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Abstract. The Vehicle Routing Problem is a widely known combi-
natorial optimization problem. A particular variant of this problem
is Vehicle Routing Problem with Simultaneous Delivery and Pickup
(VRPSDP). In this paper, two metaheuristics are compared in the
context of solving the VRPSDP - the Genetic Algorithm (GA) and
Ant Colony Optimization (ACO). Both implemented algorithms are
hybridized using local search operators. Implemented algorithms are
tested using well known Dethloff dataset. The final results show that,
in general, ACO gives more accurate results than GA, but it is worse
in terms of performance. The main reason for that is the difficulty of
incorporating local search operators into the Genetic Algorithm.
Keywords: Vehicle Routing Problem, Vehicle Routing Problem with
Simultaneous Delivery and Pickup, Genetic Algorithm, Ant Colony
Optimization

1. Introduction
Nowadays, logistics processes play a critical role in sustaining continu-

ous economic growth and supplying goods worldwide. The reason logistics
processes are crucial is that they minimize costs related to managing flow
and storage of goods. To understand how big the logistics market is, it is
worth referring to the forecast provided by PR Newswire, which states that
the logistics market size is projected to reach USD 12,236 billion by 2022 [1].

Transportation plays a crucial role in logistics. According to one study,
transportation constitutes 30% of all logistics costs [2]. Thus, it is clear
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that logistics companies are prominently striving to limit expenses related
to transportation in order to generate more revenue.

Transportation may consider different modes i.e., railways, waterways,
airways, and roadways. This thesis revolves around road transportation
only. Thus, further on, only roadways mode is discussed. The costs that
mainly affect road transportation are related to:

• fuel prices,

• salaries for drivers,

• vehicle fleet maintenance,

• government regulation,

• geopolitical events,

• regularity of transport.

To minimize the impact of some of the mentioned aspects, companies
try to optimize vehicles delivery routes. Such a strategy considers finding
delivery routes for a fleet of vehicles so that the total distance covered by all
of them is minimal. Reducing the distance covered by vehicles may result
in:

• lower fuel consumption,

• lower vehicle exploitation,

• lower required number of vehicles,

• shorter working time of drivers,

• lower costs related to regulations.

Optimizing delivery routes for vehicles might seem an easy task at first.
The problem occurs when the number of depots, vehicles, and customers to
be served rises, then planning such delivery routes becomes a burdensome
task. Such a problem of optimizing vehicles delivery routes is widely known
by the name Vehicle Routing Problem (VRP).

This article aims to compare selected algorithms and find answers about
their usefulness for the Vehicle Routing Problem with Simultaneous Delivery
and Pickup. This comparison will be performed on a known Dethloff dataset
to enable comparison of results for data specially prepared for this problem.

Section 2 describes the Vehicle Routing Problem with Simultaneous De-
livery and Pickup, discusses the assumptions and presents a mathematical
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model. Section 3 presents briefly selected algorithms (Genetic Algorithm,
Ant Colony Optimization), while section 4 describes Dethloff dataset. Sec-
tion 5 presents the conducted experiments and also discusses the obtained
results.

2. Vehicle Routing Problem with Simultaneous De-
livery and Pickup
Numerous VRP variants can be distinguished depending on constraints,

objectives, and other factors that affect the problem. To somehow catego-
rize VRP variants and explain the assumptions of VRPSDP, the taxonomy
proposed by Braekers, Ramaekers, and Van Nieuwenhuyse [3], is used. The
authors suggest using five main characteristics in order to categorize VRPs,
i.e., applied methods, scenario characteristics, physical problem character-
istics, information characteristics, and data characteristics [3, 4, 5].

The applied method refers to what kind of method is applied to solve a
particular problem, e.g., metaheuristic or exact method. The scenario char-
acteristics mainly revolve around constraints that are considered in a given
problem, e.g., load splitting constraint or time window structure. Problem
physical characteristics consider physical constraints, e.g., number of vehi-
cles or number of depots. Information characteristics indicate what type of
information is used in the problem, e.g., static information known upfront
or dynamic information. Data characteristics imply what type of data is
used, i.e., real-world data, synthetic data, or both.

In the Vehicle Routing Problem with Simultaneous Delivery and Pickup,
a homogenous fleet of vehicles operates from a single depot to service all
customers who may require both a pickup and delivery demand. The main
objective is to minimize the total distance covered by all vehicles while
satisfying the following constraints:

• service all customers exactly once,

• all vehicle routes should start and end at the depot,

• all customer deliveries are from the depot,

• all customer pickups must be delivered to the depot,

• at any time, the load should not exceed vehicle capacity,

• the load of the vehicle at the departure from the depot must be equal
to the total load for customer deliveries of the corresponding route.
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The following figures present an example of VRPSDP and a possible
solution to the problem. Node 0 represents depot, and nodes 1 to 4 represent
customers, see Figure 1. Each customer has a pickup and delivery demand,
and each connection between nodes has a cost which is a distance between
nodes.

For the sake of the example, let us assume that there is a single vehicle
with a capacity of 120. In the solution presented in Figure 2, the vehicle
starts with a load equal to 100 to satisfy all customers delivery demands.
The vehicle visits all customers exactly once, and its capacity is never ex-
ceeded. The total distance covered might be easily computed by adding
costs of a traversed paths, which in the presented example is equal to 184.
Of course, this is a trivial example with just a single vehicle. The problem
becomes more complicated with the growth of customers to be served and
vehicles used.

Figure 1. Graphs with solutions for sample SCA3, SCA8, CON3, and CON8
problems generated using Genetic Algorithm without Local Search opera-
tors.

2.1. Mathematical Model

The presented mathematical model was proposed by Dethloff, J. in [6].
Notation
Sets
J : Set of all customer nodes
J0: Set of all nodes including depot
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Figure 2. Graphs with solutions for sample SCA3, SCA8, CON3, and CON8
problems generated using Genetic Algorithm without Local Search opera-
tors.

V : Set of all vehicles
Parameters
C: Vehicle capacity
Dj : Delivery amount of customer j ∈ J
Pj : Pickup amount of customer j ∈ J
n: Number of nodes, i.e., n = ‖J0‖
Decision Variables
l′v: Load of vehicle v when leaving the depot
lj : Load of vehicle j ∈ J
nj : Variable used to prohibit subtours; can be interpreted as position of
node j ∈ J in the route
xijv: Binary value indicating whether vehicle v ∈ V travels directly from
node i ∈ J0 to node j ∈ J0
Model
Minizmize z = ∑

i∈J0

∑
j∈J0

∑
v∈V (Cijxijv) — The objective function∑

iinJ0

∑
v∈V xijv = 1; j ∈ J — Each customer is served exactly once∑

i∈J0 xisv = ∑
j∈J0 xsjv; s ∈ J, v ∈ V — The same vehicle arrives at and

leaves the node
l′v = ∑

i∈J0

∑
j∈J(Djxijv); v ∈ V — The load of the vehicle when leaving

the depot must be equal to the total load for customer deliveries of the
corresponding route
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lj ≥ l′v −Dj + Pj −M(1− x0jv); j ∈ J, v ∈ V — Vehicle load after visiting
first customer
l′v ≤ C; v ∈ V — Capacity constraints
lj ≤ C; j ∈ J — Capacity constraints
nj ≥ 0; j ∈ J — Subtour breaking constraints
xijv ∈ {0, 1} ; i ∈ J0, j ∈ J0, v ∈ V — Subtour breaking constraints

3. Algorithms for Solving VRPSDP
The VRP problems are NP-hard problems, meaning that exploring all

possible solutions for a particular problem instance is nearly impossible in
a reasonable time. In most cases, metaheuristics and heuristics are used to
solve such issues [7, 8, 9, 10]. Metaheuristics are strategies that indicate
how to perform the search process. Their goal is to explore a large space of
possible solutions efficiently to find a near-optimal solution. Metaheuristics
are not problem specific. However, different metaheuristics may be better
fitted for different types of problems.

In this paper, two main metaheuristics are compared: Genetic Algorithm
(GA) and Ant Colony Optimization (ACO). Both these algorithms differ in
the way they work. The first one is prevalent and easily adaptable to most
optimization problems [11, 12]. The second, on the other hand, is well suited
for combinatorial optimization problems [13, 14, 15]. Such a difference would
indicate that the ACO is a better solution for VRP problems [16]. On the
other hand, GA was proved to be an efficient and accurate solution for many
optimization challenges in the past years. Therefore, a comparison of those
two algorithms should be intriguing.

Additionally, each of the main algorithms is hybridized using local search
algorithms. Local search algorithms are used to improve already existing so-
lutions in an iterative manner. Local search algorithms might be applied to
both ACO and GA as both of these algorithms produce solutions that might
be enhanced. The following three local search algorithms are discussed and
elaborated on in the next chapters: 2-opt operator, Swap operator, and
CROSS-exchange operator [4].

4. Benchmark Dataset
In order to examine and compare implemented algorithms, the Dethloff

dataset is used [6]. This is one of the most commonly used datasets for
benchmarking VRPSDP algorithms. This dataset provides synthetic data,
meaning depot and customers are placed on the cartesian plane. Also, the
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delivery and pick-up values, as well as vehicle capacity, are integer values
with no unit.

The dataset proposed by Dethloff consists of four scenarios, each includ-
ing ten randomly generated test cases, resulting in 40 test cases overall. The
four scenarios are:

• SCA3— customers are scattered uniformly on the plane, the minimum
number of vehicles to be used is 3 and capacity of vehicles is high.

• SCA8— customers are scattered uniformly on the plane, the minimum
number of vehicles to be used is 8 and capacity of vehicles is low.

• CON3 — half of customers concentrated/clustered other half uni-
formly scattered, the minimum number of vehicles to be used is 3
and capacity of vehicles is high.

• CON8 — half of customers concentrated/clustered other half uni-
formly scattered, the minimum number of vehicles to be used is 8
and capacity of vehicles is low.

Each test case consists of 50 customers and a single depot. The vehicle
capacity is calculated based on the minimum number of vehicles to be used
- the less the minimum number of vehicles, the higher the capacity and
vice-versa.

5. Experiments
Ten different variants of algorithms are examined. Each of the variants

is used to solve all 40 test cases from the Dethloff dataset. In total, 400
experiments are conducted. The average objective function results and av-
erage execution times are collected for every scenario, i.e., SCA3, SCA8,
CON3, and CON8, for every algorithm variant.

For the Genetic Algorithm, the following variants are examined:

• Genetic Algorithm without Local Search operators;

• Genetic Algorithm with 2-opt Local Search operator;

• Genetic Algorithm with Swap Local Search operator;

• Genetic Algorithm with CROSS-Exchange Local Search operator;

• Genetic Algorithm with all Local Search operators.
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For the Ant Colony Optimization algorithm, the following variants are ex-
amined:

• ACO algorithm without Local Search operators;

• ACO algorithm with 2-opt Local Search operator;

• ACO algorithm with Swap Local Search operator;

• ACO algorithm with CROSS-Exchange Local Search operator;

• ACO algorithm with all Local Search operators.

In order to save time and not conduct too many experiments required for
finding optimal parameters, the parameters found in the literature were used
in both the Ant Colony Optimization algorithm and the Genetic Algorithm.

Parameters Selection for Genetic Algorithm
In the Genetic Algorithm implementation proposed in [17], the authors

suggest that best results are achieved for population size 150 and number of
generations 300. For the crossover, the probability of 0.8 is recommended,
and for mutation, the probability of 0.03. Also, in the Genetic Algorithm
introduced in this paper, the 5 elitist individuals are copied from the current
generation to the next.

Parameters Selection for Ant Colony Optimization
In the Ant Colony Optimization algorithm implementation proposed

in [18], the α and β coefficients are both set to 5, the number of elitist ants
is 10, evaporation factor is 0.05, and the maximum number of iterations is
100.

Parameters for Local Search Operators
There are no parameters to be set for a 2-opt search. For both the

Swap operator and CROSS-exchange operator, the K parameter denoting
the number of nearest neighbours is set to 10.

5.1. Genetic Algorithm without Local Search operators
Table 1 presents the results of the Genetic Algorithm without local

search operators applied. For each scenario SCA3, SCA8, CON3, CON8,
the average results were calculated using ten problem instances. Also, Fi-
gure 3 shows graphs with solutions for sample SCA3, SCA8, CON3, and
CON8 problem instances. The Genetic Algorithm without local search op-
erators gives the worst objective function results from all tested algorithm
variants. Even though computations for this algorithm are relatively fast,
they are not the fastest, as Ant Colony Optimization without local search
operators is faster.
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Figure 3. Graphs with solutions for sample SCA3, SCA8, CON3, and CON8
problems generated using Genetic Algorithm without Local Search opera-
tors.
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Table 1. Results for Genetic Algorithm without Local Search operators.
Problem Instance Execution Time (s) Objective Function Result

SCA3 10.00 1272.70
SCA8 8.64 1572.43
CON3 9.93 966.65
CON8 8.40 1132.65
Average 9.24 1236.11

5.2. Genetic Algorithm with 2-opt Local Search operator

Table 2 presents the results of the Genetic Algorithm with 2-opt local
search operator applied. For each scenario SCA3, SCA8, CON3, CON8, the
average results were calculated using ten problem instances. Also, Figure 4
shows graphs with solutions for sample SCA3, SCA8, CON3, and CON8
problem instances. Using the Genetic Algorithm with 2-opt operator results
in significant enhancement of the objective function results, comparing to
the previously mentioned GA variant. At the same time, the execution time
has not increased much.

Table 2. Results for Genetic Algorithm with 2-opt Local Search operator.
Problem Instance Execution Time (s) Objective Function Result

SCA3 11.49 1001.39
SCA8 8.26 1469.90
CON3 11.82 803.93
CON8 8.28 1074.93
Average 9.96 1087.54

5.3. Genetic Algorithm with Swap Local Search operator

Table 3 presents the results of the Genetic Algorithm with Swap local
search operator applied. For each scenario SCA3, SCA8, CON3, CON8, the
average results were calculated using ten problem instances. Also, Figure 5
shows graphs with solutions for sample SCA3, SCA8, CON3, and CON8
problem instances. For the Genetic Algorithm variant with Swap local
search operator, the results are enhanced. However, not as much as for
the GA with the 2-opt operator variant. Also, applying the Swap operator
causes execution time to extend significantly.
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Figure 4. Graphs with solutions for sample SCA3, SCA8, CON3, and CON8
problems generated using Genetic Algorithm with 2-opt Local Search oper-
ator.

Table 3. Results for Genetic Algorithm with Swap Local Search operator.
Problem Instance Execution Time (s) Objective Function Result

SCA3 34.05 1155.33
SCA8 27.95 1462.01
CON3 35.19 902.03
CON8 28.80 1034.67
Average 31.50 1138.51

5.4. Genetic Algorithm with CROSS-Exchange Local Search
operator

Table 4 presents the results of the Genetic Algorithm with CROSS-
Exchange local search operator applied. For each scenario SCA3, SCA8,
CON3, CON8, the average results were calculated using ten problem in-
stances. Also, Figure 6 shows graphs with solutions for sample SCA3, SCA8,
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Figure 5. Graphs with solutions for sample SCA3, SCA8, CON3, and CON8
problems generated using Genetic Algorithm with Swap Local Search oper-
ator.

CON3, and CON8 problem instances. For the Genetic Algorithm variant
with CROSS-Exchange local search operator, the results are enhanced, but
not as much as for GA variants with 2-opt and Swap operators. Also, ap-
plying the CROSS-Exchange operator causes execution time to extend even
more comparing to GA with Swap local search operator.

Table 4. Results for Genetic Algorithm with CROSS-Exchange Local
Search.

Problem Instance Execution Time (s) Objective Function Result
SCA3 197. 63 1163.17
SCA8 23.16 1490.20
CON3 204.23 899.41
CON8 24.54 1074.76
Average 112.39 1156.88
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Figure 6. Graphs with solutions for sample SCA3, SCA8, CON3, and CON8
problems generated using Genetic Algorithm with CROSS-Exchange Local
Search operator.
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5.5. Genetic Algorithm with all Local Search operators

Table 5 presents the results of the Genetic Algorithm with all local
search operators applied. For each scenario SCA3, SCA8, CON3, CON8, the
average results were calculated using ten problem instances. Also, Figure 7
shows graphs with solutions for sample SCA3, SCA8, CON3, and CON8
problem instances. The Genetic Algorithm with all local search operators
applied gives the most accurate solutions from all GA variants. Also, the
execution time was the longest among all GA variants.

Table 5. Results for Genetic Algorithm with all Local Search operators.
Problem Instance Execution Time (s) Objective Function Result

SCA3 215.36 876.66
SCA8 42.097 1348.96
CON3 213.98 707.96
CON8 45.98 967.48
Average 129.35 975.27

5.6. Ant Colony Optimization without Local Search operators

Table 6 presents the results of the Ant Colony Optimization without
local search operators applied. For each scenario SCA3, SCA8, CON3,
CON8, the average results were calculated using ten problem instances.
Also, Figure 8 shows graphs with solutions for sample SCA3, SCA8, CON3,
and CON8 problem instances. The Ant Colony Optimization without local
search operators gives the worst objective function results among all ACO
variants. At the same time, it is the fastest among all tested variants.

Table 6. Results for Ant Colony Optimization without Local Search opera-
tors.

Problem Instance Execution Time (s) Objective Function Result
SCA3 2.90 1110.13
SCA8 7.09 1491.63
CON3 2.83 908.41
CON8 7.40 1128.73
Average 5.05 1159.72
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Figure 7. Graphs with solutions for sample SCA3, SCA8, CON3, and CON8
problems generated using Genetic Algorithm with all Local Search opera-
tors.

MICHALIK, M., OCHELSKA-MIERZEJEWSKA, J.: COMPARISON OF SELECTED ALGORITHMS SOLVING. . . 127



Figure 8. Graphs with solutions for sample SCA3, SCA8, CON3, and CON8
problems generated using Ant Colony Optimization without Local Search
operators.
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5.7. Ant Colony Optimization with 2-opt Local Search oper-
ator

Table 7 presents the results of the Ant Colony Optimization with 2-
opt local search operator applied. For each scenario SCA3, SCA8, CON3,
CON8, the average results were calculated using ten problem instances.
Also, Figure 9 shows graphs with solutions for sample SCA3, SCA8, CON3,
and CON8 problem instances. As with the Genetic Algorithm, the ACO
variant with 2-opt operator applied results in evident enhancements of the
accuracy, keeping the execution time at a relatively low level.

Table 7. Results for Ant Colony Optimization with 2-opt Local Search
operator.

Problem Instance Execution Time (s) Objective Function Result
SCA3 13.25 876.95
SCA8 9.59 1298.90
CON3 13.81 743.72
CON8 9.86 1014.88
Average 11.63 983.62

5.8. Ant Colony Optimization with Swap Local Search oper-
ator

Table 8 presents the results of the Ant Colony Optimization with Swap
local search operator applied. For each scenario SCA3, SCA8, CON3,
CON8, the average results were calculated using ten problem instances.
Also, Figure 10 shows graphs with solutions for sample SCA3, SCA8, CON3,
and CON8 problem instances. The ACO variant with the Swap operator
gives more accurate results than the ACO with no local search operator
applied, but not as accurate results as the ACO with the 2-opt local search
operator. Also, using the Swap operator extends the execution time signif-
icantly.

5.9. Ant Colony Optimization with CROSS-Exchange Local
Search operator

Table 9 presents the results of the Ant Colony Optimization with CROSS-
Exchange local search operator applied. For each scenario SCA3, SCA8,
CON3, CON8, the average results were calculated using ten problem in-
stances. Also, Figure 11 shows graphs with solutions for sample SCA3,
SCA8, CON3, and CON8 problem instances. For the ACO variant with
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Figure 9. Graphs with solutions for sample SCA3, SCA8, CON3, and CON8
problems generated using Ant Colony Optimization with 2-opt Local Search
operator.

Table 8. Results for Ant Colony Optimization with Swap Local Search
operator.

Problem Instance Execution Time (s) Objective Function Result
SCA3 78.45 969.50
SCA8 189.85 1313.01
CON3 77.07 831.43
CON8 183.78 977.20
Average 132.29 1022.79

CROSS-Exchange local search operator, the results are enhanced, but not
as much as for ACO variants with 2-opt and Swap operators. Also, applying
the CROSS-Exchange operator causes execution time to extend even more
comparing to ACO with Swap local search operator.
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Figure 10. Graphs with solutions for sample SCA3, SCA8, CON3, and
CON8 problems generated using Ant Colony Optimization with Swap Local
Search operator.

Table 9. Results for Ant Colony Optimization with CROSS-Exchange Local
Search operator.

Problem Instance Execution Time (s) Objective Function Result
SCA3 554.07 1045.88
SCA8 125.25 1410.83
CON3 500.46 862.99
CON8 137.21 1073.73
Average 329.26 1098.36

5.10. Ant Colony Optimization with all Local Search opera-
tors

Table 10 presents the results of the Ant Colony Optimization with all
local search operators applied. For each scenario SCA3, SCA8, CON3,
CON8, the average results were calculated using ten problem instances.
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Figure 11. Graphs with solutions for sample SCA3, SCA8, CON3, and
CON8 problems generated using Ant Colony Optimization with CROSS-
Exchange Local Search operator.
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Also, Figure 12 shows graphs with solutions for sample SCA3, SCA8, CON3,
and CON8 problem instances. The Ant Colony Optimization with all local
search operators gives the best objective function results among all tested
variants. At the same time, it is the slowest tested algorithm.

Table 10. Results for Ant Colony Optimization with all Local Search oper-
ators.

Problem Instance Execution Time (s) Objective Function Result
SCA3 622.71 787.52
SCA8 297.36 1230.81
CON3 601.20 667.24
CON8 337.67 921.74
Average 464.73 901.83

6. Disscusion and Conclusions
Genetic Algorithm vs Ant Colony Optimization The Genetic Al-

gorithm performed worse than the Ant Colony Optimization in terms of
accuracy of results but generally better in terms of execution time. Also,
local search operators had a more significant impact on the Ant Colony Op-
timization than the Genetic Algorithm if it comes to accuracy and execution
time.

Local Search Operators Among three tested local search operators,
the 2-opt operator had the most significant impact on the accuracy of both
the ACO and the GA. At the same time, it affected the execution time the
least.
The Swap local search operator performed a little better than the CROSS-
Exchange operator in terms of enhancing the accuracy of the algorithm but
still worse than the 2-opt operator. Applying the Swap operator to both
the ACO and the GA resulted in slower execution time. Comparing to
variants without local search operators, for GA, it took three times longer
to complete the algorithm, and for the ACO, 26 times longer.
The CROSS-Exchange operator performed the worst out of three tested
local search operators. Not only did it enhance the objective function results
the least, but it also extended the execution time the most.

In general, the Genetic Algorithm performed worse than the Ant Colony
Optimization in terms of solving VRPSDP. The reason for that mainly
lies in the difficulty of hybridizing the Genetic Algorithm with local search
operators. Applying the local search operators to offspring generated by
genetic operators is hugely time-consuming. The reason for that is the way
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Figure 12. Graphs with solutions for sample SCA3, SCA8, CON3, and
CON8 problems generated using Ant Colony Optimization with all Local
Search operators.

PMX crossover and Swap mutation genetic operators work. The offspring
may consist of entirely disordered solutions. The more the routes for vehicles
are disordered, the more neighborhood solutions are considered for Swap
and CROSS-Exchange local search operators. For that reason, the local
search operators were only applied once the Genetic Algorithm produced
the final population. In order to incorporate the local search operators into
the process of generating the new population, one should minimize mutation
probability and find a more complex crossover operator that would produce
more ordered solutions. To sum up, the Genetic Algorithm is not the best
fit for solving VRPSDP.

On the other hand, the Ant Colony Optimization performed very well
with local search operators, which should not be surprising as ACO al-
gorithms usually use local search strategies for enhancing solutions. The
local search operators work so well for ACO because the solutions produced
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by ants are generally quite well-ordered. Thus, when Swap and CROSS-
Exchange local search operators were applied, they did not create so many
neighborhood solutions, which had to be considered. It is also worth men-
tioning that the best results found to date for the Dethloff dataset were
achieved using ACO with well-adjusted search operators.

As it comes to local search operators, the 2-opt operator is the most
impactful. Mainly because it enhances solutions accuracy the most, and it
is quite fast. It is faster than Swap and CROSS-exchange operators because
it generates fewer neighborhood solutions that need to be considered. The
Swap and CROSS-Exchange operators also enhance the final solutions, but
they require much more time to finish the search process. When imple-
menting these operators, one needs to consider limiting the neighborhood
solutions by manipulating the parameter K.
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