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The objects under considerations are thin linear-elastic plates with periodic 

structure subjected to large deflections. The paper concerns the problem  

of periodic plates’ postbuckling behaviour. The applied mathematical model 

describing geometrically nonlinear problems of such plates, proposed  

by Domagalski and Jędrysiak (2012), is based on the tolerance averaging technique, 

cf. Woźniak et al. (eds.) (2010). 

 

1. INTRODUCTION 

 

Plates considered in this paper are made of isotropic materials but as a result  

of changing thickness or using two or more materials with different elastic properties their 

behaviour is similar to behaviour of anisotropic or orthotropic ones with discontinuities of 

geometric or/and material properties, cf. Fig. 1. It leads to governing equations of these 

plates, which have non-continuous, highly oscillating, functional coefficients. Exact 

solutions to these equations are very difficult to obtain. Therefore, various simplified 

approaches, introducing effective plate properties, are proposed. Amongst them there 

have to be mentioned models based on the asymptotic homogenization, e.g. homogenized 

model of periodic plates proposed by Kohn and Vogelius [7]. 

 

 
 

Fig. 1. Fragment of a thin periodic plate 

 

In this paper, in order to take into account this effect in model equations,  

the tolerance modelling approach is applied, cf. the books edited by Woźniak, Michalak 

and Jędrysiak [14] and by Woźniak et al. [13]. Applications of this method to other 

problems of periodic plates are shown in a series of papers, e.g. for vibrations of periodic 
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wavy-type plates by Michalak [9], for periodically stiffened plates by Nagórko and 

Woźniak [10], for the buckling of periodic thin plates by Jędrysiak [4], for plates with the 

inhomogeneity period of an order of the plate thickness by Baron [1], for stability and 

vibrations of periodic plates by Jędrysiak [5, 6], for some problems of bending of thin 

periodic plates by Domagalski and Jędrysiak [2, 3]. 

The aims of this contribution are: to present governing equations of the tolerance 

model of thin periodic plates subjected to large deflections, which take into account  

the effect of the microstructure size, and to apply this model to investigate some problems 

of plates subjected to inplane loads beyond their critical values. 

 

2. FORMULATION OF THE PROBLEM 

 

Let Ox1x2x3 be an orthogonal Cartesian coordinate system; subscripts i, j, k, l run 

over 1, 2, 3 and α, β, γ, ω run over 1, 2. Denote x=(x1,x2) and z=x3. The undeformed plate 

occupies the region Ω≡{(x,z):δ(x)/2zδ(x)/2, x}, with midplane  and  

the plate thickness δ(). Let us also denote the partial derivatives with respect to a space 

coordinate by α=/xα. 

It is assumed that periodic plates under consideration consist of many small 

repetitive elements called periodicity cells. The cell is defined as a plane region 

l1/2,l1/2][l2/2,l2/2], where l1, l2 are the cell dimensions along  

the x1-, x2-axis. The size of the microstructure of the plate is described by the diameter of 

the periodicity cell, given by l=[(l1)
2
+(l2)

2
]

1/2
 and satisfying the condition 

max(δ)<<l<<min(L1,L2), (L1 and L2 are characteristic dimensions of the plate along the x1- 

and x2-axis). This diameter is called the microstructure parameter. Hence, the cell can be 

treated as a thin plate. 

Our considerations are based on the well-known nonlinear theory of thin plates  

(cf. Timoshenko and Woinowsky-Krieger [11], and Woźniak (ed.) [12]). Let w(x) be  

a plate midplane deflection, u0α(x) be the in-plane displacements along the xα-axes, F(x) 

be the stress function, and q(x) be the total loadings in the z-axis; x. Thickness δ() can 

be a periodic function in x and elastic moduli aijkl=aijkl(,z) can be also periodic functions 

in x and even functions in z. Let aαβγω, aαβ33, a3333 be the non-zero components of the 

elastic moduli tensor. Denote cαβγωaαβγω-aαβ33a33γω(a3333)
-1

. 

Define the mean plate properties, being periodic functions in x, i.e. shell stiffnesses 

bαβγω and bending stiffnesses dαβγω, in the form: 
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From the well-known assumptions of the nonlinear thin plate theory, e.g. relations 

between the total strains Eαβ, membrane strains E0αβ and curvatures καβ written as: 
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the constitutive equations for membrane strains formulated as following: 

 

 ,
~

0 FbE    (3) 

 

where  bb
~

,   NF , ))(()( 2   , we obtain  

for periodic plates the following equations for the deflection w and the stress function F: 
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These equations have functional, highly oscillating, non-continuous, periodic in x 

coefficients. 

 

3. THE TOLERANCE MODELLING APPROACH 

 

3.1. INTRODUCTORY CONCEPTS 

 

In the course of modelling, some introductory concepts of the tolerance modelling 

technique, such as the averaging operation <>, the slowly-varying (SV) function,  

the fluctuation shape (FS) function, are used. These concepts are described in books 

edited by Woźniak, Michalak and Jędrysiak [14] and by Woźniak et al. [13]. 

 

3.2. FUNDAMENTAL ASSUMPTIONS 

 

Following books [13, 14] and using the previously mentioned introductory concepts, 

the fundamental modelling assumptions can be formulated. 

First of them is the micro-macro decomposition of the basic unknowns, where there 

is assumed: 

 for the out-of-plane deflection: 

 

 ,,,1),()()()( NAVhWw AA  xxxx  (5) 

 

 for the in-plane displacements: 

 

 ),()( 00 xx  Uu  (6) 

 

 for the stress function: 
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and ),()(),,()(),(),(),( 12    dd

KA SVUSVVW  are basic unknowns; 

),()(),( 2  d

KA FSgh  are the known fluctuation shape functions. Functions  

W(), Φ(), V
A
() and Ψ

K
() are called the macrodeflection, the macrostress function,  

the fluctuation amplitudes of the deflection and of the stress function, respectively; U0α() 

are the in-plane macrodisplacements. 

The additional assumption is the decomposition of the load q(x) in the form 

)(
~

)()( 0 xxx qqq  , where  qq0  is the slowly-varying averaged load, and q
~  is  

the oscillating part, 0
~

 q . 

 

4. MODEL EQUATIONS 

 

Applying the modelling procedure described in [13, 14], under denotations 
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we arrive at the following system of equations for the macrostress function Φ(),  

the fluctuation amplitudes of the stress function Ψ
K
(), the macrodeflection W(),  

the fluctuation amplitudes of the deflection V
A
(): 
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where KKLLeff BBBBB 



 
~

)
~

(
~~~ 1 . 

Equations (9) together with micro-macro decompositions (5)-(7) constitute  

the nonlinear tolerance model of thin periodic plates. This model describes the effect  

of the microstructure size on the overall plate behaviour by the underlined terms.  

For considered plates there have to be formulated boundary conditions only  

for the macrodeflection W and the macrostress function Φ. Moreover, the basic unknowns 

of equations (9) have to satisfy the following conditions: 

),()(),(),(),( 2  d

KA SVVW . For comparison we recall the governing equations 

of the linear tolerance model of thin periodic plates: 
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cf. Jędrysiak [4], Woźniak, Michalak and Jędrysiak [14]. It can be observed that in this 

model the effect of the microstructure size is taken into account only by the term related 

to the oscillating part AQl2  of the load. 

 

5. EXAMPLE OF APPLICATION 

 

5.1. PROBLEM FORMULATION 

 

The object under consideration is a simply supported rectangular plate with constant 

thickness δ and length dimensions L1 and L2=ηL1 along the x1- and x2-axis, respectively. It 

is also assumed that all edges of the plate are immovable. The plate  

is made of two isotropic materials (a matrix – M, a rib – R), having Young’s modulus EM 

and ER and Poisson’s ratio νM and νR, periodically distributed along the x1- and x2-axis. A 

fragment of considered plate is illustrated in Fig. 1. 

Solutions W(), Φ() to the model equations (8) have to satisfy boundary conditions 

for the simply supported plate, i.e. W=11W=0 for x1=0, L1; W=22W=0 for x2=0, L2; 

22Φ=N11 for x1=0, L1 and 11Φ=N22 for x2=0, L2. Therefore, denoting ξm=mπ/L1, ζn=nπ/L2, 

the above mentioned solutions can be assumed in the form of double sine  

or cosine trigonometric series ([8, 11]): 
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where constants p1 and p2 represent average membrane forces per unit length in the x1- 

and x2-direction. The transversal average loads ),( 21 xxQ  and ),( 21 xxQA  can  

be expanded into double sine series: 
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Application of the Galerkin method leads to the following set of nonlinear, coupled 

algebraic equations for coefficients of series (11): 
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where overlined terms represent dimensionless forms of unknown coefficients: 
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dimensionless load-dependent terms are as follows: 
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where λ is dimensionless microstructure parameter λ=l/L1. The other coefficients  

of equations (12) are obtained as a result of applying the Galerkin method and,  

in order to limit the length of this paper, will not be presented here. 

Some numerical results calculated in the framework of the nonlinear tolerance 

models are shown in the next section. 

 

 
 

Fig. 2. A basic periodicity cell 

 

5.2. CALCULATIONAL RESULTS 

 

Numerical results are obtained for a square plate (η=1), made of two different isotropic 

materials. l/2,l/2][l/2,l/2], cf. 

Fig. 2. It is assumed that the Young’s modulus and Poisson’s ratio are given by: 
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where α is a dimensionless parameter describing distribution of material properties  

in the periodicity cell, cf. Fig. 2. 
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Fig. 3. Relations between uniaxial compression and maximum macrodeflection  

of initially flat (solid lines) and deflected due to transversal load (dashed lines) square 

plates 

 

The fluctuation shape functions h
A
 and g

K
 are assumed in the similar form: 
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satisfying conditions <h
A
>=0. 

In calculations we assume for the matrix: the Young’s modulus EM, the Poisson’s 

ratio νM=0.316. For the rib it is assumed: the Young’s modulus ER=eEM, the Poisson’s 

ratio νR=νM. Results presented here are obtained for following values of parameters: 

dimensionless width of the rib α=0.1, 0.2; dimensionless microstructure parameter 

λ=0.05; Young’s modulus’ ratio e=2.0, 3.0, 4.0.  

The deflections of a plate subjected to various combinations of inplane and lateral 

loads were calculated for the values of geometrical () and material (e) parameters  

of the plate’s microstructure given above. 

The minimal values of critical inplane load 
critp )( 1

11
 for a plate with periodically 

distributed material inhomogeneities are presented in the dimensioneless form, in  

Table 1. This loads correspond to a linear stability problem’s eigenvalues, as the 

macrodeflection is assumed as W(x1,x2)=W11sinξ1x1ζ1x2. The critical load values were 

calculated using the tolerance modelling technique, as described by Jędrysiak [4].  

The value e=1.0 refers to a homogeneous plate. 

The graphs in Fig. 3 illustrate the inplane load - center macrodeflection relationships 

initially flat (solid lines) and transversally loaded plates (dashed lines).  

The dimensionless intensity of the transversal load was assumed as q=5.0. 

 
Table 1. Minimal values of critical load for a square plate 

e=ER/EM 1.0 2.0 4.0 

α - 0.1 0.2 0.1 0.2 

critp )( 1

11
 3.655 4.322 4.886 5.547 7.069 

 

Following Levy [8], let us define the ratio of elastic effective width to initial width 

as the ratio of the actual load carried by the plate to the load the plate would have carried 

if the stress had been uniform and equal to the Young’s modulus of the matrix material EM 

multiplied by the average edge strain e1. Here, this ratio is calculated from the following 

formula: 
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The graphs in Fig. 4 illustrate the dependence between ratios 2

0

2 LL  and e1/e1.crit, 

where the value of critical strain corresponds to the case of no transverse load.  

The results were calculated for e=ER/EM=1.0, 4.0, α=0.1, 0.2. The results calculated  

for a homogeneous plate (e=1.0) are identical with those obtained by Levy. 
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Fig. 4. Effect of transversal load on effective width of a square plate loaded by edge 

compression 

 

6. REMARKS 

 

Analyzing graphs in Fig. 3 and Fig. 4 it can be observed that: 

 for the transversally unloaded plates, the macrodeflection is equal to zero until  

the inplane load does not exceed the critical value;  

 the bifurcation points correspond to the critical values of the load calculated within 

the linear tolerance model; 

 occurence of the transversal load results in a significant quantitative and qualitative 

differences in the calculated deflections and its maximal influence occurs for  

the critical values of inplane load; 

 increasing values of the parameters α and e causes: increasing of the critical loads 

and the effective width of the plate for q>0 and decreasing of the calculated 

deflections. 

Furthermore, some general remarks can be formulated: 
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 applying the tolerance modelling to the known differential equations of thin periodic 

plates with large deflections the averaged equations of the nonlinear tolerance model 

are derived.  

 this technique makes it possible to replace the governing equations with non-

continuous, periodic, highly oscillating coefficients by the system of differential 

equations with constant coefficients; 

 the derived equations of the nonlinear tolerance model involve terms, which take into 

account the effect of the microstructure size on the overall behaviour of periodic 

plates; 

 the governing equations of the linear tolerance model take into account the effect 

of the microstructure size only by the term dependent of the oscillating part 

of the load. 
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