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The main aim of this paper is to make a comparison of the eigenfrequencies of the high 
telecommunication towers alternatively manufactured using the stainless steel and the 
aluminium components. It is provided each time assuming that the Young modulus 
of the applied material· is the Gaussian input random variable and using the general­
ized stochastic perturbation method using the global version of the Response Function 
Method. Up to the fourth order probabilistic moments and characteristics are computed 
in the three dimensional Finite Element Method model of the tower composed from the 
continuous linear elastic edge beams spanned by the large number of the linear elastic 
bars. A computational part of the work is made using the hybrid usage of the computer 
algebra system MAPLE and the FEM engineering package ROBOT used widely in the 
civil engineering practice. 

Keywords: Stochastic dynamics, Stochastic Finite Element Method, response function 
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1. Introduction 

The telecommunication towers undoubtedly belong to the class of the lightweight 
structures exhibited to the stochastic influence of the wind blow and since that, 
their reliability needs to be evaluated with respect to the strength, to maximum 
deflections and rotations as well as to the eigenfrequencies. The uncertainty in the 
structural response of the towers and masts in general follows the quasi-periodic 
and temporary ice covers increasing both mass and effective surfaces of the struc­
tural elements, temperature fluctuations leading to the significant thermal stresses 
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not necessarily uniformly influencing the entire structure ( concerning dominating 
southern exposure to the sun heating). The separate role in overall uncertainty mag­
nitude play the geometrical imperfections in the elements connections ( especially 
in welds) and the elements themselves since material defects following productions 
stage and composite character of the micro- and nanostructure. Because aluminium 
has decisively more micro-compounds in its total volume, randomization of the ba­
sic material properties is even more justified than for stainless steels and, finally, a 
random dispersion of those properties needs to be significantly larger. 

It is known from the engineering practice that the telecommunication structures 
( towers, masts and antennas) designing and manufacturing is still relatively new and 
the very modern area for the engineers and scientists because the development of the 
mobile phones is still in progress and may demand the brand new extensions in the 
nearest future. Therefore, an optimization of the relevant supporting structures' 
shape and the materials' design is still an ongoing development - an example is 
alternative usage of the aluminium and steel based supporting towers. 

On the other hand, the engineering reliability analysis is still being developed, 
concerning at least the demands of the Eurocodes and, at the same time, acquisition 
of various stochastic methods in engineering practice [1, 8-11]. It is widely known, 
that the reliability measured with some indices must be computed not only for 
the load capacity and maximum deflections of some structures but also for their 
vibrations and fatigue under dynamic loads, which needs further, more advanced 
stochastic computer methods. 

These are the main reasons to investigate the matter of comparison of the alu­
minium and steel manufactured telecommunication structures in the presence of 
uncertainty in material properties of the structural components. We study random 
fluctuations of the eigenvibrations modes for the same towers made of steel and, 
than of aluminium to discuss in this context their reliability issues and we assume in 
this case that the Young modulus of both materials is a truncated Gaussian random 
variable with the given expected value and the coefficient of variation being an extra 
input parameter to this analysis. The generalized stochastic perturbation technique 
is employed to achieve this goal since the expected time savings (with respect to the 
Monte-Carlo technique) and a determination of up to the fourth order probabilistic 
moments and coefficients (in addition to the other stochastic methods). 

Computational part is provided using the Finite Element Method engineering 
system ROBOT, where all the eigenfrequencies are determined with respect to the 
initially modified Young moduli of both towers. Further computations of the re­
sponse functions, their automatic differentiation, the probabilistic moments and the 
coefficients as well as their visualization are provided with the use of computer al­
gebra system MAPLE. This analysis is planned to be extended towards a full ve­
rification of the static and dynamic reliability, buckling fragility as well as including 
of the fatigue and ageing phenomena into the overall structure mathematical and 
computational models. 
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2. Variational formulation 

Let us consider the following linear elasto-dynamic problem consisting of [6) 

• the equations of motion 

D T fA .. a+ = pu, xEO 7 E [to, oo) (1) 

• the constitutive equations 

a= Cs, X En 7 E [to, oo) (2) 

• the geometric equations 

€ = Du, X E n, 7 E [to, 00) (3) 

• the displacement boundary conditions 

U = u, X E 80u, 7 E [to, oo) (4) 

• the stress boundary conditions 

Na= t, X E 80a, 7 E [to, oo) (5) 

• the initial conditions 

Ao • -zO 
U = U , U = U , 7 = to (6) 

It is assumed that all the state functions appearing in this system are sufficiently 
smooth functions of the independent variables x and 7. Let us consider the variation 
u(x, 7) in some time moment 7 = t denoted by 8u(x, 7). Using the above equations 
one can show that 

I T A T / AT - (D a+ f - pii) 8ud0 + (Na - t) 8ud(80) = 0 (7) 

0 80a 

Assuming further that the displacement function u(x,t) has known values at the 
initial moment u (x, ti) = 0 and at the end of the process u (x, t2 ) = 0, so that the 
variations of this function also equal O at those time moments 

8u (x, t1) = 0, 8u (x, t2) = 0 (8) 

Integrating by parts with respect to the variables x and 7 we can obtain that 

t2 f [8T- f aT8sdO + f fT8udO + f fT8ud(80)]d7 = O (9) 
t1 n n an 

where the kinetic energy of the region n is defined as 

T 1 / • T • d" = - pu u .'!.t 
2 

(10) 
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We also notice that 

8c = D8u, x En 7 E [to, oo) (11) 

Next, we introduce the assumption that the mass forces f and the surface loadings 
t are independent from the displacement vector u, which means that the external 
loadings do not follow the changes in the domain initial configuration. Therefore, 
equation (9) can be modified to the following statement: 

t2 

8 I (T - Jp) d7 = 0 (12) 

t1 

where J P means the potential energy stored in the entire domain n 

Jp = U - j fTudO - j fTud(BO) = 0 (13) 

n an,,. 

whereas the variation is determined with respect to the displacement function and 
U is the elastic strain energy given by the formula 

U = ! JcTCcdO 
n 

(14) 

It is well known that the equation (12) represents the Hamilton principle widely 
used in structural dynamics in conjunction with the Finite Element :Method ap­
proach. 

3. Computational implementation 

Let us consider a discretization of the displacement field u(x, 7)using the following 
forms: 

U3xl (x,7) ""'P3xN(e) (x)q~(e)Xl (7), U3xl (x,7) "" ~3xN(x)r~xl ( 7) (15) 

where q is a vector of the generalized coordinates for the considered finite element, 
r is a vector for the generalized coordinates of the entire discretized system, N c e) is 
the total number of the eth finite element degrees of freedom; N is the total number 
of degrees of freedom in the structure model. The generalized coordinates vector for 
the entire structure model is composed from the finite element degrees of freedom 
and the transformation matrix as 

(16) 

r..p and~ are the corresponding shape function matrices (local and global). Contrary 
to the classical formulations of both FEM and the perturbation-based Stochastic 
Finite Element Method [2,3,6], we introduce here the additional index a=l, ... ,M 
to distinguish between various solutions of the elastodynamic problem necessary 
to build up the response function ( around the mean value of the input random 
parameter). 
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The strain tensor can be expressed as 

c6xl (x,7) = B6xN(e)(x)q~(e)xl ( 7) = B6xN(x)r~xl ( 7) 

The discretized version of the Hamilton's principle is obtained as 

and hence 
t2 

8 I (!raTMafa - !raTKara + RaTra) d7 = 0 

t1 

The global mass matrix is defined as 

105 

(17) 

(18) 

(19) 

MNxN = f p0 (x)Bix6(x)B6xN(x)dO (20) 
n 

so that all partial derivatives of it with respect to random Young modulus equal to 
O; the global stiffness matrix equals to 

a I -r a -KNxN = BNx6c6x6B6xNdO (21) 

n(e) 

and since 3D bar and beam elements are used in further computations (as the 
linearly dependent on Young modulus), only the first partial derivatives differ from 
0. Henceforth, equation (19) can be rewritten with those substitutions as 

1
t2 

:r0 TM0 8r - (r 0 TMa + r0 TKa - R 0 T)8r d7 = 0 
t1 

Considering the assumptions that 

8r(t1) = 0, 8r(t2) = 0 

we finally obtain the dynamic equilibrium system 

(22) 

(23) 

(24) 

which represents the equations of motion of the discretized system. When we com­
plete this equation with the component CNxNrNxl getting 

(25) 

then we decompose the damping matrix as 

(26) 

where the coefficients a 0 and a 1 are determined using the specific eigenfunctions 
for this problem, so that 
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(27) 

where no summation over the doubled indices o: is applied here. As it is known [2], 
the case of the undamped free vibrations leads to the following algebraic system: 

(28) 

and the solution r 0 = A a: sin w0 t leads to the relation 

(29) 

so that for sin w0 t f=- 0 and A a: f=- 0 there holds 

(30) 

4. The stochastic perturbation-based approach in the eigenproblems 

4.1. The stochastic Taylor expansion with random coefficients 

Let us introduce the random variable b = b (w) and its probability density function 
as p(b). Then, the expected values and the mth central probabilistic moment are 
defined as 

+oo +oo 

E [b] - b0 = j bp (b) db, µm (b) = f (b - E[b])mp (b) db (31) 
-00 -00 

The basic idea of the stochastic perturbation approach is to expand all the input 
variables and the state functions via Taylor series about their spatial expectations 
using some small parameter c > 0. In case of random quantity e = e(b), the 
following expression is employed [4,7]: 

(32) 
n=l 

where 

(33) 

is the first variation of b about b0 . Symbol (. )0 represents the function value (.) 
taken at the expectation b0, while (.),b,(.),bb denote the first and the second partial 
derivatives with respect to b evaluated at b0 , respectively. Let us analyze further 
the expected values of any state function f(b) defined analogously to the formula 
( 3) by its expansion via Taylor series with a given small parameter c as follows: 

(34) 
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Let us remind that this power expansion is valid only if the state function is an­
alytic in c and the series converge and, therefore, any criteria of convergence should 
include the magnitude of the perturbation parameter; perturbation parameter is 
taken as equal to 1 in numerous practical computations. From the numerical point 
of view, the expansion provided by the formula ( 32) is carried out for the summation 
over the finite number of components. Now, let us focus on an analytical derivation 
of the probabilistic moments for the structural response function. It is easy to prove 
that the general 5th order expansion results in the formula 

(35) 

where for Gaussian variables the even components need to be dropped off. Thanks 
to such an extension of the random output, any desired efficiency of the expected 
values as well as higher probabilistic moments can be achieved by an appropriate 
choice of the distribution parameters. Similar considerations lead to the 4th order 
expressions for a variance; there holds 

_ 2 8f 8f 4 (1 a2
, a2

, 2 £1.q:J_) 
Var (J(b)) - c µ2 (b) ab ab + € µ4 (b) 4 a"b2a"b2 + 3, ab ab3 

(36) 

The third order probabilistic moments are derived including the lowest orders only 
as 

+oo 

µ3 (f (b)) = I (f (b) - E[J(b)]) 3 
p (b) db 

-oo 

+oo 3 

= j (1° +c!{~b+ ... - E[/(b)J) p(b)db (37) 

-oo 

+oo 3 

/ ( 
8f 1 2 a2

, ) = c
8

bll.b+ 2c a"b21:l.btl.b+ ... p(b)db 
-00 
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Finally, the fourth probabilistic moment is approximated with the first few per­
turbation terms as 

+oo 

µ4 (f (b)) = J (f (b) - E[f(b)])4 
p (b) db 

-oo 
+oo 4 

= J (t" H !{ ~b+ ... - E[f(b)J) p (b) db (38) 

-00 

Let us mention that it is necessary to multiply in each of these equations by 
the relevant order probabilistic moments of the input random variables to get the 
algebraic form convenient for any symbolic computations. Therefore, this method 
in its generalized form is convenient for all the random distributions, where the 
above mentioned moments may be analytically derived ( or at least computed for a 
specific combination of those distributions parameters). Finally, one may recover 
the kurtosis and the skewness after their well-known definitions as 

(! (b)) = µ4 (! (b)) - 3 /3 (! (b)) = µ3 (! (b)) 
"" a4 (f (b)) ' a3 (! (b)) 

and, independently, the reliability index for the particular eigenfrequencies as 

E (J- !a) 
R (! (b)) = -A---,--

a (f - !a) 

(39) 

(40) 

where the pair (J; fa) denotes the induced frequency of the vibrations and the addi­

tional eigenfrequency. The relevant civil engineering codes state that this difference 
cannot be smaller than 25% of the eigenfrequency, so that Eqn. ( 40) may serve for 
the straightforward estimation of the reliability for the structures subjected to the 
dynamic excitations. 

4.2. Eigenfrequencies determination via the response function method 

As shown during derivation of equations for the generalized perturbation based 
approach, one of the most complicated issues is a reliable numerical determination of 
up to nth order partial derivatives of the structural response function with respect to 
the randomized parameter. It is possible to determine this function first by multiple 
solutions of the boundary value problem around the expectation of the random 
parameter to complete this task. The response function for each eigenvalue is built 
up from uniform symmetric discretization in the neighborhood of this expectation, 
with equidistant intervals. A set of classical deterministic re-computations of the 
all the components of the eigenvalues vector leads to the final formation of the 
responses function for all Wa. That is why we consider further a problem of the 
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unknown response function approximation by the following polynomial of n-1 order 
[5]: 

(41) 

having the values of this function determined computationally for n different argu­
ments. With this representation, the algebraic system of equations is formed 

A (a)bn-1 + A(a)bn-2 + + A(a)bo _ W 
1 1 2 1 ··· n 1 - a(l) 

A (a)bn-1 + A(a)bn-2 + + A(a)bo _ W 
1 2 2 2 · · · n 2 - a(2) (42) 

A (a)bn-1 + A(a)bn-2 + + A(a)bo = W 
1 n 2 n ··· n n a(n) 

where the coefficients Wa(i) for i=l, ... ,n denote the approximated function values 
in ascending order of the arguments bi. Therefore, the following algebraic system 
of equations is formed to determine the polynomial coefficients A~a): 

bn-1 bn-2 bo A(a) 
Wa(l) 1 1 1 1 

bn-1 bn-2 bg A(a) 
Wa(2) (43) 2 2 2 

bn-1 
n 

bn-2 
n 

bo 
n A~a) Wa(n) 

The crucial point in this method is a proper determination of the set of input 
parameters { b~, ... , b~} inserted into this equation. This determination is started 
with a choice of the computational domain [b - b..b, b + b..b], where 2b..b = 0.05b. 
Then, this domain is subdivided into the set of equidistant n-1 intervals with the 
length b..bcm,m+l) = ~~~ for any m=l, .. ,n-1. So that assuming that b0 = b - b..b it 
is obtained that bm = b - b..b + m ~~~. Let us note that since this linear system of 
equations is non-symmetric, its solution cannot be done by the integration with the 
FEM solver, and some separate numerical procedure based on the Gauss-Jordan 
elimination scheme must be employed. The unique solution for this system makes 
it possible to calculate up to the nth order ordinary derivatives of the homoge­
nized elasticity tensor with respect to the parameter b at the given b0 as 1 st order 
derivative 

2nd order derivative 

kth order derivative 
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Providing that the response function of the structural eigenvalue has a single 
independent argument, that is, the input random variable of the problem, it is 
possible to employ the stochastic perturbation technique based on the Taylor rep­
resentation to compute up to the mth order probabilistic moments µm(wa). It is 
clear from the derivation above that to complete the mth order approximation we 
need to solve the initial deterministic problem m times, with its number of degrees 
of freedom and a single system of algebraic equations mxm, to find a single response 
function. Including the formulas above for the derivatives of the response function 
in a definition of the probabilistic moments, one can determine the expectations, 
variances as well as any order random characteristics of the structural response. 

5. Numerical illustrations 

Computational analysis has been provided on the example of the steel telecom­
munication tower with the height equal to 42.0 meters discretized with 396 two­
noded linear elastic beams and bars having common 165 nodal points and presented 
schematically in Fig. 1. The cross-sectional areas in both towers are (1) exactly 
the same and (2) optimally designed to fulfill the strength criteria concerning the 
aluminium usage, which automatically means some overdesigning load capacity ef­
fect on the steel version of this tower. Further computational experiments will deal 
with the optimally chosen cross-sections for the steel and aluminium made profiles, 
where the expected values for the steel members of the Young modulus is taken as 
E [Es] = 210 GPa and we have for aluminium E [Ea] = 75 GPa. The geometrical 
data for the specific cross-sections are contained in Tab. 1. 

Segment Tower legs Tower braces 
no 
1 RO 0 60,3x3,6 mm RO 0 22,0x2,0 mm 
2 RO 0 60,3x3,6 mm RO 0 25,0x3,0 mm 
3 RO 0 76,lx5,0 mm RO 0 38,0x4,0 mm 
4 RO 0 88,9x6,3 mm C 30x30x3 mm 
5 RO 0 88,9x6,3 mm C 30x30x3 mm 
6 RO 0 114,3x6,3 mm C 40x40x3 mm 
7 RO 0 114,3x6,3 mm C 40x40x3 mm 

The results of computational modeling are presented in Figs 2-7, where we have 
in turn: the expected values, standard deviations, kurtosis, skewness as well as 
the reliability index for both aluminium (left graphs) and steel structures (right 
graphs). They are all shown with respect to the coefficient of variations of the 
Young modulus for the tower basic designed material; this coefficient belongs to 
the interval [0.00,0.20], which is relatively wide interval considering maximum 10% 
random dispersion accompanying most of experimental tests in this case. Further, 
it is important that all those moments and coefficients have been determined using 
the sixth order perturbation approach. 
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-- -P~tfi22 
-- _R25x3,0 
-- _R 60,3x3,6 
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_R 38x4.0 

-- _R 76, 1 x5,0 
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-- _R 88.9x6,3 
-- _R 114,3x6,3 

Figure 1 Static scheme and photo of the telecommunication tower 
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As it is apparent from both graphs in Fig. 2, the expected values for the eigenfre­
quencies from 1 st to 13th are clearly very similar to each other for both materials. It 
follows directly the analytical results for the eigenfrequencies of the elastic beams, 
where, independently from the boundary conditions of the simple beam, those fre­
quencies are proportional to the Young modulus and intertia moment, while in­
versely proportional to the mass of the element (into the square root) . Let us recall 
here that the ratio of the Young moduli for aluminium and steel is very similar to 
the ratio of their unit masses, so that this conclusion seems to be very well justified. 
Let us note that the intermediate eigenfrequencies differ from each other here, so 
that it cannot be concluded precisely that they are always almost equal ( see 11 th 

and 12th eigenfrequencies, for instance). The sensitivity of the expected values with 
respect to the input coefficient of variation a is , however somewhat different - steel 
structure exhibits no such a sensitivity, while in the case of aluminium tower - the 
expectations show no sensitivity until a=0.15, while for larger values - may increase 
or decrease as well. 

Further, we analyze the standard deviations, necessary in the reliability index, 
as well as the output coefficients of variation, also for particular eigenfrequencies. 
It is quite clear that the model is linear in the probabilistic sense, because the ratio 
of output and input coefficients of variation remains constant. We notice also the 
apparent damping since 0.10- 0.12 is obtained for both materials from 0.20 as the 
input value of the parameter a and it also follows the analytical result recalled 
above. 
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Figure 2 Expected values of the eigenvalues for the aluminium and steel towers 
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F igure 3 Standard deviations of the eigenvalues for the aluminium and steel towers 



Comparison of the A luminium Versus Steel ... 113 

0,12 

0,10 

0,08 

0,06 

0,04 

0,02 

o,oo 
0,05 

* frequency no 1 
frequency no 5 
frequency no 7 
frequency no 10 
fre uenc no 12 

0,10 
alfa 

0,15 

·** 

0,20 

o frequency no 3 
+ frequency no 6 

frequency no 8 
• frequency no 11 
• fre uenc no 13 

0,05 

* frequency no 1 
frequency no 4 
frequency no 7 
frequency no 9 
fre uenc no 12 

0,10 
alfe 

0,15 0,20 

o frequency no 3 
+ frequency no 5 

frequency no 8 
• frequency no 11 
• fre uenc no 13 

Figure 4 Coefficients of variat ion of the eigenvalues for the aluminium and steel towers 
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Figure 5 K urtosis of the eigenvalues for t he a lum inium and steel towers 
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Figure 6 Skewness of the eigenvalues for the aluminium and steel towers 
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Figure 7 Reliability index in eigenvibrations analysis of the aluminium and steel towers 
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Higher damping is noticed for the steel tower, where additionally the results for 
particular eigenfrequencies are less dispersed than for the aluminium structures. 

Kurtosis given in Fig. 5, however, is apparently different for both materials -
they both start from O for the input coefficient of variation close to O to some mostly 
negative values for the aluminium and relatively small positive as well as negative 
values in the case of steel (closer to 0). Contrary to the previous moments and 
coefficients, the fourth order quantities are computed with lower accuracy lost with 
larger values of o:, so that the results are restricted to the 10% input random disper­
sion; this is also the case of skewness as the result of the third order approximations 
(see Fig. 6). These skewnesses exhibit similar properties as the kurtosis - in the 
sense that they have smaller absolute values for steel tower than for the aluminium 
one. Steel structure shows a linear interrelation between output skewness and in­
put coefficient of variation of the Young modulus. This is absolutely not the case 
of aluminium tower eigenfrequencies, where this interrelation does not seem to be 
linear, while the minimum values apparently differ from 0. Trying to generalize 
those results one may notice that Gaussian Young modulus of the tower result 
in the eigenfrequencies being almost Gaussian, when the tower is made of steel, 
whereas the final distributions of aluminium eigenfrequencies are more distant from 
the Gaussian one (due to negative skewness and kurtosis). 

Finally, we study the variations of the reliability index as the function of the 
input uncertainty for o: belonging to the interval [0.0, 0.10]. The results obtained 
for both materials are quite similar - the larger input coefficient of variation, the 
smaller final reliability index value. It is known from the Eurocode O regulations, 
that the unconditional structural safety is preserved in the case of reliability index 
larger than about 4.5. Fig. 7 shows clearly that the safety margin for both struc­
tures is rather small, because this limit value is reached for the eigenfrequencies 
lower or equal to 10th at the input coefficient o: = 0.07 (for aluminium) and for 
o: = 0.07 (in the case of steel). This structure is, however, never safe in the view 
of higher eigenfrequencies, because for the entire variability of input coefficient of 
variation the final reliability index is equal or smaller than 4. It is seen that the 
structure safely designed according to the strength and deflections condition not 
necessarily exhibit full safety in the view of eigenvibrations analysis. One needs to 
remember also that usually input coefficient of variation increases together with the 
exploitation time, so that the graphs, provided may be directly interpreted during 
full stochastic reliability analysis, after a sensible calibration of time versus input 
random dispersion level. 

6. Concluding remarks 

The main result of the analyses presented in this paper is that the eigenfrequencies 
expectations computed for aluminium and steel towers are very close to each other, 
which follows almost identical interrelations of the Young moduli and densities of 
both materials. Both materials exhibit probabilistic damping in free vibrations 
analysis decreasing almost twice the input uncertainty level. The probabilistic dis­
tributions for all eigenfrequencies in the steel tower are essentially closer to the 
Gaussian origin than for the aluminium tower, where both skewness and kurtosis 
show clearly negative values. The reliability analysis is also straightforward pro-
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cedure with the Stochastic Finite Element Method perturbation-based technique 
implemented provided that the direct difference in-between induced frequency of 
vibrations and the eigenfrequency is declared in percents with respect to this last 
quantity. Otherwise, of course, full stochastic forced vibrations analysis is neces­
sary, which needs further extensive developments of the SFEM procedures. There 
is no doubt that the computer algebra system plays the crucial role in the com­
putational strategy - one may try to use this hybrid strategy with the response 
function method in addition to the other probability density functions, especially 
for the lognormal variables, where all central moments of any order have additional 
analytical forms. Otherwise, some further numerical techniques must be employed 
to recover those moments for the needs of specific input random variables confi­
guration. The structural open research problems may be for instance the SFEM 
analysis of stochastic earthquake vibrations applied at the foundations of such to­
wers, significantly influencing stochastic reliability of those structures. 
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