 = - d122 a1 a2 cos r 
I 

where y = 2 (Ji - ~ and { ... ) = d( ... )/d T1 . We see that only coefficients d122 

d221 (and since only coefficients C122 = C212 =c221 in the potentia! energy (2)) influence 
the nonlinear mode interaction in the quadratic system considered. From first two Eqns 

(17) we get the energy integral (eis a constant proportional to the energy of oscillation): 

(18) 

From the last two Eqns ( 17) one has the following equation for y ' : 

8a1 y' =-d 122 (8af-va1)cosy+28*a1 (19) 

Let us introduce the new variable Ę changing in the interval (O, 1 ): 
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;:2 e 
( a2 = _'='_ 

1 4 ' (20) 

Then from (17)--(19) we have following set of two Eqns in Ę, y : 

dĘ C:( 2) . 4 d Ti = d122 '\Je I - Ę sin r 

dy r::[ 2 ĘJ 4 Ę d Ti- = d122 '\je (1- 3 Ę ) cos r + 2 f// 

(21) 

where 

(22) 

The set of equations (21) has the integral ( «integral of amplitude-frequency 
modulation») 

(23) 

This integral enables us to describe nonstationary oscillations with exchange of 
energy between the linear modes (15). The integral curves (23) constitute an 

«amplitude-frequency portrait» (AFP) in the p1ane Ę, y . Due to periodicity it is 

sufficient to construct this AFP in the rectangle O ś Ę ś 1, O ś y ś!r. The AFP depends 

on the single parameter łf/ (22). In Fig. I there are presented AFP for three values of 

parameter f// (for y >n these portraits should be continued symmetrically). 
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Fig. 1. Amplitude frequency portraits for three values of parameter 1/1 (22). 

As parameter f characterizes the ratio of energy oscillation in the first (global) 
mode to the total energy, these curves visually show magnitude of energy exchange 
bctween global and local modes. The energy exchange depends on the nondimensional 

parameter łf/ , which is determined by the energy, detuning parameter 8'ł' and coefficient 
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d1 22. The AFP presented show that the energy exchange rises with increasing łf/, i.e. with 

increasing energy, and that it depends on the phase difference y between the linear 
modes. 

4. STATIONARY COUPLED OSCILLATIONS. BIFURCATIONAL VALUE OF 
THE ENERGY 

Stationary points on the amplitude-frequency portraits (Fig.1) correspond to 
stationary oscillations, i.e. to synchronized dynamie regimes. These points are 
determined by condition ofvanishing the right hand sides in Eqns (21): 

(I-Ę 2 )siny=O, f//(1-3Ę 2 )cosy+2Ę=O (24) 

It follows from the first equation that either Ę = 1 or y = n,r. The point 

Ę =I, y == ( -1) k arccos( 1 I łf/) + k 1l, k == O, I,.. conespond to uncoupled 

oscillation in the first ( overall) mode. Another roots of (24) are 

r=O, Ę = ś'1= 3~ (1 +~;2) 

r=tr, ś'=ś'2= 3~(-1+,Ji+3\V2 ) 
(25) 

These are coupled stationary oscillations which can be «in phase» ( y = O) or 

«antiphase» ( r-== 1l ). Values Ę should lie in the interval (0,1). It is easily seen that 

only for one sign (before the radicals in (25)) values Ę1 and Ę 2 are positive (if tjl>O -

for «+», if łj/<O - for «-»). It is also easily seen that it is sufficient to consider only the 

case łj/>O, because at change of the łf/ sign the root Ę 1 commutes with Ę 2 . If łj/>O 

then the root Ę 2 <1 for any łf/, and therefore this stationary point exists at any energy 

of oscillation. But the root Ę1 < 1 only for łf/ > 1. The value f/1=1 determines a 

bifurcational value of the energy e ... From (22) we have for this value: 

(26) 

It can be proved with the use of integral (23) that stationary coupled modes (25) 

are stable. When e<e• on1y one coupled stationary mode exists (see the first graph in 
Fig. 1). It is seen from this graph (and can be easily proved) that uncoupled linear 
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oscillation in local mode ( Ę =O) is unstable - any perturbation results in excitation of 

the global mode, and the periodical exchange of energy between two modes takes place. 
When e=e• the second stationary point appears (point y=O, l;=l at the second graph in 
Fig.I), and at e>e• two coupled stationary modes exist (the third graph in Fig.1). 
Simultaneously the uncoupled global mode becomes unstable- any oscillation in this 
mode is accompanied by oscillation in the local mode. 

Thus the autoparametric resonance yields to following consequences at free 
oscillations: a) the linear local mode becomes unstable (it exchanges the energy with the 
global mode); b) when energy of oscillations is small there exist single coupled 
stationary mode (with prevailing deflection in local mode); c) there exist a bifurcational 
value of the energy e•, corresponding to appearance of another coupled stationary mode 
(with prevailing deflection in global mode), and simultaneously the linear overall mode 
becomes unstable ( so at large amplitudes both linear modes - gł obal and I ocal - are 
unstable, and both coupled modes are stable). 

5. NUMERICAL EXPERIMENT 

In the numerical experiment we considered a beam of channel cross section with 
parameters: length L=400 mm, web width b1=50 mm, flange width b2=25 mm, thickness 
t=l mm, Young's modulus E=2 105 MPa. As a load factor A the nondimensional stress 

er• :::: er · 103 I E was assumed. The critical stresses for global and loca] modes and 
postcritica] coefficients were calculated by the generał program [5] and are as follows: 

cri* =3.563, cri =1.0507 (for number of halfwaves m=6), b11 1=0.00457, b221=0.3358, 

b 122=0.1 I 03. The natural frequencies (without compressive force) are: Wo1 =2422 

(rad/s), w02 =7900 (rad/s). Here only some results of the numerical experiment are 

presented. 
There were assumed various values of compressive stresses. For two values -

er* =I.O and 1.03 the natural frequencies, their ratio, detuning parameter 8* and 
bifurcational value of energy are: 

* er =1.00 2054.2 1735.4 1.1837 0.6082 0.3232 

* a =1.03 2042.1 1108.8 1.8416 2.5988 0.0029 

In the second case (er* =1.03) the ratio w1 / W2 is close to 2: 1. In Fig. 2 a, b 

results of integration of set (9) for this case at energy e =0.02 are presented (the global 
and local oscillation, respectively). Initially the global mode was excited, with very 
small perturbation in local mode (l;=0.99999). Energy is periodically transferred from 
the global made to local mode and inversely; oscillations are synchronized with 

frequencies ratio 2: 1. For comparison in Fig. 3 results are given for er* =1.00 (with 
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more pronounced initial excitation of the local mode ). Oscillations are not synchronized, 
energy exchange is not periodical. 
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Fig. 2 Nonstationary oscillation with periodical energy exchange between modes. 
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Fig. 3 Global and !ocal oscillations far from autoparametrical rcsonance. 
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