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1. Introduction

Thermal-insulation properties of textile materials play a 
significant role in material engineering of protective clothing. 
Thermal-insulation properties are very important from the point 
of view of thermal comfort of a clothing user as well as clothing 
protective efficiency against low or high temperature. Thermal 
protective clothing usually is a multilayer construction. Winter 
outdoor clothing is aimed at protecting a human being against 
harsh environmental conditions, especially against cold. It has 
a multilayer structure in order to ensure a thermal comfort in 
winter outdoor climatic conditions. Multilayer textile packages 
for winter outdoor clothing consist of at least three layers 
(Figure 1) of different functions:

• Outer layer protecting against wind and rainfall; this layer 
also creates a clothing shell on which other functional elements 
(pockets, fasteners, flies) of clothing are placed.
• Middle thermo-insulating layer made of thermal-insulation 
nonwoven or other thermal insulating materials, such as 
feathers, wadding and so on; it protects the human body from 
excessive heat loss,
• Inner layer—lining, the nearest to human body; it should 
enable moisture and air exchange between the human body 
and surroundings. 

Protective clothing against high temperature, for instance, 
firefighters clothing (Figure 2) has also multilayer structure. 
Each layer is created by single textile material of properties 
adequate to its function.

Thermal-insulation of multilayer textile packages is a resultant 
of the number of layers and the order, as well as the thermal-
insulation properties, of the single textile material creating the 
particular layers. Thermal resistance, water-vapour resistance 
and air permeability are considered as crucial comfort-related 
properties of fabrics [1–6].

From the point of view of heat exchange between the human 
body and surroundings through clothing being a thermal 
barrier, particular layers create a series system. In such a 
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Figure 1. An example of protective clothing protecting against cold.
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system a total thermal resistance is approximately a sum of the 
thermal resistance of individual layers [1, 2, 7]. However, when 
two materials are joined together, their surfaces do not adjoin 
exactly to one another. Surface of solid objects is usually rough 
and due to this fact small air gaps occur between the objects 
(Figure 3). This air gaps create additional source of thermal 
resistance due to high thermal insulation of air trapped in the 
gaps between materials. The limited number and size of the 
contact spots between the adhering surfaces result, in fact, 
in that the actual contact area is significantly smaller than the 
apparent contact area. This limited contact area and air gaps 
between layers cause a thermal resistance called a  contact 
resistance or thermal contact resistance [8]. 

The thermal contact resistance increases the total thermal 
resistance of the multilayer assembly. Therefore, the total 
thermal resistance of the multilayer textile package should be 
a little higher than the sum of thermal resistance of particular 
layers, according to the following equation

		  RT = RL1 + RL2 +...+RLn + Rc	 (1)

where RT – total thermal resistance of multilayer assembly, RL1 
– thermal resistance of 1st layer, n – number of layers, Rc – 
thermal contact resistance.

Thermal conductivity is a characteristic feature of material. In 
the case of multilayer textile packages each layer has its own 
thermal conductivity. However, in order to describe the multilayer 
assembly an effective or equivalent thermal conductivity can 
be applied. The equivalent (effective) thermal conductivity of 
multilayer package can be defined as a thermal conductivity of 
the homogenous material of the same thickness and ensuring 
in identical thermal conditions, that is, the same heat flow as 
the multilayer assembly. Investigations [9, 10] showed that the 
effective thermal conductivity of two-layer textile assembly is 
approximately equal to the weighted mean from the thermal 
conductivity of particular components with weights reflecting 
thickness of particular layers according to the equation
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where λef – effective thermal conductivity of two-layer material, 
λI  – thermal conductivity of inner layer, λO  – thermal conductivity 
of outer layer, hI – thickness of inner layer, hO – thickness of 
outer layer. 

Particular thermal properties of individual textile materials can 
be measured using different devices: sweating guarded hot-
plate called ‘skin model’, Alambeta, Permetest and Thermo Labo 
[2, 11 - 14]. However, in order to predict the thermal-insulation 
properties of the multilayer textile packages it is necessary 
to know the relationships between the thermal properties of 
individual textile materials and thermal properties of multilayer 
textile assemblies made of those individual materials. Thermal-
insulation properties of multilayer textile assemblies have been 
the objects of investigations [1, 2, 11]. Nevertheless, the topic 
is still open and worth investigating. 

Figure 3. Heat flow through the air gaps between layers [http://www.
thermopedia.com/content/1188/].

Figure 2. An example of protective clothing – Firefighter LION’s 
Janesville® V-Force® garment [http://www.prweb.com].

2. Experimental

The aim of presented work  was to investigate the relationships 
between the thermal-insulation properties of single textile materials 
and multilayer packages composed of these materials [15]. 

2.1. Materials

Different textile materials have been applied to create the 
multilayer textile packages. They were: 

• Two variants of woven fabrics: T1 and T2.

• Two variants of knitted fabrics: D1 and D2.

• Two variants of nonwovens W1 and W2. 

Above textile materials have been applied in multilayer 
assemblies. Placement of individual materials in multilayer 
assemblies was in agreement with their functions resulted from 
fabric structure and properties. The woven fabric T1 created an 
outer shell of clothing; whereas, the woven fabric T2 created the 
lining. Nonwovens W1 and W2, as well as polar D2, have been 
applied as inner thermal-insulating layers. Additionally, in four-
layer assemblies the knitted fabric D1 simulated underwear. 
A set of variants of created multilayer textile packages is 
presented in Table 1. 

AUTEX Research Journal, Vol. 14, No 4, December 2014, DOI: 10.2478/aut-2014-0030 © AUTEX 

http://www.autexrj.com/ 300
Brought to you by | University of Technology Lódz

Authenticated
Download Date | 1/21/16 1:50 PM



2.2. Methods

Both single and multilayer materials have been measured in the 
range of they thermal properties by means of the Alambeta. It is 
a computer-controlled instrument for measuring the basic static 
and dynamic thermal characteristics of textiles [2–4, 11]. The 
Alambeta is a plate method whose operating principle depends 
on the convection of heat emitted by a hot upper plate in one 
direction through the examined sample to the cold bottom plate 
adjoined to the sample.

The instrument directly measures:

• The stationary heat flow density (by measuring the electric 
power at the known area of the plates).
• The temperature difference between the upper and lower 
fabric surface.
• The fabric thickness. 

The device calculates the real thermal resistance for all fabric 
configurations. Thermal conductivity and  thermal absorptivity, 
as well as the thermal diffusivity, are calculated on the basis 
of the measured properties using algorithms appropriate for 
the homogenous materials. Due to this fact in the case of the 
multilayer textile packages the results calculated on the basis of 
the measured parameters should be considered as equivalent 
values, i.e. equivalent conductivity, equivalent absorptivity  and 
equivalent diffusivity.

While measuring the multilayer assemblies they were placed 
in such a way that configuration of layers reflected the place 
of layer in clothing during usage with respect of left and right 
side of the particular materials. It means that the inner layer 
adjoined the upper hot plate of the device simulating a human 
body; whereas, the outer woven fabric adjoined the bottom 
cold plate. An example of the layers’ configuration during 
measurement is presented in Figure 4. 

Measurements by means of the Alambeta have been performed 
in standard conditions. For each sample: single and multilayer, 
10 repetitions have been done. Next an arithmetic mean has 
been calculated as a final result for the given sample. 

By means of the Alambeta the following properties have been 
assessed:

• Thermal conductivity. 
• Thermal diffusivity. 
• Thermal absorptivity.
• Thermal resistance.
• Sample thickness.
• Peak heat flow density.
• Ratio of peak heat flow density and stationary heat flow 
density.

In the article the thermal conductivity and resistance are 
discussed. 

Table 1. A set of variants of created multilayer textile packages.

Multilayer packages

2-layer 3-layer 4-layer

T1 + W1 T1 + W1 + T2 T1 + W1 + T2 + D1

T1 + D2 T1 + D2 + T2 T1 + D2 + T2 + D1

T1 + W2 T1 + W2 + T2 T1 +W2 + T2 + D1

Single textile materials used to create the multilayer packages 
have been measured in the range of their basic structural 
and mechanical parameters according to the standardized 
procedures. The basic characteristics of the materials creating 
particular layers in experimental packages are presented in 
Tables 2–4. 

Table 2. Basic parameters of investigated woven fabrics.

Parameter Unit
Value

T1 T2

Raw material of warp - CO CO

Raw material of weft - CO 50 PES 
50 CO

Warp linear density tex 60 30

Weft linear density tex 50 50

Weave - plein Twill 3/1 S

Warp density dm-1 320 248

Weft density dm-1 118 112
Mass per square 

meter gm-2 270 134

Thickness mm 0.63 0.54

Table 3. Basic parameters of investigated knitted fabrics.
 

Parameter Unit
Value

D1 D2 (polar)

Raw material - CO PES

Weave - Interlock polar
Cours density cm-1 7.6 -
Wale density cm-1 13.2 -

Mass per square 
meter gm-2 201 259

Thickness mm 1.17 2.84

Table 4. Basic parameters of investigated nonwovens.

Parameter Unit
Value

W 1 W 2

Mass per square 
meter gm-2 78,4 62,3

Thickness mm 3,77 1,18
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multilayer textile packages as thermo-insulation layers. The 
lowest thermal resistance occurred for woven fabrics T1 and 
T2.  They have been introduced appropriately as an outer shell 
and lining of created packages. 

Results for multilayer packages are presented in Table 6.

Table 6. Results of the measurement of multilayer packages by means 
of the Alambeta.
 

Sample 
configuration

Thermal 
conductivity
Wm-1K-1 x 10-3

Thermal 
resistance

m2KW-1 x 10-3

ā SD ā SD

T1+ W1 45.03 0.78 76.68 5.01

T1+ D2 50.47 1.04 79.18 1.72

T1+W2 42.30 0.50 52.66 2.36

T1+ W1+T2 57.81 2.54 71.55 4.58

T1+ D2+T2 59.25 1.84 76.91 3.03

T1+W2+T2 51.51 1.29 54.56 2.52

T1+ W1+T2+D1 69.65 3.07 77.92 4.43

T1+ D2+T2+D1 71.26 4.12 82.84 4.53

T1+W2+T2+D1 62.38 1.09 66.26 2.12

3. Results and discussion

Results of the measurement of individual materials are 
presented in Table 5. 

Table 5. Results of measurement of individual fabrics by means of 
Alambeta
 

Sample

Thermal 
conductivity
Wm-1K-1 x 10-3

Thermal resistance
m2KW-1 x 10-3

ā SD ā SD

T1 69.45 2.86 8.99 0.37

T2 48.78 0.54 11.49 0.42

D1 55.17 1.62 23.41 0.74

D2 44.29 0.88 74.31 1.71

W1 39.10 1.17 76.73 6.41

W2 33.56 1.15 45.12 1.32

According to expectation the highest thermal resistance was 
stated for nonwovens samples: W1 and W2, as well as for 
polar D2. Mentioned fabrics have been applied in investigated 

Figure 4. Configuration of layers during measurement by means of Alambeta.
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In the case of the two-layer packages it can be seen that the total 
thermal resistance of the packages is a little higher than thermal 
resistance of inner thermal-insulation layer (layer L2). For the 

Comparison of thermal resistance of multilayer packages 
and individual materials creating the package is presented in 
Figures 5–7. 
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Figure 5. Thermal resistance of two-layer assemblies: L1 – outer layer, L2 – inner layer,  A – assembly.
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Figure 6. Thermal resistance of three-layer assemblies: L1 – outer layer, L2 – inner layer,  L3 – lining, A – assembly.
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Figure 7. Thermal resistance of four-layer assemblies: L1 – outer layer, L2 – inner layer, L3 – lining, L4 - knitted underwear, A – assembly. 
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As a consequence, in comparison to the assemblies made 
of solid, rigid materials the textile multilayer assemblies have 
more tight structure  (Figure 9) with lower amount of air inside 
that results in lower thermal resistance. 

Moreover, it was stated that bigger the number of layers higher 
the difference between the measured thermal resistance of the 
multilayer package and calculated sum of thermal resistance of 
individual materials creating the package.

Equivalent thermal conductivity of multilayer packages differs 
significantly between each other (Figures 10–12). It is also 
observed that the equivalent thermal conductivity of multilayer 
assemblies is different that the thermal conductivity of particular 
layers. In the case of two-layer assemblies their equivalent thermal 
conductivity is in the range between the thermal conductivity of 
the outer layer and thermal conductivity of the inner layer (Figure 
10). Similarly, the thermal conductivity of three-layer assemblies 
is in the range limited by the thermal conductivity of layers of the 
highest and the lowest value of this parameter. 

three- and four-layer packages the total thermal resistance 
is also close to the thermal resistance of the component 
crating the thermo-insulation layer. Thermal resistance of the 
multilayer packages has been also compared with a sum of 
thermal resistance of particular layers. A comparison is shown 
in Figure 8.

In all cases the real (measured) thermal resistance of the 
multilayer packages is lower than the calculated sum of the 
thermal resistance of individual layers. It means that the 
thermal contact resistance did not occur. 

How can be this phenomenon explained? Due to the flexibility 
and structure of textile materials, especially their texture, 
different directions of fibres in particular materials creating 
layers, two factors can occur:

• Increased number of contact points.
• Fulfilling the pores in one layer by the elements of adjacent 
layer.

0

20

40

60

80

100

120

140

m
2 K

W
-1

x 
10

-3

A Calc

Figure 8. Comparison of thermal resistance of multilayer assemblies: measured by means of the Alambeta (A) and calculated as a sum of the 
thermal resistance of particular layers (Calc).

Figure 9. Schematic cross-section of multilayer textile assembly.
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the thermal conductivity of individual layer of the highest 
value of thermal conductivity. It is difficult to explain this 
phenomenon. 

Surprising results have been stated in the case of four-
layer packages (Figure 12). For two variants the equivalent 
thermal conductivity of the assembly is slightly higher than 
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Figure 10. Thermal conductivity of two-layer assemblies: L1 – outer layer, L2 – inner layer, A – assembly.
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Figure 11. Thermal conductivity of three-layer assemblies: L1 – outer layer, L2 – inner layer, L3 – lining, A – assembly.
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Figure 12. Thermal conductivity of four-layer assemblies: L1 – outer layer, L2 – inner layer, L3 – lining, L4 - knitted underwear A – assembly.
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than for three-layer assemblies. It suggests that each 
next apply of adjoining layer to the existing set of materials 
causes an increase of difference between the equivalent 
thermal conductivity of assembly measured by the Alambeta 
and weighted mean value of thermal conductivity calculated 
according to Equation (3). 

4. CONCLUSIONS

On the basis of carried out investigation the following 
conclusions can be drawn: 

• Thermal resistance of two-layer textile package is close to 
the sum of thermal resistance of particular materials creating 
layers.
• Thermal resistance of investigated multilayers assemblies 
is lower than the sum of thermal resistance of particular 
components.
• Difference between the measured thermal resistance of the 
investigated multilayer textile packages and a sum of thermal 
resistance of components increases with an increase of 
number of layers.
• Investigations confirmed that the equivalent thermal 
conductivity of two-layer textile assembly is approximately 
equal to the weighted mean of thermal conductivity of particular 
components with weights reflecting a thickness of layers.
• In the case of assemblies composed of more than two layers 
the equivalent thermal conductivity significantly differs from the 
weighted mean from thermal conductivity of the components.
• On the basis of the measurement of single textile materials 
it is possible to predict the thermal resistance and equivalent 
thermal conductivity of two-layer packages.

In order to analyse the relationships between the equivalent  
thermal conductivity of multilayer assembly and thermal 
conductivity of particular layers, the values of thermal 
conductivity of multilayer assemblies measured by the 
Alambeta have been compared with the values of weighted 
mean calculated on the basis of the results for individual 
materials according to the equation
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where λe – equivalent thermal conductivity of multilayer textile 
package, λi – thermal conductivity of i-tch layer, hi – thickness 
of i-tch layer, n – number of layers.

The results of the comparison are presented in Figure 13. 

According to the results presented in Figure 13 it can be 
seen that in the case of two-layer assemblies the equivalent 
thermal conductivity of the assembly measured by means 
of the Alambeta is close to weighted mean from the thermal 
conductivity of individual materials with weights equivalent to 
thickness of individual materials. In the same time the results 
for two-layer packages confirmed Equation (2). However, in the 
case of three- and four-layer textile packages, the situation is 
different. There is significant difference between the measured 
equivalent thermal conductivity of the package and calculated 
mean value. Similarly to the thermal resistance the difference 
between the measured equivalent thermal conductivity of the 
assembly and weighted mean value with weight equivalent to 
thickness of particular layers is higher for four-layer assemblies 
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Figure 13. Comparison of the equivalent thermal conductivity of multilayer assemblies measured by means of the Alambeta (A) and calculated as 
a weighted mean from the thermal conductivity of particular layers (Calc).

AUTEX Research Journal, Vol. 14, No 4, December 2014, DOI: 10.2478/aut-2014-0030 © AUTEX 

http://www.autexrj.com/ 306
Brought to you by | University of Technology Lódz

Authenticated
Download Date | 1/21/16 1:50 PM



Techniki Budowlanej (2004).
[8]	 Thermal contact resistance, Thermopedia, DOI 10.1615, 

[available 22.07.2014 in: http://www.thermopedia.com/
content/1188/]

[9]	 Matusiak M., Thermal-insulation of the woven fabrics for 
clothing Monograph (in Polish), Textile Research Institute, 
Lodz, 2011, ISBN 978-83-911544-7-2.

[10]	Matusiak M., Investigation of the Effective Thermal 
Conductivity of Multilayer Textile Materials, Proceedings 
of 12th World Textile Conference AUTEX’2012, June 2012, 
Zadar, Croatia.

[11]	Hes L., Araujo M., Djulay V., Effect of Mutual Bonding of 
Textile Layers on Thermal Insulation and Thermal Contact 
Properties of Fabric Assemblies, Textile Research Journal 
66, (1996), p. 245.

[12]	Hes L., Alternative Methods of Determination of Water 
Vapour Resistance of Fabrics by Means of a Skin Model, 
3rd European Conference on Protective Clothing and 
NOKOBETEF 8, Gdynia (2006).

[13]	Hes L., Dolezal I., A New Computer-Controlled Skin Model 
for Fast Determination of Water Vapour and Thermal 
Resistance of Fabrics, 7th Asian Textile Conference, New 
Delhi 2003.

[14]	Yoneda M., Kawabata S., Analysis of Transient Heat 
Conduction in Textiles and its Applications, Part II, Journal 
of Textile Machinery Society of Japan 31, 1983, 73-81.

[15]	Kowalczyk S., Investigation of Thermal-insulation 
Parameters of Multilayer Clothing Packages, Degree 
thesis, Department of Material Technologies and Textile 
Design, Lodz University of Technology, 2014.

• Prediction of thermal-insulation properties of textile packages 
composed of more than two layers needs further investigations.
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