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18. 

Elasto-plastic behaviour and load-capacity 

of multi-layered plated structures 

18.1. Introduction 

This chapter is a review of research realized in last decade mainly in 

collaboration with the late Professor Katarzyna Kowal-Michalska in the domain 

of elasto-plastic behaviour and ultimate strength of multi-layered plated 

structures. Thin plates consisting of several layers are widely used in modern 

thin-walled structure design. The layers are made of different materials. This 

concept is connected with common effort to reduce the weight of a structure 

while maintaining its strength properties. Since the mid-1980s, composite 

materials have been widely used in numerous engineering applications, also as 

materials of thin-walled beams and columns. Among them there are fiber 

composites, fiber metal laminates (FML), functionally graded materials (FGM). 

A separate class of multi-layered plated structures are sandwich plates: three-

layered plates with different types of structural cores (honey comb, corrugated 

sheets, reinforced foam). 

The fibrous composite material consists mostly of two components: the matrix 

and reinforcement i.e. fibres. The typical modern fibrous composite material is that 

belonging to the HCTL class (Hybrid Titanium Composite Laminate) and it consists 

of several layers of titanium and carbon fibres laid alternately [18.26]. 

Fibrous composites are non-homogenous and anisotropic materials. In 

particular cases, if fibres are orientated in the matrix in one or two perpendicular 

directions the composite is the orthotropic material with certain principal 

directions of orthotropy. If the reinforcement is distributed randomly in the 

matrix the composite material is isotropic one. 

Fiber Metal Laminates (FMLs) are hybrid materials, built from thin layers of 

metal alloy and fiber reinforced epoxy resin. These materials are manufactured 

by bonding composite plies to metal ones. FMLs, with respect to metal layers, 

can be divided into FMLs based on aluminum alloys (ARALL reinforced with 

aramid fibers, GLARE - glass fibers, CARALL - carbon fibers) and others. 

Nowadays material such as GLARE (carbon fiber/aluminum) due to their very 

good fatigue and strength characteristics combined with the low density find 
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increasing use in aircraft industry. The most common type of aluminium applied 

in Glare is 2024-T3 Alloy. 

The safe work of thin-walled structures subjected to in-plane loading is often 

determined by local buckling. The methods allowing for estimation of ultimate 

strength of thin-walled plated structures can be classified into four categories: 

 analytical-numerical methods where the equations describing the 

elastic post-buckling behaviour are found out analytically and next 

the elasto-plastic state is dealt with on the basis of the theory of 

plasticity by means of an iterative procedure [18.10], 

 the effective width approach, which consists in reduction of the 

flexural stiffness of the cross-section after local buckling and 

subsequently - in the implementation of the first yield threshold 

criterion in order to estimate a load-carrying capacity of the structure 

(lower bound estimation) [18.10, 18.22], 

 numerical methods - finite element methods and finite strip methods 

are both included in this category [18.25, 18.15], 

 kinematical methods based on principle of virtual velocities, leading 

to the upper-bound estimation of ultimate load [18.13]. 

18.2. Problem formulation 

The aim of the study is the estimation of the ultimate load for rectangular 

three-layered plates subjected to compression. The load carrying capacity of 

three-layered plated structures is determined by means of four methods 

mentioned above. The considered plate elements are simply supported and 

initially flat. The complex structure is assumed to be built of three-layered plates 

with metallic isotropic face layers and metallic or composite (orthotropic) core. 

The following core materials are taken into consideration: 

a) metallic,

b) fibrous composite,

c) FML material,

d) honeycomb core.

The loading is applied in such a way that during analysis the response of the 

plate to the increment of its nodal displacements (Fig. 18.1) is searched for. 

The plates are initially flat and stress free. It is assumed that the plate edges 

are simply supported and remain straight during loading. The plates are built 

of two identical isotropic layers (faces) that cover the middle layer (a core) 

of different material than faces. 
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The plates under consideration can be treated as individual elements (walls) 

of plated structures such as columns or beams (girders). Determining an ultimate 

strength of separate plate member allows one to estimate (approximately as a 

lower bound) the ultimate load of a whole structure. 
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Fig. 18.1. Geometry of the plate 

18.3. Review of applied methods of analysis 

18.3.1.  Analytical-numerical method 

The method described below allows one to conduct the analysis of strains 

and stresses in the elastic and elasto-plastic range and to find out a load-

displacement curve for the multi-layered plate. The analysis is carried out on the 

basis of nonlinear theory of thin plates involving plasticity [18.6, 18.8]. When 

mechanical properties of all layers are of the same range, the Kirchhoff’s 

hypothesis can be applied for the entire section. 

The elastic material properties are determined by following independent 

constants: 

 for outer layers: Em, m, 

 for middle layer (it can be orthotropic in such a way that there are 

only differences in strengths/yield limits due to positive and negative 

stresses) - Ec, c, 

 the pre-buckling displacement and stress fields of a plate are 

described by its nodal displacements in the x and y direction 

a

x
Uu c

o  (18.1) 

and additionally: .consto
x  , 0o

y , 0o
xy . 
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In the elastic range the solution of buckling problem and post-buckling 

behaviour has been obtained on the ground of the classical theory of thin 

laminated plates [18.10]. 

In order to obtain the approximate solution of the problem the expressions 

describing the forms of displacement fields in the elastic range have been found 

out (the detailed description of the method is given in Refs. [18.6, 18.7]). 

The deflection function “w” has been assumed as 

b

y

a

x
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where f  denotes the free parameter. 

Assuming the in-plane displacements  u and v  in following forms 











b

y

a

x
B

a

x
Cfuu o  2

cos
2

sin
2

sin
11

2 (18.3) 











a

x

b

y
B

b

y
Cfvv o  2

cos
2

sin
2

sin
22

2 (18.4) 

where C1, C2, B1, B2 are constants depending on the material and geometrical 

properties of layers that can be found out from equilibrium equations and taking 

into account boundary conditions. The displacement fields are determined for 

whole plate in the elastic range. 

If the displacements “u”, “v”, “w” are known then using the von Karman’s 

geometrical relations between strains and displacements and Hooke’s law for 

orthotropic and/or isotropic material the elastic stresses can be determined in any 

point of a three layered plate. 

In aim to determine the ultimate load the analysis of the post-buckling state 

has to be carried out in the elasto-plastic range. In the plastic range the following 

assumptions are made: 

 the material properties of layers are known in the whole range of 

stresses, 

 the appropriate yield criterion is applied for considered materials, 

 all assumptions of non-linear plate theory still hold, 

 the forms of displacement functions are the same in the elastic and 

elasto-plastic range but their amplitude “f” can vary arbitrarily, 

 according to the plastic flow theory the increments of plastic strains 

are described by Prandtl-Reuss equations. 
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Additionally it has been assumed that the material characteristics of isotropic 

and orthotropic layers are elastic-perfectly plastic. Therefore the following 

material properties in plastic range are to be applied: 

 for isotropic material (faces, core) - Ym , Yc  - yield limit, 

 for orthotropic material (a core) - T, C - yield limit in tensile and 

compression tests in x and y direction, respectively; and additionally S - 

yield stress in pure shear. 

For orthotropic materials Tsai and Wu proposed the yield (failure) criterion 

that takes into account the difference in strengths due to positive and negative 

stresses. In case of a plane stress state Tsai-Wu criterion is formulated as follows 

 13 2

3312

2

22

2

11321


xyyxyxxyyx
kkkkkkkF   (18.5) 

where parameters 33122211321 ,,, and ,, kkkkkkk  have to be determined by tensile, 

compressive and shear tests [18.10]. 

It is easy to notice that both Hill’s yield criterion and Huber-Mises criterion 

can be obtained from the equation (18.5). 

The associated flow rule for a given yield criterion can be expressed as 

[18.10] 
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The relations (18.6) were formulated by Prandtl and Reuss [18.10]. 

In the calculations of elasto-plastic plates undergoing large deformations the 

infinitesimal increments in (18.6) have to be replaced by finite ones (denoted by 

). Then the relations between stress and strain increments in the elasto-plastic 

range are described by Prandtl-Reuss equations in a form 
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where Sxx, Syy, Sxy are defined as 
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T and C denote the values of yield (failure) stress in tension and compression, 

respectively, determined for the characteristic of reference (see [18.10]). 

For a material isotropic in the elastic range with the elastic-perfectly plastic 

characteristics the parameter  (which is a scalar, positively defined) is [18.10] 
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where:   EGG /1 2 . 

Rayleigh-Ritz variational method involving plasticity is applied to the 

problem. It was proved by Graves-Smith [18.8] that it is possible to apply the 

variational method to the plates undergoing finite deflections. 

The potential energy in any point of a plate is a sum of elastic and plastic 

components. The plastic strain energy existing prior to the current strain 

increment bears no direct relation to the current state of stresses. For the purposes 

of minimisation this energy may arbitrarily be put to zero and only further 

changes of the strain energy have been taken into account. 
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(18.10) 

where: V - is a volume of the plate, xyyx  ,,  denote the stresses before the 

loading increment is applied and xyyx   ,, , xyyx   ,,  denote the 

stress and strain increments produced by the increment of shortening Uc. 

In the elasto-plastic range the current state of stresses depends on the path of 

loading, so the solution of the problem can only be reached numerically. 

Therefore the numerical solution starts from the evaluation of the energy 

increment (10). In order to accomplish this, every layer is divided equally into 

kji   appropriate cubicoids. The energy values calculated in each of cubicoids 

are summed for a whole structure. 
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Next, the numerical minimisation of the energy functional is performed 

versus independent parameter f of displacement functions. The average stress 

corresponding directly to the load applied to a considered structure is obtained 

numerically. 

In each step of calculations active, passive and neutral processes and also the 

reduction of stress to the yield surface are taken into account. 

18.3.2.  Finite element method 

The FE analysis of buckling, post-buckling and ultimate load of thin-walled 

members is usually solved in two steps: 

 linear stability analysis (eigenvalue problem), which gives buckling 

loads (bifurcation points) and buckling modes (Fig. 18.3a [18.11]), 

 non-linear stability analysis that allows to follow the behaviour of the 

structure in the post-buckling range and to find out the load carrying 

capacity. 

Fig. 18.2. Four-node shell element 

Results of a linear buckling analysis (buckling loads and buckling modes) 

are used in the second step - non-linear analysis. The FE discrete model with the 

perturbation (geometric imperfections of the same shape as buckling modes 

determined in the first step) is applied. The analysis is carried out in order to 

determine the post-buckling path, the ultimate load and post-failure path. The 

imperfection amplitude is usually taken as 1/10 to 1/20 of the plate thickness. 

The FE model is built from shell elements. The simplest, typical shell element is 

shown in Fig. 18.2. It is a four-node element with six degrees of freedom at each 

node. 
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a) b)

Fig. 18.3. Relations between forces and displacements in nonlinear 

and linear stability analysis using FEM [18.11] 

In the present analysis the FE model was built of eight-node multi-layered 

shell elements of six degrees of freedom at each node (Fig. 18.4). This element 

allows to account for up to 100 layers of different thickness and material 

properties. In order to ensure the compatibility of boundary conditions 

considered in both methods the coupled degrees of freedom were assumed on the 

plate edges. It means that the distribution of applied compressive forces has to 

correspond to the uniform shortening of loaded edges and in the same time the 

unloaded edges should to remain straight and free of stresses. To describe a 

material stress - strain relationship the bilinear characteristic with plastic 

hardening [18.24, 18.25] was involved (Bilinear Kinematic Hardening option 

was used in ANSYS software). 

Fig. 18.4. Multi-layered shell element [18.24] 

It should be added that in the post-buckling range the calculations were 

conducted using iteration scheme, the “arc-length” method, in order to avoid 
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bifurcation points and track unloading. The applied iteration method is 

represented schematically in Fig. 18.5 [18.24]. 

The numerical calculations were conducted using FE commercial code ANSYS. 

The value of the imperfection amplitude was equal to 1/20 of the thickness of an 

analysed structure.  

Fig. 18.5. Arc-length iteration method [18.24] 

18.3.3.  Plastic mechanism analysis 

The kinematical method associated with the plastic mechanism approach 

(yield-line theory - YLT), has been used successfully to the analysis of ultimate 

load and post-failure behaviour of thin-walled structures since 60-ties of the 20
th
 

century [18.19]. This approach is attractive from some points of view, for it leads 

to relatively simple analytical or analytical-numerical solutions and provides not 

only with the upper-bound estimation of the ultimate load but with a knowledge 

about a rapidity of the failure process as well. The combination of the non-linear, 

post-buckling analysis with the analysis of the plastic mechanism allows one to 

establish a failure parameter approximately, i.e. to estimate the upper bound 

load-carrying capacity of the structure. Failure process in thin-walled, multi-

layered structures may be of different character The failure modes of sandwich 

structures, depending on different layers configurations, materials of layers, span, 

etc., include face sheet yielding at large deformations (mainly for metal faces), 

face wrinkling, core shear leading to crack or yielding, core indentation. In the 

case of face sheets made of composite materials, one can detect delamination of 

faces. Another mode of failure is debonding on the contact surface between face 

sheet and core. Thus, among all failure modes mentioned above, a failure due to 

yielding (both in face sheets and core) can also take place in certain cases. 

The kinematical method, based on the principle of virtual velocities [18.13, 

18.19, 18.15], has been applied to the problem of the load-carrying capacity 
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estimation of multi-layered plated structures in association with the rigid-plastic 

theory. Thus, the following additional assumptions are taken in the analysis: 

 yield occurs in all layers simultaneously, so that the continuity of 

plastic strains takes place (it limits the analysis to certain “sets” 

of materials), 

 layers lay-out is symmetrical with respect to the plate middle surface 

and yield stresses increase with the increase of the distance from the 

centre layer, 

 yield zones are not only concentrated at yield lines, but also at plastic 

zones of tensile stresses (true or quasi-mechanisms are taken into 

account). 

In the case of the multi-layered plate subject to compression, from the 

principle of virtual velocities we obtain the following variational relation 

mbext WWW   (18.11) 

where extW  is the variation of work of external forces, 
bW  is the variation of 

the energy of bending plastic deformation, mW - variation of the energy of 

membrane plastic deformation. 

The fully plastic moment capacity [18.13, 18.15] at concentrated yield-lines 

has been evaluated for multi-layered walls of the global plastic mechanism, under 

assumptions mentioned above. 
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where 0
pm  is a fully plastic moment at the centre layer (generally orthotropic) 

which is expressed as follows 
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for yield-line parallel to principal directions of orthotropy with corresponding 

yield stresses k
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for yield-line inclined at angle  to principal directions of orthotropy whereas 

00  is the yield stress for the direction  that can be evaluated according to Hill 
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yield criterion [18.16]. The variation of the energy of bending plastic 

deformation dissipated at a yield-line amounts 

 k

k

pkb mlW  
~

 (18.15) 

where lk  is a length of the yield-line and k  is an angle of relative rotation of two 

walls of the global plastic hinge along that line. 

In the case of three-layered wall with orthotropic core and taking into 

account the strain hardening phenomenon in face sheets, the plastic moment 

takes the form 
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where 0
pm  is a fully plastic moment at the center layer (core), generally 

orthotropic, t1, t0 are facings and core thickness, respectively, 01 - yield stress of 

the facing material. The effective stress 1  is evaluated under assumptions taken 

by Kotełko [18.13, 18.16] 
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where Et is a tangent modulus and ult is an ultimate stress of the facing material, 

 is an angle of rotation as in [18.15] and n is a multiple of the wall thickness. 

Variation of plastic strain energy dissipated at plastic zones of membrane 

stresses in i-th layer takes form 

 p
p
yyi

p
xxiim ANNW )(,    (18.18) 

where: Nxi, Nyi are membrane forces per unit length, Ap is an area of membrane 

stresses plastic zones. Membrane forces Nxi, Nyi can be determined using the 

associated flow rule for Huber-Mises yield criterion. 

The total plastic strain energy dissipated at plastic zones of membrane 

stresses through the whole plate thickness is expressed as 
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where: Wm0 - plastic strain energy in center layer, Wmi - plastic strain energy in 

i-th
 
layer. 
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Taking into account (18.12) to (18.19) in (18.11), a relation of compressive 

external force P in terms of shortening parameter (represented graphically as a 

failure curve) is evaluated. 

An evaluation of the failure structural path (referred to as failure curve) can 

be used subsequently to the upper bound estimation of the load-carrying capacity 

of the plate or plated structure, namely an ordinate of the inter-section point of 

the failure curve with the post-buckling path obtained from the solution discussed 

in paragraph 3.2 is referred to as an upper bound ultimate load of the plate. 

18.4. Selected numerical results 

In this paragraph selected results of comparative numerical analysis carried 

out using three methods mentioned above, namely: analytical-numerical method 

(ANM), Finite Element Method (FEM) and kinematical method (KM) are 

presented for three-layered plates made of different materials. Point 4.9.3. 

concerns a particular problem of the three-layered plate with honeycomb core, 

solved using equivalent single plate models. 

Fig. 18.6. Load-shortening curves of square steel-aluminium-steel plate 

 under compression [18.11] 

18.4.1.  Plates with metallic or fibrous composite core 

Diagrams in Fig. 18.6 present the comparison of results obtained using 

different analytical methods and Finite Element Method for the plate with steel 

face sheets and aluminum core. Ratios hg  and ha  correspond to the notation 

in Fig. 18.1. The diagrams show the non-dimensional average stress normalized 

Faces - stainless steel 

Em=210
5
 MPa; m=0.3

Ym=184 MPa. 

Core-aluminium 

Ec=710
4
 MPa  c=0.3

Yc=123 MPa. 

Load - shortennig curves of square muli-layered 
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with respect to face sheets yield stress * = av/Ym in terms of non-dimensional 

shortening coefficient u
*
 = (uc/a)/(Ym/Em) in the whole range of loading,

including the failure phase. Diagrams present FE results (curves FEM), results of 

calculations of the load-capacity in the elasto-plastic range, based on the method, 

described in paragraph 18.3.1 [18.17] (curves ANM) and failure curves for the 

pitched-roof plastic mechanism [18.15], obtained using kinematical method, 

described in paragraph 18.3.3 (curves KM). In the kinematical approach the 

pitched-roof plastic mechanism model has been applied [18.15]. Three sets of 

diagrams are presented, corresponding to three different core thickness to total 

plate thickness ratio hg . 

Analogous diagrams in co-ordinate system * = cv/Ym in terms of 

u
*
 = (uc/a)/(Ym/Em) for the plate with composite core are shown in Fig. 18.7.
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c
=0.07; 

T=384 MPa; C=825 MPa

Fig. 18.7. Load-shortening curves of square metal-composite-metal plate 

 under compression (a/h = 100) [18.11] 

Analytical-numerical method (ANM) and FE simulations give very close 

results. The kinematical approach results, which are comparable with other 

results in the plastic range only, are also in relatively good agreement with two 

first methods. 
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Fig. 18.8. Load-shortening diagrams of square metal-FML-metal plate under 

compression: a/h = 50; g/h = 0,4  (curves 1, 1a), g/h = 0,2 (curves 2, 2a); 

curves 1a,2a - kinematical method (KM),  

curves 1,2 - analytical-numerical method (ANM) 

18.4.2.  Plates with FML core 

When a plate with GLARE core is subjected to the load, acting in its mid-

plane, in the post-buckling state aluminium layers undergo yielding, while 

deformations of layers with glass fibers are still in the elastic range. Thus, 

structural behaviour of the plate with FML core differs substantially from the 

behaviour of the plate with homogeneous core [18.12]. In this paragraph very 

preliminary results of the analysis of structural behaviour of plates with FML 

core are presented. This analysis should be treated as a very far going 

approximation. The results concern also very particular parameters of plate layers 

and cannot be generalized. In Fig. 18.8 load-shortening diagrams in the 

coordinate system *=cv/Ya in terms of u
*
 = (uc/a)/(Ya/Ea) are presented.

Values of ultimate loads obtained using ANM and KM methods are very close (it 

should be underlined again, that equilibrium paths obtained from ANM and KM 

methods are comparable only in the plastic range). However, this agreement has 

to be confirmed in further analysis for wider range of plate dimensions, material 

parameters and layers configurations. 

Face sheets - aluminium     Core - Glare 

 E=7 105 MPa, =0.3, 0=290 MPa   Ec=3104 MPa, c= 0.144 



Elasto-plastic behaviour and load-capacity of multi-layered plated structures 

421 

18.4.3.  Plates with honeycomb core 

a

b

tf

hc

E ,G ,ff f E ,Gc c



Fig. 18.9. Three-layered plate with honeycomb core 

For inherently non-homogeneous structures like densely stiffened panel or 

three-layered plate with reinforced foam core, honeycomb core as well as 

corrugated metal sheet core a concept of structural orthotropy can be applied. It 

means, that one can calculate reduced orthotropic material parameters of the non-

homogeneous structural member and subsequently consider the member as 

homogeneous but orthotropic one. Another words we can “smear” the non- 

homogeneity of the structure but take into account its orthotropy or generally, 

anisotropy. The problem of stability and load-capacity of sandwich structures 

with honeycomb core has been investigated by numerous researchers since 60-

ties of the 20
th
 century. Romanów [18.23] and Magnucki and Ostwald [18.17] 

carried out research in this domain. Romanów [18.11] has solved the problem of 

the sandwich plate with honeycomb core, using the energy method. Earlier 

Benson [18.20, 18.2] and Bert [18.3] worked on the same problem. The non-

linear problem (of large deformations) of three-layered plate with orthotropic 

core have been solved by Alwan [18.1]. 

The problem of homogenisation of the honeycomb core strength 

characteristics was analyzed by Birger and Panovko [18.4] but has not been 

solved entirely so far. It seems that this problem as well as a homogenization of 

local failure phenomena could be solved using an averaging technique based on 

the asymptotic approach, however there has been very limited  investigation into 

applications of this technique carried out. 

Thus, simplified models that enable to avoid a complexity of the real 

sandwich structure are very much desirable and very attractive for designers 

under the circumstances discussed above. Two methods may be applied to 

replace the honeycomb sandwich panel by the equivalent single plate. There are 

namely: the equivalent rigidity method and the equivalent weight method 

(Vinson [18.26], Faulkner [18.5]), however limitations of these two approaches 

have not been entirely defined so far (Paik [18.21] and Kotełko and Mania 

[18.14]). 
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In the equivalent rigidity method the single plate equivalent thickness teq and 

equivalent Young modulus Eeq are defined such that the flexural rigidity of the 

equivalent plate given by the relation 

)1(12 2

3

eq

eqeq

eq

tE
D


 (18.20) 

(where eq = f) is equal to the flexural rigidity of the sandwich plate, calculated 

as (Paik [18.21]) 
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Additionally, the shear stiffness of the equivalent plate is equal to the shear 

stiffness of facings. Thus, the parameters of the single plate are as follows 

[18.21] 
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In the equivalent weight method the weight of the equivalent plate equals 

that of the actual sandwich plate so that the equivalent thickness amounts 

f
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2
(18.23) 

where f  is a density of the facing material and cav is an average density of the 

core. The Young and shear moduli are assumed to be equal to those of the facing 

material (Eeq = Ef, Geq = Gf). 

A more realistic and accurate model of the sandwich panel is the three-

layered plate with homogenized orthotropic core. In this study the 

homogenisation of the honeycomb core strength characteristics has been carried 

out using relations derived by Birger and Panovko [18.4]. Reduced elastic 

parameters of the core are determined assuming relative displacements of facings 

of the honeycomb sandwich panel to be equal to the corresponding displacements 

of three-layered plate with homogeneous orthotropic core. For example, in order 

to determine a shear modulus Gxz one has to calculate (using a certain method) 

relative displacements of facings in their mid-surfaces subject to loads applied in 
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these surfaces that cause distorsional (shear) relative displacements. The latter 

have to be compared with corresponding displacements in three-layered plate 

with homogeneous core. In an analogical way one can determine linear elastic 

moduli and Poisson ratios analyzing loads causing tension in the plate mid-

surface or the normal direction. 

Reduced elastic parameters used subsequently in FE analysis have been 

determined from following relations by Birger and Panovko [18.4]: 

 shear moduli  

 
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t
GG

r

t
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where t0 is the thickness of the cell foil, 2r is the size of the hexagonal cell,  is a 

coefficient depending on structural parameters of the honeycomb core; 

 linear module 
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Fig. 18.10. Ultimate compressive stress predictions obtained from equivalent single plate 

models for square 500x500 mm sandwich plate with aluminium facings and honeycomb 

core made from aluminium foil tf  = 3 mm,  

Ef  = 71 070 MPa, f0 = 268 MPa, f  = 2.7 g/cm
3
, cav = 54.4.kg/m

3
 [18.22] 

The equivalent single plate models have been used by Kotełko and Mania 

[18.14] in order to determine buckling loads and load-bearing capacity of the 
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sandwich three-layered plate with the honeycomb core subject to compression 

(Fig. 18.9). The load-bearing capacity of equivalent single plates was determined 

using the effective  width approach. The exemplary results for plates with 

equivalent rigidity and weight together with FE results obtained for three-layered 

plate with homogenized core are shown in Fig. 18.10. 
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 failure curve
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Fig. 18.11. Square plate 500x500 mm, hc = 3, tf = 1.5 mm, aluminium 

facings and honeycomb core made of aluminum foil  

(Ef = 71 070 MPa, f0 = 268 MPa), cav = 54 kg/m
3

The diagrams represent ultimate stress normalized with respect to facings 

material yield stress f0, in terms of core to face thickness ratio. Ultimate stress 

has been calculated using von Karman [18.9] and Marguerre [18.18] relations for 

the effective width reduction factor. Diagrams obtained for both equivalent plate 

models are compared with FE results and experimental results [18.21]. Diagram 

of the normalized buckling stress, calculated using classical solution for the thin 

plate under uniform compression, concerns only the model of equivalent rigidity. 

The FE analysis was performed in that case using reduced parameters of 

orthotropy, given by relations (18.11) and (18.12) in section 18.3.3. Hence, the 

material of facings was assumed isotropic and the core was modelled as 

homogenous orthotropic layer. The overall critical load and buckling mode of the 

plate was determined in the linear buckling analysis (eigen-value buckling). The 

non-linear buckling approach was employed for post-buckling response of the 

plate. The initial geometric imperfection for non-linear analysis was set as a first 

buckling mode shape with appropriate reduction coefficient. 

Predictions of ultimate stresses obtained for the single plate model of 

equivalent weight underestimate an actual load-capacity of the sandwich panel 
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except the lowest values of 
fc

th  ratios, although experimental results even for 

35.4
fc

th  are very close to that prediction. However, it should be underlined 

here that both experimental ultimate loads indicated in the diagram concern the 

case of the failure initiated by the delamination while both theoretical models 

assume a perfect bonding between facings and the core. For higher values of 

fc
th  ratio greater than 3 the equivalent weight model is inadequate and gives 

ultimate load values more than two times lower than those obtained from 

equivalent rigidity model. 
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Fig. 18.12. Load-shortening diagram of square 500x500 mm sandwich plate  

with aluminium facings and honeycomb core made from aluminium  

foil tf  = 3 mm, hc = 25.4 mm, Ef  = 71 070 MPa, f0 = 268 MPa,  

f = 2.7 g/cm
3
, cav = 54.4.kg/m

3
 

Structural behaviour of the sandwich plate in the entire range of loading (up 

to and beyond an ultimate load) has been examined using the effective width 

approach (for post-buckling state) and the kinematical approach (for the failure 

state). Pre-buckling paths were obtained taking into account compressive 

stiffness of facings only while compressive stiffness of the core was neglected. 

The single plate model of equivalent rigidity was applied as a more realistic one. 

Post-buckling paths were calculated using the effective width approach with 

two different reduction factors, by von Karman [18.9] and Marguerre [18.18], 

respectively. 

An exemplary diagram of the plate structural behaviour is shown in  

Fig. 18.11. Continuous straight line (1) represents the pre-buckling path, the 

failure curve (2) is obtained from the solution described in the previous 
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paragraph (kinematical approach). The ordinate of the intersection point 

indicated in the diagram represents the upper-bound estimation of the load-

capacity of the sandwich plate. Theoretical pre-buckling and post-failure paths 

together with the failure curve form an approximate structural behaviour 

characteristics of the sandwich plate. 

The discrepancy of results obtained for the single plate of equivalent rigidity 

and those obtained from FE calculations for the three-layered plate with 

homogenized orthotropic core is significant. However, the discrepancy concerns 

the stiffness of both equivalent plate and the three-layered plate with 

homogenized core. On the contrary, it is worthy to notice that buckling loads 

(folding points in both diagrams) are nearly the same for both cases. The 

discrepancy in magnitudes of upper bound estimations of ultimate loads obtained 

using the pre- and post-buckling path for the single plate of equivalent rigidity 

and the failure curve (from kinematical approach) and using FE results and the 

same failure curve amounts about 36%. More safe seems to be the second 

estimation: compilation of the failure curve and the post-buckling path obtained 

from FE analysis. 

In this study the same approach has been used in order to analyse the load-

capacity and failure of the simplified, approximate model of the sandwich panel, 

i.e. the model of two-layered plate consisting of facings of the real sandwich 

plate, the distance of which is maintained constant and equals the core thickness. 

Thus, the load-carrying capacity of the core is entirely neglected. The model 

applied is in fact a very “rough” approximation of real phenomena occurring in 

sandwich panels. However it enables to determine effectively a load-capacity of 

the sandwich panel in relatively simple analytical-numerical procedure. 

Comparison of theoretical and experimental results obtained from the 

calculations based on this simplified model are shown in Fig. 18.12. Continuous 

straight line (1) represents the pre-buckling path, the failure curve (2) is obtained 

from the solution described in paragraph 18.3 (kinematical approach). The 

ordinate of the intersection point indicated in the diagram represents the upper-

bound estimation of the load-capacity of the sandwich plate. Theoretical pre-

buckling and post-failure paths form an approximate structural behaviour 

characteristics of the sandwich plate that is compared with experimental results 

obtained by Paik [18.21] - curve (3). The agreement of theoretical and 

experimental values of ultimate loads is reasonably good, although many factors 

influencing the sandwich panel structural behaviour were  not taken into account 

in this  approximate theoretical analysis. 
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18.5. Final remarks 

The above chapter presents some selected results of the structural behaviour 

analysis of three-layered plates made of widely treated composite materials. It 

contains also the review of analytical-numerical methods, which can be applied 

in this analysis and are competitive with Finite Element simulations. However, 

the authors are aware of many simplifications assumed in those analytical-

numerical methods. First of all, yielding is assumed as an only mode of failure, 

while in real plated structures made of composite materials one has to do with 

some other complex modes of failure, like face wrinkling, core shear leading to 

crack, core indentation, debonding on the contact surface between face sheet and 

core, etc. Thus, further research should be continued to include into the 

analytical-numerical models some of these phenomena. Also extension of those 

models into multi-layered plates built of orthotropic layers of different 

configuration is an open question. 
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