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This paper deals with dynamic buckling of thin-walled beam-columns with channel 

cross-section subjected to pure bending. Different length of beams was taken into 

account. Assumed boundary conditions correspond to a simple support. The 

problem was solved by finite element method and analytical-numerical method. In 

order to determine the critical load pulse amplitudes there were used criteria defined 

by Volmir and Budiansky-Hutchinson. The results obtained from both methods 

were compared. 

1. INTRODUCTION 

Thin-walled structures are commonly used as components for cars, boats, 

aeroplanes, cranes and warehouses. The stability loss of thin-walled structures subjected 

to static load is a very well-known phenomenon and its investigations have been 

discussed extensively in the world literature. First studies on dynamic buckling can be 

found in publications performed by Volmir [18] and Budiansky [2], [6]. Volmir [18] 

Weller, Abramovich and Yaffe'a [19], Abramovich and Grunwald [2], Ari-Gur and 

Simonetta [3] in their works investigated dynamic response of thin plates. The dynamic 

buckling phenomenon of thin plates and thin-walled columns with plated walls can be 

found in [12] and [13]. The dynamic response is described by strengthening the 

amplitude of initial geometrical imperfection. Response of thin-walled structures to pulse 

loading depends on the type of structure (rod, plate, shell), the value of the load 

amplitude, pulse shape and its duration. For a pulse with a very short duration and high 

load amplitude we are dealing with the impact phenomenon. In the case of the pulse of 

low load amplitude and a very long duration time the problem becomes quasi-static. 

When the pulse load amplitude is comparable with the static critical load and the pulse 

duration corresponds to the period of natural vibration frequencies, it can be said the 

dynamic buckling problem occurs. In the dynamic buckling analysis the effects of 

dumping are often neglected [11]. It is well known that equilibrium path for plates with 

initial geometrical imperfection have no bifurcation points, so the critical buckling 

dynamic characteristic quantity cannot be clearly defined. Therefore, it is necessary to 

define the criteria [16] allowing to designate critical amplitude of the pulse load. Author 

decided to use three criteria due to the easiest way of their application. 

Volmir [18] was one of the first scientists who had analysed buckling of thin plates 

subjected to pulse loading. His criterion state that: 

Dynamic critical load corresponds to the amplitude of pulse load (of constant 

duration) at which the maximum plate deflection is equal to some constant value k (k - 

half or one plate thickness). 



Stability of Structures XIII-th Symposium – Zakopane 2012 

668 

 

Budiansky and Hutchinson[5], [6], [8] formulated criterion for shell structures but 

also it can be used for plate structures [4], [14], [15], [17] and stated that: 

Dynamic stability loss occurs when the maximum deflection grows rapidly with the 

small variation of the load amplitude. 

The applied analytical-numerical method is based on the asymptotic Koiter’s theory 

for conservative systems for the second-order approximation. In order to obtain equations 

of motion, the non-linear theory of orthotropic thin-walled plates has been modified in 

such a way that additionally it accounts for all components of inertia forces. 

 

Fig. 1. Cross-section of the beam under analysis 

2. FORMULATION OF THE PROBLEM 

The numerical calculations were performed for exemplary thin-walled girder with 

C-shape cross-section (Fig.1) with the following dimensions: b1 = 50mm, b2 = 25mm,  

h = 0.5mm, and different length of the column L (39mm, 78mm, 117mm, 156mm). The 

assumed above lengths L are corresponded to the case with the minimal buckling load for 

number of half waves m equal 1, 2, 3 and 4. The material properties were assumed to be 

the same as for steel: E = 2∙10
5
MPa, υ = 0.3. The problem was solved in the elastic range. 

Rectangular pulse shape was taken into consideration because this shape is most 

dangerous [21]. Similarly to the other works that deal with dynamic buckling the 

dynamic load factor DLF defined as the ratio of the pulse amplitude to the static buckling 

load was introduced. 

 

 

Fig. 2. Loading scheme 

The scheme of load is presented in Fig. 2, considered loading is bending. It was 

assumed that the bending occurs round an axis, for which the second moment of area is 

smallest. Therefore, the FEM model is prepared in such a way that on the neutral axis of 

bending in the ending sections there were nodes, for which the displacement in the x 



Stability of Structures XIII-th Symposium – Zakopane 2012 

669 

direction was set to zero (Fig. 3). Boundary condition of the loaded edges is provided by 

requiring the uniform displacements in the direction normal to the wall of the girder, of 

all nodes located on the edge of the girder (Fig. 3). To ensure that deformations are 

compatible with the deflection in bending the edges normal to the neutral axis remained 

straight in the plane containing the wall of the column. Additionally, for all nodes located 

on these edges the constant rotation around the axis parallel to the neutral axis was 

assumed. 

 

Fig. 3. Boundary conditions 

2. SOLUTION METHOD 

The problem was solved by analytical-numerical method (ANM) and the Finite 

Element Method (FEM) for comparison. ANSYS software [1] based on the Finite 

Element Method was used to conduct numerical calculations allowing to find dynamic 

response of girder segments subjected to pulse loading. The pulse duration Tp was set 

based on period of natural vibration. The critical load – in this case the critical bending 

moment (Mbcr) was used to determine the dynamic load factor DLF. The buckling or 

modal mode was used to set the initial imperfection with the amplitude corresponding to 

the thickness of the considered girder wall. The dimensionless amplitude of initial 

imperfection was assumed as ξ
*
 = 0.01 wmax/h (where wmax is the maximal normal to the 

wall displacement and h is the girder wall thickness). The results of these calculations 

were used as input to the analysis of the dynamic behaviour of the structure in time, 

during and immediately after exposure of pulsed load. In the analysis of the dynamic 

response the equilibrium equation is supplemented by the dynamic blocks, and takes the 

form: 

 , (1) 

where {P} is the vector of nodal forces, [M] is the mass matrix, [C] is a damping matrix 

and {u} is the vector of nodal displacements. 

As it has been shown in many studies (for example [7]) for the short-term load the 

damping effect can be neglected what leads to the simplification of equation (1) to the 

form: 

{u}[K]}u{[C]}u{[M]P}{
...


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 . (2) 

After replacing the time derivatives of displacements {ü} by differences 

displacement {u} in successive discrete moments of time t, the new static equilibrium 

equation taking into account the inertia forces [M] {ü} is obtained for the each time step 

and therefore it is possible to apply the algorithms used in the analysis of static. Time 

integration in the ANSYS program is done using the Newmark method and solution of 

equations in successive time steps is made by Newton-Raphson algorithm. 

This approach allows analysing the behaviour of the structure subjected to pulse 

loading. Discretisation of thin-walled girders was performed with the quadrilateral; four 

nodes shell elements (Fig. 4) with six degrees of freedom (three orthogonal 

displacements and three rotations around the axis in the plane of the element) at each 

node.  

 

Fig. 4.  Shell element [1] 

The analytical-numerical method [10], [14] which allows one to analyse the static 

buckling, postbuckling behaviour and dynamic responses of thin-walled structures 

composed of plates, made of isotropic or orthotropic materials was employed. The 

problem was solved in the elastic range. It is assumed that the loaded edges remain 

straight and parallel during loading. Additionally, it is assumed that normal and shear 

forces disappear along the not loaded edges. 

For each plate (i-th girder wall) geometrical relationships (3) are assumed in order to 

enable the consideration of both out-of-plane and in-plane bending: 
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 (3) 

where: ui, vi, wi - displacement components of the middle surface of the i-th wall (Fig. 5) 

in the xi, yi, and zi directions, respectively. 

The Hamilton’s Principle, taking into account Lagrange’s description, full Green’s 

strain tensor for thin plates and Kirchhoff’s stress tensor, were employed to obtain the 

differential equations of motion (4). 

 

{u}[K]}u{[M]{P}
..


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Fig. 5.  Plate model for each girder wall [12] 
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The expansion of the dynamic displacement field [9] has been assumed as follows: 

 )2(2)1()0(),,( iii UUUwvuU   , (5) 

where:  is a load factor;  = w/h1 is a mode amplitude (normalized, in the given case, by 

the condition of equality of the maximal deflection to the thickness of the first component 

plate h1); Ui
(0)

 is a displacement field for the prebuckling state; Ui
(1)

 are linear buckling 

modes; Ui
(2)

 are second-order displacement fields. 

The static part (inertia forces have been neglected) of the system of ordinary 

differential equilibrium equations (4), the first and second order approximations in the xy 

plane (Fig. 5) have been solved with a modified transition matrix method. The state 

vector at the final edge based on the state vector at the initial edge has been found by a 

numerical integration of differential equations (4) along the transverse direction, using 

the Runge-Kutta formulae by means of the Godunov orthogonalization method [10], [14], 

[20]. The above-mentioned method allows for finding the nonlinear postbuckling 

coefficients: a0, a1, a111, a1111 applied in the equation describing the postbuckling 

equilibrium path [10]. 

In the dynamic analysis (while finding the frequency of natural vibration [20]), the 

independent non-dimensional displacement ξ and the load factor λ become a function 

dependent on time. Then, Lagrange’s equations are as follows: 

 
min

*3
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where: min is the critical load factor corresponding to the first buckling mode (minimal 

buckling load), and: 
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The initial conditions are of the form: 

 0)0( t ;    0)0( 



t

t


. (8) 

The equations of motion (6) are solved with the numerical Runge-Kutta method. 

3. RESULTS OF CALCULATIONS 

Assumed lengths of the analyzed beams were obtained from stability analysis 

(eigenvalue method) as length where critical value of bending moment were minimum 

(Fig. 6). Following critical lengths (Lcr) correspond to increasing number of half-waves 

(m) on web of the beam. Values of length and correspond to them pulse duration and 

bending moment are presented in Table 1. Critical values of bending moment obtained 

from both methods are similar, differences between values are about 4%. 

 

Fig. 6. Critical value of bending moment (Mbcr) versus length of the beam  

The dynamic buckling of thin-walled channel cross-section girders was analysed 

based on dimensionless deflection (ξ = w/h, where w – deflection) as a function of 

dynamic load factor. The deflection w was measured in the same point in all cases – on 

the middle of the length and in the middle of the width of the beams web and on node 

placed on the middle of first half-wave of buckling mode. 

The results of numerical calculations are presented on Fig. 7 when displacements 

were measured on the middle of the web of the beam. It can be noted that with increasing 

length of the beam, the curve of dynamic response of structure are flattening. Straight line 

representing nondimensional displacement vs. dynamic load factor (Fig. 7) means that 

dynamic response of the structure is not corresponding the local, global or even coupled 

buckling but it is linearly change of the maximal deflections for applied amplitude of 
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pulse loading (the structure is bended). In that the critical value of load case cannot be 

determined from well know criteria (except of Volmir criterion). 

 
Table 1. Lengths of the analyzed beams and critical values of bending moment and pulse 

duration corresponding to them 

 m=1 m=2 m=3 m=4 

Lcr [mm] 39 78 117 156 

Mbcr [Nm] 

(FEM) 
51.28 51.45 51.50 51.53 

Mbcr [Nm] 

(AN) 
53,66 53,66 53,66 53,66 

Tp [ms] 0.86 1.89 2.55 2.94 

 

 

Fig. 7. Dimensionless displacement vs. dynamic load factor curves for different lengths of 

beam (displacement measured on middle of the web) 

 

Fig. 8. Dimensionless displacement vs. dynamic load factor curves for different lengths of 

beam obtained from analytical-numerical method 
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The results of calculations obtained from AN method are presented in Fig. 8. It can 

be noted that for each lengths of beams dynamic responses are the same. These results are 

obtained with local buckling and corresponding number of half-waves assumption (the 

longitudinal edges deflections were not taken into account), what explain above statement 

and results presented in Fig. 8. 

 

 

Fig. 9. Dimensionless displacement vs. dynamic load factor curves for different lengths of 

beam (displacement measured on node placed on the middle of first half-wave of 

buckling mode) 

In Fig. 9 the results of calculations for case when displacement is measured on node 

located on the middle of first half-wave of buckling mode and results obtained from 

analytical-numerical method are presented. Similarity of curves obtained from both 

methods can be noted. Critical values of DLF determined from FEM method for every 

length of beams are equal and value obtained from AN is similar to them ( Table 2).  

 Table 2. Critical values of DLF for analysed beams 

 C39 C78 C117 AN 

Volmir criterion 1.1 1.1 1.1 1.1 

Budiansky-Hutchinson criterion 1.0-1.2 1.0-1.2 1.0-1.2 1.2-1.4 

4. CONCLUSIONS 

Taking into consideration presented results of calculations, it can be said that only 

local dynamic buckling for beams subjected to pure bending is possible to determine. 

Dynamic response corresponding to local buckling can be observed when displacement is 

measured on node placed on the middle of first half-wave of buckling mode. For long 

beams dynamically loaded with bending moment response of the structure is not 

corresponding to local, global or coupled buckling, there is no rapid grow of deflection 

with the small variation of load amplitude (structure is bended). Therefore none of known 

criteria can be used to determine critical value of load amplitude. Results obtained from 
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analytical-numerical method has a good agreement with results obtained from FEM when 

displacement is measured on node placed on the middle of first half-wave of buckling. 
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