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                                                             ABSTRACT: The aim of the paper is to present the methods of FEM scaffolding model building based on 
laboratory test results. Scaffolds consist of various components. Stands, transoms, ledgers and braces are 
usually modelled as frame elements using geometric data and material properties. Decks are structures of 
complex geometry and their models require simplifications calibrated on the basis of scaffolding element 
horizontal stiffness tests. The flexibility of stand-ledger joints is modelled following laboratory tests of the 
nodes subject to moments acting on two planes. The numerical model of the entire scaffold must be then 
verified by means of a global test examining the behaviour of the entire structure resulting from the 
application of a set of horizontal and vertical forces. Each simplification applied must ensure that the results 
obtained in the calculations guarantee the safe use of the structure. On the other hand, the differences between 
the results of calculations and laboratory tests are mostly due to the said simplifications. 

  
  
  
  
  
  
  
  

                                
  Keywords: scaffolding, numerical simulation, finite element method, global test. 
                                

1. INTRODUCTION 

The finite element method has been developed since 1940s. One of the first papers in this field is by 
Hrennikoff (1941). The greatest development of FEM took place in the 1960/70s (e.g. thanks to Wilson and 
Clough 1963, Zienkiewicz and Cheung 1967, Aziz 1972). As far as static analyses with small strains are 
concerned, it seems that almost everything has already been done. Nevertheless, the modelling of more 
complex objects is often encumbered with problems. These are, e.g., limitations of software, the level of task 
complexity, the occurrence of peculiarities, etc. In nonlinear calculations performed by means of  various 
software, it is difficult or even impossible to find the equilibrium path after passing the maximum. In this 
light, it turns out that, although the finite element method is an accomplished tool, using it requires 
knowledge and the ability to model objects and, subsequently, verification of the obtained results. The 
verification can consist in assessing the correctness of the behaviour of simple structures under the influence 
of a simple load system or on the basis of laboratory tests. Still, one should also take a critical approach 
towards laboratory tests, as test stands, methods and samples may be defective or may have features that are 
difficult to take into account in computer simulation. The said features may result from an inaccurate in the 
completion of test stands, e.g. the implementation of an articulated support in a laboratory is difficult and one 
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should bear in mind that differences between the boundary conditions of the numerical model and during 
laboratory tests may occur. The paper presents the main elements of the scaffold modelling process. An 
emphasis is placed on the modelling of the joint flexibility and horizontal stiffness of platforms in modular 
scaffolds, and the methods presented can be used in engineering practice. The paper also discusses the 
differences in the approach to the verification of models that are used for the purposes of research and 
design. The analysis uses the example of the ROTAX system of Altrad Mostostal in Siedlce. The presented 
computer simulations were conducted by means of Autodesk Simulation Multiphysics 2013 (called in the 
paper ASM 2013). 

2. THE DESCRIPTION OF SCAFFOLDS  

In the process of scaffolding system development and non-standard engineering solution design, accurate 
nonlinear static-strength analyses are required (Figure 1). Scaffoldings are assembled from components with 
different levels of geometry complexity. Stands, transoms, ledgers and bracings can be modelled with the use 
of frame elements. It is much more difficult to model decks which are usually stiffened with profiles of 
complex geometry and their surfaces are made of a perforated sheet. Another problem is the modelling of the 
joints between elements. Since a scaffold must be assembled quickly and safely, joints are also adapted to 
this task and, therefore, cannot be clearly classified as articulated or rigid. In addition, joints of scaffolding 
components allow for the occurrence of clearances and cause imperfections. Such a number of conditions 
can lead to differences between the behaviour of an actual structure and its numerical model, which, in turn, 
may result in a scaffold failure. For this reason, a procedure for building numerical scaffolding models has 
been developed, which consists of the following stages: 
– laboratory tests of the material properties of scaffolding components, 
– laboratory tests of the load-bearing capacity, stiffness or flexibility of individual components, 
– laboratory tests of the load-bearing capacity of the scaffold with a predefined configuration, known as  

a global test, 
– development of a numerical model, calibrated on the basis of the component laboratory test results and 

verified by means of the global test.  
 

 
a) b) 

Fig. 1. The scaffolding around the Scheibler Chapel in Łódź: a) photo, b) numerical model. 
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The methodology for carrying out laboratory tests, assumption of loads and part of the boundary conditions 
in the calculations are adopted on the basis of standards: EN 12810-1,  EN 12810-2, EN 12811-1,  
EN 12811-3. The final numerical model constitutes the basis for nonlinear numerical analyses of typical 
scaffolds, the description of which is included in the technical documentation of the scaffolds and which 
authorises users to assemble such scaffolds without additional calculations and designs. 

3. NUMERICAL MODELS OF SCAFFOLDING COMPONENTS  

3.1. Laboratory tests and numerical models of scaffolding joints  

In a modular scaffold, one finds rosettes with holes for attaching ledgers, mounted on a stand pipe. The 
geometry of such a joint is very complex – is characterised by clearances and friction. On the basis of 
laboratory tests of joints, force-displacement relationships for shearing and normal forces, as well as 
moment-rotation angle relationships for bending and torsional moments can be obtained. Some examples of 
test stands for joints examination are shown in Figure 2a (Pienko 2019) and Figure 3 (Błazik-Borowa et al. 
2017). On the basis of the moment-rotation relationship, the stiffness of a connection is determined, which is 
then classified as rigid, flexible or pinned. Table 1 summarizes the test results for the same joint using three 
different test stands: two at the Lublin University of Technology (LUT) and one at the Institute of 
Mechanised Construction and Rock Mining (IMBiGS). In addition, four methods of determining stiffness are 
given for one of the test stands. As demonstrated, the discrepancies are large, therefore the calculations of a 
completed scaffold should be preceded by a sensitivity analysis of the numerical simulation results to 
individual parameters, as presented in Section 4.2. Furthermore, important information with regard to further 
analyses is that the values of the stiffness kφ, which are used in the final model, are smaller than the average 
values, and are determined from the following formula (EN 12811-3): 
 

   



  n

i i

cc

c

nvcvk

1

1
, 

(1)

 
where: ci – the result of the i-th stiffness measurement,  cv  – coefficient depending on the variation 
coefficient: 
 

c
v c

c


 , (2)

 



n

i
ic cc

n 1

22 1
– the standard deviation. (3)

 
The method of modelling joints depends on the features of the available software. Joint flexibility can be 
taken into account by means of changes in global stiffness matrices. This flexibility consideration method 
requires that the program have such a functionality. This approach does not allow for the control of joint 
effort. Therefore, in this paper the method consisting in the insertion of transition elements between nodes 
and components is used, described by Blazik-Borowa et al. (2017). Geometric and material parameters are 
selected to reflect joint flexibility in the vertical and horizontal planes.  
With regard to the material of these elements, an elastic-plastic model with strengthening is used to describe 
the relationship between strains and stresses. The geometric and material parameters are selected to reflect 
the joint bending stiffness in the vertical plane (kφy = 31.18kNm/rad), the joint bending stiffness in the 
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horizontal plane (kφz=12.80kNm/rad),and the load-bearing capacity expressed as the bending moment with 
respect to the horizontal (Mycr=0.8833kNm) and vertical (Mzcr=0.1711kNm) axes. 
 

 

a) d) 

 

b) e) 

 

c) f) 

Fig. 2. The schemes of laboratory stands for testing the load bearing capacity and stiffness  
of joints when rotated about the horizontal axis y (a, c, d, f) and vertical axis z (b, e):  

a, b and c – LUT (Pieńko (2019)), d, e and f – IMBiGS (Misztela (2016)). 
 

Fig. 3. The scheme of the laboratory stand for testing the load-bearing capacity of a ledger and the stiffness  
of joints when rotated in respect to the horizontal axis y (Błazik-Borowa et al. (2017)). 
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Tab. 1. The values of the joint stiffness in the vertical plane (action of moment My) obtained by means of various 
procedures.  

Source, Figure Method 
Stiffness kφy 
[kNm/rad] 

Pieńko (2019), Figure 2a  

one linear function - loading the joint 33.74 

two linear functions based on laboratory 
measurement results 

=0.0-0.015 [rad] =0.015-0.035 [rad]

37.64 20.28φ+0.26 

one linear function - unloading the joint 53.42 

the condition of equal fields on the graph with 
the results of laboratory measurements 

33.46 

Misztela (2016), Figure 2d 
IMBIGS – testing of the stand and  
o-ledger joint 

31.18 

Misztela (2016), Figure 2f 
IMBIGS – testing of the stand and  
u-ledger joint 

78.18 

Błazik-Borowa et al. (2017) 
Figure 3 

on the basis of test of the deflection of  
the o-ledger 

34.86 

 
The algorithm for determining geometric characteristics and material properties includes the following 
stages: 
 
I. Determination of the moments of inertia regards to: 
 vertical axis y 
 

E
lk

J y
y

 , (4)

 
 horizontal axis z  
 

E
lk

J z
z

 , (5)

 
where: E=2.05·108 kPa – Young’s modulus, l=0.05m – the length of the element which models of joint 
stiffness. 
 
II. Determining geometric parameters of the cross-section based on the information about the moments of 
inertia Jy and Jz and, optionally, the condition described by the formula: 
 

z

zcr

y

ycr
y W

M
W

M
f  , (6)

 
where: fy – the yield strength, Wy and Wz – section modulus. 
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Tab. 2. Calculation of geometric parameters and material properties for the transition element. 

Stage Transition element with a rectangular cross-
section with dimensions bh 

A transition element with a rectangular pipe cross-
section with dimensions bh and thickness g 

Average values from 
the paper of Misztela 
(2016): 

kφy,avr=48.34kNm/rad, kφz,avr=17.63kNm/rad; 
 Mycr,avr=1.4839kNm; Mzcr,avr=0.5663kNm 

Data to calculation 
from the paper of 
Misztela (2016): 

kφy=31.18kNm/rad, kφz=12.80kNm/rad;  
Mycr=0.8833kNm; Mzcr=0.1711kNm; 

Other data: E=2.05·108 kPa; l=0.05m; m=0.53kg 
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III. Determining material properties 
– surrogate yield strength 
 

y

ycr
yz W

M
f  , (7)

 
– surrogate mass density  
 

A
m

z  , (8)

 
where: m – mass of the joint part replaced by a transition element, A – cross-section area of the transition element. 
The equations (5)(8) require the assumption of a type of cross-section. The cross-section type depends 
primarily on how many unknowns one can determine on the basis of the set of the equations from 2nd stage, 
and whether the solution of the non-linear set of equations is justified by physical conditions, e.g. whether  
a dimension does not obtain a negative value. The set of equations is non-linear and, despite the fact that 
there are several solutions, they may not be applicable. Therefore, the cross-section can be described with 
three parameters, but sometimes one must abandon one parameter. Table 2 summarizes the formulas and 
calculations for two cross-sections: a rectangle and a rectangular pipe. The results in the left column of Table 
2 were used in Section 4 as master data for the numerical model to be used to simulate a global test. 
In Table 2, in the right-hand column, three equations were used to determine the dimensions of the  
cross-section. However, a very low value of the thickness g was obtained, which could lead to numerical 
errors due to rounding. The results on the left side are closer to the values consistent with the physical 
conditions, but in this case the limit bending moment Mycr is correctly determined, while the other limit 
bending moment Mzcr is not correct. Therefore, during the calculations, it is necessary to make sure that the 
value Mzcr is not exceeded. 

3.2. Laboratory tests and a numerical model of horizontal stiffness for platforms  

Scaffold platforms are formed by a set of decks of complex geometry. The level of simplification applied in 
the model depends on the purpose of the calculations performed (comp. Błazik-Borowa and Robak 2017). In 
the case where the load-bearing capacity of a single deck subject to vertical loads is determined, tests or 
calculations can be performed, but if computer simulations are selected, the model must quite accurately 
represent the geometry of the plate perforation and of the other elements. Such a model is shown in Figure 4. 
The intermediate model (Figure 5), in which the deck is replaced with a set of frame and shell elements, can 
be used as a deck model in calculations aimed at an accurate determination of the manner in which the load 
is transferred from the platforms to the other scaffolding components. This model is used in the case of  
a modular scaffold with complex geometry or with unusual loads. 
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Fig. 4. The shell model of the deck. 

 

 
Fig. 5. The shell-frame model of the deck. 

 

 
a) b) 

Fig. 6. Test stands for (Misztela (2020)): a) platforms with a perpendicular load; b) platforms with a parallel load. 
 
In the case of modelling an entire scaffold, it is enough to take into account the horizontal stiffness of the 
platforms. The set of decks, called a platform, is modelled with four truss elements: two ones along the 
platform, called longitudinal elements, and two crossing elements. The material properties of lattice elements 
are determined on the basis of the measurement results of the force-displacement relationship for the 
scaffolding fragment with the platforms. Tests are performed for two directions of the force: perpendicular 
and parallel to the platform. The test stands are shown in Figure 6 and the corresponding numerical models 
of the tested scaffolding fragments are shown in Figure 7. Table 3 lists the laboratory measurement results 
with the markings which will be used to determine the parameters of the truss elements. 
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a) b) 

Fig. 7. Numerical models of test sites for: a) platforms at the perpendicular load; b) platforms at the parallel load. 
 
Tab. 3. The results of horizontal stiffness tests of the platform. 

 
Point The load perpendicular to the structure (Figure 6a) The load parallel to the structure (Figure.6b) 

0 
0u =0.0mm 0IIu =0.0mm 

0P =0.0mm 0IIP =0.0mm 

0-1 11  tgc =3.7kN/m  11II  tgc =34.0kN/m 

1 1u =51.3mm 1IIu =18.0mm 

0111   cuP .19kN 1II1II1II cuP   

1-2 22  tgc =96.0kN/m 22II  tgc =341.0kN/m 

2 2u =90.0mm (the end of graph) 2IIu =25.0mm (the end of graph) 

  21212   cuuPP =3.91kN   II1II2II1II2II  cuuPP  
 
The material properties of the truss elements are determined in two stages. In the first stage, the properties 
are estimated on the basis of the following assumptions and formulas: 
– the elements have the same material properties in compression and tension, 
– the cross-sectional area for all the truss elements is the same and equals A=0.001m2, 
– each fragment of the - graphs is determined separately,  
– the term "the first part of the -graph" refers to the fragment from the beginning of the coordinate 

system to the turning point of the graph, and the remaining parts of the - graph are referred to as the 
"second part of the -graph", 

– the influence of the longitudinal elements on the horizontal stiffness of the platform when a force is 
applied in the direction perpendicular to the decks (Figure 6a and Figure 7a) is negligible and therefore 
the - characteristic for the crossing elements is determined based on the measurement in the 
perpendicular direction. 

The following is the order of the 1st stage calculations, the purpose of which is to determine the dependence 
- for the crossing and longitudinal elements, and the corresponding relationships: 
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A. The first part of the force-displacement plot in Figure 8a represents the clearances obtained in the model 
as a result of the introduction of the first horizontal part of the - graph (Figure 9a) for the crossing 
elements. The first coordinate (abscissa) of the turning point is determined with the assumption of small 
displacements on the basis of the following formula: 

 

 
c

cyx
c L

LuLL 



2

1
2

1 , (9)

 
where: Lx i Ly - platform dimensions shown in Figure 7b, 22

yxc LLL  - length of the crossing elements. 

The slope of the second part of the - graph for the crossing elements was obtained on the basis of the sum 
of projections of forces for the separated fragment of the scaffold (Figure 7a) in the perpendicular direction y 
to the platforms: 
 

  0sinsin4321   csumcccc FPFFFFPy  sin ,csumP F    (10)
 
and relationships (Figure 9a): 
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2
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2
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2
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2

c
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cE




 . (13)

 
B. The coordinates of the turning point of the - graph for the longitudinal elements (Figure 9b) were 

determined on the assumption that the crossing elements do not affect the stiffness until the strain c1 is 
achieved, and the axial forces in these elements 04321  cccc FFFF . Since the crossing elements 
did not work, each of the longitudinal elements also worked separately and as a result the axial forces 

0432  ppp FFF . From the formula: 
 

    0cos 1II42314231II  pccccpppp FPFFFFFFFFPx  1pII FP  , (14)
 
obtained on the basis of the sum of the projections of forces for the separate scaffold fragment (Figure 7b) 
onto the direction x parallel to the platforms, comes that the stiffness of the system was related to the work of 
only one longitudinal element. Therefore, the coordinates of the turning point of the -graph were 
determined from the following formulas: 
 

A
P

A
Fp

p
II11

1  , (15)

x
p L

u 1II
1  , (16)

 



 

XXVII Conference of Lightweight Structures in Civil Engineering - XXVII LSCE 2021 15 
 

and the slope of the first part of the - graph: 

1

1
1

p

p
pE




 . (17)

 
C. To estimate the slope of the second part of the - graph for longitudinal elements, the sum of the 

projections of forces for the separate scaffold fragment (Figure 7b) onto the direction x parallel to the 
platforms was used: 

 
    0cos42314231II  ccccpppp FFFFFFFFPx  II cos .psum csumF P F    (18)

 
Now, all the normal forces were different from zero and their sums could be written as follows: 
 

1 3 2 4 ,csum c c c cF F F F F     (19)

4231 pppppsum FFFFF  . (20)
 
The stress increase for the second part of the σ-ε graph was determined as the quotient of the force difference 
for the second part of the force-displacement graph, obtained from the laboratory test with a load parallel to 
the scaffold (Fig. 8b), and the cross-sectional areas of four longitudinal elements: 
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As demonstrated, the second part of the force-displacement relationship graph (Figure 8b) presents the result 
of the work of all the truss elements, both the longitudinal and the crossing ones. Therefore, to describe the 
behaviour of the latter elements, the slope of the second part of the σ-ε graph for the crossing elements 
determined earlier by means on the formula (13) should be used, and the change of normal stresses in the 
crossing elements, included in the formula (21), to be calculated from the following formula: 


_II2_II ccc E  , (22)


 
c

cxy
c L

LuuLL 


2
1II2II

2

_II . (23)

 
The strain increase for the second part of the σ-ε graph for the longitudinal elements is given by the 
formula: 
 

x
p L

uu 1II2II
2


 , (24)

 
and the slope of this part of the graph is given by the formula: 
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The horizontal stiffness of scaffold is influenced by decks, other components, clearances at the anchors, the 
friction of supports, assembly inaccuracy, etc. hence, the results of the calculations with the use of the 
formulas (9) ÷ (25) were deemed preliminary, and in the 2nd stage iterations were performed, which consisted 
in the conducting of calculations with different slopes of the second parts of the σ-ε graphs to better match 
the results of the calculations and the laboratory measurements σ-ε. Based on the calculations for the model 
in Figure 7a, the relationship σ-ε for the crossing elements was determined. The result was used in the 
iterations for the model in Figure 7b and the relationship σ-ε for the longitudinal elements was determined. 
The comparison of the calculation and measurement results for the final material properties is shown in 
Figure 8. In turn, Table 4 summarizes the data after 1st and 2nd stages of the determination of the material 
properties of the truss elements modelling the horizontal stiffness of the scaffold platforms, and Figure 9 
shows graphs with the final relationship σ-ε for these elements. 



a b) 

Fig. 8. The comparison of the horizontal stiffness of the platforms obtained from measurements and the calculations for 
the model in Figure 7: a) scaffold with a perpendicular load; b) scaffold with a parallel load. 

 
Tab. 4. The results of the estimation of the material properties of the truss elements modelling the horizontal stiffness of 
the platforms. 

 The value from stage I The value from stage II 
Crossing elements 
c1  4.981∙10-3 5.0∙10-3 
c2  81.184∙104 kPa 100.0∙104 kPa 
Longitudinal elements 
p1  5.156∙10-3 6.0∙10-3 
p1  26.19∙104 kPa 10.0∙104 kPa 
p2 3.568∙104 kPa 3.56∙104 kPa 

 


a b) 

Fig. 9. Graphs of the material properties of the truss elements modelling the horizontal stiffness of the platforms: 
a) crossing elements, b) longitudinal elements. 
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Of course, the above procedure is one many possible methods. Formulas for determining material 
characteristics can be much more accurate. A completely different procedure for calibrating a numerical 
model based on dynamic measurements on the example of a bridge was described by Jukowski et al. (2018). 

4. THE GLOBAL TEST AND FEM MODEL OF SCAFFOLDING 

4.1. The description of the global test and numerical simulation of this research 

A global test examines the behaviour of an entire scaffold, assembled from new components and shaped in 
accordance with EN 12810-2. In this paper the results of the research carried out by the Research Institutes 
of Sweden (RISE) laboratory, which are described by Snygg (2021), are used. The scaffold scheme is shown 
in Figure 2. The scaffold is placed on spheres as a result of which articulated supports are obtained. Anchor 
ties are hooked in the eyelets, which also guarantees the possibility of rotation in the connection, but blocks 
the components of the displacement in three directions. Before conducting the actual measurements, the 
scaffold is initially loaded with horizontal forces in the directions H1, H2, H3 and H4. Next, the forces are 
removed and an accurate measurement of the scaffold geometry is taken. The results of the measurement are 
used to develop the geometry of a numerical model of the scaffold, taking into account the inaccuracy of the 
assembly. Following the measurement of the geometry, the proper laboratory test is started. The scaffold is 
loaded successively with the following forces: 
– F1, F2, F3 and F4 which achieve value about 1.0kN,  
– H3+H4=0.35kN,  
– H1=0.25kN and H2=0.35kN,  
– F1, F2, F3 i F4 the values of which are increased in such proportions that F2=F3=2F1=2F4 and this process 

continues until the scaffolding is damaged. 

Figure 2b shows the forces acting on the scaffold during the measurements, and Figure 2a – the locations and 
directions of the nodal displacement measurements. The results of the test concern vertical forces and nodal 
displacements as functions of time. In the laboratory tests also the load-bearing capacity of the scaffold, 
expressed by the forces F2=F3, and the value of Fcr=21.75kN were obtained. 
 


a b) 

Fig. 10. The global test: a) scheme of the scaffold with the directions of the displacement measurement marked Lg; 
b) FEM model with forces. 
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Fig. 11. Changes in the values of forces F1, F2, F3 and F4 during laboratory tests and calculations. 

 
Tab. 5. The geometrical characteristics of element cross-sections. 

Lp Component 
A 
[cm2] 

J1 
[cm4] 

J2 
[cm4] 

J3 
[cm4] 

W2 
[cm3] 

W3 
[cm3] 

1 Base jack 4.278 10.2676 5.1838 5.1838 2.942 2.942 
2 Stand, 48.3x3.2  4.5339 23.1710 11.5860 11.5860 4.7975 4.7975 
 O-ledger ,1.088m 48.3x3.2 4.5339 23.1710 11.5860 11.5860 4.7975 4.7975 

3 
U-ledger, open cross-section 
53x48x2.5 

3.7250 26.4610 11.0750 15.3760 2.9932 6.4067 

4 O-ledger, 3.072m, 48.3x2.7 3.8679 20.1780 10.0890 10.0890 4.1776 4.1776 
5 Bracing,  48.3x2.6 3.7328 19.5531 9. 7765 9.7765 4.0483 4.0483 
6 Wall tie, 48.3x2.7 3.8679 20.1780 10.0890 10.0890 4.1776 4.1776 

where: A – cross-section area, J1  – torsional resistance, J2 and J3  – moments of inertia with respect to 2nd 
and 3rd axes of the local coordinates system respectively,  W2 and W3 – section modulus at bending with 
respect to 2nd and 3rd axes of the local coordinates system respectively. 
 
Tab. 6. Material properties. 

Component 
Base 
jack 

Stand 
48.3x3.2 

O-ledger 
1.088m 
48.3x3.2 

O-ledger 
3.072m 
48.3x2.7 

Bracing  
48.3x2.6 

U-ledger 
53x48x2.5 

Wall tie 
48.3x2.7 

Material Steel S235JRH Steel S355J2 Steel S235JR
Density  78.5kN/m3 78.5kN/m3 78.5kN/m3 
Young’s 
modulus E 

2.05·108 kPa 2.05·108 kPa 2.05·108 kPa 

Yield strength 
fyk 

320MPa 355MPa 235MPa 

Strain 
hardening 
modulus 

2.05·106 kPa 2.05·106 kPa 2.05·106 kPa 

Poisson’s ratio 0.3 0.3 0.3 
 
The geometry in the FEM model maps the scaffold geometry in the global test. Such components as base 
jacks, stands, ledgers, or bracings are modelled with frame elements. Table 5 contains geometrical 
characteristics of cross-sections for frame elements and Table 6 contains material properties for ones. Stand-



 

XXVII Conference of Lightweight Structures in Civil Engineering - XXVII LSCE 2021 19 
 

transom and stand-ledger connections are modelled as flexible for bending in two planes, as described in 
Section 3.1, and for other types and directions of interactions - as rigid. Stand-stand and stand-base jack 
connections are modelled as rigid. Stand-anchor tie connections are modelled as articulated. The platforms 
are modelled as described in Section 3.2. Nonlinear calculations taking into account large displacements and 
material nonlinearities were performed in ASM 2013. In the numerical simulations of the global test, the 
self-weight was applied first followed by forces applied in the same order as in laboratory tests. Figure 11 
shows a graph of changes in the values of the forces F1, F2, F3 and F4 during laboratory tests and 
calculations. The model developed in such a way does not take into account the fact that:  
each stand-ledger joint has a different moment-angle rotation characteristic due to, among others, a different 
force of the hammer hitting the wedge during the assembly, decks can be installed in various ways, e.g. they 
can block each other, during the initial loading, the deck movement can also be blocked and the free 
movement of the decks was not unlocked during unloading, when anchor ties are secured to the steel frame 
of the test stand clearances occur, during the measurements, there was a sudden increase in one of the 
vertical forces, which could cause dynamic effects. 

 

  
a b) 

Fig. 12. The numerical and laboratory results: a) global test results, b) results of the calculations using design data. 
 
Figure 12 shows the results of the measurements and calculations in the form of force-displacement graphs. 
The displacements are measured at 12 points, the location of which is shown in Figure 10. The force F2 is on 
the vertical axis. At this stage, the results of the measurements (Figure 12a) and the results of the calculations 
with data (material properties and geometric characteristics), determined in such a way that they could be 
used for designing (Figure 12b), i.e. as characteristic values, are shown. The verification and discussion of 
the results is carried out in the following sections. 

4.2. The sensitivity analysis of calculations to the input data 

When developing the numerical model of a structure, it is worth assessing the influence of individual input 
data on the calculation results. This enables an conscious calibration of the model. In other words, when 
selecting the data and the boundary conditions of the model, one knows which errors to avoid or for which 
parameters more precise tests or calculations should be performed. There are two types of data in the case of 
the analysed structure:  
– data assumed on the basis of the component geometry and material properties declared by the scaffolding 

manufacturer as characteristic values, i.e. those for which the probability of the occurrence of worse 
values is usually set at 5%;  

– data estimated on the basis of laboratory tests of the elements that are used in the tested scaffold. 
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The best option when developing a numerical model is to conduct one’s own laboratory tests of the material 
properties of all the components. An example of such numerical modelling based on own research is the 
development of a modular scaffolding node model, the process of which was presented by Pieńko (2019). 
However, even with this approach, there can be a significant scattering of the measurement results, so the 
sensitivity analysis of the calculation results to the input data should be performed. 
In the global test simulation, substitute scaffold fragment models were used. The quality of such models has 
the greatest impact on the correctness of the obtained results, therefore a simplified sensitivity analysis was 
carried out for the parameters of the task related to the selection of parameters for simplified models of the 
stand-ledger joint and the horizontal stiffness of the platforms, namely for: 
– stiffness of the stand-ledger joint at bending with respect to the horizontal axis – kφy, 
– stiffness of the stand-ledger joint at bending with respect to the vertical axis – kφz, 
– slope of the second part of the σ-ε graph for crossing elements – module Ec2, 
– slope of the first part of the σ-ε graph for longitudinal elements – module Ep1, 
– slope of the second part of the σ-ε graph for longitudinal elements – module Ep2. 

A simplified sensitivity analysis consists in the performance of a series of calculations at different value 
ranges and in examining the influence of the input parameters on the load-bearing capacity of the scaffold, 
represented by the force F2max (or F3max). The exceedance of one of the following conditions was assumed 
as the criterion for achieving the load-bearing capacity: 
– for transitional elements modeling the stand-ledger joints 
 

1,y z

ycr zcr

M M
M M

   (26)

 
where: My and Mz – bending moments at nodes with respect to the horizontal and vertical axes, respectively,  
– for the other frame elements 
 

2 3

2 3
,yk

N M M f
A W W

      (27)

 
where: N – axial force, M2 and M3 – bending moments at nodes with respect to 2nd and 3rd axes of the local 
coordinates system, respectively, A – cross-section area, W2 and W3 – section modulus at bending with 
respect to 2nd and 3rd axes of the local coordinates system respectively. 
The results of the sensitivity analysis are shown in Figure 13  Figure 18. Figures 13 and 14 present the 
influence of the stiffness of the transition elements on the relationship between the load value, represented by 
the force F2, and the horizontal displacements Lg4 and Lg11. For all the calculations, the values of  
the critical forces Fcr, defining the load-bearing capacity of the scaffold were determined, and the results  
of the analyses are shown in Figure 15. In Figure 16 and Figure 17 the influence of the slope of the first part 
of the - curve concerning the longitudinal elements Ep1 and the second part of the - curve regarding the 
crossing elements Ec2 on the behaviour of the scaffold is demonstrated. The values of the critical forces Fcr 
obtained at different values of the modules Ep1 and Ec2 are shown in Figure 18. 
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  
a b) 

Fig. 13. Influence of the stiffness of the joint ky on the force-displacement relationship  
for the displacement in the direction: a) Lg4, b) Lg11. 

 


a b) 

Fig. 14. Influence of the stiffness of the joint kz on the force-displacement relationship  
for the displacement in the direction: a) Lg4, b) Lg11. 

 
 

 
Fig. 15. Influence of the stiffness of the joints ky and kz on the load-bearing capacity expressed as Fcr. 
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
a b) 

Fig. 16. Influence of the first part of the  graph concerning longitudinal elements (modulus Ep1) on  
the force-displacement relationship for the displacement in the direction: a) Lg4, b) Lg11. 

 


a b) 

Fig. 17. Influence of the second part of the  graph concerning crossing elements (modulus Ec2) on the force-
displacement relationship for the displacement in the direction: a) Lg4, b) Lg11. 

 

 
Fig. 18. Influence of the modules Ep1 and Ec2 on the load-bearing capacity expressed as Fcr. 

 
As shown in Figure 13  Figure 18, the stiffness of the joint kφy has the greatest influence on the load-bearing 
capacity of the structure and its behaviour. The stiffness of the joint kφz impacts the results from the 
beginning of the calculations, but the influence is much smaller. The remaining parameters do not influence 
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the behaviour of the scaffold in the first phase of its operation, which can be described with the linear 
relationship between the load and the structural response. The influence of the other parameters is revealed 
only upon reaching the non-linear range of calculations, when the modules Ep1 and Ec2 also have an impact 
on the operation of the scaffold. The modulus Ep2, i.e. the slope of the second part of the - graph 
concerning the longitudinal elements, has a negligible impact on the results in the examined case, hence, the 
results of the sensitivity analysis for this parameter are not shown in the figures. 

4.3. Model verification and discussion of the results 

The scaffold model described in Section 4.1 was verified by means of a comparison of the calculation results 
and the results of the global test measurements. Figure 19 shows the displacements in the directions indicated 
in Fig. 10a, obtained in global tests and computer calculations. The simulation results were obtained for two 
data sets: 
– Variant I – the properties of the stand-ledger joints and the truss elements modelling the horizontal 

stiffness of the platform were estimated on the basis of the measurement values that can be used for the 
design of a scaffold, i.e. the characteristic values defined as 5% quantiles at the confidence level of 75%, 
according to EN 12811-3, 

– Variant II – the properties of the stand-ledger joints and the truss elements modelling the horizontal 
stiffness of the platform, were estimated on the basis of the average measurement results. 

An assessment of the presented simulation results requires the determination of the criteria for the 
verification of a numerical model. The calibration methods discussed in the article are used in engineering 
practice for the purposes of developing scaffold models. In engineering practice, a model should primarily 
give results ensuring the safety of the structure. The major model verification criterion is not the exact 
overlap of the measurement and calculation paths, but smaller displacements obtained with the same loads in 
practice. As demonstrated in Figure 19, the graphs differ slightly, but the result has been found acceptable 
for use in the calculations of real structures. On the basis of the models presented in this paper, scaffolding 
systems and non-standard scaffolds are designed in Poland and many other European countries. 
In the case of scientific research, the model simulation verification criterion regards the most faithful and 
accurate representation of the behaviour of the tested object when loaded. This means that the geometric 
parameters and material properties that better reflect the behaviour of the structure should be used. The 
simplest method is to use average values and, as shown in Figure 19, simulations made in such a way give 
results which are more similar to the ones obtained in the tests. Still, in order to fully describe the behaviour 
of a scaffold, it is planned to perform analyses using random values of the most important parameters of the 
numerical model in future. 
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Fig. 19. The comparison of the measurements and calculations results based on the force-displacement relationships. 
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Fig.19. cont. The comparison of the measurements and calculations  

results based on the force-displacement relationships. 

5. CONCLUSIONS 

Scaffolds are light structures. This is achieved by using slender frame elements and perforated sheet decks. 
Due to a varying degree of the complexity of scaffold component geometry, a numerical simulation of the 
scaffold operation requires the use of special methods. Numerical calculations should be preceded by an 
assessment of the influence of the parameters adopted in the numerical model on the simulation results. In 
particular, the introduced simplifications must be carefully analysed. In the presented case, it regards the 
modelling of the stiffness of the stand-ledger joints, which have a significant impact on the results, and the 
model of the decks. The first part of the - graph concerning the longitudinal elements has a much greater 
influence on the calculation results than the second part of this curve and the - graph regarding the 
crossing elements. As can be seen, the calculations results are similar to the laboratory test results, but it 
cannot be claimed that they perfectly reflect them. This difference results from the following:  
– there are too many constituents which may not approach the ideal, such as: the material properties of the 

scaffold components, the stiffness of the stand-ledger joints, clearances of decks mounted on transoms, 
the method of anchoring; 

– the characteristics determined on the basis of laboratory tests are burdened with error, e.g. support 
construction inaccuracy, clearances in joints, components not checked in terms of material properties,  

– the method of transferring loads and a possible occurrence of dynamic effects during tests, 
– in Variant 1, in the numerical calculations of the scaffold, parameters selected to ensure the safety of the 

structure are used, which, by definition, differ from the average values. 

If one wants to compare the results of measurements and computer simulations, one either tries to "take care" 
of the laboratory test stand and the method of applying a load in the laboratory, one inventories them in 
terms of possible imperfections, or one takes into account possible deficiencies. In the case of  
the problem presented in the paper, the most important thing is to create a model that will guarantee the 
safety of the scaffold users. Each simplification applied must ensure that the results obtained in the 
calculations will guarantee the safe use of the structure. It may seem that scaffolds are not very interesting 
structures, but it is demonstrably not true. Due to the nature of the scaffold structure, it is necessary to 
demonstrate knowledge, experience and solve many scientific problems when conducting a numerical 
analysis of its behaviour. 
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                                                             ABSTRACT: This paper presents the analysis of steel market and its future prospects, as well as discusses the 
possible usage of thin-walled cold-formed steel (TWCFS) elements strengthened with CFRP composites. 
Economic analysis was carried out based on literature, professional media and market trends review.  
A reliability analysis was carried out for TWCFS elements strengthened with CFRP on the basis of laboratory 
and numerical tests and selected examples from the existing literature. On the basis of the above analyses, two 
main conclusions were drawn. Firstly, amidst increasing global demand for steel, the vulnerability of the 
global steel market to distortions and the rising costs of steel production, it will be beneficial for companies to 
reduce their demand for steel. Secondly, one possible way of reducing steel consumption in construction 
industry may be the usage of TWCFS elements strengthened with CFRP composites on the wider scale. 

  
  
  
  
  
  
  
  

                                
  Keywords: thin-walled structures, steel market, CFRP composites. 
                                

1. INTRODUCTION 

As steel prices continue to rise, there is an increasing need to find an optimal way to reduce steel 
consumption. One that would enable costs to be reduced in such a way that adverse effects are minimised for 
various industries, including the construction industry. One possible way to find this solution is to extend the 
usage of thin-walled steel elements. In this case, they would need to be reinforced, where potential can be 
found in the application of CFRP composites. This solution would allow for the reinforcement of cold-
formed metal elements to such an extent that they could be used in a wider range of structures, especially as 
the main load-bearing elements. This would reduce the impact of steel costs on the construction market. 
Currently, the number of publications on the issue is very limited, and most of them are focused on the 
analysis of compressed elements. Due to the increasing use of thin-walled elements in steel structures,  
it becomes necessary to optimize the methods of their reinforcement. It is a fact that the principles of using 
CFRP tapes to strengthen concrete structures are now widely known, however, there are no design guidelines 
for steel structures. Therefore this paper presents the analysis of current state of steel market and its future 
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prospects, as well as the possible usage of thin-walled, cold-formed steel elements strengthened with CFRP 
composites. 

2. CONDUCTED RESEARCH 

2.1. Economic 

Iron has accompanied mankind for millennia. Although the oldest known iron artefacts date to around 3200 
BC (Rehren et al. 2013), most historians consider not until the Iron Age of the 1st millennium BC as the 
period when this material became widespread (Hummel 1998). For hundreds of years, however, it remained 
a rather luxurious raw material, used mainly for weapons, jewellery and other small objects (Lucas 2005). Its 
mass usage did not really take place until the Industrial Revolution, since the process of transforming grey 
iron into wrought iron using puddling furnaces was developed in 1784 (Morton and Mutton 1967). However, 
the advancing industrialisation of the United Kingdom and the United States in the 19th century began to 
require increasingly flexible metals, largely linked to the intensive development of railway networks (Bogart 
et al. 2021). A key turning point for the industrial use of iron came with H. Bessemer's 1856 patent on the 
process of de-carbonising pig iron by oxidising excess carbon in a refractory ladle, which ushered in an era 
of affordable steel, enabling its mass usage. Due to declining production costs, steel saw  
a considerable growth in worldwide demand throughout the twentieth century, owing to its numerous 
applications in the electrical, automotive, and building industries. Steel output increased by 30 times over 
this time span, from 28.3 Mt in 1900 to 850 Mt in 2000 (Kelly and Matos 2021). Given that the world 
population nearly quadrupled from 1.6 billion in 1900 to 6.1 billion in 2000 (NEAA 2013), it is clear that the 
twentieth century saw a considerable increase in global per capita steel consumption, which increased from 
17.7 kg to 139.3 kg1. In 2019, global steel output reached 1870 Mt, with the Asian area accounting for 70% 
(1314.6 Mt) and China accounting for 53.5 % (996.3 Mt) (WPR 2021). Multiple economic conditions in the 
twentieth century for East Asian nations that have been extensively industrializing their economies have 
resulted in such a high degree of steel production density. The goal was to reduce the risk of excessive 
specialisation in the export of low-processed goods and raw materials (Chang 2006). These processes 
accelerated in the 1990s due to the increasing globalisation of capital markets and inflow of FDIs into 
emerging economies (Eichengreen 2006). As a result, in 2020, of the world's 20 largest (by volume) steel-
producing companies, 16 were based in East Asian countries, with as many as 12 of them in China (WSA 
2021). However, excessive production concentration is a significant risk factor for global supply chains. In 
March 2011, as a result of the earthquake and subsequent tsunami in Japan, 656 companies supplying 
components to Japanese and US buyers in the automotive, electronics and metals industries went bankrupt, 
contributing to significant delays and supply shortages that were still being felt 6 months after the disaster 
(Suzuki and Kaneko 2013). The global economy was similarly impacted by the COVID-19 pandemic, the 
effects of which some industries are still struggling with today. 
One of the markets that has been severely affected in 2020 is the global steel market. As mentioned earlier, 
the global economy is increasingly dependent on this raw material, making macroeconomic shocks to the 
steel market cause far-reaching implications. With the outbreak of the COVID-19 pandemic and lockdowns 
in many countries2, many steel mills halted production in the face of uncertainty over future steel demand, 
disrupting the global steel production cycle and causing a decline in global steel stocks (Monarch Metal 

                         
1 It is also worth noting that steel consumption per unit of GDP produced has also intensified over this period. The 
value of world GDP at 1900 prices increased from USD 1.9 trillion in 1900 to USD 36.7 trillion in 2000 (OECD, 
2006), meaning that world steel consumption per unit of GDP increased from 14.9 g to 23.16 g. Thus, the above 
measure clearly indicates the growing importance of this material to the global economy. 
2 Which was particularly hard felt by China's economy (accounting for more than half the world's steel production), 
where the most stringent lockdowns took place (Mokyr, 1998). 
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2021). However, the decline in steel demand was lesser than expected and by the second half of 2020 it was 
already back to pre-pandemic levels. This was largely related to a shift in demand for consumer goods, as 
during the lockdowns in the first half of 2020, consumers purchased steel-intensive products such as cars, 
refrigerators and other household appliances instead of going on holiday (Miningtechnology.com 2022). 
Demand for steel significantly exceeded its supply, which led to a surge in steel prices once stocks were 
depleted. In the second half of 2020, steel contract prices rose from the vicinity of USD 500 to USD 1000, 
reaching USD 1945 per tonne in August 2021 (Figure 1), an increase of more than 280% year-on-year. 
However, current steel futures prices suggest that a tipping point has already been passed, with contract 
prices for the second half of 2022 ranging around USD 900, which could imply a new long-term equilibrium. 
 

 

Fig. 1. Prices of steel tonne futures and European permits for 1t CO2 emissions in 2012-2022, USD (as of 02.02.2022) 
(Macrotrends, 2022; Market Watch, 2022; Trading Economics, 2022) 

 
Although market expectations do not fully reflect the reality until the end of 2022, it can be assumed that 
steel prices will start to gradually decrease over the course of 2022. Of course, it cannot be said that steel 
prices will return to their pre-pandemic levels in the near future - in the long term, other factors than those 
already cited will have an impact on steel prices. One of the main reasons for this is the high CO2 emission 
of the steel production process. Currently, the production of 1t of steel emits 1.8t of carbon dioxide.  
As a result, global steel manufacturing contributes around 6.6 percent of world CO2 emissions, amounting to 
approximately 51Gt (Gates 2021, World Population Review 2022). Meanwhile, given the growing climate 
problems over the 21st century, an increasing number of developed countries are beginning to move towards 
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decarbonising their economies3. The most developed system supporting the pursuit of this goal can be found 
in the European Union, where since 2005 permits to emit 1t of CO2 have been treated as  
a financial instrument (European Commission 2021b). In Figure 1 it can be observed that between 2012 and 
2022 the price of a permit to emit a tonne of carbon dioxide increased from around USD 10 to over USD 
100, which means that in EU the share of the price of CO2 emission permits in steel prices rose from 2.5% in 
2012 to 15.9% in 2022. Given the convergence of the objectives of most countries in the world in terms of 
reducing CO2 emissions in their economies, it can therefore be assumed that the trend in the granting of 
emission permits initiated by the EU will, over time, begin to influence (increase) steel prices around the 
world4. The technology of trapping carbon dioxide in the steel manufacturing cycle, which may cut 
emissions by up to 90% (European Commission 2014), could be a substitute to purchasing increasingly 
expensive emission permits. The anticipated costs of widespread deployment of this technology vary from 16 
to 29% of the steel value, implying that 'green' steel5 might cost between USD 871 and 964 per tonne in the 
coming years, assuming an average price per tonne of roughly USD 750 for the previous ten years.  
It appears to be in line with current market expectations (Gates 2021, Rhodium Group 2020). 

2.2. Reliability 

Information on thin-walled steel structures  
Thin-walled bars are distinguished by a certain geometric dimension ratio. The cross-wall section's thickness 
is considerably lower than its transverse dimensions, and the element's length is significantly bigger than the 
cross-dimensions. The works (Gosowski 2004, Piechnik 2000, Gosowski 2015) include detailed instructions 
for the limit values of transverse dimensions for thin-walled components. 
Thin-walled structures found wide application in civil engineering practice not only as the secondary 
steelwork but also as main bearing capacity members (Fig. 2), due to several benefits they can provide. 
Among them its lightness, namely high strength in relation to weight, which causes significant reduction in 
costs. It should be noted that the two requirements are fulfilled by all cold-formed steel sections and only  
a few hot-rolled steel sections. Thin-walled bars are classified as open, closed, or open-closed based on their 
cross-sectional geometry. 
 

   
Fig. 2. System of steel halls made of cold-formed profiles “Blachy Pruszyński” company 

                         
3 According to the European Green Deal strategy, Europe is to become a continent with zero CO2 emissions by 2050 
(Ministry of Economy, Trade and Industry, 2022). Japan has also adopted a similar resolution for its economy 
(European Commission, 2021a). Given the lower level of development of its economy, China does not plan to reach 
this goal until 2060 (United Nations, 2022). 
4 This is confirmed by the launch in July 2021 of the Chinese platform for trading CO2 emissions permits (Nogrady 
2021), which means that their quotations are already influencing steel prices in countries accounting for more than half 
of global steel production. 
5 In August 2021, the Swedish company Volvo produced its first batch of 'green' steel, while announcing that 
industrial application of the technology would not be possible until around 2026 (Kindy, 2021). 
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The abundance of available thin-walled cross-section shapes not only provides steel structure designers with 
a diverse set of elements, but also, as the author notes (Ostwald and Magnucki  2008), contributes to the 
emergence of new design problems due to the interaction of global and local forms of loss of stability. 
Contrary to popular belief, the more time and attention spent to laboratory and numerical analysis of thin-
walled steel structures, the more fascinating research topics emerge. As a result, several research institutions 
are still conducting active research on thin-walled steel structures. 
 
Basic information on composite materials  
FRP composite materials are made of high-strength nonmetallic fibers embedded in an epoxy matrix (Kałuża 
and Bartosik 2015). Currently, three types of composite materials are frequently used in construction, each 
with a different material from which the fibers are made: CFRP (Carbon Fiber Reinforced Polymer), GFRP 
(Glass Fiber Reinforced Polymer), and AFRP (Aramid Fiber Reinforced Polymer). Since carbon fibers have 
very strong strength properties when compared to other materials, CFRP tapes and mats with carbon fiber 
matrices are the most extensively utilized composite material for reinforcing building structures. Composite 
material manufacturers assert a wide range of applications for CFRP tapes (Aleksandrowicz 2005). They can 
be utilized anywhere it is necessary to reinforce the existing structure owing to increasing operating loads 
(e.g., due to a change in the building's function) or the appearance of new loads, such as the installation of 
heavy devices. According to studies undertaken by CFRP tape producers (Aleksandrowicz 2005), the basic 
advantages of CFRP composite materials include the following characteristics: resistance to aggressive 
agents, corrosion resistance, and no maintenance. An undeniable benefit of CFRP tapes is their low weight 
(1.6–2.0 g / cm) and narrow cross-section, which allows for nearly imperceptible reinforcement of the 
structure while also allowing the tapes to be coated. CFRP tapes may be used to strengthen constructions 
made of diverse materials due to their great variety, which allows for the selection of a tape with the right 
modulus of elasticity, tensile strength, or cross-sectional dimensions (concrete, steel, wood). It is also critical 
to be able to reinforce the structure using tensioned straps secured with anchoring devices. All of these 
benefits are topped off by the simplicity and speed with which they can be applied, as well as the minimal 
labor costs and convenience with which they can be transported. Despite their numerous advantages, these 
materials have drawbacks that restrict their usage. Anisotropic strength qualities characterize tapes made 
with unidirectional carbon fiber. The stiffness and strength of the tapes are quite high along the fibers, 
however they are substantially weaker perpendicular to the fibers (Linghoff et al. 2009). They have a poor 
compressive strength, around 10% of the tensile strength, and considerably lower for interlayer shear 
(debonding) (Mażulis et al. 2011).  
 
Strengthening technology for cold-formed steel structures  
Research on the strengthening method by gluing CFRP composites to TWCFS elements is being conducted 
on a global scale. In the work (Bambach et al. 2007) a method of determining the axial compressive strength 
of elements reinforced with CFRP composites was developed. The performance of axially compressed, thin-
walled hollow sections (SHS - Steel Hollow Sections) strengthened with CFRP was explained in the 
subsequent years as a continuation of this study (Bambach et al. 2009). The tapes were bonded in layers 
around the cross-section during the test, with the fibers in the first layer perpendicular to the load direction 
and parallel in the following layer. The acquired findings show that CFRP application greatly diminished 
local buckling and enhanced elastic buckling strength.  Scheme of spot-welded SHS test column subjected to 
compression is presented in Figure 3. In the case of axial compression, as described in (Bambach 2014), the 
main objective of the tests is to enable the control of buckling deformations and to ensure increased 
compressive strength. The strengthening of bonded CFRP mats was wrapped across the whole cross-section 
of the test column with square SHS in the work (Imran et al. 2018). The samples were subjected to 
compression. Figure 3. presents an example of such test subject. 
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Fig. 3. CFRP strengthened: a) SHS test column (Imran et al. 2018)  
and b) spot-welded SHS column (Bambach et al. 2009) 

 
Vertical and horizontal displacements can be greatly decreased depending on the location of the bonded 
CFRP tapes on thin-walled sigma cross-section subjected to bending as reported in (Szewczak et al. 2020) 
and (Szewczak et al. 2021). An illustrations of the test beams are presented in Figure 4. 
 

Fig. 4. Sigma cross-sections with CFRP tapes locations (Szewczak et al., 2020) 
 
The study carried out in (Tafsirojjaman et al., 2021) on the cyclically loaded welded beam-column 
connection built of square SHS components revealed, among other things, that utilizing three layers of CFRP 
tapes may significantly enhance the bending resistance of such a connection. Figure 5. shows the scheme of 
described strengthened connection. Example results of strengthening TWCFS elements with CFRP 
composites are shown in Table 2. It can be observed, that the usage of CFRP composites may provide 
significant improvement in different aspects of resistance and stability of TWCFS elements. 
 

Fig. 5. Schematic of the CFRP strengthened connection (Tafsirojjaman et al., 2021) 
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Tab. 1. Results of strengthening TWCFS elements with CFRP composites 

No Sources Conducted research Results 

1. 
(Szewczak et al., 2020; 
Szewczak et al., 2021) 

Bending tests performed on thin-
walled beams with a cross-section 
of 200x70x2 reinforced with 
CFRP. 

Horizontal displacements can 
be decreased by up to 45 
percent, while vertical by 
17.6%. 

2. (Tafsirojjaman et al., 2021) 

Cyclically loaded welded beam-
column connection composed of 
square SHS pieces, with the beam 
being SHS100x100x3 and the 
column being SHS100x100x9. 

By utilizing three layers of 
CFRP tapes, the bending 
resistance of such a 
connection may be enhanced 
by up to 41.3 percent. 

3. (Imran et al., 2018) 

Bonded CFRP mat reinforcement 
was wrapped around the whole 
cross-section. 

Reinforced specimens 
transferred 260 percent more 
compressive force before the 
first local buckling forms 
appeared than unreinforced 
ones. 

4. (Bambach et al., 2009) 

Axially compressed, thin-walled 
SHS reinforced with CFRP. 

The usage of CFRP greatly 
postponed local buckling and 
enhanced elastic buckling 
strength up to 400% of the 
initial value. 

3. RESULTS 

3.1. Economic 

Because of the increasing worldwide demand for steel, the international steel market's sensitivity to 
distortions due to its high density of production, and the rising cost of steelmaking, it will be advantageous 
for corporations to decrease demand for steel. Figure 6 shows a graphical representation of the reasoning 
behind this assertion.  
 

Fig. 6. Factors justifying the need for companies to reduce their steel demand. 
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In line with recent concerns, there is a growing need to develop a solution that will allow for a reduction in 
the material input to construction in the face of rising steel costs and projections for their future. One strategy 
to minimize steel demand is to build thin-walled constructions. In the light of the above, as well as due to the 
needs of the construction market and the requirements of investors, designers of steel structures are 
constantly working on designing safe and economical structures. The aim is to reduce the weight of the 
structure and shorten the assembly time, while meeting the required load-bearing and serviceability 
conditions. These requirements can be achieved by using a light steel structure made of thin-walled elements. 
The use of modern, highly automated bending, cutting and drilling processes for the production of cold-
formed steel structures, described e.g. in (Bródka et al. 2006), significantly reduces costs. Compared to 
traditional construction solutions, cold-formed elements have one of the highest indexes determining the 
strength-to-weight ratio of materials used in their production. According to (Bródka and Łubiński 1978), the 
development of thin-walled structures allowed for up to a 50% reduction in steel consumption compared to 
standard structures composed of hot-rolled profiles, as well as a 60% reduction in assembly time and a 25% 
reduction in construction costs. 

3.2. Reliability 

Thin-walled steel constructions have become more common in recent years as the major parts of load-
bearing structures. As a result, there could be a necessity reinforce them in the future, for example, due to 
higher external loads. Composites based on high-strength non-metallic fibres contained in an epoxy resin 
matrix (Fiber Reinforced Polymer), such as CFRP, GFRP, and AFRP tapes, are one of the futuristic 
techniques. These tapes are bonded to the structure to ensure rapid and effective strengthening while not 
interfering with the operation's continuity. Section 2.2 summarizes some of the research that has been done 
thus far. Furthermore, it can be observed that this innovative method may provide significant performance 
improvements for thin-walled elements. The quantity of publications on this subject is currently relatively 
low. As a result, more study on the issue discussed in this work is required. 

4. CONCLUSIONS 

A steel market analysis was conducted based on a review of the literature, industry media and market trends, 
and a reliability analysis of cold-formed thin-walled steel elements strengthened with CFRP composites was 
conducted based on a review of laboratory and numerical tests as well as selected examples from the existing 
literature. Based on the above analyses, two main conclusions were drawn. Firstly, in the light of the 
increasing global demand for steel, the vulnerability of the global steel market to distortions arising from 
high concentrations of production and the rising costs of steel production, it will be beneficial for companies 
to reduce their demand for steel. Secondly, one possible way of reducing steel consumption in construction 
industry and therefore construction costs may be the usage of cold-formed thin-walled steel elements 
strengthened with CFRP composites on the wider scale. While it remains true that the principles of using 
CFRP tapes to strengthen concrete structures are now well established, there is a lack of design guidance for 
steel structures. At present, the number of publications on this matter is very limited and most of them focus 
on the analysis of compressed elements. As a result, it is necessary to carry out further research on the 
subject described in this paper. 
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                                                             ABSTRACT: The aim of this study is to present the optimization of double-layer barrel vault structures 
taking into account the stresses and buckling of compression structural members and nodal displacements as 
constraints. The buckling is calculated according to the AISC-ASD. In the optimization process a new 
proposed algorithm named Rao-1 is preferred. The finite element analysis of barrel vault structures is carried 
out by using applicable programming interface properties of SAP2000 program. The MATLAB programming 
is used to data transfer from the SAP2000 for sending design variables and getting the stresses and nodal 
displacement of the structure analysis. 
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1. INTRODUCTION 

Barrel vault structures can be considered as special roof to cover large span areas such as stadium, shopping 
center and exhibition halls. These types of structures are usually designed double or single layer geometry in 
one direction curve form. In the case of the double layer barrel vault structures (DLBV), the bottom and top 
barrel vaults are connected to each other by braced line elements keeping the symmetry of the structure. 
Like the other civil engineering structures the barrel vaults are optimized for the minimum weight of total 
structure without violating some structural constraints such as nodal displacement and the buckling of 
compression line element. In the literature there are some paper related to the barrel vaults structures. The 
aim of these studies is to find a global optimal solution by using metaheuristic algorithm instead of using 
a mathematical explanation. 
Kaveh and Eftekhar (2012) presented optimal design of barrel vaults using the improved big bang-big crunch 
(IBB-BC) method. This method can be used for problems with continuous and discrete variables. Kaveh et 
al. (2014) used improved magnetic charged system search (IMCSS) for the optimal design of the DLBV. 
They used open application programming interface (OAPI) properties of SAP2000 for optimization of 
DLBV. Kaveh and Moradveisi (2016) applied two different optimization methods, colliding bodies (CBO) 
and its enhanced version (ECBO) for DLBV structures under the static loads. 
Hasançebi et al. (2011) presented a conference paper on large scale structural optimization by using ant 
colony optimization algorithm (ACO). They optimized 693-bar braced barrel vault structure with the discrete 
set design variables and compared their optimal results with those of other methods, such as particle swarm 
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optimization (PSO), harmony search optimization (HSO) and genetic algorithms (GA). Hasançebi and 
Kazemzadeh (2013) used big bang-big crunch algorithm (BB-BC) for discrete structural design optimization 
of barrel, grill and 3D framed structures. They used AISC standard sections for design variables and taken 
into account stress, stability and geometric constraints according to AISC-ASD. Hasançebi and Kazemzadeh 
(2015) presented study a new metaheuristic algorithm called adaptive dimensional search (ADS) is proposed 
for discrete truss sizing optimization problems. 
Grzywiński (2015) presented optimization algorithm available in Autodesk Robot Structural Professional for 
design of the double layer barrel vaults. Grzywiński et al. (2019) used teaching-learning-based optimization 
algorithm (TLBO) to solve the weight minimization problem of truss structures considering shape, and sizing 
design variables. Tunca et al. (2017) made a study on optimum design of braced barrel vault systems using 
cold-formed steel sections. The authors of that paper used the artificial bee colony algorithm (ABC) to 
optimize the structure. Dede et al. (2020) presented the Rao-1 algorithm for optimization of 384-bar double 
layer barrel vault structure without violating structural constraints such as nodal displacement, stresses and 
the buckling. 
In this study, optimization of DLBV using a new proposed algorithm named Rao-1 is presented. This new 
optimization algorithm is firstly presented by Rao (2020). The allowable steel pipe sections for the cross-
sectional areas of the bar elements of DLBV are taken from AISC-LRFD (1989). The nodal displacement 
and the tension or compression stresses are taken into account as constraints for the optimization process. 
The allowable tensile and compressive stresses are calculated according to the AISC-ASD (1994). 

2. RAO ALGORITHM 

After developing several successful optimization algorithms such as TLBO (Rao 2011) and Jaya (Rao 2016), 
Rao proposed a new algorithms named: Rao-1, Rao-2, and Rao-3 (Rao 2020). Like his previous optimization 
algorithms, the Rao algorithms does not need any algorithm-specific parameters. Rao algorithms is 
a population-based optimization technique. 
Let f(x) is the objective function to be minimized (or maximized). At any iteration “i”, assume that there are 
“m” number of design variables, “n” number of candidate solutions (i.e. population size, k=1,2,…,n). Let the 
best candidate best obtains the best value of f(x) (i.e. f(x)best) in the entire candidate solutions and the worst 
candidate worst obtains the worst value of f(x) (i.e. f(x)worst) in the entire candidate solutions. If  is the 
value of the “j-th” variable for the “k-th” candidate during the “i-th” iteration, then this value is modified as 
per the following equations: 
 

 , , , , , , , , ,Rao-1: 1 ,j k i j k i j i j best i j worst iX X r X X     (1)

 
   , , , , , , , , , , , , , , , , , ,Rao-2: 1 2     ,j k i j k i j i j best i j worst i j i j k i j l i j l i j k iX X r X X r X or X X or X       (2)

 

   , , , , , , , , , , , , , , , , , ,Rao-3: 1 2     ,j k i j k i j i j best i j worst i j i j k i j l i j l i j k iX X r X X r X or X X or X       (3)

 
where:  ,1 j ir  and ,2 j ir  are a randomly number in the range [0, 1]. 
In Eqs.(2) and (3) the term , , , ,  j k i j l iX or X  indicates that the candidate solution “k” is compared with any 
randomly picked candidate solution “l” and the information is exchanged based on their fitness values. If the 
fitness value of “k-th” solution is better than the fitness value of “l-th” solution then the term , , , ,  j k i j l iX or X  
becomes , , .j k iX  On the other hand, if the fitness value of “l-th” solution is better than the fitness value of “k-
th” solution then the term , , , ,  j k i j l iX or X  becomes , , .j l iX  The flowchart of Rao-1 algorithm is shown in 
Figure 1. Rao algorithms are given in the following web page: https://sites.google.com/view/raoalgorithms/. 
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The Rao-2 algorithm looks structurally very similar to the Particle Swarm Optimization algorithm (Kennedy 
and Eberhart, 1995), but is designed to be even simpler and without parameters. A particle in this algorithm, 
instead heading to the personal best and the global best simultaneously, it heads towards the best and away 
from the worst, and it has no inertia. 
A PSO method performs search using particles population. During the search process, the searching velocity 
is updated  1jkV t  to be used to determine the following position  1jkX t  . The current position  jkX t  
and velocity of each particle  jkV t  can be modified by the following Eqs. (4) and (5). 
 

         1 1 , 2 2 ,1 ,jk jk pbest jk jk gbest jk jkV t wV t C r X X t C r X X t       (4)

 
     1 1 ,jk jk jkX t X t V t     (5)

 
where: r1 and r2 represent random numbers C1 and C2: cognitive and social acceleration constant 
respectively, w: inertia weight factor. 
 

Fig.1 Flowchart of Rao-1 algorithm. 

3. FINITE ELEMENT ANALYSIS OF BARREL VAULT STRUCTURES 

Finite element method (FEM) is very well represented in many articles and books. As an example is 
recommended (Lewiński et al. 2019). Barrel vault structures can be analysis like a 3D truss structures. A bar 
element for barrel vault structure is given in the Figure 2. As seen from this figure, 3D bar element has two 
nodal points and three degree of freedom in each node. These freedoms are the displacements in x, y and z 
directions. 
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Where, “i”, “j” are the nodal points, x, y, z are the element axis sets, uix, viy, wiz are displacements for node 
“i” in x, y, z direction, respectively.  ujx, vjy, wjz are displacements for node “j" in x, y, z direction, 
respectively. The nodal displacements {U} and load forces {F} are shown in the vector form given below: 
 

   ,    .

ix ix

iy iy

iz iz

jx jx

jy jy

jz jz

u f
v f
w f

U F
u f
v f
w f

   
   
   
          
   
   
   
      

 (6)

 
 

Fig.2 A bar element in 3D for barrel vault structure. Fig. 3. Local and global axes for 3D truss element. 
 
Element stiffness matrix for the barrel vault structure is calculated by the using Eq. 7. 
 

 

1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,  
1 0 0 1 0 0

0 0 0 0 0 0
0 0 0 0 0 0

e

ij

EAK
L

 
 
 
 

   
 
 
  

 (7)

 
where E is Young modulus, L is length of the bar element and A is the cross-sectional area of the bar 
element. 
The element stiffness matrix created in the element axes must be transformed to the global axes by using the 
transformation matrix. To calculate the transformation matrix, direction cosines given in the Figure 3 are 
used. Where X, Y, Z are the global axes, x, y, z are the local axes, and , ,  are the angles for the bar 
element with the global direction X, Y and Z, respectively.  
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The transformation matrix T is given in the Eq. 8, where the ,  ,  X Y Z    are the cosine angles of the , , , 
respectively. 
 

cos ,j j
X

x x
L

 


   (9)

cos ,j j
Y

y y
L

 


   (10)

cos .j j
Z

z z
L

 


   (11)

 
The element stiffness matrix in the global axes can be formed by the following equation. Then, the stiffness 
matrix for all structure is created by assembling the element stiffness matrix. 
 
       . . ,s T e

ij ij
K T K T  (12)

   
1

.
n

s

ij
k

K K


  (13)

 
Where “n” is the number of elements. After the assembling, structural stiffness matrix and load vector, the 
general equation of nodal deformation of the structures can be written as: 
 
    .K U F  (14)

4. NUMERICAL EXAMPLE 

The objective function of the present study is to minimize the weight of the barrel vaults structures. For this 
purpose, the general equation can be written as follow. 
 

1
   1,2,..., ,

m

obj i i
i

F L A i m


   (15)

 
where “Fobj” is the objective function, “ρ” is the material density, “L” is the elements length in vault 
structure, “A” is the cross-sectional area and “m” is the number of elements. In this study, the nodal 
displacement of the free nodes, the allowable stresses and the slenderness ratio for tensile and compressive 
member are taken as design constraints: 
 

, , and t t c c
j j all j j all      =1,2,..., ,i nm  (16)
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, ,

 and 

 and 

t t c c
j j all j j all

t t c c
j j all j j all

 

 

   

   
 =1,2,..., ,j nm

 (17)

 
where “δi” is the nodal displacement, “δmax” is the maximum displacement, “nn” is the number of nodes, 
“ t

jσ ” is the tensile stress and “ t
j ,allσ ” is the allowable tensile stresses, “ c

jσ ” is compression stress, “ c
j ,allσ ” 

allowable compression stress, “nm” is the number member and the “λ” is the slenderness ratio both tensile 
and compression members. If the design variables violate the constraint, the penalty function in terms of the 
total weight and the violated constraints are calculated as given below. 
 

  2
11 ,penaltyf W C    (18)

1 21.0 and 1.5 1.5 ,Iter
MaxIter

     (19)

where “Iter” is the current iteration number and the “MaxIter” is the maximum iteration number. So, the “ε2” 
will be gradually equal to 3. The penalty function “C” is calculated as given below: 
 

,C C C C      (20)

nm nm nm

1 1 1
1.0 ,  1.0 ,  1.0 .i i i

i j j
max all all

C max C max C max  
  
    

     
               

     
    (21)

 
At the end of the optimization process, the penalized objective function must be equal to the objective 
function. That is, the penalty function must be equal to zero. By using the penalty function, the penalized 
objective function can be written as given below. By using the penalized objective function at all steps of the 
optimization process, it is hoped that the final candidate solutions will yield the best solution and do not 
violate the constraints. If the final candidate solutions don’t violate the constraints of the optimization 
problem, the penalized objective function will be equal to the objective function. 
 
     1 .obj objF C    (22)

 

a) b) 

Fig. 1. a) The platform shelter at Thirumailai Station, b) the cross-section of the parallel vault and railway 
tracks. 
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5. NUMERICAL EXAMPLE 

The example is a three-dimensional DLBV structure which was already built for roofing the platform 
shelters at the Thirumailai Railway Station in Chennai, India as shown in Fig. 1(a) and 1(b). The braced 
barrel vault contains 259 joints and 693 bars which are linked into 23 independent size variables considering 
the symmetry about centerline as shown in Fig. 2a. The member grouping scheme is shown in Fig. 2(a) and 
the front and plan view are provided in Fig. 2(b) and Fig. 2(c), respectively. 
It is assumed that the barrel vault is subjected to a uniform dead load (DL) pressure of 35 kg/m2, a positive 
wind load (WL) pressure of 160 kg/m2, and a negative wind load (WL) pressure of 240 kg/m2 which are 
combined under two separate load cases for design purposes as follows: 
(i)  1.5(DL+WL) = 1.5(35 +160) = + 292.5 kg/m2 (+2.87 kN/m2) 
(ii) 1.5(DL–WL) = 1.5(35 – 240) = –307.5 kg/m2 (–3.00 kN/m2), along z direction. 
 

a) 

 

b) 

Fig. 2. The 693-bar braced vault: a) 3-D view, b) front view. 
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The displacements of all joints in any direction are restricted to a maximum value of 0.254 cm (0.1 in). The 
strength and stability requirements of steel members are imposed according to Allowable Stress Design of 
the American Institute of Steel Construction (ASD-AISC). In Table 1 the structural members are adopted 
from a list of 37 circular hollow sections. The obtained optimal design variables and the value of objective 
function are given in Table 2 by comparing the previous study given in literature. 
 

c) 

Fig. 2 The 693-bar braced vault: c) plan view. 
Tab. 1. Allowable set of steel pipe sections. 

No Type D (in) No Type D (in) No Type D (in) 
1 ST ½ 16 EST ½      
2 ST ¾ 17 EST ¾      
3 ST 1 18 EST 1      
4 ST 1 ¼ 19 EST 1 ¼      
5 ST 1 ½ 20 EST 1 ½      
6 ST 2 21 EST 2 31 DEST 2 
7 ST 2 ½ 22 EST 2 ½ 32 DEST 2 ½ 
8 ST 3 23 EST 3 33 DEST 3 
9 ST 3 ½ 24 EST 3 ½      

10 ST 4 25 EST 4 34 DEST 4 
11 ST 5 26 EST 5 35 DEST 5 
12 ST 6 27 EST 6 36 DEST 6 
13 ST 8 28 EST 8 37 DEST 8 
14 ST 10 29 EST 10       
15 ST 12 30 EST 12       

ST=standard weight, EST=extra strong, DEST=double-extra strong 
 
Tab. 2. Comparative results for the 693-bar braced barrel vault structure. 

Element  Hasançebi et al. (2011)  Kaveh et al. (2014)  This study 
group  ACO HS  MCSS IMCSS  Rao-1 

1  DEST 2 ½ EST 3 ½  EST 3 EST 3 ½  DEST 2 ½ 
2  ST 1 EST ¾  ST 1 ST 1  ST 1 
3  ST 1 ST 1  EST ¾ EST 1  ST ¾ 
4  ST 1 ST 1  EST ½ ST ¾  ST 1 
5  ST 1 EST ¾  EST ½ ST 1  ST ¾ 
6  ST ¾ ST 4  EST 3 DEST 2  EST 3 ½ 
7  EST 1 ST 1 ¼  EST 1 ¼ ST 1  ST 1 
8  ST ¾ ST ¾  ST 1 ST 1 ¼  ST 1 
9  ST 3 ½ ST 3 ½  ST ¾ EST ½  ST 1 

10  DEST 2 ½ ST 1  EST ½ ST ½  ST ¾ 
11  ST 1 ST 1 ¼  EST 2 ½ ST 3  DEST 2 
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Tab. 2. Comparative results for the 693-bar braced barrel vault structure. 
12  EST 1 EST 1 ¼  EST 1 ½ EST 1 ¼  EST 1 
13  EST 1 ¼ EST 1 ½  ST 2 ½ EST 2  ST 2 
14  EST 1 EST 1 ¼  ST ¾ ST ½  ST 1 
15  ST ¾ ST ¾  ST ¾ ST ¾  ST ¾ 
16  EST 1 EST 1 ¼  ST 1 ¼ EST 1 ¼  ST 2 
17  EST 1 ¼ EST 1 ¼  ST 1 ½ ST 1 ½  ST 1 ¼ 
18  ST 1 ST 1 ¼  ST 3 ST 3  ST 2 ½ 
19  ST 1 ¼ EST 1  EST ¾ ST ¾  ST 1 
20  ST ¾ ST ¾  ST ½ ST ¾  ST ¾ 
21  ST 2 ½ ST 2 ½  ST 1 ¼ ST 1  ST 1 
22  ST 1 ¼ ST 1  EST ¾ EST 1  ST ¾ 
23  ST 1 EST 1  ST ¾ EST ¾  ST ¾ 

Weight (kg)  4989.15 5095.07  4904.42 4785.81  4810.03 
NA  45650 48150  14300 9200  17280 

NA – number of analysis 

6. CONCLUSION 

The main purpose of this study is to make the optimal design of the double-layer barrel vault structure using 
a metaheuristic algorithm named Rao-1. For this aim, 693-member barrel vault structure is examined. To 
carry out the optimization process the required computer codes are developed in MATLAB. This program 
can transfer data from the SAP2000. The optimal result obtained from this study shows that the proposed 
algorithm can be effectively used for the optimization of the structures. 
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                                                             ABSTRACT: The paper presents the problem of damage detection in flat truss girders while considering the 
static external loadings. The presented issue of flat truss girders statics is described and solved by the Finite 
Element Method (FEM). Damage in truss is modeled as local stiffness reduction of one chord element. The 
analyses of static structural responses are carried out with the use of Discrete Wavelet Transform (DWT). 
Signal decomposition according to the Mallat pyramid algorithm is applied. The measured variables are static 
vertical deflections and angles of rotation. All of them have been established at selected nodes of finite 
elements. The numerical examples are presented. 
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1. INTRODUCTION 

Damage detection has focused much attention over the last decades. There are different non-destructive 
techniques which enable the identification of defective part of a structure. This problem was investigated by 
many scientists and developed while using some approaches based on e.g. optimization of loads (Mróz & 
Garstecki, 2005), information on natural frequencies (Dems & Mróz 2001) and others, which belongs to the 
class of soft computing methods, e.g. (Burczyński et al. 2004) and (Rucka and Wilde 2010). Another 
approach in this field may be the application of Discrete Wavelet Transform (DWT) to the structural 
response signal analysis, e.g. (Knitter-Piątkowska 2011), (Knitter-Piątkowska et al. 2016), (Guminiak and 
Knitter-Piątkowska 2018) which  allows to locate areas of the structure where damage (defects) can be 
expected, e.g. in the form of local stiffness loss. Wavelet functions proved to be highly useful in many 
applications, including their implementation to the theory of homogenization (Kamiński 2002). 

1.1. Theoretical foundations of the Discrete Wavelet Transform (DWT) 

Let the function )(t , called the wavelet function (mother function), be continuous and belong to the field 
of )(2 RL . Additionally, the function )(t  must satisfy the condition of admissibility (Mallat 1999). The 
mother function may be real- or complex-valued. The real-valued wavelets will be applied in the considered 
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cases. For signal decomposition the set of wavelets (wavelet family) is needed. This set of functions is 
obtained by translating and scaling the function ψ what can be written by means of the relation: 
 

,
1 ,a b

t b
aa

      
 

 (1)

 
where t is a time or space coordinate, a and b are the scale and translation parameters respectively. The 
parameters a and b take real values   Rba  ,  and additionally 0a . The element 21a  expresses the 

scale factor which ensures the constant wavelet energy regardless of the scale, i.e. 1,   ba . 
In the present analysis, Discrete Wavelet Transform (DWT) plays the leading role. The wavelet family can 
be obtained by substitution ja 21  and jkb 2  in the equation (1). This leads to the relation: 
 

     2
, 2 2 ,j j
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in which k and j are scale and translation parameters, respectively. 
The Discrete Wavelet Transformation (DWT) of the signal (e.g. the response function of the structure)  tf  
is expressed by the equation:  
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The scalar product of the response function  tf  and the wavelet function allows to find the set  
of wavelet coefficients   kjkj tfd ,, , . This enables the discrete signal to be represented in the form  
of the combination of linear wavelet functions kj ,  with wavelet coefficients kjd ,  which can be written as: 
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for the number of discrete input data equal to J2 . 
The multi-resolution analysis is performed with the use of the scaling wavelet function (father function) 

 tkj ,  in the following form: 
 

   ktt jj
kj  22 2

,  . (5)

 
The scaling function  tkj ,  limits the unit area and has the unit energy. This condition describes the 

following relation: 
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This function fulfills the orthogonality and the translation conditions what can be written in the form:    
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    0   ,0,  nntt  . (8)
The input function  tf  is developed in series while using the basic (mother) function  t  and the scaling 
(father) function  t  
 

     , , , ,
0

,j k j k j k j k
k k j

f t a t d t 
  

  

      (9)

 
where kja ,  are the coefficients of the scaling wavelet determined as follows: 

 
  kjkj tfa ,, , . (10)

 
For 1-D DWT analysis, decomposition of the discrete signal is carried out according to the Mallat pyramid 
algorithm (Mallat, 1999): 
 

jJnDDDSf nJJJ  ,...... 1 , (11)
 
where each component in signal representation is coupled with a specific range of frequency and provides 
information at the scale level  Jj  ..., ,1 . The Mallat pyramid algorithm is presented in Figure 1. 
 

 
Fig. 1. Mallat pyramid algorithm for 1-D analysis. 

 
The discrete parameter J describes the level of a multi-resolution analysis (MRA), JS  expresses the smooth 
signal representation, nD  and nS  are the details and rough parts of the transformed signal respectively and 

1D  corresponds to the most detailed representation of the transformed signal. The function Jf  must be 
approximated by JN 2 discrete values to fulfill the dyadic requirements of DWT. Basic and scaling 
functions of Daubechies 4 wavelets are presented in Fig. 2. 
 

 
Fig. 2. Daubechies 4 wavelet function: a) – basic (mother) and b) – scaling function (father).  
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2. FINITE ELEMENT ANALYSIS  

The statics of a system of flat truss girders is described and solved in terms of the Finite Element Method:  
 

, K q P  (12)
 
where K , q  and P  are the stiffness matrix, the displacement vector and the right-hand-side vector of the 
whole structure respectively, with the appropriate boundary conditions introduced.  
The deformation of structures is described by means of two-node spatial bar finite elements (Figure 3). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Two-node spatial bar finite element. 

3. NUMERICAL EXAMPLES 

The aim of the present work is to detect the localization of weakened parts of the structure provided that 
damage (deterioration) takes place. The system of flat truss girders subjected to classic code loads has been 
analyzed (Figure 4). The damage was introduced by stiffness reduction of the selected chord element along  
a very small part of its length. The span and the height of the analyzed truss girder are 24.0 m and 1.65 m 
respectively. The upper and lower chords are made of steel hot-rolled profiles such as HEB 300 and HEB 
200  respectively whereas the diagonals are made of thin wall pipe 120×120×6 mm. The lower chord was 
divided into 160 finite elements, wherein the damaged part is modeled by HEB 180 profile. Numerical 
investigation has been carried out while basing on the signal analysis of structural static response which has 
been obtained while using the Finite Element Method (FEM) in terms of 3D two- 
-nodes finite elements and ROBOT Structural Analysis computational program. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Analyzed system of flat truss girders. 
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Table 1 presents the basic dimensions and material properties for steel structural elements. 
 
Tab. 1. Element and material properties 

Element Profile Material Young modulus [kPa] 
Upper chord HEB 300 S355 210 · 106 
Lower chord HEB 200 S355 210 · 106 
Chords (defects) HEB 180 S355 210 · 106 
Diagonals RK 120×120×6 S355 210 · 106 
Diagonals (defects) RK 90×90×5 S355 210 · 106 

 
Tables 2 and 3 provide a set of permanent and variable loadings acting on the entire structure. 
 
Tab. 2. Loadings: permanent loading  

Permanent loading Label Value Width Characteristic value 

Calc. coeff. γf = 1.35 [kN/m2] [m] [kN/m] 

The weight of the structure Permanent Included in the computational program 

Self-weight of the roof Self-weight 0.32 6.0 1.92 

 
Tab. 3. Loadings: variable loading 

Variable loading Label Value Width Characteristic value 

Calc. coeff. γf = 1.5 [kN/m2] [m] [kN/m] 

Hangers, installations Variable 0.15 6.0 0.9 

Snow loading Snow 0.72 6.0 4.32 

Wind, zone H – suction  Wind suction − 0.51 6.0 3.06 

Wind, zone I – pressure  Wind pressure 0.15 6.0 0.9 

 
The analyzed structure response signals will be: the deflection line and angle of rotation of the lower chord 
girder and in addition, horizontal displacements of the selected diagonal. The most unfavorable load 
combinations were selected for the analysis in accordance with the applied engineering practice. 

3.1. Example 1. Deterioration of the lower chord 

The response signal in the form of deflections of the lower truss chord has been analyzed and transformed 
while using DWT procedures. The set of Daubechies 4 and 8 families of wavelet functions has been applied 
to the preliminary analysis. The introduced weakening of the cross-section is shown in the Figure 5 in the 
relation to the entire single girder. Figure 6 shows the weakened cross-section in the relation to finite element 
division. Introduced weakening part of the lower chord is marked with a red circle. 
 
 
 
 
 
 
  

Fig. 5. The place of introduction of the weakening cross-section in the relation to the entire girder. 
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Fig. 6. The place of introduction of the weakened cross-section in relation  
to the entire girder with the division into finite elements. 

 
The detail of the impairment of the lower chord cross-section is presented in the Figure 7 and indicated with 
a red circle. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Reduction of cross-sectional stiffness in the relation to the set of finite elements. 
 
The damage position is sufficiently precisely indicated while employing DWT procedure and Daubechies 4, 
6 and 8 sets of wavelet functions what is shown in Figures 8–10. One can observe an evident disturbance of 
the transformed signals and high peaks in the expected defective area in every of discussed cases.   
 

 
Fig. 8. 1-D DWT of vertical displacements for Daubechies 4 (detail 1)  

and N = 128 number of measurements. 
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Fig. 9. 1-D DWT of vertical displacements for Daubechies 6 (detail 1)  

and N = 128 number of measurements. 
 

 
Fig. 10. 1-D DWT of vertical displacements for Daubechies 8 set of wavelets (detail 1)  

and N = 128 number of measurements. 

3.2. Example 2. Deterioration of the diagonals  

In this example, two failures of the selected diagonals have been introduced. These weakening part of the 
diagonals are shown in Figures 11 and 12 marked with a red circle. The response signal in the form of 
deflections of the lower truss chord has been analyzed and transformed while using DWT procedures.  
The set of Daubechies 8 family of wavelet functions has been applied to the preliminary analysis.  
 
 
 
 
 
 
 

Fig. 11. The places of introduction of the weakening cross-sections in the relation to the entire girder. 
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Fig. 12. Reduction of cross-sectional stiffness in the relation to the set of finite elements. 
 
Damaged parts of the structure can be sufficiently precisely indicated which is shown in Figure 13 where 
evident disturbances of the transformed signal are visible. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13. 1-D DWT of the difference between angle of rotations φy for undamaged and defective structure for 
Daubechies 8 set of wavelets (detail 1) and N = 128 number of measurements. 

3.3. Example 3. Deterioration of one diagonal - change in the thickness of the walls 

In this example, one failure of the selected diagonal will be introduced. This weakening part of the diagonal 
is shown in Figure 14 and 15 marked with a red circle. The response signal in the form of horizontal 
displacements has been analyzed and transformed while employing DWT procedures. The set of Daubechies 
8 families of wavelet functions has been applied to the preliminary analysis. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14. The place of introduction of the weakening cross-section in relation to the diagonal  
with the division into finite elements. 
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Fig. 15. Reduction of cross-sectional stiffness in the relation to the set of finite elements. 
 
Damaged parts of the structure can be sufficiently precisely indicated which is shown in Figures 16 and 17 
where evident disturbances of the transformed signals are visible in the area of the expected occurrence of 
the defect. Transformation disorders at the boundaries of the transformation window are common, one can 
avoid them, e.g. by reducing the area under study and compacting discrete points. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 16. 1-D DWT of vertical displacements for Daubechies 8 set of wavelets (detail 1)  
and N = 32 number of measurements. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 17. 1-D DWT of horizontal displacements for Daubechies 8 set of wavelets (detail 1)  
and N = 32 number of measurements. 
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4. CONCLUSIONS 

Application of discrete 1-D Discrete Wavelet Transformation (DWT) to recognition of structural response 
signal discontinuity in the analysis of flat truss girders is discussed in the paper. Measured response signals 
were assumed as the static vertical and horizontal deflection as well as the angles of rotations given at the 
selected, discrete points.  In general, the proposed method was highly efficient while applied only to the 
decomposition of the data set obtained from undamaged structure. However, in one discussed case, while 
transforming the angle of rotations signal, the data set from undamaged structured occurred to be 
indispensable. All defects were properly localized while using asymmetric Daubechies 4, 6 and 8 set of 
wavelets. The minimum number of measurements was assumed as thirty two. The position of defects was 
quite correctly identified by the high peak and evident disturbances of the transformed data. The presented 
analyzes have shown that the DWT tool can be successfully used in the process of detecting damage in 
engineering structures. The analyzed response signal can be basically any discrete function, e.g. the function 
of the influence line of a given static or geometric quantity (Knitter-Piątkowska et al. 2016), (Guminiak and 
Knitter-Piątkowska 2018). However, the deflection function is most often used as a set of numbers that can 
be obtained in a relatively simply manner both numerically and experimentally. 
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                                                             ABSTRACT: The article examines bar structures modelled by finite elements, in which nodes are flexibly 
connected to the supports. Two-node elements with three degrees of freedom at each node and non-curved 
axis were used. Polynomial shape functions were adopted to derive the stiffness and mass matrices, but they 
were modified by introducing rotational flexibility in the boundary supports. The determined finite element 
matrices were used for the numerical analysis of the circular arch to determine its dynamic parameters. 
Changes in the frequency of free vibrations of arches of different heights with changing rotational elasticity of 
supports were determined. 
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1. INTRODUCTION 

The free vibration analysis of circular arches is widely described in the literature due to their wide 
application in civil engineering (e.g., bridges, covering of large-scale buildings or underground structures). 
Lamb wrote one of the first papers about this issue (Lamb 1887).  
Analysis of arch structures requires a six-order differential equation to be solved. The basic model adopted 
for the analysis of arches is based on the Euler-Bernoulli theory, which states that displacements are caused 
only by bending, while the effects of shear deformation, rotary inertia and the influence of axial extensibility 
are neglected. An exact solution for such an arch, also called the Euler-Bernoulli arch, can be found in the 
work by Wasserman (1977), where both free and forced vibrations are considered. Euler-Bernoulli model is 
often sufficient for most engineering problems, but for thick and shallow arches it does not give sufficiently 
accurate results. In such cases, the authors use a model that includes the effects of axial extensibility, shear 
deformation and rotary inertia – Timoshenko circular arches. The exact solution was given in the work Rao 
and Sundararajan (1969).  
In the analysis of modern and complex structures, the finite element method is primarily used and therefore it 
is developed by many authors. An exact dynamic stiffness matrix for in-plane and out-of-plane vibrations 
was derived by Calio et al. (2014). Many authors have also studied influence of rotatory inertia and shear 
deformation (Tufekci and Arpaci 1998) or axial extensibility (Chidamparam and Leissa 1995).  
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The researchers analyzed arches with different boundary conditions, including those supported by flexible 
supports. The latter are important, especially when dynamic effects are taken into account and reduction of 
vibration is necessary. Yang et al. (2004) showed that the introduction of flexible supports significantly 
reduces the natural frequency of the structures. Xu et al. (2002) analyzed shallow arch with flexible supports 
subjected to impulse load. Flexible supports were also considered in the paper by Zhuo et al. (2021). The 
authors proved the effectiveness of flexible supports in reducing the damage of the underground arch 
structure. Closed-form solution for dynamic analysis of circular beam with elastic boundary conditions can 
be found in paper by Lin et al. (2001). 
In this paper the dynamic parameters of a circular arch with flexible boundary supports are analyzed using 
the finite element method. It was assumed that the supports have a rotational flexibility modelled by an 
elastic spring. Two-node elements with three degrees of freedom at each node and non-curved axis were 
used. Polynomial shape functions were adopted to derive the stiffness and mass matrices, but they were 
modified by introducing rotational stiffness in the boundary supports (Seculovic et al. 2002, Ozturk and 
Catal 2005). In Section 2 the formulation of dynamic problem is presented and the stiffness and mass 
matrices for element with rotational stiffnesses are derived. In Section 3 numerical examples are showed. 
Several circular arches of various heights and stiffnesses of boundary supports were analyzed. The paper 
ends with final conclusions in Section 4. 

2. DYNAMIC PROBLEM 

In order to determine the dynamic parameters of the structure, the stiffness matrix and the mass matrix of the 
beam element were determined. 

2.1. Stiffness matrix 

In a beam finite element, the rotational stiffnesses at the nodes are denoted as k0 and kl, respectively. Figure 1 
shows that the beam element is connected to the supports by rotating elastic elements, while the sections 
marked as e0 and el are assumed to be infinitely short and have infinitely high stiffness. 
 

 

 
 

Fig. 1. Beam finite element with flexible connections. 
 
The displacements of the beam element at the nodes are marked with asterisks. The translational 
displacements of the beam element nodes and the supports are the same, i.e. 1 1q q , 3 3q q , while the 
rotations of the supports and ends of the beam element differ due to the rotational flexibility of the 
connections: 
 

*
2 2 2sq q q  , *

4 4 4 .sq q q   (1)
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In addition, the bending moments in the beam nodes ( 2Q  and 4Q ) determine the values of the rotation angles 
in the elastic constrains: 
 

* *
2 4

2 4
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,  .s s
l

Q Qq q
k k

   (2)

 
Using the well-known relationships between nodal forces and displacements in a beam element and taking 
into account the relationships given in Eq. (1), one can write: 
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After substituting Eq. (2) into Eq. (3) and some transformations, the forces iQ  can be expressed as follows: 
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where  2 2

0 012 4 4 .l lEI k lEI k lEI k k l     Substituting Eq. (4) into Eq. (2), the rotations in the elastic 
constraints can be written in the matrix form: 
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Finally, the vector of rotations in the flexible constraints is as follows: 
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If the displacement field for a beam with flexible supports is approximated by the functions:  
 
      * ,w x x x  N q N I D q  (7)
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where N(x) =[N1(x) N2(x) N3(x) N4(x)] is the set of shape functions for the beam element fixed at both ends: 
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and q is the vector of beam displacements (Fig. 1). 
 
Then the expression for potential energy can be written as: 
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where N(x) is the set of the shape functions for the beam element fixed at both ends,  is the identity matrix 
and S is the matrix containing rotational stiffnesses of nodes: 
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Matrices K1 and KS are as follows: 
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Then, both the stiffness matrix and the mass matrix were supplemented with elements related to the axial 
degrees of freedom. These additional elements are the same as in the classical stiffness and mass matrices for 
a bar element, since they are not affected by rotational stiffness. 
Finally, the stiffness matrix for a beam element with rotational flexibility is a sum of matrices given in (11): 
 

1 ,s K K K  (12)
 
and can be expressed in the following form: 
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2.2. Mass matrix 

Assuming that the mass density  is constant along the element, the element consistent mass matrix for beam 
with the rotational flexibility at nodes can be formulated as: 
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Finally, the mass matrix of the considered element can be written in the following form: 
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3. NUMERICAL EXAMPLE 

A circular arch with a span of 20 m, made of the HEA300 steel I-section, was selected for numerical analyses 
(Fig. 2). Several cases of structures have been studied in which the height of the arch was different, and thus 
also the radius of curvature varied. The values of the rotational stiffness coefficients in the supports were also 
changed from zero till the value several times higher than the bending stiffness of the bar elements EI. 
 
 

 
 
 
 
 
 
 

Fig. 2. The circular arch structure. 

 
 

The structure at both ends has supports, in which the rotational stiffness has been varied. The obtained 
solution can be used to analyse any boundary conditions. In the case when the stiffness of the flexible 
supports tends to infinity (k0  , kl  ) the solution for fixed-fixed boundary conditions is obtained, 
while when the stiffness tends to zero (k0  0, kl  0), the solution of pinned-pinned boundary conditions  
is obtained. In the first step the influence of finite element mesh density was investigated. The analysis was 
performed for arch with span of 20 m, height of 10 m and various types of supports. The division into 8, 18, 
30 and 50 elements was considered. The first three natural frequencies were compared. In Tables 1 and 2  
the relative difference between the results obtained for a given mesh and for the finest division into 50 
elements was presented. The comparison presented for two different types of supports allows to conclude 
that the difference between the results for 18 and 50 elements is very small. In the case of three compared 
natural frequencies, it does not exceed 0.6%. Therefore, it was decided to use the division into 18 elements in 
further analyses. 
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Tab.1. Comparison of natural frequencies for division into a different number of finite elements – fixed-fixed arch 

mode 

  Natural frequency [Hz]   

8 finite 
elements 

Relative 
difference 
[%] 

18 finite 
elements 

Relative 
difference 
[%] 

30 finite 
elements 

Relative 
difference 
[%] 

50 finite 
elements 

1 4.6818 1.83 4.6129 0.33 4.6017 0.09 4.5977 
2 10.2973 1.97 10.1335 0.34 10.1081 0.09 10.0988 
3 19.1924 2.27 18.8341 0.36 18.7845 0.09 18.7670 

 

Tab. 2. Comparison of natural frequencies for division into a different number of finite elements – flexible supports  

k0 = kl = 0.4EI 1/(mrad) 

mode 

  Natural frequency [Hz]   

8 finite 
elements 

Relative 
difference 
[%] 

18 finite 
elements 

Relative 
difference 
[%] 

30 finite 
elements 

Relative 
difference 
[%] 

50 finite 
elements 

1 3.6594 2.15 3.5961 0.38 3.5860 0.10 3.5824 
2 8.7415 2.95 8.5346 0.51 8.5026 0.14 8.4911 
3 16.7040 3.16 16.2760 0.52 16.2143 0.14 16.1923 

 
As the first, the influence of arch height on the first natural frequency was investigated with various supports. 
Fixed-fixed arch (Fig. 3a), pinned-pinned arch (Fig. 3c) and arch with flexible supports (Fig. 3b) were taken 
into consideration. The rotational stiffness of 0.4EI was assumed for flexible supports.  
The results are presented in Table 3. 
 
Tab. 3. Comparison of first natural frequencies f1 for different supports and different height of arch. 

Arch height [m] 

First natural frequency [Hz] 

Fixed-fixed  
(Fig. 3a) 

Flexible 
supports  
k0 = kl = 0.4EI 
(Fig. 3b) 

Pinned-pinned 
(Fig. 3c) 

3.0 13.6375 10.7114 8.4936 
6.0 9.0013 7.0082 5.2417 
10.0 4.6129 3.5961 2.3924 

 
Based on the results presented in Table 3, it can be concluded that the natural frequency decreases with the 
height of the structure and increases with the increasing stiffness of the supports. It is also worth noting that 
the introduction of flexible supports reduces the value of the natural frequency of structure. 
The influence of the stiffness value of flexible supports on natural frequencies was also analysed. As  
a result, a graph of the dependence of the fundamental frequency of free vibrations on the coefficient of 
rotational stiffness in the supports was presented. Such a change of the natural frequency depending on the 
support stiffness for a few selected arch heights is shown in Fig. 4. 
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a)

b)
 

c)

Fig. 3. Diagrams of arch structures with different types of supports  
a) fixed-fixed b) flexible supports c) pinned-pinned. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Fundamental, natural frequency of arch versus the rotational stiffness of the supports. 
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In the case of a 10 m high arch (half of circle), it can be concluded that the supports behave as completely 
rigid when the rotational stiffness is twice as high as the bending stiffness of the bars. The variability of the 
first natural frequency is greater in the range of stiffness from 0 to 2EI for smaller arches. 
Analysis of the variability of the first natural frequency was also carried out for arch with height of 10m for 
different values of the stiffness of flexible supports. Stiffnesses varied from 0 to 2EI. The results are shown 
in Figure 5. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. First natural frequency f1 for different stiffnesses of flexible support. 
 
The values of the first three natural frequencies were also compared for arches with different supports. The 
analysis was carried out for arch with height of 3m. The results are presented in Table 4. 
 
Tab. 4. Comparison of first three natural frequencies for different supports, height of arch is 3m. 

Mode 

Natural frequency [Hz] 

Fixed-fixed 
Flexible 
supports  
k0 = kl = 0.4EI 

Pinned-pinned 

1 13.6375 10.7114 8.4936 
2 24.2266 20.7968 18.9323 
3 43.8505 38.9871 36.1855 

 
As expected, the frequencies are higher for fixed supports than for pinned supports. Since the stiffness of the 
flexible supports is between these two cases, the natural frequencies also take the corresponding intermediate 
values. The variability of the first three natural frequencies was also examined for the flexible supports with 
stiffnesses k0 = kl = 0.4EI for changing height of arch. The results are listed in Table 5. The values of natural 
frequencies decrease with increasing arches height. 
 
Tab. 5. Comparison of first three natural frequencies for different height of arch, stiffnesses are  
k0 = kl = 0.4EI 

Mode 
Natural frequency [Hz] 
H = 3m H = 6m H = 10m 

1 10.7114 7.0082 3.5961 
2 20.7968 15.0515 8.5346 
3 38.9871 28.0804 16.2760 
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4. CONCLUSIONS 

The proposed method makes it possible to assess the influence of the rotational flexibility of connections in 
nodes on the static and dynamic parameters of bar structures. The derived formulas allow for the analysis of 
both external flexible support and for internal ones. Based on measurements in the actual structure and on the 
basis of the calculation results, it can be stated when the connection can be treated as rigid, i.e. when  
a change in the rotational flexibility causes a negligible change in the value of dynamic parameters.  
The next stage of the research will be the use of the shape functions of a different type and comparison of 
obtained results, as well as the analysis of the influence of the applied flexible boundary supports on the 
seismic response of the structures. 
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                                                             ABSTRACT: The paper consists of several design worked examples of compressively loaded tensegrity T3 
simplex modules. The verification of ultimate limit states according to the Eurocode 3 is performed based on 
the raised full scale physical model of tensegrity T3 simplex, with two different cross-sections of struts. 
A numerical solution to the force distribution during loading is used, as well as, resistances to buckling and 
rupture of elements are calculated. Based on the results, a more optimal solution is presented by following 
a proposed simple algorithm of design. The presented examples are aimed to connect the theoretical 
calculations typical for the mechanics of tensegrity structures with civil engineering approach to the design of 
steel structures in accordance to the Eurocode 3. 

  
  
  
  
  
  
  
  

                                
  Keywords: tensegrity column, buckling resistance, Eurocode 3, structural design, self-stress, T3 simplex. 
                                

1. INTRODUCTION 

Tensegrity systems are composed of compressed bars, often treated as rigid bodies, and elastic tensioned cables 
connected in nodes in such a way that stability of the system under external loads applied at the nodes can only 
be achieved by pre-stress of the cables according to the self-stress states of the structure. Tensegrity systems are 
usually regarded as a special class of spatial truss structures where members are assembled in a self-equilibrated 
system providing stability and the geometrical stiffness to the structure. The fundamental three-dimensional 
module, called a simplex module 3T  or a regular minimal tensegrity prism is shown in Figure 1a. 
The T3 Simplex module is the most well-known tensegrity structure and the one, which was first patented 
(Fuller 1959, Emmerich 1963, Snelson 1965). It is constructed from three bars (struts) of length ,b  three cross 
cables of length ,s  and six base cables of length .l  The topological structure of the T3 simplex module can be 
completely described by the three parameters: the module height ,h  the length l  and the angle of rotation of the 
upper base triangle versus the lower base triangle – the twist ,  because the bar length and cross cable length 
can both be expressed as their function. The self-stressed stable equilibrium configuration of the T3 simplex 
module without an external force is provided by the twist 5 / 6    for a left-handed and a right-handed 
module, respectively, which means that any pairs of self-stressed element length 0 0 0, ,s l b or 0h  can be obtained 
by the other pair. More information on the tensegrity structures can be found for example in (Morto 2003, 
Skelton and de Olivera 2009, Al Sabouni-Zawadzka and Gilewski 2019, Obara 2019). 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

Fig. 1. (a) The T3 simplex, (b) the T3 tower, (c) resistance of elements, (d) strut and (e) elastic flexural buckling. 
 
A larger column can be created by connecting several modules of the T3 simplex by base-to-base connection 
(Fig. 1b). The column in civil engineering should be designed to carry main vertical loads, as well as, 
transversal loads (i.e. winds, impacts) or additional loads from eccentric loading, depending on the type of 
the structure and the location of the column in the structure. The aim of this study is to present some worked 
examples of the verification of the ultimate limit states in accordance to the Eurocode 3, as well as, following 
a simple algorithm, to propose a more optimal solution in which the limit states in all members are exceeded 
at almost the same time under the external compressive force. Additional information on the authors' 
research on tensegrity structures has been described in (Małyszko 2016, 2017, Małyszko et al. 2018, 
Małyszko and Rutkiewicz 2020), both under static and dynamic loads.  

2. FLEXURAL BUCKLING  OF COMPRESION MEMBERS  

In the tensegrity module the strut is the axially loaded structural element whose compression resistance 
decreases as its length increases, in contrast to the axially loaded cable whose tension resistance is independent 
of its length and which is taken as the yield (or plastic) resistance of the cross-section (Fig. 1c). The decrease in 
resistance is caused by the bending in the strut with initial curvature (Fig. 1d). The so-called flexural buckling, 
i.e. the action of lateral deflections growing during the bending until failure occurs at the beginning of 
compressive yielding, may occur both under the applied external load as well in the self-stress state. Figure 1e 
presents the behaviour of the straight and the initially curved element. The bending of the strut with initial 
curvature can be analysed by considering the differential equilibrium equation (Trahair et al. 2008): 
 

2

02 ( ),b
d vE I N v v
dx

    (1)

   
where bE is the Young’s modulus, I  is the moment of inertia, v is the actual horizontal deflection and 

0 0 sin( / )v x b   is the initial curvature. The solution of equation (1) is the deflected shape: 
 

   0sin( / ), where / / 1 .cr crv x b N N N N       (2)
 
From the expression of the maximum bending stress max , where 2elW I D  is the elastic section modulus, the 
limiting axial load LN  (i.e. the characteristic buckling strength) for which the above analysis is valid is given 
by:  
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where y b ybN A f  is the squash force, D  is the strut diameter and i  is the radius of gyration. The equation (3) 
can be solved for the dimensionless limiting load L yN N as: 
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
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 (4)

 
In the axially loaded module without lateral wind loads, the struts can be treated as the pin-ended column with 
the bending stiffness ,bE I for which the Eurocode buckling curves can be applied (EC3-1-1 2004). The 
Eurocode curves are based on a probabilistic approach using the experimental strength with a theoretical 
analysis and describe column strength both for the elastic as well the elastic-plastic buckling. The curves give 
the value for the reduction factor   of the strut resistance as a function of the non-dimensional slenderness   
for different kinds of cross-sections referred to different values of the imperfect factor   are drawn according 
to the following expression: 
 

2

2 2

1 , 0.5[1 0.49( 0.2) ], ( ) ,b ybE f     

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   

 (5)

 
where   is the slenderness and ybf  is the yield strength. To illustrate the design worked examples the curve c  
is chosen with the imperfection factor 0.49.   The curve (5) is shown in Figure 2a for both slender and 
stocky struts. The non-dimensional slenderness are 4.01sl   and 1.21st  of the slender and stocky struts, 
respectively. Note that the limit value of the slenderness corresponding to the elastic proportionality is shown in 
Figure 2, above which fully elastic buckling should be expected for the slender strut, while the behaviour of the 
stocky strut is elastoplastic with a tangential bending stiffness varying continuously as the load is increased. 
 
 

 
a) 

 
b) 

Fig. 2. (a) The design curve of the buckling reduction factor   of the strut resistance as the function  
of the general slenderness and (b) the slender (left) and stocky (right) tensegrity modules. 
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3. DESIGN OF TENSEGRITY MODULE ACCORDING TO EUROCODES 

The design axial forces in elements of the tensegrity module originate from the pre-straining and the design 
external compressive load and can be denoted as: 
 

0 0 0 ,Ed P P P EkN N N N      (6)

where EdN  are the design axial forces in struts, cross cables and base cables induced by pre-straining and 
external compressive force, 0  is the partial factor for forces generated by pre-strain, P  is a mean partial 
factor for dead and live loads ( 1.35 1.5)G P Q       (EC0, 2004), 0 , PN N  are the characteristic values 
of axial forces induced by the pre-strain and compressive loading, respectively. In other cases we can present 
general characteristic values of axial forces as EkN  and mean values of the partial factors are calculated as 

0 / .P Ed EkN N   Since in general, the structure elements dimensions are different before and after pre-
straining, the indexes ' 'n  and '0 '  are used to distinguish between the natural (unstrained) and the pre-
strained configuration, respectively.  
Calculating the values of internal forces is based on the theoretical model presented in (Fraternali et al. 2015) 
together with the computer program discussed in (Małyszko 2016) and design examples from (Małyszko 
2017), where the force density method was used. According to this theoretical model the characteristic pre-
strain 0,Ekp  is denoted as the strain value in the cross cables 0 0( ) /n np s s s   and the axial forces 0 0,b sN N  
and 0lN  in  struts, cross and base cables of the self-stressed state are: 
 

  0,0
0 0, 0 0, 0

0,

2 2 2

0 0 0, 2

0,

(1 )
,    / 1 ,    ,

3 3 ( 3 / 3)

6 31 ,
(3 3 ) 3

l l Ek n ns s
s s s Ek s s n Ek l

Ek l l n s s n l l n

l l n
b s s s Ek

Ek l l n s s n l l n

E A p l sx l xN E A p x N s p N
p E A s E A l E A s

E A lN x b E A p
p E A s E A l E A s


    

 

    
   

 (7)

 
where ,  ,  b b s s l lE A E A E A  are the modules of elasticity and the cross-section areas of the struts, cross cables 
and base cables, respectively. The variable ( )s s nx k s s s   is called the force density in the cross cable, i.e. 
a ratio between the force in the cross cable 0sN  and its length 0 ,s  and /s s s nk E A s  is the truss stiffness of 
cross-cables. 
The solution to the axial forces in the compressively loaded tensegrity module under the vertical force needs 
an incremental-iterative solutions, since the T3 simplex experiences large displacements. In any node of the 
tensegrity T3 simplex, the force equilibrium equations along the three Cartesian directions can be expressed 
in the following manner:  

 
       2 3 cos 3 0,  3 2 3 sin 3 0,  ( ) 3 0.s b s l b b s l b s b Ekx x x x x x x x x h x x P                       (8) 

 
where ( )b b nx k b b b   and ( )l l nx k l l l   are the actual force densities in the struts and base cables, 
respectively, and EkP  is the actual, external, characteristic, vertical force. The computer program to find the 
equilibrium path of the nonlinear system of the equations (8) with 3 unknow parameters ( , and )h l   is given 
in (Małyszko 2016) in the form of Matlab scripts. 
After the solution, values of the axial forces are compared to the resistances of tensegrity module elements. 
The ultimate limit states (ULS) of cross and base cables are performed by the condition (6.2) of the standard 
(EC3-1-11, 2008) when (assumption on the linearly elastic phase of work on cables is made): 
 

, , , ,/ 1.5 / 1.0   and   / 1.5 / 1.0,s Ed Rd R s Ed uk s Ed Rd R l Ed ukN F N F N F N F      (9)
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where  R  is a partial safety factor in case of usage of special anchorage ( 1.0R   without special 
anchorage), ukF  is a characteristic value of the rupture force and RdF  is the design strength. The ultimate 
limit states of struts are meet based on the condition (6.46) of the standard (EC3-1-1, 2004) when: 
 

, ,/ 1,0,b Ed b RdN N   (10)

 
where , 1/b Ed L MN N   is the design buckling resistance, 1M  is the partial factor for member instability 
(recommended as 1 1.0M  ). 
Finally, taking into account the presented design axial forces and resistances, as well as, geometric 
assumptions an algorithm of the design process of the tensegrity column is given in Figure 3. The pre-
straining values were set in accordance to the recommendations of one of the cable manufacturers (Halfen 
2020), although the system cables were not used. This simple requirements propose, that the pre-strain 
generated axial forces in elements cannot exceed 40% and 50% of its load bearing capacities in the 
prestressing state for cables and struts. Moreover, the presented graph (Fig. 3) has its limitations – i.e. it is 
restricted to circular cross sections of at least 3rd class for struts, as well as, the cable design is in accordance 
to the EC3-1-11. Also, it does not consider the serviceability limit states. Such states should be considered in 
case of columns, for example restricting the maximum vertical deflection under applied vertical loas to avoid 
large displacements of the leaning elements. This can be restricted only to live loads, since the deflection 
originated from the dead load is known at the stage of design and can be added to the column height to 
obtain the desired height. Such a serviceability limit state could be considered as:  
 

/ 1.0 / 250,live live
sls nu u u h    (11)

 
for a limited vertical deflection / 250,slsu h  where u is the actual vertical displacement and nh  is the initial 
height of the column.  
 

 
 

Fig. 3. Flow chart for the design of tensegrity column.  
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4. WORKED EXAMPLES 

As a first step, the verification of the load bearing capacity of the physical model of the tensegrity module is 
checked for the self-stress phase, loading phase with no pre-strain and finally, for the loaded and pre-strained 
module. Please note, that two modules are verified and the calculations for the stocky module are written on 
the left side, while for the slender module one on the right side of the page. 

4.1. The T3 simplex models and resistances of their members  

Let us consider a specific case of tensegrity module, presented in Figure 2b, which is a physical model build 
by the authors. There are two variations of this structure, each with different struts – i.e. a so called slender 
struts (Fig. 2b – left, 4.01sl  , indexed sl , CHS 42.4x2 ) and stocky struts (Fig. 2b - right, 1.21st  , 
indexed st , M20 bar) which leads to two different structures, called the slender-strut and the stocky-strut 
module. The model is fully build out of steel components. The cables are made out of 1x19 strand, 3mm 
diameter, steel line. Additionally, each cable has attached a force sensor, while three cross-cables has also 
additionally attached a roman screw in order to induce and control the prestress level. Also, the model is 
equipped with force sensors (Wheatstone half-bridge principle of work) attached to all cables.  Natural 
dimensions are given in Table 1, while material and geometry of sections are given in Table 2.  
 
Tab. 1. Tensegrity modules natural dimensions. 

m
ns

 
m
nl  

m
nr  

m
nb

 0

m


 
m

nh
 

/
    

n nb r 


 
/ (2 ) 

       
n nh r 


 

1.193 0.431 0.249 1.280 6.4e-3 1.186 5.141 2.382 
 
Tab. 2. Material and geometry of cross-sections of tensegrity modules. 

T3 
simplex 

  
GPa

bE    
kg/m

bm  4

  
mm

I  
3

 
mm
W  

2

 
mm

bA   
GPa

lE   
GPa

sE    
MPa

ybf  
 MPa
us ulf f  , ,

2    mm
m l m sA A  

kg/m
s lm m  

Stocky 197.82  1.99 51 916 2 448.8 253.8 56.03 81.03 355 15704 5.255 34.4 10  

Slender 204.11 1.92 4 036 476.7 225.2  
1 Value from the own compression test, 2 equivalent moduli, 3 values form the own uniaxial tension tests on full 
elements (composites), 4 rupture strength, 5 Am denotes the metallic cross section (without spaces between wires). 
 
Before calculating the resistance of the members, partial factors need to be assumed - these are given in 
Table 3. For simplification, only dead load and pre-strain generated forces are considered (therefore the 
partial factor is set to 1.35), as well as, only the upper values of these factors are considered (the ' 'sub  index 
values in the Eurocodes). The basic values of resistances and other parameters for the analysed elements are 
gathered in Table 4.  
 
Tab. 3. Partial safety factors. 

0,sup  ,supP  1
R  1M  0 ,supP  1 Partial factor for cable twist 

protection, see EC3-1-11. 
1.35 1.35 1.0 1.0 1.35 

 
Starting with the design resistance of the cables, the characteristic resistance ukF  and design resistance RdF  
of the cables are calculated as follows:  
 

2 2/1000 0.9 3 1570 0.525 /1000 6.68 ,uk e usF k d f K kN       / 1.5Rd uk RF F    6.68 / 1.5 1.0 4.45kN   
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where ek  is a partial factor for type of anchorage and K is the factor for rupture force (EC3-1-11). 
Calculations necessary for strut design buckling resistances are given below as: 
  

, ,

, ,

90.099 79.9461.21,                                       4.01,
61.860 4.962

Rk st Rk sl
st sl

E st E sl
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P P
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 
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Tab. 4. Load bearing capacities of tensegrity module elements. 

Element 
kN

EP  
kN

RkN  


 



 ,

kN
b RdN  Element 

N
RdF  

Stocky strut 61.86 90.10 1.21 0.430 38.74 Base & cross cables 4.45 

Slender strut 4.96 79.95 4.01 0.055 4.40 
 

4.2. Self-stress state of modules 

Firstly, the self-stress phase of work is considered, where only the pre-strain is applied. The axial forces are 
calculated based on equation (7).  For design purposes a maximum value of pre-strain 0, ,maxEkp  for ultimate 
limit states is found for both modules, on the conditions that for the arising values of axial forces generated 
by arising pre-strain, based on equations (9) for cables and (10) for struts, we find the first value of the pre-
strain for which the ultimate limit state is equal to 1.0, separately for stocky and slender module elements. 

This value is equal to: 0, ,max, 0.007752k stp   for stocky and 0, ,max, 0.007223k slp   for slender module. 

The axial forces are:  
0, 0, 0,3495 ,  3297 ,  684 ,b st s st l stN N N N N N     0, 0, 0,3257 ,  3072 ,  637 .b sl s sl l slN N N N N N     

The design axial forces are: 
, , , , , ,4718 ,  4450 ,  923 ,b Ed st s Ed st l Ed stN N N N N N     , , , , , ,4397 ,  4147 ,  860 .b Ed sl s Ed sl l Ed slN N N N N N     

The ultimate limit states are as follows: 
, , , ,

, , , ,

, , , ,

/ 4450 / 4450 1.0,

/ 4718 / 38740 0.12,

 / 923 / 4450 0.21,

s Ed st s Rd st

b Ed st b Rd st

l Ed st l Rd st

N N

N N

N N

 

  

 

 
, , , ,

, , , ,

, , , ,

/ 4400 / 4400 1.0,  

/ 4147 / 4450 0.93,
 / 860 / 4450 0.19.

b Ed sl b Rd sl

s Ed sl s Rd sl

l Ed sl l Rd sl

N N

N N
N N

  

 

 

 

 
Therefore, in the self-stress phase, the stocky module fails by the cross cable rupture, while the slender 
module fails by struts failure. The ultimate limit states (the design exertion) of element in a function of the 
pre-strain value 0,Ekp  is presented in Figure 4a, i.e. one can adjust the pre-strain in order to find the related 
exertion measured by the Eurocode 3 ultimate limit states – equation (9) for cables and equation (10) for struts. 



74 Lightweight Structures in Civil Engineering. Contemporary Problems  
 

 
a) 

 
b) 

Fig. 4. ULS in a function of characteristic (a) pre-strain 0,Ekp  and (b) external force EkP . 
 

4.3. External loading with zero self-stress 

Secondly, the consideration on the behaviour of the nonself-stressed module is performed (the actual value 
of pre-strain is equal to 5

0, 010 ,  4.3Ed sp N N   for avoiding numerical calculation problems with zero 

stiffness of the column). It should be mentioned, that due to the direction of the compressive loading, the 
stiffness of the module will increase during the process of loading by force P . Also, since the only 
difference between the two compared modules, in case of numerical calculations for the presented 
mathematical model (Małyszko, 2016), is the stiffness of the struts (linearly elastic material) – a mean  
value of this parameter will be taken. The slender strut axial stiffness is equal to 

/ 204100 225.2 /1280 35909 /sl sl sl
b b b nk E A b N m     and the stocky strut axial stiffness is equal to  

/ 197800 253.8 /1280 39220 / .st st st
b b b nk E A b N m     The mean value used in the numerical calculations is 

37565 / ,bk N m  i.e. within a 4.5% difference. In this task, we seek numerically based on equation (8) axial 
forces in elements caused by external loading EkP  that fulfil equations (9) for cables and (10) for struts – i.e. 
the value of ,maxEkP for both struts. 
The maximum value of characteristic external load ,maxkP  for which the modules meets the ultimate limit 
states is equal to: ,max, 36.9Ek stP kN  and ,max, 6.42Ek slP kN for the stocky and slender segment, respectively. 

As can be seen, also the corresponding displacements are given.  

The design values are: ,max, 49.87  Ed stP kN  for stocky and ,max, 8.68d slP kN  for slender module.  

The design axial forces in elements are: 
, , , , , ,20168 ,  1944 ,  4450 ,b Ed st s Ed st l Ed stN N N N N N    , , , , , ,4397 ,  1233 ,  945 .b Ed sl s Ed sl l Ed slN N N N N N     

The ultimate limit states are as follows: 
, , , ,

, , , ,

, , , ,

/ ~ 4450 / 4450 1.0

/ 20168 / 38740 0.52,  

/ 1944 / 4450 0.44,  ,

l Ed st l Rd st

b Ed st b Rd st

s Ed st s Rd st

N N

N N

N N

 

  
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, , , ,

, , , ,

, , , ,

/ ~ 4400 / 4400 1.0,  

/ 1233 / 4450 0.28,  
/ 945 / 4450 0.21.

b Ed sl b Rd sl

s Ed sl s Rd sl

l Ed sl l Rd sl

N N

N N
N N

  

 

 

 

Therefore, in the external loading phase of module work, the stocky one fails this time by the base cable 
rupture, while the slender one fails again by struts failure. A relation between the ULS element exertion 
versus the characteristic external loading EkP , is presented in Figure 4b. Note that for cables equation (9) is 
drawn, while for struts equation (10) is drawn.  
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4.4. External loading with self-stress 

This time, the behaviour of the self-stressed tensegrity module in the external loading phase is considered  
(a typical state). The pre-strain values 0,Ekp  were set in a way, that the generated forces in elements cannot 

exceed 40% and 50% of its resistance in the self-stress state for cables and struts, respectively. Therefore, 
one can easily set the values of forces in the self-stressed state as 40% of pre-strain value for the stocky 
column module and as 50% of the pre-strain value of the slender module from the maximal values found in 
subchapter 4.2 (with partial factor). These values are: 0, , 0.4 1.35 0.007752 0.004186Ed stp      for the stocky 
and 0, , 0.4 1.35 0.00544 0.002938Ed slp      for the slender module, respectively.  
The maximum value of characteristic external load ,maxEkP  for which the module meets the ultimate limit 
states is equal to: ,max, 34.4Ek stP kN  and ,max, 4.96Ek slP kN for the stocky and slender module, respectively.  

The design values are: ,max, 46.47Ed stP kN  and ,max, 6.69 .Ed slP kN  

The design axial forces are: 
, , , , , ,20242 ,  3172 ,  ~ 4450 ,b Ed st s Ed st l Ed stN N N N N N     , , , , , ,~ 4397 ,  1829 ,  903 .b Ed sl s Ed sl l Ed slN N N N N N     

The ultimate limit states are as follows: 
, , , ,

, , , ,

, , , ,

/ 20242 / 38740 0.52,  

/ 3172 / 4450 0.71,
/ ~ 4450 / 4450 1.0,

b Ed st b Rd st

s Ed st s Rd st

l Ed st l Rd st

N N

N N
N N

  

 

 

 
, , ,
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/ ~ 4400 / 4400 1.0,  

/ 1829 / 4450 0.41,  
/ 903 / 4450 0.20.

b Ed b Rd sl

s Ed sl s Rd sl

l Ed sl l Rd sl

N N

N N
N N

  

 

 

 

 
The chart of the ultimate limit states versus the characteristic external loading EkP  is presented in Figure 5 
(this time the charts are separated, since the pre-strain values for both modules are different). Again, for 
struts equation (10) is drawn, while for cables equation (9) is drawn. 
 

a) b) 

Fig. 5. ULS in a function of characteristic external force EkP  for (a) stocky and (b) slender column segment. 

5. THE OPTIMAL DESIGN 

Considering the presented ULS verification, one can propose an optimal solution, i.e. a solution in which the 
ULS in all elements are exceeded at the same or close value of the compressive force ,max .EkP  

5.1. Self-stress at 40% of the elements resistance 

Firstly, the value of generated force in the self-stress state is set to 40% of the cross cable resistance  
(for typical elements cross cables fail first in the self-stressing phase). The base, arbitrary chosen assumption 
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will be the design external load equal to  ,max ,max50  37 ,Ed EkP kN P kN  which is a close value to the 
obtained from the stocky module from the subchapters 4.2 and 4.3 ( ,max 49.87EdP kN  and 

,max 46.47EdP kN , respectively). The geometry of the module and values of Young’s moduli, as well as, the 

partial factors, are similar to the ones given in Tables 1, 2 (stocky column) and 4. The cables are 1x19 strand 
lines and the permitted strengths are 1450,  1570,  1770,  1960uf MPa  (each cable strengths and diameter 
can differ). The struts are CHS and the permitted yield strengths are 235,  275,  355,  420,  460 .yf MPa  

Cables and lines are taken from typical profile catalogues. Therefore, using the iterative process and 
algorithm given in Figure 3, the proposed elements are given in Table 5. 
In the self-stress phase, following the recommendations of the maximum 40% exertion in cables, the value 
was obtained for: 0, 0.00492Edp   and 0, 0.00364Ekp  . The design axial forces in elements are: 

, 1630.9 ,b EdN N  , , 1537.9  and  319.6 ,s Ed l EdN N N N  while the exertions are: , ,/ 0.061,b Ed b RdN N   

, ,/ 0.4 ands Ed s RdN N   , ,/ 0.072.l Ed l RdN N   In the loading phase, the obtained values for the defined load 
37EkP kN  are: , 22655 ,b EdN N  , , 3731  and  ~ 4451 ,s Ed l EdN N N N   while the exertions are: 

, ,/ 0.88,b Ed b RdN N   , ,/ 0.97 ands Ed s RdN N   , ,/ 1,0.l Ed l RdN N   Figure 6a presents the relation between the 
ULS and the characteristic pre-strain 0,Ekp , as well as, characteristic external force .EkP  
 
Tab. 5. Materials and cross sections taken into the optimal design. 

Element Profile/line 2,  mmmA A  ,  MPayb usf f  , ,  kNb Rd RdN F   kg/mm  

Strut CHS 38x2.0 226.19 235 25.7 1.78 

Cross cable 1x19, 2.5mm 3.731 1960 3.86 33.1 10  

Base cable 1x19, 3.0mm 5.372 1570 4.45 34.4 10  
 

 
 
 
 
 
 
 
 
 

 

a) b) 
Fig. 6. ULS in a function of characteristic (a) pre-strain 0,Ekp  and (b) external force EkP  for optimal segment. 

5.2. Self-stress at 10% of the element resistance  

Secondly, the same calculations were set for the pre-strain values generating forces of values 10% of the 
cross cable resistances, i.e. for the value: 0, 0.00123Edp   and 0, 0.00091.Ekp    
In the self-stressed phase, the values of internal forces are obviously a quarter of the values presented in 
subchapter 5.1. In the loading phase, the obtained values for the defined load 37EkP kN  are: 

, 21590 ,b EdN N  , , 2557  and  4372 ,s Ed l EdN N N N   while the exertions are: , ,/ 0.84,b Ed b RdN N   

, ,/ 0.57 ands Ed s RdN N   , ,/ 0.98.l Ed l RdN N   Figure 6b presents the relation between the ULS and the 
characteristic external force .EkP  
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6. DISCUSSION 

In order to compare the load bearing capacities of tensegrity systems and typical civil engineering structures, 
the ratio between the load bearing capacity of the module and the load bearing capacity of only three 
independent vertical struts, is presented in Table 6, among other values gathered in the calculations. Please 
note, that we compare the buckling resistance of three independent struts of length b , where we could 
compare the buckling resistance of struts, taking the length h  (height of the module). This means that the 
ratios in the last column of Table 6 would be even smaller. On the contrary, when connecting several 
modules in order to create a column, for example five, the length b  of struts in the tensegrity structure would 
not change, whereas the length of the three independent struts would increase five times to the value of 5b  or 
5h  (then, for comparison purposes we would need to consider  rather a truss, than independent struts). 
 
Tab. 6. Results. 

Example Description on loads 
Chapter 0,

-
Ekp

 ,max

kN
EkP

 ,3
 kN

b RkN
 ,max ,/ 3

        -
Ek b RdP N

 
kg
M

 

Physical  
segment 

Only self-stress 4.1 - - 116.2  7.669 

Only ext. load 4.2 510 0   36.9  116.2 0.32 7.669 

Self-stress (40%) & ext. load 4.3 33.10 10  34.4  116.2 0.30 7.669 

Optimized  
segment 

Self-stress (40%) & ext. load 5.1 33.64 10  37.0 77.1 0.48 6.858 

Self-stress (10%) & ext. load 5.2 30.91 10  37.0 77.1 0.48 6.858 
 
In general, the load bearing capacity of the tensegrity module is three to two times lower than the capacity of 
the individual struts, for the physical model and optimal design, respectively. The pre-straining of elements, 
as well as, inclination angle of struts in regard to the applied vertical load are important factors that influence 
this phenomena. 
As can be seen from the comparison between the stocky and the slender physical model, the buckling 
resistance of the struts is crucial for the load bearing capacity of the whole system, i.e. the maximal 
characteristic loads were ,max, 34.4,  36.9Ek stP kN  and ,max, 4.96,  6.42Ek slP kN  for the stocky and the slender 
segment (chapters 4.2 and 4.3), respectively.  
From the comparison between the stocky physical model in the non-self-stressed (chapter 4.2) and the self-
stressed and loaded state (chapter 4.3), one can see that the pre-straining is counterproductive – the non-pre-
strained module has obtained a slightly greater value of external load ,maxEkP . 
The same comparison on the maximal external force for the optimal module design shows no difference for 
the more and less pre-strained module. Nevertheless, the difference in pre-strain is smaller. 
Comparison of total mass of elements shows a 12% reduction in mass of the elements between the optimal 
and physical modules. It is worth mentioning, that the cable mass has a neglected effect on the total mass of 
the structure.  

7. CONCLUSIONS 

In the paper, a proposition of an algorithm for the design of compressed tensegrity modules, using circular 
hollow sections and lines in accordance to the Eurocode 3, was proposed.  
Several presented working examples give an insight into the connection of the mechanics of tensegrities and 
the standardization of the steel elements. 
As can be seen, understanding the mechanic response of a single compressed module enables to understand 
the whole tensegrity column from which it is build. This can be helpful when considering a simple case of an 
uniaxially loaded column (without transversal and eccentric loads), which is not an untypical case when 
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considering internal columns of sheltered buildings. When considering a stiffnesses of typical civil 
engineering elements and the proportions of the modules analysed in this paper, i.e. 2.4   (see Tab. 1),  
we can approximately conclude, that in the self-stressed phase cross cables are a typical form of failure, 
while in the loading phase base cables are a typical form of failure. Nevertheless, the general stiffness of the 
structure is generated by the stiffness of the struts. The load bearing capacities of tensegrity module, compared to 
three vertical struts working separately, are smaller at an advantage of an interesting architectural form.  
The process of design, made by hand calculations, is time consuming and requires several iterations, even for 
someone familiar with tensegrity structures, which is a rather an uncommon knowledge among engineers. 
This is due to the fact, that the equilibrium path and the individual paths of forces in elements are changing 
with each change of stiffness of every element (compare Fig. 5a and 6a), as well as, the prestress level 
(compare Fig. 5 a and b). Moreover, a numerical solver of an analytical system of equations (8)  
or a nonlinear FEM solver is necessary to find the forces in the loaded stage which makes the issue even 
more complex. 
Further study is focused on extending the research for different loading types, different ratios   and 
different number of segments in one column. Performing the mentioned analysis, would give an insight into 
creating some universal recommendations for the design of these structures.  
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                                                             ABSTRACT: The purpose of the analyses is to determine the drag coefficients in the case of air flow around 
two cylinders at different angles to the speed direction. Such systems may be a part of a water slide. These 
values differ from those given in the so-called wind Eurocode for both a single cylinder and a system of 
cylinders. Eurocode also does not include the case of cylinders angled to the wind direction. The aerodynamic 
drag force of the cylinder systems was determined on the basis of numerical Finite Volume Method analyses 
using the Computational Fluid Dynamics module. To verify the above results, experimental tests were also 
carried out in a wind tunnel. 

  
  
  
  
  
  
  
  

                                
  Keywords: water slide, wind action, CFD, FVM, wind tunnel test. 
                                

1. INTRODUCTION 

Lightweight structural elements with circular cross sections and various nontypical shapes are applied in 
engineering on a large scale. One of such examples are water slides, which can be divided into elements with 
a circular cross section in the shape of a torus, a helix, a single pipe, or several pipes arranged next to each 
other at different angles to the direction of the wind speed (see Fig. 1). 
Numerical and experimental analyses of the effect of wind on systems of two or more cylinders are often 
found in literature e.g., in (Żurański 2000, Jester and Kallinderis 2003, Park and Lee 2003). The values of the 
κ factor, which increase the resulting aerodynamic force of cylinders arranged in a row, are proposed in the 
Eurocode (CEN 2005). These problems were also discussed in some of the works of the Authors (Padewska 
2016, Padewska, Szczepaniak & Wawrzynek 2016). However, in the case of cylinders placed close to each 
other and concerning large Re numbers these values differ significantly from those given in the literature. 
The Eurocode also does not include cylinders angled to the wind direction. 
The aerodynamic drag force of the cylinder systems was determined on the basis of numerical Finite Volume 
Method (FVM) analyses using the CFD module. To verify the above results, experimental tests were also 
carried out in a wind tunnel.  
A fragment of a relatively rigid structure is analyzed. The review of the results presented here is mainly 
limited to determining the aerodynamic resistance of the cylinder systems, ignoring the vibration phenomena 
of a circular cylinder in the trace of another cylinder (interference galloping). 
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A fragment of a relatively rigid structure is analyzed. The review of the results presented here is mainly 
limited to determining the aerodynamic resistance of the cylinder systems, ignoring the vibration phenomena 
of a circular cylinder in the trace of another cylinder (interference galloping). 

 

 
Fig. 1. General view and top view of the water slide in Gino Paradise Bešeňová in Slovakia. 

2. NUMERICAL MODELS 

Basic numerical model used is subject to rules as follows. The flow in the wind tunnel is modeled (see Fig. 
2). The subject of the research is the airflow with Reynolds number Re ranging from 1.33·105 to 2.65·105. 
The distance between the cylinders with diameter Φ = 200 mm Δ is 100 mm (300 mm center to center), 150 
mm (350 mm), 200 mm (400 mm) and 250 mm (450 mm). The cylinders are angled horizontally from the 
direction of wind velocity by: 0º, 15º, 30º and 45º. Directly at the bottom wall of the tunnel model, the FVM 
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mesh density is increased. The floor layer in the wind tunnel made of a dimpled foil with a height of 20 mm 
is considered. The Coupled scheme and Second Order in Spatial Discretization are used for the calculations. 
Various turbulence models for different cases of wind flow were tested in (Padewska-Jurczak, Szczepaniak 
and Buliński 2020) and (Padewska 2016). 

 

 
            

 
Fig. 2. Numerical model of airflow around two cylinders – dimensions, boundary conditions and sample FVM mesh. 

 

Each of the considered flow ranges (turbulent, transitional, laminar) is characterized by a different behavior. 
Although all types of flows fall within the critical range (see Coutanceau and Defaye 1991), their nature  
is very different. Thus it is necessary to adjust the parameters of the numerical model. 
The first considered case is: velocity of wind w = 19.2 m/s; Re = 2.6·105. The k-omega/SST turbulence 
model with Production Limiter is included. y+ = 100 is chosen. The height of the element in the first layer of 
mesh near the walls of the cylinders is h = 3.2·10-3 m. The cfx results obtained for the two cylinders differ 
slightly: for the first one it is 0.62 and for the second one 0.59. Thus, the average value is 0.6. After the 
cylinders were moved apart by a distance of 400 mm in the axes the average value of the drag coefficient is 
0.49. 
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Another case taken into consideration is: w = 18.23 m/s; Re = 2.5·105. The y+ = 80 (h = 3.2·10-3 m) 
is selected, which results in a resistance coefficient equal to: 0.68 and 0.64 (mean value 0.66). Then the 
cylinders were moved away by a distance of 400 mm in the axes. A mean cfx value of 0.53 is obtained. 
In the case of a wind speed of 17.14 m/s (Re = 2.3·105 m), it is only necessary to reduce the height of the 
FVM elements at the wall to h = 2.2·10-3 m (y+ = 60). The result is cfx = 0.68. 
Changing the speed to 16.04 m/s (Re = 2.0·105) require reducing y+ to 40 and the height of the elements to 
h = 15·10-4 m. Similarly, in the case of w = 14.98 m/s, y+ is further reduced to the value of 20. 
The flow at velocity w = 13.92 m/s (Re = 1.9·105) can be both laminar or turbulent. The area of viscosity 
influence is in the blending region. It turned out that at y+ = 15 (h = 6.6·10-4 m) cfx is 1.1. 
The flow model for w = 12.85 m/s (Re = 1.7·105) turned out to be more complicated due to the inability to 
fully use the wall functions. The value of the cfx coefficient equal to 1.21 is obtained for both cylinders. 
For the speed w = 11.77 m/s (Re = 1.6·105), 10.8 m/s (Re = 1.5·105) and 9.68 m/s (Re = 1.3·105) Curvature 
Correction was enabled in the Transition SST model. The result in the last case is cfx = 1.39. 

3. EXPERIMENTAL RESEARCH

Experimental research was carried out at the Centrálne laboratóriá SvF STU in Bratislava. Figure 3 shows 
the air filter and the laminar flow section of a wind tunnel. The width and height of the measurement space 
are B = 2,600 mm and H = 1,600 mm, respectively (Fig. 4). 

Fig. 3. Air filter and laminar flow section of the wind tunnel. 
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` 
Fig. 4. Cross-section through a wind tunnel. 

The subject of the investigation is the air flow around a system of two cylinders with diameter Φ = 200 mm 
and length L = 2,400 mm without open ends and equal to the width of the measuring section minus the width 
of the used connectors (Fig. 5). Re is from 1.33·105 to 2.62·105. The cylinders are angled horizontally from 
the direction of wind velocity by: 0°, 15°, 30° and 45°. 
 

 

Fig. 5. A model of an arrangement of two cylinders. 
 
Sampling points were made in the pipes to measure the pressure on their walls. Three Scanivalve 
DSA3217 16Px pressure gauges were used (Fig. 6). 
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Fig. 6. Sampling points in the pipe and pressure gauges. 

Temperature, density and atmospheric pressure were, respectively: 17.6 °C, 1.201 kg/m3 and 100,680 Pa. 

4. RESULTS

Figures 7 and 8 show the velocity vectors and pressure distributions around two cylinders set perpendicular 
to the wind speed determined from numerical analysis. In the case of speed of 19.2 m/s (Re = 2.6·105),  
a clear division into regions of smaller velocity and pressure values (in front of the cylinders) and region of 
higher values (between the cylinders) is visible. In the case of the lowest speed, this division is hardly 
perceptible and is difficult to model. 
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Fig. 7. Distributions of velocity vectors around two cylinders set perpendicular to the wind speed of 19.2 m/s. 

 
 

 

Fig. 8. Pressure distributions around two cylinders set perpendicular to the wind speed of 19.2 m/s. 

 
Figures below (Figs. 9 and 10) show the time-averaged aerodynamic drag forces depending on the wind 
speed and the time-averaged coefficients of aerodynamic drag depending on the Re number. The data was 
determined in the wind tunnel. The highest values of drag force occur at a value of Δ equal to 100 mm, for 
cylinders perpendicular to the direction of the highest wind speed.  
From an engineering point of view, the second graph is more useful. Up to the value of Re = 1.9·105 for Δ 
equal to 100 mm and 1.7·105 for the rest of the cases of cylinders perpendicular to the direction of wind 
velocity, the graph is very similar to that shown in the Eurocode (CEN 2005) for a single cylinder (Fig. 11). 
Below these values, the coefficient increases to 1.5. For angled cylinders, these values are lower.  
The smallest a/Φ ratio is 1.5, where a = Δ+Φ. Assuming that the drag coefficient of a single cylinder is 1.2, 
the interference coefficient κ is 1.25 and is greater than those given in (CEN 2005), where the maximum 
value of κ is 1.15. It should be noted that the British annex to the EN 1991-1-4 standard lacks guidelines to 
determine the value of the interference factor for a/Φ lower than 2.5. According to other authors’s research, 
this limit could even be shifted to a/Φ < 3.0. Furthermore, quoting the Eurocode: ‘For cylinders near a plane 
surface with a distance ratio zg/b < 1.5 (distance between the ground and the wall of the cylinder over the 
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diameter of the cylinder) special advice is necessary.’ This is analogous to cylinders placed close to each 
other. For angled cylinders, these values are similar to those given in (CEN 2005). 

Fig. 9. Average aerodynamic drag forces on the upper cylinder for β = 0°÷45°. 

Fig. 10. Average coefficients of aerodynamic drag force on the upper cylinder for β = 0°÷45°. 
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Fig. 11. Coefficients of aerodynamic drag force for one cylinder according to (CEN 2005). 
 
Figures 12 and 13 present the time-averaged aerodynamic lift forces depending on the wind speed and 
the time-averaged coefficients of aerodynamic lift depending on the Re number. The greatest values 
of lift force occur at a value of Δ equal to 100 mm for cylinders angled horizontally from the direction 
of wind velocity by 15°. Only for β = 0° and Δ = 200÷250 mm the average values of the lift coefficient 
are similar to the data presented in (Lienhard 1966) in Fig. 9 for single circular cylinders. 
The remaining results shown in Figures 12 and 13 differ from these data. 

 

Fig. 12. Average aerodynamic lift forces on the upper cylinder for β = 0°÷45°. 
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Fig. 13. Average coefficients of aerodynamic lift force on the upper cylinder for β = 0°÷45°. 

Bringing the cylinders together leaves less space between them which creates a common aerodynamic path 
of flow and increases the difference of observed values between the windward and leeward surfaces of the 
cylinders. The differences are much greater than the values given in (CEN 2005) for a single cylinder, even 
in case of  the largest distance between the cylinders analyzed in this paper (Fig. 14). In the case of Δ = 250 
mm external pressure coefficient is -3.5. 

Fig. 14. External pressure coefficients for Δ = 250 mm. 
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5. CONCLUSIONS 

Numerical FVM method using the CFD module and the wind tunnel tests allow for a reliable analysis of the 
wind flow with high velocity near structures with circular cross sections, arranged in rows e.g. elements  
of a water slides. Each of the considered flow ranges (turbulent, transitional, laminar) is characterized by  
a different behavior. Although all types of flows fall within the critical range, their nature is very different. 
Thus it was necessary to adjust the parameters of the numerical model. As a result of the performed 
calculations in the wind tunnel the time-averaged coefficients of aerodynamic drag force on the upper 
cylinder depending on the Re number were presented. The distance between the cylinders with diameter  
Φ = 200 mm was 100 mm (300 mm center to center), 150 mm (350 mm), 200 mm (400 mm) and 250 mm 
(450 mm). The cylinders were angled horizontally from the direction of wind velocity by: 0⁰, 15⁰, 30⁰ and 
45⁰. The highest values of the drag and interference coefficient occur at a delta equal to 100 mm. These 
values differ from those given in (CEN 2005) for both a single cylinder and a system of cylinders.  
The Eurocode also does not include cylinders angled to the wind direction. In the case of speed of 19.2 m/s,  
a clear division into smaller pressure values (in front of the cylinders) and higher (between the cylinders) was 
visible. The time-averaged coefficients of aerodynamic lift depending on the Re number were also presented. 
The greatest values of lift force occur at a value of Δ equal to 100 mm for cylinders angled horizontally from 
the direction of wind velocity by 15°. Only for β = 0° and Δ = 200÷250 mm the average values of the lift 
coefficient are similar to the data presented in (Lienhard 1966) in Fig. 9 for single circular cylinders. The 
remaining results shown in Figures 12 and 13 differ from these data. 
Analyses are used to design a structure with a circular cross section in a more detailed way. More research 
results will be shown in the development of this work. 
To make a more complete analysis, it would be necessary to determine the aerodynamic interference 
coefficients of various cylinder systems and different diameters. In addition, it may be necessary to take into 
account in the calculations, for example, connectors or platforms with which water slides are equipped.  
The phenomenon of vibrations of a circular cylinder in the trace of another cylinder (the so-called 
interference galloping) should also be investigated. 
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                                                             ABSTRACT: The main objectives of domes constructions are to aim to the weight of the structure 
optimization as well as to obtain a cover with huge possibilities of large area usage thanks to the lack of 
internal supports. The usage of steel in such kinds of construction systems is reflected in a relatively small 
own weight of the construction. The other advantages of the spatial strut structures are the usage of straight 
struts, high rigidity of the structure, ease of shaping, relatively easy assembly. The paper presents the 
optimization approach of strut dome structures based on the regular octahedron, designed according to two 
different methods. The analysis of geometry, statics and preliminary dynamic studies of the designed 
innovative domes allowed to indicate the most optimal solution, taking into account the topology of the 
considered design methods. Usually the strut domes are cyclically symmetrical structures, having many 
elements with the same geometry and therefore they are suitable for modern production and assembly. 
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1. INTRODUCTION 

The geometric shape of the geodesic dome is used in various types of architectural solutions as an attractive, 
durable and self-supporting covering. The multitude of advantages of this type of construction solutions 
makes the dome-shaped coverings very desirable. They are used for roofing larger areas, such as halls, sports 
facilities, commercial facilities, planetariums and others. It is thanks to the solutions in the form of  
a three-way mesh stretched over the sphere that we obtain a structure characterized by a small number of 
different elements, which definitely facilitates prefabrication and assembly. Another advantage of this type 
of cover is, for example, no need to use internal supports, thus increasing the usable area and the possibility 
of its development. Moreover, compared to other design solutions, the smaller amount of construction 
material used per unit of the covered area means that geodetic dome solutions are treated as lightweight roof 
coverings. 
The design concept of geodesic domes is based on a mesh of regular polyhedra, as they are the basis for 
shaping this type of cover solutions. Most of the considerations regarding the spherical structures of geodesic 
domes reflect the subdivision of the original icosahedron into smaller parts, using the Fuller patent - US 
Patent 2682235 of 29 June 1954 (Fuller 1954). Taking into account Fuller patents and projects, the geodesic 
dome has become the canon of modern architecture, and at the same time the subject of many scientific 
studies. They treat the icosahedron as well as the dodecahedron as the basis for generating large surface 
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coverings in the form of geodesic domes. Significant and excellent achievements in this field have been 
attained by Clinton (Clinton 1971, 1990), Tarnai et al (Tarnai 1987, 1996 Tarnai , Lengyel and Gaspar 
2017), Huybers (Hyubers 1982, 1990, 1997, 2002), Hyubers and van der Ende (Hyubers and van der Ende 
2001), Lalvani (Lalvani 1982, 1990, 1996), Lalvani and Katz (Lalvani and Katz 1993), Pavlov (Pavlov 1990, 
1993), Ramaswamy et al (Ramaswamy, Eukhout and Suresh 2002), Obrębski (Obrębski 2006) and many 
others. A different polyhedron than the recognized icosahedron or dodecahedron, i.e. a regular octahedron, 
was analyzed and used as the basis for generating strut meshes of geodesic domes by Pilarska (Pilarska 2017, 
2018, 2020, 2021).  
A very important aspect is to optimize the geometry and topology of geodesic dome structures. Various 
approaches to this subject, as well as many innovative solutions, can be found in the works prepared by 
Kaveh and Talatahari (Kaveh and Talatahari 2011), Kaveh and Rezamei (Kaveh and Rezamei 2016), Saka 
(Saka 2007), Carbas and Saka (Carbas and Saka 2012), Gythiel et al. (Gythiel, Mommeyer, Raymaekers and 
Schevenels 2020). However, all these works take into account the optimization of various forms of geodesic 
domes, formed on the basis of polyhedra other than the regular octahedron. 
The aim of this paper is the optimization of geodesic strut domes designed on the basis of regular 
octahedron. Its equilateral faces were subdivided into smaller sub-faces and taking the resulting face vertices 
to define the nodes of the structural grid, while the edges of the sub-faces define the axes of the structural 
members. Using two subdivision methods, two families of structures were designed, each consisting of 8 
spherical strut structures. These are innovative domes, previously unrecognized, treating a regular 
octahedron as the basis for geodesic domes generating.  

2. GEODESIC DOMES SHAPED ON THE BASIS OF THE REGULAR OCTAHEDRON

2.1. Applied methods of geodesic domes shaping 

Two subdivision methods developed by Professor Fuliński (Fuliński 1966) were used to design two families 
of geodesic domes subjected to the analysis. Taking into account the regular octahedron as the basis for the 
geodesic domes, its initial triangular meshes were subdivided into smaller triangles. The principles of this 
subdivision differ depending on the method used. The subdivision points reflect the individual nodes of the 
structures. Appropriate connection of nodes, depending on the method used, leads to two families of strut 
domes, differing in mesh topology. The number of subdivisions is referred to as frequency, which is denoted 
by the letter “V.” Also, “2V” is shorthand of “frequency 2.” The subdivision process naturally leads to the 
generation of a three-way grid on every face of the basis octahedron. The central projection of this grid’s 
vertices on the octahedron’s circumscribed sphere, leads to a polyhedron approximating the sphere in which 
only the grid’s nodes lie on the sphere’s surface. Higher frequencies give smoother spheres. 
In this paper, based on the regular octahedron as the so far unexplored basis for the shaping of geodesic 
domes, two methods of dividing the initial mesh are used. The mentioned methods were developed in detail 
in the papers of Pilarska 2017, 2018, 2020. Figure 1 shows graphically the principles of shaping geodesic 
domes, depending on the method used.  
The first method involves the subdivision of each edge of the basic triangle into n parts, drawing three 
families of lines parallel to each of the edges. Subdivision frequencies may be even or odd. The 1V dome is 
made up of equilateral triangles, with all edges of every triangle being the same length. To make a 2V dome, 
each initial edge is broken into two parts which subdivides the triangle in the 1V dome into four triangles. 
The 3V dome has each initial edge of the triangle broken into three parts, which in turn gives nine triangles. 
The 4V dome is shaped thanks to the subdivision of each initial edge into four parts and thanks to that we get 
16 triangles.  
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Fig. 1. Two subdivision methods used for geodesic domes designing. 

 
In the second method, after subdividing the edges into n parts, three families of parallel lines are drawn 
parallel to the medians of the initial triangle, where a median runs from a vertex of the initial triangle to the 
mid-point of its opposite edge. Subdivision frequencies is even. Thanks to this subdivision, we deal with 
pairs of left and right triangles, which are combined to form an entire second method triangle, which is then 
projected to the sphere. The 1V dome is exactly the same as in the first method. To make a 2V dome, each 
initial edge is broken into two parts which subdivides the triangle in the 1V dome into three pairs of left and 
right triangles, therefore three entire triangles. Every edge of the basis triangle in the 4V dome is subdivided 
into four segments, which gives in turn 12 complete triangles. To obtain the 6V dome, each initial edge is 
subdivided into six parts which subdivides the triangle in the 1V dome into 27 entire triangles. 
Using the first subdivision method, after division of each edge of the regular octahedron into 19, 20, 21, 22, 
23, 24, 25 and 26 parts (frequencies), the following domes were obtained: 2888-hedron, 3200-hedron, 3528-
hedron, 3872-hedron, 4232-hedron, 4608-hedron, 5000-hedron and 5408-hedron. The second subdivision 
method used, leads to the creation of 2904-hedron, 3456-hedron, 4056-hedron, 4704-hedron, 5400-hedron, 
6144-hedron, 6936-hedron and 7776-hedron. These structures were shaped by the division of the regular 
octahedron edge into 22, 24, 26, 28, 30, 32, 34 and 36 parts (frequencies). 

2.2. Description of numerical models 

The commercial software Autodesk Robot Structural Analysis were used to prepare the numerical analysis. 
The program is based on the Finite Element Method, which is commonly used in engineering practice. All of 
the analysed 16 geodesic domes were made of S235 standard steel as steel struts (round pipes) according to 
Eurocode 3. In addition, the steel elements were modelled as a linearly elastic isotropic material and truss 
finite elements (without torsional effect). The properties of this steel grade were: (i) Young modulus (E) 210 
GPa, (ii) Poisson ratio (ν) 0.3. Such assumptions and parameters allow for the correct representation of the 
work of the structure of the tested geodesic domes under a given load. 
 

Tab. 1. Division of the analysed geodesic domes into four groups of struts. 

Groups of struts 
2888-hedron (I method) 2904-hedron (II method) 

RO 70.0 × 8.0 RO 70.0 × 7.1 
RO 63.5 × 8.8 RO 63.5 × 8.0 
RO 44.5 × 5.6 RO 57.0 × 5.6 
RO 44.5 × 3.6 RO 51.0 × 3.2 
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All struts of modelled structures were grouped into four groups. On the basis of the most stressed element in 
a given group, struts were assigned individual cross-sections, as shown in Table 1. 
The following loads were taken into account: the fixed load, i.e. own weight of construction and weight of 
cover constituting glass panes with a weight of 0.6 kN / m2, as well as variable load, i.e. snow and wind for 
the first climate zone. From the presented interactions, the following load combinations were created: 
combination no 1 containing fixed influences as well as leading variable influences of the wind and 
accompanying variable influences of the snow, combination no 2 consisting of fixed influences as well as 
leading variable influences of the snow and accompanying variable influences of the wind, combination no 3 
including fixed influences as well as leading variable influences of the wind. 

3. GEOMETRY AND STATIC COMPARATIVE ANALYSIS

3.1. Geometry analysis results 

From the geometric point of view, the number of nodes and struts, the number of supports, groups of struts 
of the same lengths, as well as the lengths of strut elements constituting the mesh of the domes generated 
were compared.  
The number of nodes and struts are less for geodesic domes shaped according to the first method used. It is 
caused by the method of topological connection of nodes, in accordance with the assumptions of the 
subdivision methods used. The final number of supports for all designed geodesic domes indicates that it 
depends on the subdivision method used. This number is smaller for domes generated according to the first 
method. When considering strut elements, a very important aspect is to obtain as many struts of the same 
length as possible. Therefore, the geometric analysis also included the indication of the number of groups of 
struts of equal lengths. These tests were carried out for all modelled geodesic dome structures, shaped both 
according to the first and the second method. On the basis of the conducted research, it was found that in the 
first method there is a smaller number of struts of different lengths. This tendency is maintained in relation to 
all compared structures generated according to the first and the second used. Moreover, the increasing 
density of the structure mesh, resulting from the successive subdivisions of the initial regular octahedron, 
does not cause a significant increase in the number of groups of struts of equal lengths. In the case of domes 
created according to the first method, these amounts are on a comparable level, about 100 groups. For 
structures generated according to the second method, these amounts are higher and oscillate around 120 - 
130 groups. The obtained results are presented in Figure 2.  

Fig. 2. Two subdivision methods used for geodesic domes designing. 
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The total length of the struts constituting the individual meshes of the designed geodesic domes is 
determined by the subdivision method used. The method of subdividing the initial mesh of regular 
octahedron, as well as the topology of the connected nodes resulting from this subdivision, is reflected in the 
smaller total length of the struts used to design the individual geodesic domes according to the first method. 
Only when comparing the smallest designed structures (2888-hedron according to the first method and 2904-
hedron according to the second method) the total length of the struts is smaller for the second subdivision 
method used. In Figure 3, point A marks the place where the trend changes, and indicates the greater length 
of the dome struts generated according to the second method. Moreover, it can also be seen from the 
presented Figure 3 that with the densification of the dome meshes, the difference in the lengths  
of strut elements between the two designed families of structures increases more and more. In the case of 
domes shaped on the basis of 3200-hedron according to the first method and 4056-hedron according to the 
second method the difference is 1.5 %, while for structures generated on the basis of 5408-hedron for the 
first method and 7776-hedron for the second method the difference is 18 %.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Total length of all struts in each analysed dome shaped on the basis of the first and the second method. 

3.2. Static analysis results 

Two families of geodesic domes, shaped on the basis of a regular octahedron, were also subjected to static 
analysis, the aim of which was the comparison of the values of axial forces and stresses in struts, as well as 
vertical and horizontal displacements of nodes. The static analysis was carried out using the commercial 
software. All analysed aspects indicate the lower values obtained for geodesic domes designed according to 
the first method of subdividing the regular octahedron. Figure 4 and 5 show the vertical and horizontal 
displacements of nodes, confirming the conclusion that the structures created according to the first method 
are characterized by lower values. The vertical displacements for structures designed according to the second 
method are about 30 – 40 % higher than for structures shaped according to the first method. The differences 
in horizontal displacements are definitely smaller and oscillate about 4 – 15 %. There are 2 cases where this 
difference is higher, especially for domes generated from 4234-hedron due to the first method and 5400-
hedron due to the second method (32 %). 
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Fig. 4. Maximum vertical displacements of nodes occurred in each analysed  
dome shaped on the basis of the first and the second method 

Fig. 5. Maximum horizontal displacements of nodes occurred in each analysed  
dome shaped on the basis of the first and the second method 

4. OPTIMIZATION OF STRUTS CROSS - SECTIONS

Firstly, all elements of the strut structures designed according to the first and the second method were 
assigned with an identical cross-sections, taking into account the use of the most stressed strut in a given 
dome at the level of about 90%. On this basis, the weight of the structures were determined, as shown in 
Figure 6a. The greater weights appear for the two domes with the smallest mesh density generated due to the 
first method used, in compare to the smallest dense meshes of structures shaped on the basis of the second 
method. The next designed domes indicate the reverse tendency, that is the greater weight of all struts in 
geodesic domes generated on the basis of the second method. The moment of change is presented in the 
graph as point A.  
The next step was to group strut elements of each designed structures into four groups, indicating the most 
optimal struts cross-sections for each of them and determining the new weight of the entire structures. The 
trend turned out to be the same as in the case of considering domes having all strut elements with the same 
cross-section. The first two analysed structures, that are the structures with the smallest density of struts, 
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show the higher weights for domes generated according to the first method. Increasing mesh density (higher 
frequency of the subdivision) cause the higher weight of domes designed due to the second method (Figure 6b). 
 

a) b) 

Fig. 6. Total weight of all struts in the individual dome shaped according to the first and the second method            
          a) the same cross – section for all struts, b) cross – sections depending on the struts group. 

 
Optimization of the cross-sections of the struts allowed to reduce the consumption of construction material 
(steel), as well as to reduce the weight of the domes by about 15-20% for structures designed according to 
the first method and 25-30% for structures designed according to the second method (Fig. 7). 
 

a) b) 

Fig. 7. Total weight of all struts in the individual dome: a) domes shaped on the basis of the first method,  
qb) domes shaped on the basis of the second method 

5. SEISMIC EXCITATIONS ANALYSIS RESULTS 

Additionally, preliminary studies were conducted including seismic excitations. Using the DLUBAL RFEM 
5.21.01 (2020, Dlubal Software GmbH from Tiefenbach, Germany) program, the performed numerical 
analysis allowed to determine how seismic excitation affects the dome shaping method. The following 
aspects were analysed: displacements, axial forces, velocities and accelerations. Figure 8 shows maximum 
displacements in strut domes, constructed according to the first method (for 2888-hedron) and to the second  
method (for 2904-hedron). 
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Fig. 8. Maximum displacements in numerical model of record of Ancona (Type 1  – 2888-hedron designed  
according to the first method; Type 2 – 2904-hedron designed according to the second method). 

6. CONCLUSIONS

Grouping the strut elements of the designed geodesic domes into four groups and assigning them an 
optimized cross-sections allowed to reduce the consumption of construction material and, consequently, to 
minimize the weight of the structure by about 15-20% for structures designed according to the first method 
and 25-30% for structures designed according to the second method The other advantages are as follows: 
– The geometrical analysis carried out for eight domes designed using the first method and eight domes

using the second method showed that the structures generated based on the first method are characterized
by: (i) less structural elements, such as nodes and struts, (ii) about 45–70 %  more supports, (iii) about
20–30 % lower number of groups of struts of equal lengths, (iv) lower total length of all strut elements,
which in turn leads to less use of construction material needed to produce all strut elements.

– The static analysis carried out for eight domes designed using the first method and eight domes using the
second method showed that the structures generated based on the first method are characterized by:
(i) smaller values of tensile forces (by approx. 8–25 %) and compressive forces (by approx. 25–47 %) in
struts, (ii) smaller (by approx. 10–20 %) maximum stresses occurring in the struts, (iii) smaller maximum
vertical and horizontal displacements of nodes.

– On the basis of the preliminary research taking into account seismic excitations, it can be concluded that
the method of shaping the steel structure of the dome  has a significant impact on the obtained values of
displacements, axial forces, velocities and accelerations.
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                                                             ABSTRACT: Fuel tanks are designed with regard to standard actions and operating conditions. The work 
analyses the impact of corrosion and other means to variation of stresses and deformation of a horizontal 
underground tank shell. The computations are preliminary. Due to the long computational time of the entire 
tank the analysis is restricted to its part only. The full analysis is bound to assess structural reliability, further 
allowing for its optimization. 

  
  
  
  
  
  
  
  
                                
  Keywords: underground fuel tanks, shell corrosion, non-standard actions. 
                                

1. INTRODUCTION 

Pressure tanks belong to the most responsible structures in present design. Possible failure affects a huge 
financial loss due to the loss of stored or processed material, technological break and tank refurbish, it also 
affects human health and life. The consequences of failure may be as well environmental due to the medium 
exposition into the surrounding environment, possibly bringing environmental degradation like ground water 
pollution, etc..  
The present EU regulations bring the so-called pressure directive PED with a requirement to satisfy basic 
safety conditions in the Appendix I to the directive 2014/68/UE. To assure the accordance of pressure tank 
design with the PED directive the designer may apply a set of standards harmonized with the directive, e.g. 
EN 13445 or other standards or codes to assure fulfilling the directive requirements e.g. The Conditions of 
Technical Supervision Agency (WUDT) or ASME Boiler and Pressure Vessel Code and other. All the 
enlisted standards emphasize operational safety and durability of tanks. The prior assumptions state that 
relevant ultimate and serviceability limit states and appropriate structural solutions assure a proper safety 
level and durability. None of the sources distinguishes the way the safety level is quantified.  
The answer may be partial or an entire application of Eurocodes, say, EN 1990 - Fundamentals of structural 
design and EN 1993-4-2, Eurocode 3 - Design of steel structures, the standards of the Eurocode series. 
The EN 1990 code regards structural safety in terms of its reliability, introducing the reliability index beta. 
The index is affected by the so-called consequence class: CC1 (the lowest), CC2 and CC3 (the highest).  
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The standard allows for introducing partial safety factors, moreover, it allows to estimate the index beta and 
compare it with the limit value included in Table 2 of EN 1990.  
The FE models of fuel tanks should exceed the deterministic analytical standards for perfect structures, to 
consider the issues like material and geometric imperfections and post-welding stresses (Rasiulis et al. 2006). 
The problem of determining the limit values of the parameters of imperfections and their impact on the 
stress/strain state of a shell structure is the subject of many papers, e.g. (Rotter 2011, Górski et al. 2015, 
Górski et al. 2020).  
It is important that the pressure tanks (pressure devices covered by the directive PED) is assumed the CC3 
class. Thus we are able to state that taking a 50 year reference period the reliability index of pressure tanks is 
estimated 4.3, corresponding to failure probability lower than 0.00001. Hence it is reasonable to assess 
structural reliability of the tanks designed by the non-Eurocode standards (Gwóźdź and Michałowski 2012, 
Kamiński and Świta 2015). Reliability assessment is incorporated to address the impact of corrosion-based 
degradation (Geary and Hobbs 2013).  
The work presents preliminary analysis of a simplified model of an underground fuel tank. Some parameters 
are selected, e.g. softening (thickness reduction) of sheets because of corrosion (Melchers 2010) and the 
number of stiffeners, a check is completed of their impact to critical states due to negative pressure. 

2. THE UNDERGROUND FUEL TANK MODEL

The analysis concerns a standard underground storage horizontal tank. The tank length is 72599 mm, outer 
diameter 5600 mm (Fig. 1). Spherical end caps are assumed for the analysis. The base material used for tank 
manufacture is steel P355NL2, 28 mm thick for cylindrical shell and 26 mm thick for the caps. The 
cylindrical shell is stiffened with 13 T-shaped rings. The tank features five manholes in the upper tank region. 
The commercial engineering software allows to perform LBA (Linear Bifurcation Analysis) and GMNA 
(Geometrically and Materially Non-linear Analysis) [Hotała et al. 2014]. While the tanks are often loaded by 
negative pressure, it is crucial to consider imperfections during analysis i.e. GNIA (geometrically non-linear 
analysis of imperfect structures) or GMNIA (geometrically and physically non-linear analysis of imperfect 
structures). This sort of sensitivity and reliability assessment is complex and time-consuming. 
The work presents preliminary analysis of a half shell. It is aimed at sensitivity assessment of the structure to 
cross-sectional variations, e.g. in the case of corrosion, including the non-uniform case.  

Fig. 1. Example - the analysed underground fuel storage tank 

3. THE TANK FEM MODEL

The preliminary analysis was completed of the simplified tank models (Fig. 2). The computations are 
performed for the cylindrical shell with following parameters: length L=33500 mm (half of the real tank 
length) and diameter dc=5600 mm (Fig. 1). The computations are conducted using the ABAQUS software 
(Smith 2009). The model incorporates 37632 shell elements. Simplified boundary conditions are modelled 

~33500 mm 
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by restraining the translations at both edges. This modelling pattern of boundary conditions is possible 
because of specific loading, i.e. negative pressure. The edges of a simplified tank model are stiffened 
(Fig. 1), and it is possible to represent them by the restraint upon all modes. Negative pressure was assumed 
of an initial value of p = 1.0 MPa. The negative pressure multiplier p was investigated to yield global or 
local stability loss (Burkacki et al. 2013). The computations are directed to the corrosion check by means of 
sheet thickness reduction in the case of overall or partial tank analysis. The influence of stiffener spacing was 
also analyzed. 
 

 
a) b) 

Fig. 2. Simplified models of an underground fuel tank (ABAQUS)  
a) without ribs and b) including stiffening ribs. 

 
The following variants of tank loading are assumed (Fig. 3):  
a) internal radial pressure pn, 
b) compressive load in longitudinal direction, the derivative of internal pressure px,  
c) the combination of internal radial pressure pn and compressive load in longitudinal direction px. 

The longitudinal load px is a function of radial load pn: 
 

2 2 1400 ,n x x nR p Rp p p     (1)
 
where R is the tank radius. 
 

Fig. 3.  Three loading variants of a tank (details in the text). 
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4. THE RESULTS OF SENSITIVITY ANALYSIS

The following computational variants were conducted:  
1) unstiffened cylindrical shell with uniform thickness, impact of the overall tank thickness variation to

buckling,
2) unstiffened cylindrical shell with a constant basic thickness equal 28 mm, reduced thickness along the

generating line, the reduced strip is denoted by the angle  = 30, 90, 180 [deg].
3) stiffened cylindrical shell with a variable number of stiffeners (1, 2, 3, 6) impact analysis of the number of

stiffeners to buckling.

Figures 4 and 5 compares the critical pressure results with regard to variable sheet thickness t and two 
different loading schemes. The variation of sheet thickness t reflects the corrosion processes which may 
happen in a long-term tank operation. It was assumed that reduction of sheet thickness is uniform throughout 
the entire shell. 

Fig. 4.   Unstiffened cylindrical shell with uniform thickness:  
the impact of sheet thickness t on critical pressure px 

Fig. 5.  Unstiffened cylindrical shell with uniform thickness: the impact of sheet thickness t  
and two different loading patterns on critical pressure pn and px. 
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The preliminary computations concerned a perfect tank, free of geometric imperfections. A high impact was 
observed of longitudinal load px (Fig. 4), radial load pn and the combination of both pn and px (Fig. 5).  
A 20% critical pressure drop is observed in the combination case of pn and px. The computations proved the 
necessity to consider these loads in the analysis of pressure tanks. The examples of type the computations are 
included in Fig. 6. 
 

 
Fig. 6. Buckling modes of a tank subjected to uniform corrosion (ABAQUS). 

 
The second analysed model consider corrosion on the part of a tank shell only. The computations define the 
weakened part by the angle  (Fig. 7). 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Illustration of the assumed shell part of reduced sheet thickness (the impact of corrosion process) 
 
Figure 8 presents the diagrams of breaking load change with regard to tank shell thickness.  In this case the 
critical state involves a local buckling mode. This mode ( = 30o) is presented in Fig. 9.  
 

 
Fig. 8. Unstiffened cylindrical shell with partially reduced thickness:  

the impact of range and thickness reduction on the critical load 

p

α

t=28

tα 
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Fig. 9. Unstiffened cylindrical shell with partially reduced thickness: buckling mode of  
a tank subjected to corrosion covering part of the tank  = 30 deg 

The third computational series is intended to check the necessary number of stiffeners preventing the tank 
from reaching its critical states. Assuming an optimal spacing between the stiffeners is essential to assess the 
mechanical response of the structure to negative pressure. Figure 10 shows the impact of the number of 
stiffeners on the critical pressure calculated by LBA. 

The computational results presented in Fig. 10 allow to conclude the following:  
– linear relation is achieved between the critical pressure and the number of stiffeners in each loading

scheme,
– in the case of internal pressure of the models with a single stiffener and seven rings a 700% rise of critical

pressure is observed,
– a 6% rise of critical pressure is denoted in the case of longitudinal compressive force for the models with

one and seven stiffeners

The last stage of the preliminary analysis compares the design critical stresses of the stiffened cylindrical 
shell subjected to longitudinal compressive force and internal pressure. It is shown(Fig. 11) that the critical 
stresses due to the standard formula is higher than the corresponding numerical result.  

Fig. 10.  Unstiffened cylindrical shell with uniform thickness: the impact of the number of stiffeners on the 
critical pressure (ABAQUS). 
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5. CONCLUSIONS 

Preliminary analysis of this tank proved the following:  
– the variation in tank thickness decreases the negative pressure bringing stability loss,  
– local reduction of shell thickness yields reduction of negative pressure causing stability loss, 
– while the difference between the nominal shell thickness and its reduced value is substantial local stability 

loss occurs in the reduced thickness region, 
– the use of reinforcing stiffeners of appropriately high stiffness increases the cylinder load-carrying 

capacity, and the required negative pressure to yield stability loss is higher than the one for the 
unstiffened shell. 

The conducted computations and further conclusions are bound to accelerate the computations in the 
complex FEM model. 
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                                                             ABSTRACT: The paper discusses the results of experimental research on polyurea. In authors’ opinion, this 
material could be used to improve load-carrying capacity and integrity of structural elements made of various 
materials. The paper presents the results of research on basic mechanical properties of polyurea, its impact on 
integrity of cellular concrete specimens and full-scale concrete rings. The additional polyurea layer on outer 
surfaces of test specimens improves mainly their integrity following their complete failure. It must be noted, 
however, that when the additional layer is present, it does not improve all strength properties of test specimens 
such as resistance to compression of cellular concrete specimens. It was revealed that this property may be 
negatively influenced by the level of constrainment. 
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1. INTRODUCTION 

Industrialization and improper management of natural resources have led to changes in the environment 
exerting adverse impact on building structures. Such changes combined with often inadequate building 
operation practices result in deterioration of durability of structural elements, which in numerous cases 
makes a building less safe to use. Building operation, mechanical and corrosion-related damage, and material 
aging are aspects that are closely related with each other. Wrong practices of building operation or incorrect 
technical solutions are the reasons why repairs, refurbishments, renovations and reinforcements of structural 
elements often have to be made (Badowska et al. 1974, Baszkiewicz and Kamiński 2006, Bródka 1995). 
Corrosion processes combined with improper operation and aging of structural elements lead to damage to 
building components, which necessitates additional spending during their lifetime. The severity of this global 
issue depends on the environment, climate zone, and quality of materials. Traditional building materials, 
such as concrete, steel, wood and isolating materials, are often characterized by inadequate durability and 
poor functional properties. This speeds up corrosion processes on the one hand and decreases strength of 
structural elements over time on the other so finally works are required to reinforce such elements. Thus, 
products that make it possible to improve a number of functional properties of a structure are gaining 
interest. The characteristics of building materials that are sought after include both protecting building 
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elements against corrosion and aging and reinforcing them at the same time. Polyurea can be listed among 
products that have all the above characteristics (Banera et al. 2017, Gruener 1983). 
This paper presents the application of polyurea coatings as a product used to reinforce structural elements 
and improve their functional properties such as protection against corrosion and aging. The focus is on 
demonstrating polyurea as a functional product suitable for reinforcing structures to ensure that their 
integrity is maintained after load-carrying capacities of structural elements have been exceeded. 

2. POLYUREA COATINGS SYSTEM

Polyurea, a modern material unique in terms of its characteristics, was invented in 1980s in the United States. 
Polyurea coatings were used in Europe for the first time in 1990s, and the beginning of the 21st century saw a 
dynamic growth in the number of applications of this technology. In terms of materials science, polyurea is 
derived from the reaction of an isocyanate component and an amine blend and has a chain structure 
composed of ‘n’ molecules that are strongly cross-linked with each other (Fig. 1). Polyurea is an elastomer 
that is derived from the chemical reaction (polyaddition) of an aromatic or aliphatic isocyanate component 
and a multifunctional amine or an amine blend. Aromatic polyureas are derived from methylenediphenyl 
diisocyanate (MDI) while aliphatic polyureas from hexamethylene diisocyanate (HDI) or isophorone 
diisocyanate (IPDI), which form a stiff chain section (Banera et al. 2017, Szafran and Matusiak 2016, 
Szafran and Matusiak 2017). 

a) b) 

Fig. 1. Polyurea: a) chain structure, b) photo of samples. 

3. POLYUREA – ADVANTAGES AND DISADVANTAGES

3.1. Advantages 

In contrast to traditional isolating materials, polyurea membranes have excellent functional properties, 
chemical resistance, and mechanical strength. The material properties of polyurea that make it usable in 
a wide range of applications and are at the same time its advantages include (Banera et al. 2017, Szafran and 
Matusiak 2016, Szafran and Matusiak 2017): 
 fast reactivity and bonding, which significantly reduces the time required to apply the product; 
 adherence to most building materials after preparing the substrate for product application; 
 resilience and elasticity in a wide range of temperatures below and above 0°C; 
 high mechanical strength, with tensile strength of over 20 MPa and tear strength of over 50 MPa; 
 high chemical resistance to most organic and inorganic acids, bases, salt solutions and amines; 
 effective crack bridging; experimental studies have shown that a coating can bridge cracks up to 5 mm 

in width; 
 UV resistance. 
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3.2. Disadvantages 

In addition to unquestionable advantages, the polyurea coating technology has also its flaws which should be 
known to justify the use of the product. The main weakness of the technology is that certain technological 
rules have to be observed and special equipment is necessary to apply the system. Another requirement is 
preparation of the substrate before polyurea is applied with the preparation method depending on the type of 
the substrate. What also needs to be stressed is that you must not apply polyurea on surfaces that are dirty, 
oily and unprepared or in adverse ambient conditions, for instance when it is raining. 

4. BASIC EXPERIMENTAL RESEARCH 

Basic properties of polyurea coatings were determined for aromatic polyurea as the most common type of 
coating utilized in the construction industry. Basic tests were designed to determine mechanical properties of 
polyurea in terms of static tension according to EN ISO 527:2012. The tests were done to evaluate tensile 
strength of polyurea using dumbbell-shaped samples. The tensile strength of the material was determined for 
three test speeds of 50, 100, and 500 mm/min on a custom test bench (Fig. 2). All tensile tests were done on 
the INSTRON 5582 tensile tester. The results of polyurea tensile tests are shown in Figure 3 and Table 1. 
 

Fig. 2. Tensile strength test of polyurea - test bench. 
 
Tab. 1. Strength characteristics of a polyurea coating. 

Test 
speed 

[mm/min] 

Number 
of tests 

[-] 

Tensile 
strength 
[MPa] 

Engineering 
strain 
[ % ] 

50 5 24.08 417 
100 5 23.03 391 
500 3 19.47 332 
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Fig. 3. Diagram – engineering stress vs. engineering strain. 

The coating tensile strength was 24.08 MPa with engineering strain of 417% at the test speed of 50 mm/min, 
23.03 MPa with engineering strain of 391% at the test speed of 100 mm/min, and 19.47 MPa with 
engineering strain of 332% at the test speed of 500 mm/min (Table 1). The analysis of the results confirmed 
that the tensile strength and the nominal engineering strain of the membrane depend on the test speed, and 
these properties are lower at higher specimen loading speeds. 
The test stand was also equipped with an infrared camera which recorded changes in temperature of 
specimens while they were subjected to tension. Thermal imaging is currently used in a number of industries 
such as the construction industry, in laboratory tests and during inspections of building facilities. Thermal 
images can help localize defects (failures) in construction materials during their normal operation 
(Szczepanik et al. 2008). Thermal imaging was used during the tests of all batches of specimens to record 
their temperature distribution on an ongoing basis during the tensile test. All the specimens were positioned 
at the same distance from the infrared camera, and their surface temperatures were measured over time.  
The graph of specimen surface temperature vs. time is shown in Figure 4. 

Fig. 4. Diagram – temperature of specimens vs. time. 

The average maximum recorded temperature was 28.8°C at the test speed of 50 mm/min, 30.6°C at the test 
speed of 100 mm/min, and 39.2°C at the test speed of 500 mm/min (Fig. 4). The analysis of the results 
indicates that stretching polyurea specimens is an exothermic process during which the material warms up 
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and transfers heat to the environment. Peaks of the maximum recorded temperatures depend on the coating 
test speed, and their values are higher at higher specimen loading speeds. It can be also concluded that the 
recorded temperature gradients will have no significant effect on the performance of polyurea-coated 
structural elements.  

5. SIMPLE PHYSICAL TESTS 

Examples of simple physical tests of polyurea coatings were tests designed to determine compressive 
strength of cellular concrete specimens covered with a polyurea coating. The tests were done according to 
EN 772-1:2015 on three types of cylindrical specimens 10 cm in diameter: type I – control samples without 
any coating, type II – samples with a polyurea coating on their circumference, and type III – cylindrical 
samples covered with polyurea on their whole surface (Fig. 5). The compression strength of cellular concrete 
specimens was determined using a specially designed test stand (Fig. 6) at a test speed of 3.0 mm/min. All 
compression tests were done on one INSTRON 3384 tensile tester. The results of the cellular concrete 
compression strength tests are listed in Table 2. 
 

a) b) c) 

Fig. 5. Cellular concrete samples: a) type I - control sample, b) type II - sample with a polyurea on its circumference,  
c) type III - sample with polyurea on its whole surface. 

 
Tab. 2. Strength properties of cellular concrete specimens. 

Specimen batch 
designation 

[-] 

Test 
speed 

[mm/min] 

Number 
of tests 

[-] 

Breaking 
force 
[kN] 

Breaking 
stress 
[MPa] 

Type I 3.0 8 24.21 3.08 
Type II 3.0 8 23.95 3.05 
Type III 3.0 8 18.65 2.37 

 
Compressive strength of cellular concrete specimens was 24.21 kN at the breaking stress of 3.08 MPa for the 
uncoated elements, 23.95 kN at the breaking stress of 3.05 MPa for the elements with the coating on their 
circumference, and 18.65 kN at the breaking stress of 2.37 MPa for specimens with the coating on their 
whole surface. For the cylindrical specimens, breaking forces and breaking stresses depend on how the 
polyurea coating was applied. The results indicate that both these properties are lower for the polyurea-
coated specimens. The reason for this might be that constrained specimens have no capacity to deform, 
which is more evident at a higher level of constrainment. 
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Fig. 6. Compressive strength test of cellular concrete - the test bench. 

The cracking pattern in the specimens was in line with deformation of cylindrical elements under 
compressive load. In the case of the uncoated specimens (type I), slightly oblique vertical cracks appeared 
already at small values of the compressive force, and when it increased, the cracks lengthened and their 
number grew at the circumference of the specimens. Finally, the specimens undergone a complete failure 
after cracks occurred in the whole volume of the specimens and the internal structure of the material 
delaminated (Fig. 7a). In the case of the polyurea-coated specimens (types II and III), cracks appeared 
according to the same mechanism as for the uncoated elements. The polyurea coating efficiently covered the 
surface cracking to the extent that the cracks were not visible even at high levels of deformation of the 
specimens (Fig. 7b). 

a) b) 

Fig. 7. Deformations and failures of specimens under load:  
a) type I - control sample, b) type III - sample with polyurea on its whole surface.
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All the specimens failed in a characteristic conical way similar to that of concrete specimens in compression 
strength tests (Fig. 8). In contrast to control samples (type I), the polyurea-coated specimens (types II and III) 
kept their integrity after the maximum load was exceeded. 
 

Fig. 8. Cellular concrete samples after the failure. 

6. FULL-SCALE TEST 

Tests of full-scale structural components were done using concrete rings of 800 mm in inner diameter and 
900 mm in height with a shell of 100 mm in thickness. The tests aimed at assessing the crushing strength of 
concrete rings reinforced with a polyurea coating. The crushing strength of concrete rings was determined 
according to EN 1917:2002. Nine C25/30 concrete rings were subjected to the crushing strength test. Three 
components comprising the first batch were marked as control samples and were not polyurea-coated (Fig. 9). 
Three components of the second batch were coated with polyurea on their outer surface (Fig. 10). Three 
components of the third batch were coated with a membrane on their inner and outer surface (Fig. 11). 
 

Fig. 9. Concrete ring after failure: type I. 
 

Fig. 10. Concrete ring after failure: type II. 
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Fig. 11. Concrete ring after failure: type III. 

During the tests of the concrete rings, cracked cross-sections were observed. Cracks appeared on tension 
surfaces of the shell, i.e. according to the deformation of the cross-section under load (Fig. 12). For concrete 
rings without the polyurea coating (type I), for the maximum load exerted on the components, the largest 
cracks measured about 0.4 mm in width. When the maximum load was exceeded, the cracks virtually did not 
develop in the components up to the point of final failure of the components. Observing cracks in polyurea-
coated concrete rings (type II and III) was practically impossible. Polyurea effectively bridged the cracks  
to the extent that only those about 2 to 5 mm in width were visible. Since the polyurea coating covered  
the cracks, their widths could not be reliably measured. The application of the polyurea coating on the 
concrete rings had no impact on the mechanism of crack occurrence and development in the cross-section of 
the test objects. 

Fig. 12. Cracks occurring in concrete rings during the test. 
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The control samples (type I), i.e. the concrete rings without any coating, failed dynamically upon exceeding 
their crushing strength. In line with the classical theory of a failure mechanism, these components broke up 
into four smaller separate pieces (Fig. 9). The concrete rings with polyurea coatings on their surfaces 
(type II and III) failed when they were largely deformed and the concrete cracked in tension areas (Fig. 10, 
Fig. 11). The samples finally lost their load-carrying capacity with the largest deformations. Despite very 
large straining, the polyurea coating remained continuous on surfaces of the shell. 
 
Tab. 3. Results of the crushing strength tests of concrete rings. 

Sample Crushing strength 
[kN] 

Average crushing strength 
[kN] 

Load-carrying capacity 
gain over control samples 

C-1 58.8 
60.5 - / - C-2 66.2 

C-3 56.4 
E-1 52.7 

57.0 
- 3.5 kN 
- 5.8 % 

(no effect) 
E-2 58.9 
E-3 59.4 
A-1 78.0 

72.8 
+ 12.3 kN 
+ 20.3 % 

A-2 70.6 
A-3 69.8 

 
Table 3 summarizes the relation between the crushing strength and the limit load of each type of concrete 
rings. Average values of the crushing strength out of three tests of each type of samples were also calculated 
and are given in Table 3. 
The analysis of the results showed that the crushing strength of the components coated on both surfaces  
was higher by 20%, and polyurea helped the rings maintain their integrity after their crushing strength was 
exceeded (Szafran and Matusiak 2020). 

7. CONCLUSIONS 

The main goal of the considerations and tests described in the paper was to present polyurea coatings as 
a product that improves functional properties of structural components. Based on the results of the 
experimental research and their analysis, the following conclusions can be drawn: 
 polyurea has unique functional properties and can be used in a number of modern industries, 
 due to its extraordinary elasticity and adherence to the substrate, the product considered in the paper can 

efficiently bridge cracks in concrete elements and thus help protect them from corrosion and aging, 
 the application of the coating on elements made of brittle materials, such as cellular concrete, has 

a positive impact on their ability to maintain integrity after their compressive strength was exceeded, 
 the polyurea provides additional reinforcement improving the crushing strength of concrete rings, 
 the application of the coating on concrete rings makes them maintain their integrity after their crushing 

strength was exceeded. 
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for efficient structural forms covered in the article is an attempt to discuss the optimization of structures in the 
field of bionic morphology and geometry. The chapter also includes a simplified numerical analysis of 
selected static models and their design possibilities of applying natures solutions. 
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1. INTRODUCTION 

Inspiration in the process of architectural and structural design often comes from nature. Throughout the ages 
man driven by curiosity and imagination learned how to harvest and use many of nature's perfect solutions. 
Constructions of modern times not only astonish us by their form and functionality, but also promote 
harmony between human  habitation and the natural world. In the past, humans often consciously or 
intuitively looked for the inspiration in wildlife for their architectural activities and construction solutions. 
When we talk about the structural design, we have to start with the structural characteristics of the 
surrounding world. One look around will show us that nature knows no right angle, nor does it use straight 
lines. Although there are lots of similarities between species of different life forms, they use no repetition of 
basic structural elements for the sake of production costs. Actually every structural part of natural systems is 
unique, no matter how big or small it is (Dimcic 2011). 
After thousands of years of testing the effects of different loads and their combinations, as well as the use, 
natural forms are perfectly adapted to their environment (Benyus 2012). Probably this is the reason why 
ancient human dwellings resembled to beavers, termites, or bird nests. For example, Brunelleschi based his 
construction of the dome of Santa Maria del Fiore temple on the shape of egg shell, which is interesting not 
only because of its geometry but also because of its internal structure. By its shape it is a two-focus of  
a parabola (Acharya 2012, Bogusz 2012, Samek 2010). Structural bionics is the division of technical bionics 
devoted to discovery of laws of nature objects shapes and forms and application of these laws in 
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construction. This is a brand new approach in theory and practice of architecture. Structural bionics examines 
principles of construction of nature objects and applies these results in engineering tasks. Such approach is 
fully justified, as in the nature there are no strict barriers between the living and inanimate.  
The world is integrated into one single unit by laws of nature, creating the possibility of unification in natural 
sciences and technical sciences (Mattheck 2004, Maciejko 2016). 

2. GEOMETRY CONCEPTS IN STRUCTURAL DESIGN

2.1. Basic mechanisms in structural bionics 

It is useful to express the relationship between the shape of the projected artificial structure and nature shape 
in form of their analogy and homology. The analogy means that the same function is fulfilled by originally 
different structural features. We can draw analogies between the elements of architectural structures and 
forms in nature and we can also find related shapes: cable roof structure and spider web, dome on the 
building and anthills, etc. Homology is a different way of expression of natural laws. In biology it means that 
similar forms with the same origin and construction fulfil different functions (Sumec 2010, Vahedi 2009). 
In terms of technical bionics, homology is a manifestation of similarities, based on the common relationship. 
In search of homology we focus on establishing links between human activity and activity of living 
organisms. We can make an example of ropes, whether used as a load-bearing structure roofing systems, 
bridges, structural elements or aerial high-voltage wires. Their origin can be traced to the spider webs, lianas 
or processed flax fiber. Thus, these and alike structures created different, homologous, functions. As said 
above, fin of the whale and bat wings are homologous to the human hand. They originate from the same 
structures on the skeleton, but their functions diversified so much that there is virtually no remaining 
similarity between them (Lebiediev 1983). 

2.2. Creation of forms 

The engineering wisdom of nature lies not only in the design of structural solutions that provide maximum 
load capacity and extraordinary functionality, but also takes into account the economics of managing the 
means to achieve such excellent results. Nature saves materials by means of "prefabrication" - in organisms 
and plants very often there are elements with the same form as exemplified by the hexagons in the structure 
of the fly eye or turtle armor. An excellent example of regularity and cost-effectiveness of materials is also 
the construction of bee honeycombs made up of a hexagonal prismatic group that is very much used by 
modern engineers (Tofil 2007). The same applies to the distribution of lines between water bubbles (Voronoi 
diagrams). The use of such a form allows to significantly reduce the consumption of materials intended to 
cover the surface or the construction of stiffening partition walls. By using structures based on honeycomb or 
bone structure, krill eye, diatom frustules  or Voronoi diagram, we obtain, with all functional qualities, a 
reduction in volume and area (Kasim & Hussaini 2005, Konopka 2011, Sadri et al. 2014). 

Fig. 1. Bionical facets: a) honeycomb; b) krill eye; c) water foam (Voronoi); d) bone structure. 
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2.3. Voronoi diagram 

Voronoi tessellation can help model the shape of various architectural forms inspired by nature, e.g. from  
a flat bar structure (bone structure, foam bubbles, etc.) (Fig.2). The Voronoi diagram is a tiling of a surface, 
often a plane, into regions (cells) based on distances to points (seeds) in a specific subset of the surface. Each 
point located within a given cell of the diagram lies closer to the seed located in this cell than to any other 
seeds in the network. 

 

 
 
 

Fig. 2. Application of the diagram Voronoi: a) bone structure; b) diagram Voronoi and triangulations; c) modern façade. 
 

In the analyzes of the observation towers (see point 3.1.), a random distribution of the base points of the 
Voronoi diagram with different densities was used. The chapter presents a tessellation in which the bar 
stresses are similar to the distribution of bars on the honeycomb division tower under the action of the same loads. 

3. EXAMPLES OF NUMERICAL ANALYSIS 

3.1. Observation towers variants 

The analysis involved two types of observation towers with different distribution of rods on the side surface. 
Both towers have a cylindrical shape with a diameter of 4m and a height of 20m (Fig. 3). One of them is 
forming according to structure of honeycomb (variant I) and the second one is inspired by the Voronoi 
diagram (variant II). The following are selected values of stress, cross  – sectional forces, displacements and 
efforts in individual bars. The calculation was made in Robot Structural Analysis Professional 2020 (finite 
element type used for analysis: 3D beam – six nodal degrees of freedom). Visualizations of observation 
towers in natural environment had been made in SketchUp program. 
 

 
a) b) c) 

Fig. 3. Models of bionically inspired observation towers: a) variant I, b) variant II, c) visualisation. 
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Figs 46 present maps of axial forces Fx, normal stresses Smax and deformations of towers under load 
combinations.  

a) b) 
Fig. 4. Map of axial forces Fx - load combination: a) variant I, b) variant II. 

a) b) 
Fig. 5. Map of normal stresses Smax - load combination: a) variant I, b) variant II. 

a) b) 
Fig. 6. Deformations - load combination: a) variant I, b) variant II. 
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The models were generated assuming a similar total mass of bars, which resulted in the assumption of 
different cross-sections of bars, but at a similar cost of construction material (structural pipes: 30x3,2mm in 
variant, 54x3,2mm in variant II). The Figure 7 show the relationship between the displacement values of the 
nodes in the X and Z directions, respectively. The orange curves determine the behavior of the honeycomb 
structure, and the blue one - the Voronoi tower. 
In variant I, the displacements of Ux nodes at a height of about 4 - 16 meters are equal to each other. They 
grow from 0-2 meters, and decrease from 16-20 meters. The plot curve resembles the shape of the tower 
deformation from the displacement values. In variant II, the displacements in the X direction increase with 
the height of the tower. This is due to the lack of symmetry in the arrangement of the bars. In both cases, in 
the Z direction, the value of the nodes displacement increases with the height. 
 

 
a) b) 

Fig. 7. Comparisons of Ux and Uz deflection  - load combination: a) variant I, b) variant II. 
 
The presented variants of the observation towers are characterized by similar values of stresses, internal 
forces and displacements, but the tower modeled on the Voronoi diagram achieved higher values of these 
parameters. The reason for such results may be primarily the fact that the tower number two is based on 
irregular geometric grid, without symmetry of the bars arrangement. The bars in this structure do not have 
the same length and are arranged randomly. In the first variant, the structure of the geometric mesh is based 
on regular rod lengths, which, compared to the Voronoi tower, has greater rigidity. It is worth paying 
attention to the architectural qualities of these unusual bar structures. These structures fit well with the 
landscape. 
 

3.2. Three walls variants 

The analysis (using Autodesk Robot Structural Analysis Professional 2020) involved three walls variants 
with different mass distributions in their volume (Fig. 8). The calculations were designed to present the 
changes in behaviour of the wall variable distribution of weight of the material, aiming at distribution 
observed in nature. The analysed structures were modeled from the same material (concrete) with 
parameters: E = 30000 MPa,  = 0.18 and  = 2300 kg/m3. In addition to the material, they also have the 
same external dimensions - length and width - 36.17 x 23.86 m and a thickness of 0.30 m. These are the 
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walls fixed on the lower edge with a linear pivot support. This work focuses only on cases of plane stresses 
and plane deformations (Szmit and Chrząszcz 2018). 

Fig. 8. Views of the analysed walls. 

Model I - "filled" wall: The first example is the "filled" wall with dimensions as stated above 36.17 x 23.86 
m and thickness 0.30 m. It provides a reference point for analysis and the results obtained. Applied meshing 
method: simple mesh generation (Coons) with 925 nodes. 
Model II - "honeycomb" wall: The second example analysed this wall has in its structure the 25 holes which are 
imitation of the honeycomb system. Grid computing - 4038 nodes (complex mesh generation: Delaunay + Kang). 
Model III - "bone structure" wall: The third example is a wall with holes, as in variant II, however, differing 
in shape - these are the holes imitating primarily the internal structure of the bone, but can also be partially 
compared to the "pattern" of the giraffe's coat that was used in the construction of the Warmian Gallery in 
Olsztyn. The wall has 13 holes and 2713 nodes (complex mesh generation method: Delaunay + Kang). 

The type of finite elements used in the numerical analysis is shell (2D planar) elements. In all three variants 
that includes self-weight load and imposed load of 100 kN/m applied to the top edge of the facing down. Of 
the three analysed walls, the highest values of displacement were obtained for variant II - "honeycomb". For 
the "filled" and "honeycomb" walls approximate absolute values of the maximum and minimum 
displacement were obtained, whereas in the case of the III wall they differ considerably - this is due to lack 
of symmetry in the III variant of the analysed structure (Tab. 1). 

Tab. 1. Extreme deformations Ux and Uy. 

Walls 
"filled" "honeycomb" "bone structure" 

Ux [m] 
max 1.2658 E-04 4.9563 E-04 2.3927 E-03 
min -1.2658 E-04 -4.8341 E-04 -1.6294 E-03 

Uy [m] 
max 0.0000 E+00 0.0000 E+00 -1.6294 E-03 
min -1.1883 E-03 -2.2843 E-03 -6.2242 E-03 

The character of the deformations of all three analysed structures is the same - the wall surface under load is 
moved down. Analysing the displacement fields (Figs 911) we can see that in the case of a "filled" wall, the 
character of the displacements is parabolic line/ rounded. In the next two variants, the existence of the holes 
in the panel results in a belt of the same value (same color) arranged in lateral bands. 
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Fig. 9. “Filled” wall - deformation and the displacement field Ux. 

 

Fig. 10. “Honeycomb” wall - deformation and the displacement field Ux. 
 

 

Fig. 11. “Bone structure” wall - deformation and the displacement field Ux. 
 

In the variant of "honeycomb" and "bone structure" on the upper edge there are more unified displacement 
values than in the case of a standard wall.  
As in previous analyzes, the xx - xx field for the comparison case - the "filled" wall, we obtain one-time 
graph characteristics - the stresses are parabolic form. There are two independent objects, but in the 
"honeycomb" you can capture symmetry and delicacy with parabolic outlines. In the variant "bone structure" 
there is considerable variation in the obtained results, which is characteristic for such irregular shapes.  
The concentration of the extreme stresses at the edge of the holes is also characteristic (Figs 1217). 
 

Fig. 12. Normal stresses xx – “filled” wall. Fig. 13. Normal stresses xx – “honeycomb” wall. 
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Fig. 14. Normal stresses xx – “honeycomb” wall. Fig. 15. Normal stresses yy – “filled” wall. 

Fig. 16. Normal stresses yy – “honeycomb” wall. Fig. 17. Normal stresses yy – “bone structure” wall. 

The analysed structures, as mentioned at the beginning, have the same external dimensions of 36.17 x 23.86 
m and the same thickness of 0.30 m. However, owing to having the holes wall II – “honeycomb” and wall III 
– “bone structure” have a different value for the filled surface and hence a different volume of material used
for their construction (Tab. 2). 

Tab. 2. Comparison of the filled area and volume of the analysed walls. 
Walls 

“filled” “honeycomb” “bone structure” 
Filled area [m2] 863,03 603,12 440,70 
Volume [m3] 258,91 180,94 132,22 

It can be noted that the area and volume of the "filled" wall is 1.4 times greater than the "honeycomb" and 
about twice (1.95) larger than the "bone structure". 
Keeping the surface area and the volume of used material for wall II - "honeycomb" and wall III - "bone 
structure" and while building full walls we would get adequate wall, for example: 20 x 30,16 m and 
20 x 22.04 m.  
Based on received and analysed above results can be inferred from the general conclusion - the best and most 
transparent results were obtained for "filled" statics model, which is a comparative point (Table 3). The 
findings "honeycomb" and "bone structure" static model are from 1.09 to 18.82 times greater than "filled" 
statics model. However not all results of the "filled" statics model wall are better, for example maximum 
membrane power (von Mises hypothesis) is the best for "honeycomb" - its value is 0.86 of the comparative 
statics model.   
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Tab. 3. Comparison of selected parameters of the analysed walls. 

 
 

The multiplicity of the results obtained in 
relation to the “full” wall 

 Analysed parameter “honeycomb” “bone structure” 
1. Max. directional deformation ux 3.93 18.82 
2. Min. directional deformation uy 1.93 5.27 
3. Extreme equivalent stress (von Mises) 0.86 5.65 
4. Max. normal stress (x-x) 14.60 16.00 
5. Total deformation (x-x) 3.60 1.09 
6. Max. normal stress (y-y) 8.43 21.00 
7. Total deformation (y-y) 1.88 5.17 

 
Other results for II and III statics models aren't blatantly excessive or understated than results "filled" statics 
model. Most are comparable, the difference in values is the result of another geometry. 
To conclude the statics model usually leads to changes in the parameters obtained. In some cases this is  
a more or less significant change in value, other position of maximum value or changed chart.  
From the point of view of constructor get results other than for "filled" statics model may be beneficial.  
The most important is a fact that models which refer to the world of nature have worse results but require 
less material consumption - financial considerations and they are distinguished by aesthetics and interesting 
form (Ruszaj 2016, Szmit and Chrząszcz 2018, Tselas 2013). 

4. CONCLUSIONS 

The aim of this chapter was to show the influence of bionics and organics on the achievements, capabilities 
of contemporary civil engineering and presentation of example of their use in building structures. In the 
collected study material attempts were made to make the reader aware of the wide range of influence of the 
mechanisms of nature on objects erected.   
The collected material for drawing inspiration from nature and transferring its mechanisms to the world of 
construction shows the reader that man is an integral part of nature, which is an inexhaustible source 
of knowledge and engineering wisdom. 
The second part of the chapter - two simplified numerical analysis's of static models of observation towers 
and three simplified numerical analysis's of bionic shells - is confirmation of the thesis that through 
appropriate modifications of geometry and use of nature observation we can achieve constructions who have 
not much worse parameters, sometimes even better and can use less material what is unfortunately so 
important from a point of view financial considerations. In addition, we can achieve an interesting, 
compatible with the environment of the structure space. Regardless of the approach, grid shell design, or any 
kind of design, is a process of optimization. Every decision making begins with a creation and selection of 
some solutions that are picked and altered according to some set of objectives. In nature-inspired structural 
engineering it basically comes down to optical and statical conditions that, as it is already emphasized, 
should always be considered together. 
To wrap up the work realizes the goals set out in showing the essence of the influence of fascination and the 
use of thousands of years of economic solutions of nature in modern civil engineering. It provides a source of 
knowledge and examples of implementation based on the phenomena and mechanisms of the world  
of bionics and organics. This work is confirms that the adaptation of living organisms to the world of 
construction constitutes the basis for the level of knowledge and skills acquired and provides further 
opportunities for development. 
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                                                             ABSTRACT: Optimisation plays a major role in scientific and engineering research. This paper presents the 
effects of using the catenoidal shape to design the structure of the chimney cooling tower. This paper 
compares some geometrical variations of the catenoid in comparison to the reference real hyperboloidal 
structure. This work compares the internal forces, deformation, and stability of the catenoidal structure. The 
comparison shows some predominance of catenoid over the popular hyperboloid structure of the shell. This 
paper attempts to find an optimal shape of the cooling tower to reduce the amount of material and labour. It 
focuses on optimisation of geometry and also precise load values. 
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1. INTRODUCTION 

The main objective of this work is to optimise the structural shell of the chimney cooling towers. It has 
already been proposed to use a catenoidal shape of the shell instead of the frequently used hyperboloidal one 
(Bielak and Walentyński 1993). The work focuses on theoretical considerations on static calculation and 
wind load acting on the concrete surface. 
Hyperboloid is a ruled surface, so it contains straight lines. It creates the possibility of bending and buckling 
along those lines. The catenoid does not contain any straight lines, so there is an expectation that it will be 
more stable. The catenoid is also a minimal surface, so it has the lowest possible area between two boundary 
rings. It gives opportunity to optimise the geometry of chimney cooling towers using a catenoidal shape, and 
reduce the mass of structure or strength it. 

2. METHODS 

The analysis focuses on an existing chimney cooling tower at the Opole Power Plant. The parameters of that 
structure (size, material property, technical parameters, local environmental load) have been used as 
boundary conditions for further consideration. The hyperboloidal shape has been replaced by a catenoid, 
saving boundary conditions (heights, key radiuses). 
The following paper concentrates on numerical calculation. The finite element method (FEM) and 
computational fluid dynamics (CFD) have been used for static calculation and numerical estimation of the 
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wind load acting on the concrete surface consequently. For both analyses ANSYS software has been applied. 
Ansys Mechanical for FEM calculation and Ansys Fluent for CFD. Both modules have been combined, so 
the pressure obtained from the CFD has been applied as the load acting on the concrete surface in the FEM 
model. 

2.1. Geometry 

The catenoid is obtained by Equation (1) or by the revolution of the curve given by Equation (2). 
The parameters given in the equation refer to the values marked in Figure 1. Using Equation (3) it is possible 
to modify the parameters of the shell geometry. This paper compares a few cases of catenoid given by 
equation (3) that vary by parameters h, which refer to the level of the narrowest section of the shell. The 
radius of the bottom (at altitude z = 0, which refers to the level of the bottom of the columns) is constant for 
each case analysed and equal to 54 m. Similarly, the narrowest radius is constant and equal to 32,5m. Each 
value of radius is measured in the middle of the surface. 

 22 2 2 cosh ,x y a z / c    (1)

   cosh ,R z a z / c    (2)

   min max minR cosh arccosh R R ,z hR z /
h
     

(3)

   2 2
max

min 2 2
min

RR 1 1
R

hyperboloid
z h

R z .
h
      

 
 

(4)

a) b) c) 

Fig. 1. a), b) Cooling tower shell. Coordinate systems, variables, and parameters. c) The thickening of the shell varies 
with altitude. 

Another parameter that varies for the models is the surface thickness. The smallest thickness of the concrete 
is approximately 20 cm. The thickness t of the shell varies as shown in Figure 1 and does not change 
throughout the study. 
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2.2. Loads cases and comboination 

According to Eurocode, there are a few possible, independent typical load cases acting on structures of 
cooling towers: self-load (gravity) (G), wind load (W), concrete contraction (Shrink) (S), environmental 
temperature (Tenv), technological temperature (Ttech), uneven ground settlements (B), dynamical response (Dyn). 
Combinations of loads required to determine utility of structure can be obtained using Eurocode 0 (equation 
6.10 Ultimate Limit State). It generates few situations to analyse, however, the VGB standard points just two 
load combinations as reliable for determining internal forces in shell and member substructure. They are: 
 
γ 1 5 γ γ ,G Q Q.      G W B S  (5)

 

γ 0 9 γ γ γ .G Q Q Q.        G W T B S  (6)

 
For this analysis, the following loads have been taken into account: deadload and wind load as the most 
influential load cases: 
 

 1 1 1 35 1 5 .. . .   G W  (7)

 
Deadload contains the load of concrete structure weight, which is equal to 25kN/m3. Wind load has been 
determined according to Eurocode for typical conditions in Poland, with a base wind speed v = 22 m / s,  
a base pressure wind q = 0,3kPa and a flat area with low vegetation and isolated obstacles. The other loads 
indicated by the German standard (VGB, 2019) or literature (Ledwoń, 1967) will be considered in further work. 

2.3. Wind load 

As the self-load of the structure is quite easy to estimate, it is difficult to determine the load of the wind 
acting on the structure. Wind load may act as dynamic load, but widely used methods in civil engineering 
calculation (FEM, implicit, static) allows to apply only static loads. Norms (Eurocode 1, VGB Standard) and 
literature - Flaga (2008) recommends applying equivalent static load, which substitutes dynamic character of 
wind load by increasing value of static pressure by Turbulence factor. Wind load distribution, are given in 
Eurocode 1- 4, past regional standards and many scientific studies: Flaga, (2008) Padewska (2015) for 
cylindrical cross-section of structure. Pressure is given as a function of altitude (z) and angular direction (α). 
However, the previous author's consideration shows that the pressure distribution in the hyperboloidal or 
catenoidal tower differs from the distribution in the cylindrical cross section. That difference indicates  
a noticeable difference in static calculation. To increase accuracy for each analysed case, the wind load was 
estimated numerically (using CFD).  Fig. 2 presents the difference between the pressure obtained using the 
VGB standard and numerical calculation (CFD). For estimation, a normative wind profile was used. 

2.4. FE model 

Calculation model consist of curved shells, divided in planar finite elements. The model assumes division of 
curved panels on flat finite elements. The support zone contains member elements – 72 inclined columns and 
a foundation member with elastic Winkler support.  The size of the finite element mesh has been chosen to 
obtain satisfactory results. Quality of the finite element mesh has already been tested by Wiśniowski (2020) 
or Rakowski (2005). 
Globally, mesh was set to size 2m, which divides cooling tower into 408 FE along the radial direction.  
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The local mesh had been refined, in the bottom area, to a size of 0,5m (between columns) to determine the 
distribution of forces in the shell between concrete columns, and 1 m in the zone where the thickness of the 
shell varies. 

a) b) c) 
Fig. 2. a), b) Wind load over chimney cooling tower. a) wind profile for terrain category II and wind zone (1) according 
to the Polish national annex in Eurocode, b) wind load obtained using CFD, c) wind load obtained using the VGB-S610e 

equations, given in the VGB standard, presented in units [kPa]. 

Fig. 3. Numerical model geometry – cross sections and thickness 

Each tested model contains the same number of plates. To avoid errors caused by building the model for 
each geometry, each sample is a copy of the template model, where the node coordinates were adjusted to  
a suitable function (3) or (4). A table of node coordinates was generated on radial coordinates.  
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Fig.  1. Numerical model: mesh size, mesh refinement on member elements and orientation of local coordinates for shell 

(axis X – vertically, axis Y – horizontal/ radial) 
 

3. RESULTS 

The result of the calculation is the distribution of all internal forces, so the interpretation of the results can be 
ambiguous. Because it is difficult to compare the distributions of internal forces, only the highest values of 
internal forces and displacements were taken into account in the comparison.  

3.1. Mesh convergence 

The mesh convergency was provided on the maximal displacement and stress in one selected point for 
catenoid, with altitude h equal to 122m. First step of mesh convergency changes the global mesh size 
(10÷0,5m). In the second step the size of mesh refinement was checked in the lowest layer of FE on the shell.  
 

a) b) 

Fig.  5. Mesh convergence: a) influence of global mesh size on results,  
b) influence of mesh refinement on results in distance between columns 

 
The additional mesh convergence was provided on maximal displacement and stress in one selected point for 
the catenoid, with parameter h set to 122m. First step of mesh convergence tests the global mesh size  
(for range 10÷0,5m). In the second step, the size of mesh refinement was checked in the lowest layer of FE 
on the shell. In the bottom area, mesh divides distance between columns in 18 elements, and mesh size is 
approx. 0,5m 
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3.2. Internal forces 

The shell changes its thickness with altitude, so a comparison of internal forces is presented separately for 
each sector. The structure has been divided into parts where the thickness of shell is uniform or does not very 
much. The separation of results shows the results in a clearer way. Picture below presents the division of the 
model into parts. 

Fig.  2 – selected sectors to compare results 

The example results – bending moments and normal forces in horizontal direction are presented in the Fig. 7. 
To show better results, ending layers of finite elements (where internal forces are disturbed) were hidden for 
normal forces and bending moments graph. In the lowest region, the concrete shell meets supporting 
columns and the thickness is 4 times greater, so there occurs greater internal forces locally. 

a) b) c) 

Fig.  7. a) Normal forces in the radial direction, b) bending moments in the radial direction,  
and c) total deformation of the structure. 
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The internal forces distribution in the lowest region is irregular due to supporting the shell on 36 pair of 
columns. This indicates a local increase of each component internal force. 
 

a) b) 

c) d) 

Fig. 8. Forces in the shell in the support region. a), c) Normal forces; b), d) bending moments. 

3.3. Geometry influence on the magnitude of internal forces 

The graphs below compare the relative change of internal forces for each region presented in Fig. 6. For each 
component and region, the relative change refers to the template model, the hyperboloidal chimney cooling 
tower in Opole Power Plant. The graphs shows the variation of force components with the parameter h in 
equation (3). 
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Axial forces – group 3 Bending moments – group 3 

Axial forces – group 4 Bending moments – group 4 

Axial forces – group 5 Bending moments – group 5 

Fig.  3. Axial forces and bending moments in regions 2, 3 and 4. 

It is not possible to find one common rule to determine which geometry generates the lowest internal forces. 
For example, in groups 3 and 4 the bending moments increase almost in direct proportion to the variable h, 
although in group 5 the radial moments achieve the local minimum for the parameter h≈120m. In the case of 
a thin concrete shell, high compressive forces are not a problem; however, it increases the risk of buckling. It 
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was also observed that catenoid (h≈120m) generates the smallest sum of reactions in the analysed load 
combination. Another observation is that the total deformation increases with parameter h. 
 

Fig.  4. Axial forces and bending moments in the lowst area - region 5. 
 

Fig.  5. a) axial forces in columns and bending moments in foundation beams,  
b) sum of reaction: Z- vertical; X – along wind flow. 

 

 
Fig.  6. Total deformation of the structure. 

3.4. Stability 

For thin structures, stability is often the most important limit state, which must be checked. For this reason, 
this paper also includes stability analysis using the eigenvector method. The values obtained from the critical 
load factor are presented in the graph below. 
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a) b) 

Fig. 13. a) Total deformation and critical load factor ration, b) modal vector shape. 

It should be mentioned that a higher value of factor f means that the structure is more stable. Values less than 
1,0 mean that the structure is unstable. If the factor o critical load is greater than 10, the influence of buckling 
can be neglected according to Eurocode. The values obtained are between 4,8 and 5,7 for both – catenoid 
and hyperboloid. The observed change is slight, but stability is one of the most important factors in the 
design of thin-wall structures.  
– For each analysis case, the critical load factor was at the safe level, but the influence of buckling should

be considered in the design process.
– There is no huge difference between the hyperboloidal and catenoid structure.
– The highest value of the critical load factor has been obtained for the structure that had the thinnest point

at altitude at 3/4 of the total height of the structure (h=3/4 H). 

The results presented in the previous analysis showed that the highest critical load factor is obtained for  
a value h equal to 2/3H. However, in the previous analysis the wind load was obtained by analytical 
equations.  

3.5. Natural vibration 

The following study also compares natural vibrations. For each model, the first natural frequency of 
vibration (fn) was used for comparison. Natural frequencies do not depend on the load (Gromysz 2017), so 
absolute values are given in Table 1. Profound phenomenon analysis were performed in the thesis (Cornik 
2020). Cooling towers are not exposed on dynamic technological loads; however, there may occur some 
dynamic wind action (Flaga, 2008). The potential vortex shedding for wind velocity 40m/s and diameter  
of tower 65m will oscillate with frequency approx. fo = 0,12Hz, which is much less than the frequency of 
natural vibration. However, more fn is different than fo, the dynamic amplification of wind load decreases. 
Catenoid has higher natural frequencies, so it seems to be more insusceptible on dynamic amplification of 
wind load than hyperboloid. 
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Table 2 – Natural vibration frequencies for chimney cooling towers. 

Parameter 
'h' 

Frequency  

 

 

 

 

 

 

 

 

 

Fig.  7 – First modal shape of natural vibration 

Catenoid Hyperboloid 
170 0.556  
155 0.625  
140 0.698  
130 0.699  
122 0.701 0,4951 
115 0.693  
110 0.692  
100 0.714  
[m] [Hz] 

  

4. CONCLUSION 

The whole comparison shows some differences between the hyperboloid and catenoid structure. The 
catenoidal shell is stiffer than the hyperboloidal one. Thus, it has smaller deformations and better stability 
parameters; this indicates the possibility of creating larger cooling towers, which would also improve cooling 
performance. Calculation also showed the problem of huge sensitivity of result on assumed wind load 
distribution. It is very difficult to predict real wind load, because of the character of phenomena, so it should 
be analysed further. The authors will concentrate on the influence of other load cases that must be taken into 
account in the design of chimney cooling towers. 
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                                                             ABSTRACT: In this paper results of the structural calculations of typical warehouse purlinless steel roof 
structure were presented. The objective of this research was to compare, currently most popular, approach to 
designing trapezoidal sheet based on 2D beam model on rigid supports with 3D modelling one, which takes 
into account stiffness of whole structural system. It was concluded that stiffness relations between roofing 
sheet and main structure may significantly influence the distribution of internal forces. This effect is usually 
omitted by structural designers. 

  
  
  
  
  
  
  
  

                                
  Keywords: trapezoidal sheet, roofing sheet design, purlinless roof. 
                                

1. INTRODUCTION 

There has been an outstanding increase in the newly built warehouse space in Poland in recent years; over 2 
million m2 in 2020 alone. Large warehouses are usually designed with similar column grid (12x24m). Girder 
trusses (12m long) are supported by reinforced concrete columns. Those girders support purlin trusses, 
oriented perpendicularly. Purlins are typically 22.5 or 24 meters long. On top of purlins a trapezoidal sheet is 
placed, most often multi-span. Roofing sheet acts as a roof bracing and provide out-of-plane buckling 
stability of top chord of the purlin truss.  
 
 

Fig. 1. Typical warehouse – construction site. 
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Fig. 2. Typical warehouse structural module. 

Steel roofing sheet is usually designed using software programs provided by manufacturer, e.g. Blachy 
Pruszyński or Ruukki (Fig. 3). Static calculations are based on a simple model: a multi-span beam on rigid 
hinged supports. After determining internal forces distribution, critical span and support sections are verified 
via comparison with the sheet resistance, including interaction formulas for bending moment and shear force 
(at supports). This simplification is generally accepted in the industry. However, in case of structural layout 
of a warehouse show in Figure 2, stiffness of sheet support differs noticeably across the roof. It raises a 
question, whether the influence of this variable stiffness is negligible and may be safely omitted in 
calculations. In the following chapters this method is compared with a more advanced approach employing 
3D modelling, thus taking into account stiffness of whole structural system. Resultant differences in internal 
forces distribution will be used to evaluate the severity of this phenomenon. 

Fig. 3. Pruszyński and Ruukki Poimu design tools. 

2. METHODOLOGY

2.1. FE model 

Autodesk Robot Structural Analysis software was used to perform static calculations. Main structure was 
modelled with beam elements (reinforced concrete columns, girder trusses, purlin trusses). Orthotropic shell 
with parameters corresponding to sheet T135Px0.75mm (Fig. 6) was used in order to take into account 
stiffness of trapezoidal sheet. Trapezoidal sheet was connected to top chords of trusses using short beam 
elements. This approach allows to consider stiffness of fasteners and may be helpful in their design as well. 
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Fig. 4. FE model view. 
  

Fig. 5. Girder truss view. 
 

Fig. 6. Purin truss view. 
 

Fig. 6. Orthotropic shell parameters. 

2.2. Trapezoidal sheet stiffness 

Though it is known that as a Class 4 section trapezoidal sheet is subject to local instabilities and stiffness 
vary depending on stress state, the stiffness was assumed to be constant for the entire sheet for the sake of 
analysis. This simplification is based on literature (Bródka 1999). It is also supported by experimental and 
numerical tests performed by Szumigała (2021) showing force-displacement relationship for second generation 
trapezoidal sheet (Fig. 7). For the most part up to sheet bearing capacity the relationship is almost linear.  
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Fig. 7. Force-displacement relationship 2nd gen. sheet (Szumigała 2021). 

However, to gain better understanding, additional numerical analysis was carried out. Equivalent moment of 
inertia of  T135Px0.75mm sheet was determined using the geometrically and materially nonlinear analysis 
with imperfections analysis in Midas NFX software. Figure 8 shows the relation between applied bending 
moment and equivalent moment of inertia determined numerically. Bending stiffness of this profile turned 
out to be very stable within load range required for further analysis, thus results should not be affected by 
mentioned simplification.  

Fig. 8. Equivalent moment of inertia of the T135P profile. 

2.3. Loads 

Structure was loaded with a set of actions most common in Poland: snow load (zone II), wind load (zone I), 
self-weight, basic imposed loads.  
It was decided that for the sake of analysis, to draw proper conclusions, it is enough to consider just one load 
combination: Ultimate Limit State (ULS) combination consisting of all loads acting downwards. In such 
scenario those loads sum up to 2.3 kN/m2 of uniformly distributed load. Weight of the main structure was not 
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taken into account for comparison of deflections and internal forces in trapezoidal sheet, as roofing sheet is 
mounted to the main structure already deformed due to its self-weight.  
 

      

Fig. 9. Load combination. 

3. RESULTS 

Looking at the deformation of the structure (Fig. 10) it is clear that roofing sheet support stiffness varies 
significantly. As one may expect, the deflection is close to zero near columns and reaches its maximum in 
the middle of purlin truss (one that is supported by girder truss). It is caused by the fact that both girder and 
purlin deflect when loaded. It results in additional vertical displacement of about 3cm at every second 
support (in ULS), which is equal to the deflection of girders (Fig. 13). It should be also noted that one 
external wall (on the right hand side of Figure 10) provides much stiffer support due to smaller column spacing.  
 

Fig. 10. Roofing sheet deflections [cm]. 
 
As a result, the differences in trapezoidal sheet deflection at supports can reach up to 13 cm globally. This 
leads to a distribution of internal forces in roofing sheet that is vastly different from the one obtained on rigid 
supports.  Figure 11 and Figure 12 present the distribution of bending moments and shear forces. Internal 
forces, especially bending moment, concentrates at stiffer supports. Naturally, maximal value of support 
bending  moment occurs  where the columns are located. 
The most  interesting and quite unexpected observation is that according to continuous beam on rigid 
supports maximal bending moment should occur at second support, while this is not the case in 3D model. 
Much bigger values may be found at third support. It is caused by the fact that the purlin supported by girder 
deflects more easily and sheets naturally finds other ways to transfer the load, resting more on the stiffer 
supports, directly following stiffness distribution.  
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Fig. 11. Bending moments [kNm/m]. 

Fig. 12. Shear forces [kN/m]. 

Fig. 13. Girder deflections (section A) [cm]. 
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Fig. 14. Sheet deflection (section B) [cm]. 

3.1. Influence on trapezoidal sheet design 

A section corresponding to maximal bending moment was selected in 3D model (Fig. 15 and 16). Internal 
forces were then compared with results obtained from 2D beam model. Differences in bending moment and 
shear force are presented in Tables 1- 2.  
 

Fig. 15. Bending moments diagrams [kNm/m]. Fig. 16. Shear forces diagrams [kN/m]. 
 
Tab. 1. Bending moment comparison 

Bending moment comparison [kNm/m] 
Support/span No. 1-2 2 2-3 3 3-4 4 4-5 5 5-6 6 6-7 7 7-8 8 8-9

2D beam 6.5 8.8 2.8 6.4 3.7 7.1 3.4 6.8 3.4 7.1 3.7 6.4 2.8 8.8 6.5 

3D model 7.4 6.8 2.8 9.4 3.7 4.0 3.6 9.8 3.6 4.0 3.7 9.4 2.8 7.2 7.5 

difference [%] 14 -23 0 47 0 -44 6 44 6 -44 0 47 0 -18 15 

 
Tab. 2. Shear forces comparison 

Shear force comparison [kN/m] 
1 2 3 4 5 6 7 8 9 

2D beam 5.5 15.7 13.3 14.0 13.8 14.0 13.3 15.7 5.5 

3D model 5.2 15.0 14.9 10.4 15.8 10.4 14.9 15.8 5.0 

difference [%] -5 -4 12 -26 14 -26 12 1 -9 
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3.2. Influence on rest of the structure 

Trapezoidal sheet is the main focus of this paper, but it should be mentioned that analysed phenomenon 
affects other structural elements as well. Traditionally cladding objects are used to distribute loading acting 
on the roof in 3D models. They distribute load equally on every purlin. In fact, girders supported directly by 
columns  take up more load as  they provide stiffer support for the trapezoidal sheet. As an example  
a comparison of axial forces in purling and girder are show in tables 3 and 4 when actual sheet stiffness is 
taken into account. 

Tab. 3. Purlin axial force comparison 

Axial force at mid-span  [kN] 
Bottom chord Top chord 

Cladding 507.0 504.0 
Orthotropic panel 558.0 517.0 
difference [%] +10.0 +2.5 

Tab. 4. Girder axial force comparison 

Axial force, midspan  [kN] 
Bottom chord Top chord 

Cladding 575.0 284.0 
Orthotropic panel 596.0 267.0 
difference [%] +3.7 +6.3 

4. DISCUSSION

Presented results suggest, that designing load-bearing trapezoidal sheet as independent structural element 
based on traditional simple model: a multi-span beam on rigid hinged supports, may not be fully correct. The 
biggest differences can be noticed comparing values of bending moment. Taking into consideration maximal 
moments in analyzed approaches the difference may reach up to 11% (9.8 kNm/m against 8.8 kNm/m) at 
supports and 15% (7.5 kNm/m against 6.5 kNm/m) in the midspan. Therefore it is the traditional approach 
that poses a risk of underestimating design values. 
What one may find a bit counterintuitive, maximal bending moment does not necessarily occur at second 
support. Typically strengthening overlap joint is made at second support, while there can be other place that 
should be strengthened instead. 
In general, the more variety in rigidity of the supporting structure, the bigger differences in internal forces 
distribution should be expected compared to traditional approach. Obtained differences seem to be 
significant enough to conclude that current calculation method should be verified. What is more, it would be 
interesting to evaluate most popular warehouse structural layouts in terms of stiffness distribution and its 
influence on corrugated sheet and rest of the main structure as well.  
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                                                             ABSTRACT: The initial stage of design of cable nets is presented. Form-finding process is based on the 
Force Density Meth-od with some extensions. An optimal structure with minimal sum of cable lengths is 
regarded as a good starting point for adding self-weight and obtaining a real geometry and force distribution. 
On this basis cable sections can be proposed for the next stages of design. Iterative procedures for reaching 
optimal cable net and adding self-weight are presented. A few examples show how the optimal or partially 
optimal structure can be used to improve a cable net and achieve configuration under self-weight which is 
close to the optimal one. 
A Scilab program called UC-Form developed by the author is used for this purpose. 
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1. INTRODUCTION 

Cable structures and especially cable nets are widely used for large span roofs since 1952 when Paraboleum 
(or Dorton Arena) by Maciej Nowicki was completed in Raleigh. Due to particular features these structures 
are considered as lightweight, economical, efficient and visually attractive. As cable elements work only in 
tension their cross-sections are fully utilized. High tensile strength of steel cables enables achieving large 
span of the structures without intermediate supports. Cable structures are characterized by low self-weight 
compared with traditional “rigid” structures and due to low material usage they can be considered as sustainable.  
Many research have been done in the subject of form-finding, design, optimization, detailing and erecting 
cable structures since their behavior is much different from the “rigid” (beam-columns) ones. Particularly  
a form-finding stage is necessary because of the geometrical nonlinearity of cable structures (see e.g. Lewis 
2003, Topping and Iványi 2007). It is impossible to impose the initial geometry which fulfills all the 
mechanical and architectural requirements due to the initial geometric instability and large displacements 
under different loads. Form-finding is usually performed in order to establish pretension forces in cables and 
also corresponding geometry of the structure. This configuration is then used in typical static and dynamic 
analyses. Properly pretensioned cable net ensures sufficient spatial stiffness and in such case adding self-
weight should have negligibly small influence on the configuration (see Otto 1973). However using real 
cable sections, especially when they are quite large, can cause changes in tensile forces distribution. 
Therefore in this paper it is proposed to include cables self-weight in order to better estimate target sections 
on the basis of real force values. Moreover, for economical material use, it is suggested to find optimal 



150 Lightweight Structures in Civil Engineering. Contemporary Problems 

configuration in the first step. Such configuration of minimum weight can be subsequently used for adjusting 
initial lengths of cables to achieve geometry under prestress and self-weight which is possibly close to the 
optimal one. 

2. THE BASICS OF THE FORCE DENSITY METHOD

The Force Density Method (FDM) proposed by Schek (1974) for form-finding of cable nets is the basis for 
calculation procedure presented in this paper. Due to his concept a cable net is a system consisting of 
straight, weightless truss elements connected with nodes. Selected nodes with coordinates , , x y z  can be 
fixed (anchored) and selected free nodes can be loaded with nodal forces , , x y zp p p . A simple example of 
a cable net and its definition due to FDM is shown in Figure 1. The incidence matrix   C C C  defines the 
connections between elements as each column corresponds to one node and each row corresponds to one 
element. The numbers 1 and -1 indicate starting and ending node of a particular element. First part of 
incidence matrix C concerns free nodes and the rest of the columns forms submatrix  C  regarding fixed 
nodes. Notation rule assumed for corresponding vectors and matrices is that the same letter in small version 
means a vertical vector and in capital version means a square matrix with the vector elements on a diagonal. 
For example element lengths can be defined as vector l or square matrix L. 

Fig. 1. Example of a cable net definition. 

Free nodes coordinates x, y, z which are unknown can be found with the use of a system of nonlinear nodal 
equilibrium equations (1): 
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,  (1)

where Δ Δ Δ, , X Y Z  are element length projections in x, y and z direction. In order to linearize the equations 
with regard to free nodes coordinates a concept of force density is introduced, which is a ratio between the 
element force and length:  (2)1 .q L n
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By defining values of force density in each element it is possible to find the configuration and tensile force 
distribution of the whole cable structure. It means that each set of force densities corresponds to  unique 
geometrical form which can be chosen as the initial one for design process. The FDM solution can be 
eventually written as: 
 

     1 1 1
x y z, , ,        x D p Dx   y D p Dy   z D p Dz (3)

 
where auxiliary matrices are introduced: ,T T D C QC   D C QC . 

3. THE EXTENDED FORCE DENSITY METHOD 

 

 
Fig. 2. The model of catenary cable element used in EFDM. 

 
In the Extended Force Density Method (EFDM) Wójcik-Grząba (2021) enabled finding form and forces in 
cable nets under self-weight. As a result structures consisting of taut and slack elements can be modelled. 
Because the catenary cable element is introduced the results are close to real behavior and unlike the 
parabolic formulation, there are no limits regarding geometry. The main idea is to substitute a real catenary 
cable by statically equivalent straight element as it is demonstrated in Figure 2. It is loaded with constant Nsub 
tensile force which horizontal and vertical components are H and Vsub and with reaction forces from self-
weight RA and RB. The proposed method modifies the original FDM in two steps. First of all nodal reactions 
from self-weight shown in Figure 2 as RA and RB and collected in vector pr are added to the external vertical 
loads: 
 

 

x

y

z r

.
    
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Dx p Dx
Dy p Dy
Dz p p Dz

 (4)

 
Second part of modification requires iterative procedure of finding force densities corresponding to the final 
configuration. This can be achieved with the aid of equation (5) describing the catenary, linearly elastic cable 
element under self-weight (see Wójcik-Grząba 2021 for details): 
 

  0 0A
w arsinh arsinh 0.AHL L VVHg q l

EA H H



            

    
(5)
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Here L0 denotes for the initial cable length, EA is a longitudinal stiffness, µ is self-weight per meter and the 
rest of symbols are shown in Figure 1. The equation (5) contains a function of the force density because 
tensile force components VA and H can be defined as it is shown below: 

       
2

0 [2 sinh 2 cosh 2 cosh ,          .A
q lV q qh L H q ql      


         
For the whole cable net we get the additional, nonlinear system of equations (6) which can be solved with the 
use of iterative Newton procedure. 

        , , , 0.w w g q g x q y q z q q (6)

Calculated force densities are then used to find the current nodal coordinates from the system of equations (4).  

4. OPTIMIZATION PROBLEM

In order to find the optimal starting configuration of a cable net three basic problems of minimization were 
presented by Schek (1974). One of them which is minimization of the sum of cable lengths was also 
expanded by Dzierżanowski and Wójcik-Grząba (2020). It can be proved that solution of this problem with 
some additional assumptions is equivalent to the state of uniform stretch in the cable net. 
The basic optimization problem is to find the minimum weight configuration which is equivalent to 
minimum volume problem. After assuming limit tensile stress σT and constant cross-section AS along the  
S-th element we get a formula for overall volume of a cable net consisting of s elements: 

1, ,

1,    .S S T S S
T S s

N A V N l
  

    (7)

Now making the supposition that a cable net of minimal weight (volume) is uniformly prestressed to the 
limit tensile stress σT the vector of tensile forces is defined as 0 TA n 1 , where A0 is a cross-section area 
assumed for the specific level of tension. In such case the solution of minimization problem is shown below: 
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

x y z
x y z (8)

To prove this supposition a new, auxiliary functional is defined. It is a sum of square lengths with force 
densities as weights: 

 , , , .T q x y z l Ql  (9)

After defining the force density vector corresponding with uniform prestress state as 1
0ˆ TA  q L 1  we get 

a new form of the functional (9) shown below: 

   1
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By minimizing (10) we get the same solution as in (8), what confirms our conjecture of uniform prestress 
state in minimum volume cable net. Some similarities can be found with minimal surfaces in which the 
uniform stress state is present. This is emphasized by Lewis (2003) who claims that tensile structures during 
exploitation would always tend to reach minimal surface shapes, therefore it is beneficial to assume their 
initial geometry possibly close to them. It is impossible to achieve the optimal shape under each load 
combination but it can be assumed in the state of pretension. A different kind of a cable net optimization is to 
find optimal shape under particular load case which was performed with the use of genetic algorithm by Thai 
et al. (2017) or by topology optimization by Sanders et al. (2020). 
As it was proved in this chapter, finding the cable net with minimal sum of cable lengths can be achieved by 
imposing uniform tensile force distribution with no external loads. This can be done with the additional 
system of equations defining force values: 
 
 * * *

0 0  0 T TA A     1 1*g q n L q .  (11)

 
The asterisks are for the elements taking part in the optimization process as a cable net can be in particular 
case only partially optimized. The force density vector, which is a solution of this system, defines a new 
configuration of the optimal structure. It can be found by the iterative Newton procedure with the use of least 
square approximation for the case of partial optimization (underdetermined system of equations): 
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5. CALCULATION PROCEDURE 

In order to find a cable net configuration under self-weight close to the optimal one the Extended Force 
Density Method is used. For verification, accuracy tests and recommended values of initial parameters of the 
method see Wójcik-Grząba (2021) and also PhD thesis of the author (2019). 
Configuration of a cable net under self-weight is usually slightly different from the optimal one but assuming 
proper initial lengths of elastic elements is crucial in finding good agreement between them. Different 
options of calculations available in the Extended Force Density Method are utilized sequentially in the 
procedure pointed below: 
(0. find a starting configuration); 
1. assume tensile forces in the part or in the whole structure; 
2. find optimal configuration in uniform prestress state; 
3. read the current element lengths; 
4. calculate the initial element lengths assuming linearly elastic material; 
5. assume cable sections which design value of tension resistance exceeds the tensile force with a margin for 

live loads; 
6. find a new configuration of a cable net under self-weight with initial element lengths and cable sections as 

assumed above. 

Usually the initial step of calculations is needed when the optimal solution cannot be achieved (step 0). In 
order to find a starting configuration a basic form-finding procedure without additional conditions can be 
performed. Usually force density values from 0,1 to 1 kN/m in all the elements are proper to get the initial 
solution which can be a basis for subsequent analyses. 
The calculations are executed with the use of the self-developed program UC-Form written in Scilab 
package. For more information concerning  the program algorithm and simple instruction manual see PhD 
thesis of the author (2019). Geometrical input data is defined in the MS Excel auxiliary file. This approach is 



154 Lightweight Structures in Civil Engineering. Contemporary Problems 

very convenient for editing and in the case of using coordinates from other programs or analyses.  
The calculations can be performed according to three different paths: 
1. form-finding without self-weight;
2. form-finding without self-weight and with additional constraints (here: imposing tensile force values);
3. form-finding with self-weight.

After obtaining a new configuration of a cable net the program creates and displays an interactive window 
with the current view which can be shifted, rotated and zoomed. All the information about current 
configuration of the cable net can be displayed in Scilab console and some of them can be switched on or off 
in the figure when needed. 

6. EXAMPLES

6.1. Introduction 

A few examples of open and closed cable nets are analyzed with the use of Extended Force Density Method. 
First the analysis with the uniform tensile force distribution is performed to check if there exists an optimal 
solution for the whole structure. For some particular forms of cable nets it is not always possible to find it or 
the achieved form is unsuitable from the esthetic point of view. In other cases the optimal solution can be 
achieved for the whole structure or for the chosen part of it. In the latter situation such analysis can be 
helpful to improve the geometry by refining the net. A simple form-finding analysis with assumed force 
density values can give the auxiliary information about the forces distribution. It can be used to identify areas 
of similar force values and then perform partial optimization. In such case different cable sections should be 
assumed in different areas. 
After achieving optimal or partially optimal configuration of the structure calculated lengths lopt of elements 
are used in the stage of adding self-weight. For this purpose elastic elongation should be obtained and 
subtracted from the calculated lengths lopt as it is shown below: 

0 .opt
opt

Nl
l l

EA
  (13)

It is crucial to define proper initial (unstretched) lengths in order to achieve the pretension level close to the 
optimal one. Along with the assumed section data the lengths are the input for the analysis with self-weight. 
As a result we achieve the real configuration and force distribution in the prestressed cable net under self-
weight which is a good starting point for adding live loads and performing remaining phases of design 
process. Then cable sections can be verified in order to guarantee a proper margin of tension resistance. 

6.2. Closed cable net outspread on two parabolic arches 

In the first example a closed cable net outspread on two parabolic arches with rectangular cables layout is 
analyzed. After assuming forces equal to 100 kN in each cable we get the optimal configuration shown from 
two different angles in Figure 3: 
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Fig. 3. Optimal configuration of a closed cable net from two different angles. 

 
In order to find a configuration under self-weight close to optimal one the initial lengths of elements are 
calculated from the optimal ones according to formula (13). A spiral strand wire rope of 16mm diameter is 
assumed with design tensile load 154 kN, tensile stiffness EA = 27000 kN and self-weight µ = 1,26 kg/m. 
Achieved configuration is close to the optimal one which can be seen in Figure 4 where the central axis 
profiles are shown. 
 

 
Fig. 4. Central axis profiles of optimal and under self-weight cable net. 

 
The values of forces, force densities and sums of lengths are summarized in the Table 1 and are very close in 
both versions. It means that achieved configuration under self-weight can be considered as the optimal initial 
configuration for subsequent analyses. 
 
Tab. 1. Comparison of optimal and under self-weight versions of closed cable net 

Configuration 
Nmin Nmax qmin qmax ΣlS 

kN kN kN/m kN/m m 

Optimal 99,999 100,001 23,018 66,116 753,767 

Self-weight 99,562 101,570 22,956 65,825 753,767 
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6.3. Open cable net outspread on two parabolic arches 

In this example a similar cable net is analyzed but some of the supports were removed and substituted by the 
new edge cables. This type of a cable net is called open. Here only inner cables will be optimized because 
edge cables usually have to be highly prestressed in order to achieve possibly large area covered by the roof. 
It is assumed that forces in the inner cables are equal to 100 kN. Three different versions of edge cables 
prestress are compared. In the first case shown in Figure 5 initial force density values are the same in the 
whole cable net and equals to 35 kN/m. Force distribution is shown with the use of colormap. 

Fig. 5. Optimal configuration and force distribution in the first prestress version. 

In the second version initial force densities in the edge cables are 350 kN/m and in inner cables 35 kN/m. 
The optimal configuration is shown in Figure 6 along with tensile force distribution. 

Fig. 6. Optimal configuration and force distribution in the second prestress version. 
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The last version of optimal open cable net is calculated for 3500 kN/m initial force densities in the edge 
cables and 35 kN/m in the inner cables. Figure 7 clearly shows the highest prestress in edge cables and also 
the largest area covered by the net. 
 

 
Fig. 7. Optimal configuration and force distribution in the third prestress version. 

 
In this example it is clear that comparing sums of element lengths is inappropriate because the boundary 
conditions for inner cables change with different prestress of edge cables. The main advantage here is 
achieving uniform tensile forces distribution in inner cables. 
Because of the moderate prestress values in edge cables the second version was chosen as a basis for the 
analysis under self-weight. The optimal element lengths were used to calculate initial lengths with the use of 
the formula (13). A spiral strand wire rope of 16 mm diameter is assumed for inner cables and 50 mm 
diameter with design tensile load 1460 kN, tensile stiffness EA = 242000 kN and self-weight µ = 11,90 kg/m 
for edge cables. Figure 8 shows the comparison of symmetry axis profile in all versions which are very similar. 
 

 
Fig. 8. Central axis profiles of three optimal and under self-weight cable nets. 
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Additionally Table 2 summarizes values of forces, force densities and sums of lengths in all versions. Values 
achieved in the second optimal version and under self-weight are very close to each other so this 
configuration can be considered as initial for subsequent stages of design process. 

Tab. 2. Comparison of three optimal and under self-weight versions of open cable net 

Configuration 

Inner Edge Inner Edge Inner 

Nmin Nmax Nmin Nmax qmin qmax qmin qmax ΣlS 

kN kN kN kN kN/m kN/m kN/m kN/m m 

Opt 35/35 99,996 100,002 277,773 430,997 18,630 126,817 62,007 142,365 687,434 

Opt 35/350 100,000 100,000 1089,258 1336,808 23,390 107,608 338,541 357,608 723,504 

Opt 35/3500 99,994 100,001 11172,842 13180,027 22,676 85,758 3499,379 3500,382 737,423 

Self-weight 99,052 102,038 1092,973 1341,191 23,277 108,479 339,643 359,370 723,507 

6.4. Hexagonal open cable net 

The last example concerns the open, hexagonal cable net with supports on different ordinates. In this case 
only inner elements will be optimized. Figure 9 shows the auxiliary initial configuration and Figure 10 
tensile force distribution in this configuration. 

Fig. 9. Initial, auxiliary configuration of the hexagonal cable net. 

Fig. 10. Tensile force distribution in auxiliary configuration of the hexagonal cable net. 
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After assuming tensile forces equal to 50 kN in all the inner elements the partially optimal configuration is 
achieved – edge cables are not optimized. Tensile force distribution is shown in Figure 11 and extreme 
values of forces in inner and edge cables are compared in Table 3 for both analyzed configurations. 
 

 
Fig. 11. Tensile force distribution in partially optimal configuration of the hexagonal cable net. 

 
Tab. 3. Comparison of initial and optimal versions of hexagonal cable net 

Configuration 

Inner  Edge  

Nmin Nmax Nmin Nmax 

kN kN kN kN 

Initial 55,560 231,451 482,645 650,315 

Optimal 50,000 50,000 515,892 622,450 

 
In the initial configuration difference between minimum and maximum value of tensile forces in inner cables 
is significant. After optimization it is possible to choose only one cross-section for the whole inner part. Also 
differences in force values in edge cables are slightly lower than in the initial version. 

7. CONCLUSIONS 

In this paper the algorithm for the initial stage of cable nets design is proposed. It allows for finding close to 
optimal configuration under self-weight which is a good starting point for subsequent static and dynamic 
analyses. Exact geometry and tensile force distribution are obtained thanks to the catenary element 
formulation. Imposing uniform prestress in the whole cable net leads to the minimum volume configuration. 
In the case of partial optimization (e.g. in open cable nets) the minimum volume is not always desirable 
condition because the area covered by the roof can be also minimized. In such situation proper prestress level 
in edge cables and optimization performed for only inner cables can yield the best solution from the usable 
and economical point of view. Initial cable lengths for analysis under self-weight can be defined on the basis 
of optimal configuration. It was proved by the results from three different examples that this approach leads 
to obtaining the solution close enough to the optimal one. Solution presented here enriches purely 
geometrical approach of the Force Density Method with the elastic properties of cables, uniform force 
distribution and self-weight of real cable cross-sections. 
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                                                             ABSTRACT: Structural shells of fuel tanks are often subjected to geometric imperfections which may lead to 
exceeding the ultimate and serviceability limit states. One of the means triggering shell deformation is non-
uniform settlement caused by incoherent soil conditions. Analysis carried out in the work concerns of vertical-
axis, floating-roof cylindrical shell which volume is 50.000 m3, founded on a complex multi-layered soil. The 
sensitivity analysis was conducted of a tank settlement due to variation of material soil parameters and the 
strata layout. It reads that even in the case of extremely disadvantageous material data the structure is not 
bound to exceed the serviceability limit states. 

  
  
  
  
  
  
  
  

                                
  Keywords: storage tanks, foundation settlement, subsoil parameters, sensitivity analysis. 
                                

1. INTRODUCTION 

Fuel tank design should be considered as a highest-standard task due to possible environmental pollution in 
case of possible structural failure. The FE models are bound to exceed the standards of deterministic analysis 
of perfect structures, to consider the issues of geometric and material imperfections, post-welding stresses 
(Rasiulis et al. 2006) etc. Reliability analysis may be employed to assess structural degradation due to 
corrosion (Geary and Hobbs 2013). In selected cases footing conditions should be regarded while they may 
lead to limit state exceedance (Grget et al. 2018, Gunerathne et al. 2018, Ignatowicz and Hotala 2020, 
Nassernia and Showkati 2020). The attempts of structural optimization are denoted too (Magnucki et al. 
2006). Basics of structural sensitivity analysis are based i.e.: on (Kleiber and Hisada 1993, Kowalczyk and 
Kleiber, 1999). 
The paper analyses the fuel tank of a vertical axis, with a floating roof. Scope of calculation is restricted to 
the estimation of the impact of diverse soil conditions to the tank shell deformation. The impact of geometric 
and material imperfections is neglected, the interaction of tank footing is investigated only. Non-uniform 
settlement may produce excessive tank deformation and stress increase, subsequently, operational obstacles 
e.g. by floating roof locking (Kaczor and Sygulski 2006). The in-situ experimental results make it possible to 
realistically reflect complex soil conditions. The computations are limited to sensitivity analysis of the tank 
shell to the variation of foundation conditions. The work incorporates the procedures addressed in (Żyliński 
et al. 2021, 2020). 
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2. OUTLOOK ON A FUEL TANK WITH A FLOATING ROOF

The work analyses a vertical-axis cylindrical fuel tank (Fig. 1) of a 50000 m3 volume, designed according to 
the EN 14015 standard (hoop stress criterion). The shell stability due to extreme wind pressure according to 
the standard EN 1993-4-1 and considering local action was checked numerically in the light of EN 1993-1-6. 
Wind cover shell was also designed in the case of failure and leakage of the stored medium. This additional 
structural element was not considered in the computations. The design assumes the S355J2 steel for the 
structure. The tank diameter is 60.5 m, its height is 22.0 m. Fig. 1 presents the tank model and the 
information on sheet thicknesses in meters. All the computations were performed in the ZSoil environment 
[Commend et. al] combined with Python aided modules. 

Fig. 1. The tank overview, regarding variable shell thickness (ZSoil). 

In addition, Table 1 shows the sheet thicknesses due to standards, tini, and the effective ones, reduced by 
corrosion, tefect. Table 1 also presents the data on heights of distinct courses and their location. 

Tab. 1. The heights and thicknesses of distinct sections of the tank 

No. tinit [mm] tefect [mm] h [m] hoverall [m] 

9 11 7,5 2,25 2,25 
8 11 7,5 2,25 4,50 
7 12 8,5 2,25 6,75 
6 15 11,4 2,50 9,25 
5 18 14,4 2,50 11,75 
4 21 17,4 2,50 14,25 
3 24 20,4 2,50 16,75 
2 27 23,2 2,50 19,25 
1 30 26,2 2,75 22,00 

The numerical model incorporates the reduced sheet thicknesses tefect, hence the computations reflect the 
structure in its occupation. Moreover, reducing the structural stiffness made an indirect impact of some 
means: initial imperfections, sheet fabrication tolerances, post-welding stresses and other means which are 
hard to detect. The wind cover plates thicknesses were not included in Table 1. while this structural part was 
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not analyzed. Second shell weight was assumed in the form of a nodal load of 12.04 kN. The mean Young's 
modulus E = 210 GPa and the mean Poisson's ratio  = 0.3 were taken for the analysis. The corner ring was 
designed in the form of a panel 0.36 m thick to reflect the minimum stiffness required by the standard   
EN 14015, it was fixed 0.25 m below the shell top edge.  
The sub-foundation region was discretized by eight-node 3D elements whose parameters represent the 
structural parts, i.e.: ring foundation, sand ballast and relevant soil strata. The foundation strip was modelled 
as a RC element whose dimensions are 4.05×3.0 m (Fig. 2).  
The transfer of friction forces between the sheet, the soil and the concrete foundation strip was considered by 
the so-called contact introduced to the model. The functions are applied corresponding to the friction 
coefficients based on the PN-82/B-02003 standard, i.e.:  = 0.3. 
The soil regions of the footing subjected to sensitivity analysis are presented in Fig. 2b in orange, green and 
pink. The elements marked in yellow between the strip and the external area correspond to the soil 
parameters in the tank vicinity E = 128 MPa. The stiffness modulus of concrete mixed with sand (marked in 
greenish) is denoted by a value E = 130 MPa, because this is not the concrete made on the building site by 
mixing cement with aggregate. 

 

   
a) 

 
b) 

Fig. 2. Three-dimensional overview of a tank a) foundation section, b) subsoil section. 

 
The boundary elements of the subsoil (marked in violet, Fig. 2) form a layer whose effective Young's 
modulus is E = 50 MPa. The numerical values are bound to consider the deformation impact of an infinite 
zone. The reduced stiffness of the elements surrounding the computational domain allows to minimize the 
boundary conditions effect by non-controlled vertical deformation caused by fixed horizontal edges of 
adjacent elements. 
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The soil strata layout based on the drillings are displayed in Fig. 3, their parameters are collected in Table 2. 
Due to Young's moduli diversity the area beneath the tank is divided into five regions of variable stiffness, 
marked KZ. The sensitivity analysis incorporates elastic subsoil model employing mean Young's moduli of 
each region, included in Table 2. 
According to the design the tank is filled in with a liquid up to the level of 19.6 m from the bottom, yielding 
operational hydrostatic pressure. The computations also consider uniform pressure on the tank bottom 
corresponding to the liquid pressure of the height 19.6 m. The medium density equals 1000 kg/m3. With 
regard to the roof structure the variable load (snow) does not occur in this case. The analysis also neglects 
the wind load because its interaction with the liquid pressure on the walls is remote, not resulting in 
considerable actions on the foundation. 

a) b) 
Fig. 3. Distributions: a) subsoil strata, b) five distinct material parameters. 

Tab. 2. Material parameters of subsoil strata (measurement results at selected boreholes) 

KZ1 KZ2 KZ3 KZ4 KZ5 

t [m] E [kPa] T [m] E [kPa]  t[m] E [kPa] t [m] E [kPa] t [m] E [kPa] 
4.3 30.88 1.2 14.6 0.4 62.97 1.1 14.59 0.6 14.59 
8.5 46.31 0.6 30.7 0.5 144.59 1.7 24.28 0.6 24.28 
1 24.47 0.7 19.6 0.4 14.59 2.8 30.88 3.8 30.88 
0 24.47 0.3 24.3 0.3 30.65 0.9 39.91 6.9 46.31 
- - 1.5 30.7 0.6 39.91 5.5 46.31 1 24.47 
- - 8 46.3 2.0 30.65 1 24.47 0 24.47 
- - 0.5 39.9 3.0 39.91 0 24.47 - - 
- - 0 39.9 4.8 46.31 - - - - 
- - - - 1.0 24.47 - - - - 
- - - - 0.0 24.47 - - - - 

Emean [kPa] 39.92 38.54 43.40 35.30 37.57 

σKZ [kPa] 10.30 10.94 37.22 10.74 10.59 

μKZi [-] 0.26 0.28 0.86 0.30 0.28 
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3. SENSITIVITY ANALYSIS 

Analysis of the settlement impact on the shape deformation and the tank effort requires appropriate 
computational models. It is a highly important task while the impact of various footing conditions is 
compared. The comparative analysis employs two means, i.e.: extreme vertical deformations of the bottom 
and vertical bending moments causing additional shell deformation. 
Variation of mechanical response of a structure is investigated to the variation of foundation parameters. The 
subsoil is modelled in two variants. 
The first approach distinguishes five subregions KZ1-KZ5 on the basis of the Table 2, these regions are 
marked with appropriate Young's moduli. The model in Fig. 3a yields deformation of the bottom central 
node equal u5 = 0.066 m (5 is a number of distinctly assumed material parameters). While the parameters KZ 
of all regions are averaged to a single value KZ = 38.95 kPa the maximum settlement of the bottom raises up 
to u1 = 0.069 m. This difference is slight because all the material parameters KZ1-KZ5 are close to their 
mean value KZ = 38.95 kPa. Tab. 3 presents the deformation of the annular plate. They yield a conclusion 
that no threat of limit state exceedance occurs here. 

Tab. 3. The results - perimeter sheet of a tank 

uy [m] σya [m] min(uy) [m] max(uy) [m]

5 KZ -0.01891 0.00428 -0.02809 -0.01353 
1 KZ -0.01877 0.00428 -0.02731 -0.01398 

 
The next step addresses the impact of stiffness modulus KZ variation of selected regions according to Tab. 4. 
The test is aimed at determining the relationship type between the stiffness variation and the anticipated 
mechanical response of the tank. 

Tab. 4 The input data - sensitivity analysis - model II 

No. Emean [MPa] 
Sensitivity analysis [MPa] 

Emean (1+0.1σ) Emean (1+0.4 σ) Emean (1-0.1 σ) Emean (1-0.4 σ)
KZ1 42,71 46,99 59,80 38,44 25,63 
KZ2 37,19 40,91 52,07 33,47 22,32 
KZ3 41,23 45,36 57,73 37,11 24,74 
KZ4 38,12 41,93 53,37 34,31 22,87 
KZ5 39,98 43,97 55,97 35,98 23,99 

 
The relation between the assumed moduli and the results is presented in Table 5 and Fig. 4. The results 
regarding perimeter sheet deformation may be approximated linearly while variation of bottom stiffness is 
non-linear (Fig. 4).  

Tab. 5. The results - settlements, variable Young's modulus of the input data - model II 

Annular plate Bottom
uy [m] σya [m] min(uy) [m] max(uy) [m] uyd [m] 

II 

KZ(n) +0,1v -0,0176 0,0041 -0,0263 -0,0126 -0,0619
KZ(n) +0,4v -0,0148 0,0036 -0,0226 -0,0100 -0,0532
KZ(n) -0,1v -0,0205 0,0045 -0,0302 -0,0147 -0,0710
KZ(n) -0,4v -0,0286 0,0057 -0,0407 -0,0207 -0,0958
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The last analytical step of structural response to variable subsoil conditions assumes each KZ parameter 
change independent (Fig. 3), according to Fig. 5.  

Fig. 4. The relationship - deflections vs variable subsoil stiffness 

Fig. 5. Distinction of subregions in the models of sensitivity analysis. 

While the parameter KZ1 varies (Fig. 5a) the stiffness is reduced to reach the extreme bottom settlement. The 
second regarded model (Fig. 5b) concerns the variations in structural strains due to overstiffening or 
weakening of KZ2. Such a configuration of subsoil parameters may trigger local foundation ring settlement, 
subsequently, irregular deformations of a boundary sheet and the bottom part. Two latter cases are aimed at 
selective reduction of subsoil stiffness, bringing irregular and extreme variations in sheet stresses and 
deflections. A featured important parameter in tank operation is the variation of radial deflection of the 
stiffening ring, at the elevation of the tank head. The results are included in Table 6. Most cases are grouped 
in pairs (Tab. 6) 



 

XXVII Conference of Lightweight Structures in Civil Engineering - XXVII LSCE 2021 167 
 

Tab. 6. The input data - sensitivity analysis - model III  

No. KZ1 [MPa] KZ2 [MPa] KZ3 [MPa] KZ4 [MPa] 
KZ1 -0.3 Emean 29.90 -   -  -  

KZ2 -0.3 Emean -  26.03 - - 
KZ2 -0.5 Emean - 18.60 - - 

KZ2/4 +0.3 Emean - 48.35 - 49.56 
KZ2/4 -0.3 Emean - 26.03 - 26.69 
KZ2/4 -0.5 Emean - 18.60 - 19.06 
KZ2/4 -0.8 Emean - 7.44  - 7.76 
KZ2/3 -0.3 Emean - 26.03 28.86 -  
KZ2/3 -0.5 Emean - 18.60 20.62 - 
KZ2/3 -0.8 Emean - 7.44 8.25 - 

 
Global deformation of the shell and the subsoil is presented in Fig. 6, the results are collected in Table 7. The 
analysis of bottom and boundary (perimeter) sheet deflections (Fig. 6) yields that the extreme reduction of 
the central region stiffness a local, point deflection difference occurs, up to u = 0.224 m. Such a point 
difference is irrational hence the form of subsoil parameter introduction should be verified. Other differences 
in average deflections remain constant at the level of u = 0.07 m in the case of parameter variation of 
boundary layers. 

  
Fig. 6. The map of nodal deflections due to weakening of KZ2 and KZ3 regions,  

80% with regard to the averaged subsoil stiffness modulus  
 
 

Tab. 7. The results - settlements, variable Young's modulus of the input data - model III  

No. 
Annular plate Bottom

uy [m] σya [m] min(ua) max(ua) ua [m] 

KZ1 -0.3 -0,0192 0,0045 -0,0282 -0,0141 -0,0843
KZ1 -0.5 -0,0198 0,0048 -0,0293 -0,0141 -0.1082
KZ1 -0.8 -0,0212 0,0058 -0,0322 -0,0141 -0.2240
KZ2 -0.3 -0,0203 0,0050 -0,0346 -0,0137 -0,0692
KZ2 -0.5 -0,0218 0,0066 -0,0419 -0,0134 -0,0693
KZ2 -0.8 -0,0267 0,0134 -0,0657 -0,0124 -0,0694

KZ2 KZ4 +0.3 -0,0175 0,0043 -0,0274 -0,0118 -0,0689
KZ2 KZ4 -0.3 -0,0219 0,0054 -0,0351 -0,0136 -0,0694
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Deformations of boundary courses are substantial (Fig. 6) while the irregular sheet layout affects force and 
strain distribution on the other side of the tank (tab. 8). Thus, the last analytical stage specifies the impact of 
footing parameter change on the deflections of the stiffening ring (located at the tank top). The results are 
collected in Tab. 8, an additional parameter is introduced to reflect the percentage of standard deviation with 
regard to the mean value of a given variant. The largest variation from the mean value corresponds to 
weakening of a smaller part along the tank foundation perimeter (the KZ reduced almost by 50%). 

Tab. 8. Radial deflections - model III  

No. v(mean) σv [m] v [%] 
KZ1 -0.3 1.094E-05 3.879E-06 35.45%
KZ2 -0.3 4.653E-03 4.036E-03 86.75%
KZ2 -0.5 9.187E-03 8.118E-03 88.35%

KZ2/4_+0.3 1.876E-03 1.152E-03 61.43%
KZ2/4_-0.3 4.593E-03 2.801E-03 60.98%
KZ2/4_-0.5 9.174E-03 5.464E-03 59.56%
KZ2/4_-0.8 2.497E-02 1.375E-02 55.06%
KZ2/3_-0.3 4.779E-03 2.900E-03 60.69%
KZ2/3_-0.5 8.399E-03 4.861E-03 57.88%
KZ2/3_-0.8 2.388E-02 1.320E-02 55.27%

Based on the conducted tests it yields that the structure exhibits deformation due to subsoil stiffness 
degradation. No analyzed case makes the radial displacement reach its limit value. Thus, the stiffening rings 
and appropriate sheet thickness required by the standards may prevent the structure from the subsoil 
settlement effect in this case. 

4. CONCLUSIONS

The sensitivity analysis confirms a small stiffness degradation impact of distinct sub-foundation subsoil 
zones to the deflection variability of the bottom midpoint and the perimeter sheet. The most elevated 
stiffening ring of relevant (standard) parameters properly resists the circumferential deformations caused by 
non-uniform settlement, subsequently, by a variate subsoil stiffness. These deformations are numerically 
correct, checking the deflection from the perfect tank radius curvature. Local deformations are excluded 
which could possibly cause locking the guides of a floating roof or failure of the measurement equipment. 
Note that the wind rings are linked with the disadvantageous action of wind pressure. Possible extension of 
conducted work by impact of non-linear geometry or other in-situ aspects may led to different conclusions. 
Therefore, such approach may be incorporated by the Authors in the future.  
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1. INTRODUCTION 

The aim of this work is to analyse behaviour of some steel mast under dynamic excitation of the given wind 
spectrum including also uncertain temperature load and further to contrast two different Finite Element 
Method solvers of equations of motion integration. 
The exemplary structure taken into account is a steel mast plsced in Zygry. Mast structure features the height 
equal to 198,0 meters. The mast shaft has been designed with the use of S235J2 steel in form of three-walled 
lattice with side width equal to 130,0 cm. The leg members have been modelled as round pipes with diameter 
of 168,3 mm and with the cross-section wall thickness varying along a height of this structure. The mast face 
lacings have been introduced as the round pipes of diameter 63,5 mm and also varying cross-section wall 
thicknesses. The mast guys have been attached to the shaft at following heights: 60,0 m, 120,0 m and 180,0 
m with the inclination angle equal to about 45°. A spiral strand steel rope 1x37 with the diameter of 32,0 mm 
has been applied having mean strength of 1960 MPa and elasticity modulus of 150GPa. An initial tension of 
the guys has been set by pre-shortening equal to 11,0 cm, 22,0 cm and 31,0 cm correspondingly for 
consecutive attachment levels with ascending order starting from the bottom. A general geometry of this 
mast has been presented in Figure 1.1a. Geometry of shaft has been presented in Figure 1.1b. 
Environmental uncertainty has been expressed by the Gaussian temperature load. Positive and negative 
temperature loads have been considered dependingly on which of these two contributes more significantly to 
structural safety reduction regarding some principal state variables. Positive temperature load has been 
introduce within a range of -10°C to +40°C when negative temperature load has been described within  
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a range of -50°C to ±0°C. Computations have been performed regarding both types of temperature load and 
repeated 11 times dividing both ranges of temperature load into ±5°C interval. The assumption has been 
made that the temperature applied to structure acts equally and no temperature fluctuations regarding height 
of the structure has been considered. 

a) b) 
Fig. 1.1. Mast geometry: a) general geometry, b) mast shaft geometry. 

Computations have been performed regarding both types of temperature load and repeated 11 times dividing 
both ranges of temperature load into ±5°C temperature interval. The assumption has been made that the 
temperature applied to structure acts equally and no temperature fluctuations regarding height of the 
structure has been considered. Principal state variables have been identified as stress of the main legs and of 
the face lacing referring to single structural elements of the mast. Global horizontal displacement and 
rotation of the entire structure top have been also considered for this purpose. Several series of numerical 
simulations with the Finite Element Method system have been performed assuming specific dynamic action 
of the wind load (see Fig. 1.2). This wind load has been modelled according to the Eurocode 1 guidelines (1) 
for towers, chimneys and masts including an effect of local wind gusts (2, 3, 4). Dynamic analysis of the 
wind influence on this structure has been performed in 10 minutes time interval.  

Fig. 1.2. History of wind load introduced into calculations. 
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This includes some wind action applied to the entire structure (see Fig. 1.3a) and some patch loads 
describing additional wind gusts along the height of the structure (see Fig. 1.3b).  
 

 

a) b) 
Fig. 1.3. Exemplary wind load acting along X-axis of global coordinate system: a) mean load, b) patch load. 

2. NUMERICAL SOLUTION 

Numerical solution for each computational case study has been performed in Autodesk Robot Structural 
Analysis (ARSA) using non-linear dynamic analysis option based on the Broyden-Fletcher-Goldfarb-Shanno 
(BFGS) algorithm. Hilber-Hughes-Taylor (HHT) solver has been applied in order to integrate equations of 
motion (5). It is based upon the following approximation of the structural displacements and velocities: 
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Additionally, the HHT solver has been contrasted with the results achieved by Newmark method (6) and 
exemplary results have been presented in Figure 2.1. 
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Fig. 2.1. History of normal stresess in main leg under dynamic wind exctitation  
obtained using the HHT and Newmark method. 

This figure documents very well that the Newmark algorithm results in relatively larger variations of the 
given stress about the value relevant to the static equilibrium, while the HHT series is obtained in a quite 
regular pattern.  
At this point it has to be mentioned that Autodesk Robot Structural Analysis does not calculate effective 
stress in beam elements. The index of share of normal stress in Huber-Mises effective stress has been 
investigated in order to check whereas there is a necessity to calculate an effective stress in each time step 
manually for main legs and face lacing elements. In order to pursue such investigation, author checked the 
effective stress of elements by finding elements in which normal or shear stress calculated by ROBOT was 
the greatest among the entire structure and time of analysis. Products of solving equations of motion 
indicates that those elements are mainly stressed by axial force and some bending moments. Shear forces and 
torsional moment are of the minor interest as those figures are mainly lesser by three orders of magnitude 
comparing to normal force.  Nevertheless effective stress has been calculated by following Huber-Mises 
hypothesis of effective stress. Normal stress has been calculated as a product of axial force and bending 
moments acting on a cross section of element (see Fig 2.2a.). Total shear stress has been calculated as a 
product of vector aggregation performed on shear stress generated by shear forces and by torsional moment 
(see Fig 2.2b.). Taking into account abovementioned procedure, effective stress has been calculated for main 
leg and face lacing truss. This calculations has been performed by a deterministic approach as it is 
recommened by currently valid engineering guidelines (i.e. Eurocodes). In some future research on the other 
hand, some probabilistic approach might be worth taking into account regarding such a cross-sectional stress 
distribution analysis.  Exemplary calculations performed for main leg element are being presented below. 
Cross sectional properties: 
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Internal forces have been determined consecutively and they equal in turn: 
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Fig. 2.2. Load acting on cross-section of chosen main leg element. 
 

Utilizing bi-simmetrical properties of cross section, normal stress can be easily calculated in tilted coordinate 
system. Effective bending moment might be represented as: 
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Resulting normal stress is then calculated respectively: 
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Shear stress has been calculated in point A, which corresponds to greatest normal stress and considering 
relatively small shear stress, point A describes  greatest effective stress as well. 
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a) b) 
Fig. 2.3. Stress generated by internal forces: a) normal stress,  

b) shear stress as a product of vector-aggregation.

Finally, the Huber-Mises effective stress in point A: 
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Share index of normal stress to effective stress has been described as: 
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Comparison of a normal stress to effective stress shows that the influence of shear stress might be neglected. 
Simmilar calculations and conclusions has been drawn from analysis of stress state of face lacing elements. 
This brings the conclusion that calculating effective stress every time step of calculations can be neglected 
and normal stress can be taken as a representative instead. 
Discrete results of the resulting extreme stresses and displacements have been saved for any second of FEM 
simulations, where every save step has been subdivided into 10 time steps giving as a result computational 
time step equal to t=0.10 s. This calculus procedure has been repeated for 11 series of uniform temperature 
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load within a range of -50 °C up to +40 °C. A set of 600 discrete values of stresses and displacements 
computed for several series of the FEM tests was the basis to carry out Structural Response Function 
estimation in a form of the 11th order polynomial (or less). Polynomials have been fitted by the Weighted 
Least Squares Method in which the weighing function has been assumed as a triangular one. Structure 
Response Function (SRF) accuracy has been adjusted by the mean square root error minimization criterium 
as well as controlling whether over-fitting problem occurs. The SRF has been recovered for each random 
state variable separately (leg stress, face lacing stress, horizontal displacement and rotation) at any save step 
using both solvers (HHT and Newmark) giving as a result 4x600=2400 SRFs. These SRFs are analytical 
functions of the external temperature, which is assumed to be Gaussian variable. It has to be noted that 
polynomial order has been established once for all series of the SRFs that describe one of four state variables 
i.e. horizontal displacement. This means that all 600 SRFs associated with horizontal displacement in 
subsequent save steps of movement are described by polynomials of the same order.  

3. PROBABILISTIC ANALYSIS 

The generalized Stochastic Perturbation Technique (SPT) (7) has been introduced in order to compute the 
basic probabilistic characteristics of the structural response, where Monte Carlo Simulation (MCS) and 
Semi-Analytical Method (SAM) have been chosen as the reference techniques (8, 9, 10). Time fluctuations 
of the expected values, variances, skewness, kurtosis and coefficient of variation for the extreme values of 
normal stresses in the main legs have been presented in Figures (3.1-3.16), correspondingly.   
 

Fig. 3.1. History of expected value for normal stress in main 
legs. 

Fig. 3.2. History of the coefficient of variation for normal 
stress in main legs. 

 
 

Fig. 3.3. History of the skewness for normal stress in main 
legs. 

Fig. 3.4. History of the kurtosis for normal stress in main 
legs. 
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Fig. 3.5. History of the expected values of stress in face 
lacing. 

Fig. 3.6. History of coefficient of variation of stress in face 
lacing. 

Fig. 3.7. History of skewness of stress in face lacing. Fig. 3.8. History of skewness of stress in face lacing. 

Fig. 3.9. History of expected values of horizontal 
displacement. 

Fig. 3.10. History of coefficient of variation of horizontal 
displacement. 
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Fig. 3.11. History of skewness of horizontal displacement. Fig. 3.12. History of kurtosis of horizontal displacement. 
 

Fig. 3.13. History of expected values of rotation. Fig. 3.14. History of coefficient of variation of rotation. 
 

Fig. 3.15. History of skewness of rotation. Fig. 3.16. History of kurtosis of rotation. 
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4. CONCLUDING REMARKS

A very general conclusion, which can be drawn from these results is a good coincidence of all three 
probabilistic numerical methods, which taking into account nonlinear problem with large deformations 
including dynamic excitation is not trivial. Numerical results obtained here, and especially the first two 
probabilistic moments, may be directly used in stochastic reliability assessment according to the statements 
proposed in Eurocode 0. Finally, one can conclude that external temperature uncertainty has rather limited 
importance while dynamic stresses fluctuations are under consideration and cannot affect remarkably the 
resulting reliability index.  
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1. INTRODUCTION 

In recent decades, in the race for the tallest building in a city, country or the world, engineers have to resort 
to certain "tricks", to be competitive. Such solutions include additional truss structures, towers, spires or 
masts. Very often a reinforced concrete building is supplemented with a light steel structure, which may be 
susceptible to influence of wind or dynamic excitations, e.g. from an earthquake. This chapter presents the 
boundary problem solutions of vibrations of this type of selected structure excited by wind whose loading 
have a frequency close to the first natural frequency. 
Analyzing examples of high buildings, it turns out that in many situations only a part of the building can 
fulfill its standard functions, while the rest only serves to make the building original or attractive from the 
architectural point of view, or simply taller. This problem has been noticed, but there is no indication that 
anything will change (Campbell-Dollaghan 2018, English 2020). Tab. 1.1. presents information on selected 
high-rise buildings from recent years, in which the non-occupied part of the building in extreme situations 
approaches 40%, and in most cases exceeds 20%. This list includes two buildings located in Warsaw  
(one completed and the other under construction), which also follow this trend. These buildings are certainly 
spectacular and architecturally stand out from the surrounding buildings but is this sufficient justification for 
their construction in the light of the global trend of saving raw materials and energy from non-renewable 
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sources. As a partial justification for these solutions, it can be indicated that cellular network transmitters or 
TV antennas are often mounted on structures of this type, but this is not a common solution. The section 
presents examples of analyzes carried out for the historic masonry chimney, which may be useful for the 
engineering applications and needs of SHM, especially if the monitoring of that structures will be necessary 
tor the future. Such analysis may be carried out for various structures or structural elements, e.g., light steel 
structures (lattice, plate, etc.), various types of wooden structures, concrete objects, or masonry structures 
which are discussed here. 
The paper describes numerical simulations with the 3D laser scanning process which was used for 
recognizing structural problems such as damage or geometric irregularities of the masonry chimney (Ogden 
1984). The scanning data was analyzed for cracking at higher levels of the chimney, where the direct 
inspection was difficult to achieve. Next, a real numerical model of the structure was created based on 
scanning data and the simulations of it were carried out in Finite Element (FE) software. 

Table 1.1. Basic information about chosen highest buildings. 

Building A B C D E F G H I J K L 
Overall height [m] 828 450 366 360 355 333 331 321 319 310 309 220 
Non-occupied 
height [m] 

244 133 131 95 113 96 94 124 99 80 97 40 

Non-occupied 
height as a percent 
of overall height 
[%] 

29 30 36 27 32 29 28 39 31 26 31 18 

A: Burj Khalifa, Dubai, UAE, 2010, B: Zifeng Tower, Nanjing, China, 2010, C: Bank of America Tower, New York 
City, USA, 2009, D: The Pinnacle, Guangzhou, China, 2012, E: Emirates Tower One, Dubai, UAE, 2000, F: Rose 
Rayhaan by Rotana, Dubai, UAE, 2007, G: Minsheng Bank Building, Wuhan, China, 2008, H: Burj Al Arab, Dubai, 
UAE, 1999, I: New York Times Tower, New York City, USA, 2007, J: Varso, Warsaw, Poland, planning 2021,  
K: Emirates Tower Two, Dubai, UAE, 2000, L: Warsaw Spire, Warsaw, Poland, 2016. 

2. ANALYZED STRUCTURE AND PROBLEM DESCRIPTION

The chapter deals with the dynamic analysis of steel spire in the form shown in Fig. 2.1., being an additional 
element placed on the highest ceiling of a skyscraper, only to make it the tallest building in the city for some 
time. The original structure was not designed for this type of solution, and the spire itself was erected from 
segments prepared in the factory and assembled in quite difficult conditions. As was to be expected, this led 
to some unforeseen problems with the dynamic response of the element to typical wind loads. The problem 
was at first solved by applying lashings and finally by installing properly tuned vibration dampers on the top 
of the element, but the dynamic analysis of the structure without dampers, taking into account its flaws and 
imperfections, can lead to interesting observations. An additional element significantly influencing the 
obtained solutions are the consequences of the numerical formulation of the initial boundary-value problem. 
This chapter is a continuation of the work presented at the SEMC 2019 conference (Gajewski et. al. 2019).  
The results presented there are supplemented and expanded. The first of the new elements is taking into 
account the influence of the accuracy of the determination of the natural frequency on the amplitude of the 
tower vibrations caused by gusts of wind of this frequency. Another element extending the scope of the 
analysis is the application to the dynamic analysis of the structure the large deformation theory implemented 
in the ABAQUS program under the NLGEOM option. It turns out that this affects not only the vibration 
amplitude of the structure, but also the nature of these vibrations. Technical drawing of the analyzed 
structure, consisting of 12 factory-made elements, which are connected by bolted flange connections,  
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is presented in Fig. 2.1. Additionally, the technical solution of connecting the lowest segment with the 
ceiling slab of the highest storey of the building is shown in the drawing. 
 

 

Fig. 2.1. Details of the spire’s structure; a) geometry (in mm), b) segment’s flange connection,  
c) the connection of the lowest segment with the base plate. 

3. MODELLING OF THE STRUCTURE 

In paper (Gajewski et. al. 2019) the analysis was carried out in two ways, i.e. using the analytical approach 
according to the so-called Procedures 1 and 2 of EC1-1-4 and using the results of the FEM simulation 
(ABAQUS/Standard User’s manual 2011, ABAQUS Theory manual 2011). The results of this analysis are 
essentially based on conclusion that the standard approach does not lead to a rational prediction of structural 
behavior including determining the maximum amplitude of wind induced vibration. There are actually two 
main reasons why such approach will not lead to rational predictions, i.e. the inability to take into account 
the compliance of the connections made between the segments of the structure and inability to take into 
account the overall compliance of the reinforced concrete slab on which the structure is founded. Therefore, 
it is necessary to prepare a FEM calculation model including the above-mentioned elements. Due to the size 
of the structure (mainly the proportion of wall thickness compared to characteristic structure dimensions), an 
assumption was made to create a three-dimensional computational model using shell elements with linear 
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shape functions (four-node in the case of the structure and three- and four-node in the case of the slab on 
which the structure is mounted), see Fig. 3.1. 
 

 

Fig. 3.1. FEM model of the spire (variant with reinforced concrete slab and indication of the joints). 
 
The mesh density was established based on convergence analysis, but the limitation on number of elements 
is also important having in mind that we want to observe dynamical behavior of the structure in a long-time 
interval. As a result, the choice of a mesh with average element side dimension equal to 100 mm was  
a compromise between accuracy and numerical robustness. 

3.1. Joints modelling 

The calculation model preparation was preceded by the analysis of a representative connection element in 
order to determine the decrease in its stiffness as a result of its faulty execution (opening of the bolted 
flanges, most likely as a result of residual post-welding stresses). In Fig. 3.2. the technical drawing of the 
symmetrical element of the joint is shown altogether with specific dimensions and information about the bolt 
joint. It was assumed according to measurements that initial flanges opening distance is equal to 3 mm – see 
Fig. 3.3a. 
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Fig. 3.2. Details of symmetrical part of the bolted flange joint. 
 
A fragment of the imperfect flange joint was modeled using shell finite elements as a static contact task.  
The FEM model consists of 3862 eight-node shell elements with square shape functions (S8R). In the places 
of seating of the bolted connectors, rigid joints of the nodes belonging to the adjacent horizontal sheets  
(No. 226, as shown in Fig. 3.2.) were used, using the MPC option. Moreover, at the junction of the 
horizontal sheets No. 226, the contact conditions with parameters typical for the steel material were applied, 
i.e. the friction coefficient was assumed to be 0.3. The joint element was subjected to elastic static analysis 
under tensile conditions (displacement control). The boundary conditions together with the loading method 
and the appropriate symmetry conditions are shown in Fig. 3.3b. The visualization of the FEM model with  
a visible uniform FEM mesh is shown in Fig. 3.3c. (the dimension of one finite element is approximately 
10x10 [mm]). For the calculations, it was assumed that the steel elements of the connection are made of  
a linear-elastic material with isotropic material parameters: E = 210 [GPa], ν = 0.3. 
The compliance of a fragment of a flange connection was determined under tensile conditions, as shown in 
Fig. 3.3b. Under load, the displacement of the upper edge of the shell was controlled. The displacement 
along the y axis was assumed, i.e. yu  with a value of 1.5 [mm]. The calculations were carried out in the 
case of analyzed joint, assuming the wedge opening of s = 3 [mm], and in the case of a perfect joint, when its 
load capacity is not less than that of the connected segments. Calculation results in the form of a reaction 
force yF  as a function of yu  are shown in Fig. 3.4. In the case of a perfect joint  the reaction force yF  for 
displacement  yu =1.5 [mm] is equal to 2450.63 [kN], while in case of imperfect joint (with wedge opening) 
the reaction force was only yF  = 402.386 [kN]. 
The contour graph of horizontal displacement 1 xu u  (perpendicular to the tension direction) for joint with 
wedge opening is shown in Fig. 3.5. The values were read in the case of yu   = 1.5 [mm]. Horizontal 
displacements reach a value almost twice as high (2.9 [mm]) as the displacement in the tension direction. 
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a) b) c) 
Fig.  3.3. a) Typical imperfections of joints, b) FEM model of the joint (with boundary conditions),  

c) FEM mesh for the analyzed problem.

On the basis of performed calculations, the effective properties of the elastically modelled imperfect joint 
were determined. At first the equivalent stiffness modulus was determined on the basis of the following 
equation / / 38eq yE F A   [GPa] where: spire’s shell cross-sectional area - 216 25 5400A    [mm2],  
the summary length of the joint -  2 2 120 120 45 / 2 765l       [mm] and average strain - 1.5 / 765y  . 
As it was assumed that the height of the joint modeling zone with increased compliance will be r = 100 
[mm], according to Fig. 3.6., it was still necessary to scale the stiffness modulus proportional to the length. 
Value was finally obtained as equal to 5.894redE  [GPa], and the method of adopting material properties is 
presented on the example of the first joint from the bottom of the spire, in Fig. 3.6. 

Fig. 3.4. a) The relationship between and displacement in case of perfect and imperfect type of analyzed joints. 
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Fig. 3.5. The contour graph of horizontal displacements ( 1 xu u ) in the shell model of the joint; the results are 
given in [mm], the deformation scale factor in the direction of 1 xu u  is equal to 10. 

 
 

Fig. 3.6 Assuming a reduced value of the steel longitudinal elasticity modulus  
in the places where individual segments of the spire’s shank are joined. 

4. ANALYSIS OF THE FEM RESULTS 

Four basic variants were adopted in the FEM modelling, i.e. spire with perfect joints supported on rigid slab 
(v1), spire with imperfect joints supported on rigid slab (v2), spire with perfect joints supported on elastic 
slab (v3) and spire with imperfect joints supported on elastic slab (v4).  

4.1. Determination of natural frequencies 

For the analyzed problem, the values and modes of free vibrations of the spire structure were determined, see 
Tab. 4.1. It is visible that in case of the first (and second) natural frequency considering imperfection of the 
joint leads to almost 50% reduction of frequency value. This reduction is not so substantial in the following 
natural frequencies. Also, the fact that spire is positioned on elastic concrete slab influence the results, but in 
more limited manner. 
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Table 4.1. Natural frequencies of the spire taking into account imperfection of joints. 

Variant Joints 1f  2f 3f 4f 5f 6f 7f
v1 Perfect 1.5863 1.5863 6.5217 6.5217 16.183 16.183 16.510 
v2 Imperfect 1.0446 1.0446 4.6154 4.6154 11.523 11.523 15.830 
v3 Perfect 1.5037 1.5091 6.2549 6.2704 15.424 15.458 16.857 
v4 Imperfect 1.0173 1.0190 4.5184 4.5236 11.244 11.259 16.172 

When comparing the obtained results presented in Tab. 4.1. in case of spire positioned on rigid slab 1 2f f  
(in some sense that is the same natural frequency value), but in case of the spire mounted on concrete plate 

1 2f f  what is the consequence of the fact that dimensions of concrete plate are not symmetrical with 
respect to spire support middle point (the dimension of the plate were determined on the basis of the building 
technical documentations as distances to the closest vertical walls). Similar situation may be also observed 
for higher natural frequency values. 
Summarizing, after the evaluation of the obtained results in view of natural frequencies of the structure, only 
the model for the v4 variant was used for further analyses. 

4.2. Wind induced vibrations 

After determination of the spire’s natural frequencies, the wind induced vibrations may be analyzed. In that 
case, according to standard’s requirements, the spire was loaded on 10 m length (measured from the top) side 
area of the spire. The uniformly distributed wind load equal to 0.8 kN/m was represented by statically 
equivalent constant loading 0q . It was assumed that this loading is changing according to the sinusoidal 
function:    0 sin 2q t q f t , where f  is the loading frequency. Each initial boundary value problem was 
solved in three steps. In the first step, the self-weight of the structure was statically applied. Then, in the 
second step, the spire was loaded with sinusoidally changing pressure for  0,240t s. After this structure 
excitation phase, there was 120 s free vibration phase. In that phase   0q t  , for  240,360t s.  
Dynamic problems of step two and three were solved taking into account the structural damping or 
neglecting this phenomenon (it will be referred to further as “D” - damping or “ND” - no damping cases). 
Structural damping parameter   used in FEM model was estimated according to procedure given in 
(Kawecki and Zuranski 2007, Kawecki and Kowalska 2010) as equal to 0.00111777 (see also Mrozek 2010). 
Mass damping in the solutions naturally results from proper dynamic formulation of the problem. 
The first two natural frequencies in case of analyzed variant are very close to each other and this is a certain 
interpretation problem. Therefore, an analysis of the structure's sensitivity to the load acting on it with 
frequencies close to the first and second of the previously determined natural frequencies (and values close 
to them) was carried out leading to results given in Tab. 4.2. The responses of the spire to loading program 
described with frequencies like in Tab. 4.2. top row is  shown in Fig. 4.1. In that graphs the displacement of 
the top node of the spire is presented as a function of time in case of structures modelled considering 
damping and without such assumption. For both cases in the analyzed period amplitudes are limited, and in 
case of “D” are fading very quickly. In the whole analysis the only case without amplitude stabilization (in 
observation period) was the one with excitation frequency equal to 1.0100 Hz, cf. Fig. 4.1c. 

Table 4.2. Extreme values of spire’s vibration amplitude for frequencies close to first natural frequency [in cm]. 

f [Hz] 0.9800 1.0000 1.0100 1.0170 1.0173 1.0190 

1u
ND 

max 47 144 850 171 165 137 
min -44 -141 -849 -167 -161 -134 

1u
D 

max 39 83 149 92 90 81 
min 36 -80 -146 -88 -87 -78 

ND – no damping, D – damping 
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a) 

 

b) 

 

c) 
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d) 

e) 

f) 

Figure 4.1.  Displacement 1u  of the top spire’s node in function of time during first and second step of FEM analysis
for excitation frequency equal to: a) 0.9800 Hz, b) 1.0000 Hz, c) 1.0100 Hz, d) 1.0170 Hz, e) 1.0173 Hz, f) 1.0190 Hz. 
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4.3. Solutions for large deformation theory 

In this section, the solutions of the vibrating spire obtained within the framework of the theory of large 
deformations, which is implemented in the ABAQUS program under the NLGEOM option (ABAQUS 
Theory manual 2011, Jemioło and Gajewski 2014, Ogden 1984), are presented. A distinction can often be 
seen in the literature between physically and geometrically non-linear theories. It should be emphasized, 
however, that taking into account the NLGEOM option leads not only to the formal distinction of the 
deformable body configuration, but also to the constitutive relations between the Kirchhoff stress tensor and 
the logarithm of the left Cauchy-Green stretch tensor with the material tensor as in the case of the small 
displacement theory. Formally, the application of this relationship leads to non-linear relationships between 
the classical stress and strain tensors used in the theory of small displacements and rotations.  
The application of the large deformation theory is presented on the example marked as variant 4 (v4), 
assuming the excitation frequency is equal to the first natural frequency for the model, taking into account 
the compliancy of the concrete supporting plate and the degradation of joints between the components of the 
tower (i.e. 1.0173 Hz). The obtained results are shown in Fig. 4.2. presenting solutions with and without 
structural damping. 
 

a) 

 

b) 

Figure 4.2. Displacement   of the top spire’s node in function of time during first and second step of FEM analysis for 
excitation frequency equal to 1.0173 Hz – comparison of results obtained for linear and non-linear theory  

with and without damping (a) and b) respectively). 



192 Lightweight Structures in Civil Engineering. Contemporary Problems 

5. CONCLUSIONS AND FINAL REMARKS

The amplitude results collected in Tab. 4.2., prove that in real engineering problems it is very important to be 
careful in estimation of some characteristic designing values (like maximum vibration amplitude).  
We have substantial differences between the values there, but what is more important the values obtained 
from finite element analysis are in all cases higher than the value obtained using Eurocode rules (Eurocode 3), 
(in case of analysed spire maximum amplitude is equal to 66.7 cm).  
Based on the FEM analyzes, the following conclusions can be formulated: 
1) Considering some imperfections of real structures (e.g. imperfect connections) significantly influences the

nature of its dynamic response. Each action of this type, leading to the consideration of real phenomena,
leads to a qualitative improvement in the dynamic response of the structure.

2) The values of natural vibration frequencies should be determined with high accuracy.
3) Even in the case of a very precise determination of the natural frequency values and the analysis of near-

resonance behavior (i.e. with excitations with a frequency equal to the natural frequencies), it is worth
checking the sensitivity of the structure to the excitation frequency values close to the natural frequencies,
cf. Fig. 4.1c.

4) Taking into account the structural damping at the same level changes not only the extreme displacement
values (amplitude) of vibrations but also their nature (elimination of rumbling). In the case shown in
Fig. 4.1c., it changes the resonance behavior to a stable response with a vibration of limited amplitude.

5) Modeling of the structure in the framework of the theory of large deformations leads to a significant
increase in the vibration amplitudes of the excited structure (in the case of no damping, see Fig. 4.2b., the
increase is more than double).
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                                                             ABSTRACT: The paper presents a study on mathematical modelling an inflation of rubber, cylindrical tube. 
It begins with a definition of the stored energy function of  the hyperelastic models under consideration. 
The main part of the paper concerns the axially symmetric stress formulation of the inflation problem, which 
may accurately approximate a sufficiently long tube. The boundary value problem is formulated base on 
polynomial and non-polynomial constitutive models. It can considered as a benchmark problem for hybrid 
formulation of the finite element method. 
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1. INTRODUCTION 

In this chapter, we consider axisymmetric deformations of an infinitely long cylindrical tube modelled with 
a hyperelastic, incompressible rubber-like material, cf. (Bharatha 1967, Ogden 1984). Our main goal is to 
determine the stress state that refers to the phenomenon of the so-called cylinder inflation. We consider the 
class of constitutive models discussed and proposed in the work of the first author (Jemioło 2002) and some 
selected models of hyperelasticity used in the biomechanics of soft tissues (Jemioło and Telega 2001, 
Jemioło 2016). We analyse in detail material models for which we obtain analytical solutions to the 
associated boundary value problems. 
In the literature, a large number of constitutive relations are proposed to describe the nonlinear, elastic 
properties of a given material, with their similar agreement with the results of basic experimental data 
(Jemioło 2016). In the case of rubber-like materials, the volumetric compressibility modulus is a few orders 
of magnitude larger than the shear modulus 0 0K μ  (Alexander 1968, Treloar 1944).  
Therefore, when interpreting typical experimental results of uniaxial and biaxial stretching and simple shear, 
universal relationships concerning incompressible material models are used (Adkins 1961). These tests 
describe homogeneous deformations of the tested material samples.  
Based on the comparison of the results of these tests with the theoretical formulas resulting from the 
constitutive relation, material parameters are determined (Franus and Jemioło 2019).  
Therefore, the validation of hyperelasticity models also requires the interpretation of the results of 
experiments where non-uniform deformations occur.  
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Analytical solutions are known to very few problems, e.g. symmetrical deformations of the cylindrical tube 
and the hollow ball (Jemioło 2002). In the work, we follow the standard tensor notation of the mechanics of 
continuous media and the theory of hyperelasticity (Bonet et al. 2016, Holzapfel 2010). 

2. BASIC RELATIONSHIPS OF HYPERELASTIC INCOMPRESSIBLE ISOTROPIC MATERIALS

2.1.The boundary value problem of hyperelasticity 

In the case of an incompressible material model, the stored energy function W  is not a potential of elasticity, 
because the volumetric part of the Cauchy stress tensor is not determined (Jemioło 2002, Holzapfel 2010). 
The material may be subjected only to isochoric deformations, i.e. deformations without changing the 
volume of the body. Mathematically, deformation of the incompressible body is constrained by the condition 

1 0,J   (2.1)

where detJ  F  is the determinant of so-called the deformation gradient F (Ciarlet 1998):  

.



xF
X

 (2.2)

X  is the vector of the position of a body particle in the initial configuration, and x  is the vector of the 
position of the body particle in its current configuration. 
In quasi-static hyperelasticity problems without inertial forces, the following equilibrium equations in the 
initial body configuration hold: 

Div ,S 0  ,T TSF FS  (2.3)

which in the current configuration are equivalent to the equations: 

div , σ f 0  ,Tσ σ  (2.4)

where S and σ  are called the first Pioli-Kirchoff stress tensor and the Cauchy stress tensor, respectively. 
These tensors are related such that 

.TJ S σF  (2.5)

For the incompressible material model, the elastic potential must incorporate the constraint (2.1) with the 
Lagrange multiplier p, which should be interpreted as hydrostatic pressure. From the basic relationships of 
continuum mechanics and the principle of the conservation of mechanical energy together with (2.1) it 
follows the constitutive relation 

  1
.TW p


 


S F
F

(2.6)

A formulation of the quasi-static boundary value problem of hyperelasticity also requires kinematic 
equations and boundary conditions to be specified (Ogden 1984).  



 

XXVII Conference of Lightweight Structures in Civil Engineering - XXVII LSCE 2021 195 
 

2.2. Constitutive relations 

The stored energy function (SEF) W  depends on a deformation tensor, which results from the principle of 
objectivity, but is not dependent on their determinants.  
Therefore, the tensor F  is decomposed into the isochoric and volumetric part as follows:  
 

1/3 , det 1J F F F . (2.7)
 
Further, we introduce 
 

,T T B FF C F F , (2.8)
 
where B  and C  denote the modified left and the right Cauchy-Green deformation tensors, cf. (Holzapfel 
2010).  
In the case of incompressible isotropic materials, SEF is a function of only two modified invariants such that 
(Bonet et al. 2016) 
 

     1 2, ,W W W W I I  C B  (2.9)

 
where 
 

1 1
1 2tr tr , tr tr .I I     B C B C  (2.10)

 
These can be written as  
 

2 4
3 3

1 1 2 2, ,I J I I J I
 

   (2.11)

 
where 
 

   1 2tr tr , tr cof tr cof , det det .I I J     B C B C B C  (2.12)

 
Then, the constitutive relationship in the current configuration yields 
 

   1 2 1 2 1 1
1 1

1 2

, ,
2 2 .

W I I W I I
p p

I I
  



 
       

 
σ I B B I B B  (2.13)
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3. MODELS OF INCOMPRESSIBLE ISOTROPIC HYPERELASTIC MATERIALS

3.1. Model MV and its special cases 

In this chapter we consider the MV model proposed in the monograph (Jemioło 2002) with the following SEF:  

           2 3
1 2 1 1 2 1 3 1 4 2 5 1 2

1 1 1, 3 9 27 3 9 ,
2 2 3

W I I a I a I a I a I a I I           
(3.1)

where  1, ,5ka k    are the parameters of the model. The functions in constitutive relation (2.13) are given 
by 

2
1 1 2 1 3 1 5 2 1 4 5 1

1 2

β 2 , β 2 .W Wa a I a I a I a a I
I I

 
         

  (3.2)

Basic invariants 1I  and 2I , due to the constraints of incompressibility (2.1), can be considered as functions 

of only two independent eigenvalues 1  and 2  of the stretch tensors U C  and V B , i.e.:  

  22 2
1 1 2 1 2 ,I    


    22 2

2 1 2 1 2 .I        (3.3)

The constrains of incompressibility implie that   1
3 1 2  


 . Principal stretches 1  and 2  are independent but they 

are unordered eigenvalues of stretch tensors. It is easy to check that the function 1I  is a convex function with respect to 

1  and 2  while the function 2I  is not a convex function with respect to 1  and 2 , for sufficiently large 
deformations (Jemioło 2002). 
The stored energy function of the MV model (2.11) can be written in the equivalent form 

            2 3
1 2 10 1 20 1 30 1 01 2 11 1 2, 3 3 3 3 3 3 ,W U I I C I C I C I C I C I I              (3.4)

where 

   

 

10 1 2 3 5 20 2 3

30 3 01 4 5 11 5

1 13 9 3 , 6 ,
2 4
1 1 1, 3 , .
6 2 2

C a a a a C a a

C a C a a C a

     

   
(3.5)

The function (3.1) is a special case of the Rivlin SEF (3.4) with constants: 

   
 

1 10 11 20 30 2 20 30 3 30

4 01 11 5 11

2 3 6 27 , 4 9 , 6 ,
2 3 , 2 .

a C C C C a C C a C

a C C a C

      

  
(3.6)

The material functions in constitutive relation (2.13) are of the form 
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1 1 2 2

2
1 1 2 1 3 1 5 2 1 4 5 1

1 2

1 1β , β ,
2 2

β 2 , β 2 .U Ua a I a I a I a a I
I I

 



  

 
         

 

 (3.7)

 
Moreover, the initial shear modulus is given by 
 

 0 1 2 3 4 5 10 01μ 3 9 6 2a a a a a C C       . (3.8)

From (3.1) other well-known stored energy functions of incompressible hyperelastic material models may be 
obtained.  
By neglecting the factor with the coupling of the first and second invariant of isochoric deformation we have 
the SEF equivalent to the Biderman model (MB) from 1958, cf. (Jemioło and Suchocki 2019). If we 
additionally omit the factor referring to the second invariant an equivalent form of the Yeoh model (MY) is 
recovered (Jemioło 2002).  
On the order hand, taking 2 3 0a a   yields the Mooney model (MR). The simplest SEF of incompressible 
yields the neo-Hookean (NH) model, where there is only one non-zero constant of the interpretation of the 
initial shear modulus, i.e. 1 0μa  . 
Setting 3 50 , 0a a   Ishihara-Zahorski model is recovered (MIZ), cf. (Zahorski 1959). The stored energy 
function can be expressed in the form:  
 

        2
1 2 0 1 2 1

1 1, μ 3 1 3 3 ,
2 2

W I I f I f I c I         
 (3.9)

 
with the initial shear modulus 0μ 0  and two material parameters such that  0,1f  , 0c  .  
We emphasize that functions (3.1) and (3.9) are respectively consistent third and second-order approximation 
of existing stored energy function in term of C , cf. (Jemioło and Franus 2019). In the case of rubber-like 
materials, typical experimental tests of homogeneous deformations from which material parameters are 
determined are uniaxial and biaxial stretching tests (interpreted as plane stress state tests) and uniaxial 
compression/tension tests, assuming a plane deformation state (PDS).  
In the above-mentioned tests, principal stretches and nominal stresses are measured. In the case of the rubber 
material models analysed here, the material parameters are determined by simultaneous approximation of 
Treloar’s (Treloar 1944) and Alexander’s (Alexander 1968) experimental data, see Table 3.1. 
 
Table 3.1. Parameters for Alexander’s data (Alexander 1968) (neoprene). 

Model a1 [MPa] a2 [MPa] a3 [MPa] a4 [MPa] a5 [MPa] 
MR 3.513 ×10−1 - - 1.364 ×10−2 - 
MV 3.152 ×10−1 −6.469 ×10−3 1.173 ×10−4 1.899 ×10−2 −3.011 ×10−4 
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a) b) 
Fig.  3.1. Nominal stress vs principal stretch plots for uniaxial (UT) and biaxial (BT) tension modes in the case of 

Alexander’s data – a) MV model, b) MR model. Parameters are presented in Tab. 3.1. 

3.2. Non-polynomial material models 

An extensive review of the constitutive models of isotropic incompressible materials is provided in the 
monograph (Jemioło 2002).  
In this chapter, we will consider only two classes of non-polynomial models that are generalizations of the 
Gent’s (Gent 1996) and Demiray’s (Demiray 1972) models. The SEF of the Gent’s model is given by 

  0 1
1

μ 3ln 1
2G

IW W I g
g

 
    

 
, (3.10)

where 0μ 0  and  1 3I g  . If 1 3I g  , then GW  . It yields 

   0
1 1

μlim 3
2G NHg

W I W I


   , (3.11)

where  1NHW I  is the SEF of an incompressible neo-Hooke material (NH).
The function (3.10), around the natural state ( 1 3I  ), can be approximated such that 

      110
1 11

2

3μ 3
2

n
N N

NH n
n

I
W I O I

ng






   , (3.12)

It should be emphasized that 0μ  is an initial shear modulus with the same value as in the Hooke relation of 
incompressible materials in the linear theory of elasticity. 
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a) b) 
Fig.  3.2. Nominal stress vs principal stretch plots for uniaxial (UT) tension, biaxial (BT) tension and planar tension 

(PT) modes in the case of Treloar’s data – a) UMG model, b) HMG model. 
 
In the work of the first author (Jemioło 2016), the following generalization of the SEF of Gent's model was 
proposed: 
 

     1
1 2 1 2

3, ln 1 3 3
2UG

IW W I I g b I c I
g

     
        

 
, (3.13)

 
where,  0  , 0g  , 1 3I g   and , ,b c  ,   are material parameters. It holds 
 

 0
2 3 3
3

b c       . (3.14)

 
Fig. 3.2a shows the results of Treloar's experiments (rubber, 8% sulfur) and the theoretical curves predicted 
by the UMG model (3.13). Currently, the material parameters of UMG are as follows: 0.255   MPa, 

78.344g  , 51.482 10b    MPa, 2.702  , 12.496 10c   MPa, 0.386  , i.e. 0 0.352   MPa.  
The SEF of Demiray’s model is given by 
 

  0 1
1

μ 3Exp 1
2B

IW I g
g

  
   

  
, (3.15)

 
where 0μ 0  and 0g  . Similar to the Gent model, we have 
 

 1lim B NHg
W W I


 , (3.16)

 
A generalization of the SEF of Demiray’s model may be stated as (Jemioło 2016) 
 

       1 2 1 1 2, Exp 3 1 3 3
2 2 2HG

b cW W I I a a I I I   
 

            , (3.17)
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where , ,b c  ,   and   are material parameters. Figure 3.2b shows the results of Treloar's experiments and 
the theoretical curves predicted by the HMG model (3.17). HMG material parameters are as follows: 

22.59010   MPa,   18.127g  ,  0.528b   MPa, 0.958  , 0.116c   MPa, 0.482  , 0 0.357   
MPa.  

4. INFLATION OF A CYLINDRICAL TUBE

We consider axisymmetric deformations of an infinitely long cylindrical tube modelled with an 
incompressible material model, cf. (Bharatha 1967, Ogden 1984, Jemioło 2002). The problem is set in 
cylindrical coordinates  , ,R Z  and  , ,r z , respectively, in the initial configuration and the current 
configuration. Boundary conditions are given as prescribed displacements with parameters: inner radius iR
and outer radius oR  in a reference configuration, see Figure 4.1. The geometry of the problem shows that the 
eigenvalues of the stretch tensors are as follows: 

d , , 1
dr z

r r
R R     , (4.1)

where  r r R . In each cross-section of the tube perpendicular to z Z , we have the plain strain state 
(PDS) and deformations independent of the coordinates    . From the incompressibility constraints (2.1) 
and (4.1) we have 

1 d,
dr

r R
R r   . (4.2)

Hence, it holds 

  2R r r a  . (4.3)

where a const . If 0a  , then the radius of the cylinder increases, and if 0a  , then the radius of the 
cylinder decreases. Eq. (4.1) – (4.3) describe the "inflation" of the cylinder such that its length does not 
change and the incompressibility condition is met. 

Ri

ro

ri

ro O Ri
Rori

1

Ro

Fig. 4.1. Reference and current configuration of the cross-section of the cylindrical tube. 
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We consider two specific cases of cylindrical tube deformation: 
a) the displacement of the inner surface of the cylinder is set, 
 

2 2
i ia R r  , (4.4)

  20,r o o or r R a    , (4.5)

 
b) the displacement of the outer surface of the cylinder is prescribed, 
 

2 2
o oa R r  , (4.6)

  20,r i i ir r R a    , (4.7)

 
where ir  denotes the inner radius and or is the outer radius in the deformed configuration. Substituting (4.3) 
to (4.1) we obtain eigenvalues of the left Cauchy-Green tensor in the current configuration 
 

2 2
2 2 2

2 2,r r
r a r

r r a  
  


. (4.8)

 
Next, substituting 
 

2 2 1 2 2
φ φ φ φ

2 2
1 2

, ,

1,
r r r r z z r r r r z z

r rI I

   

 

  



           

   

B e e e e e e B e e e e e e
 (4.9)

into (2.13), we obtain the physical components of the Cauchy stress tensor 
 

 
 
 

2 2
1 1

2 2
1 1

1 1

,

,

.

r r r

r r

z

p r

p r

p r


    

    

  









   

   

   

 (4.10)

 
The unknown hydrostatic pressure (Lagrange multiplier) is established from the equilibrium equation 
 
d 0
d

rr

r r
  

  , (4.11)

  
and boundary conditions (4.9) or (4.10). 
In the case of the MV, we obtain 
 

   

 

22 2

1 1 2 5 32 2 2 2

2

1 4 5 2 2

2 2 ,

2 .

a r a rr a a a a
r r a r r a

a rr a a
r r a





   
              

 
      

 (4.12)

 
The differential equation (4.11) yields 
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     

   
 

 

2 3

1 2 3 4 2 3 5 32 4 6

2

2 3 4 5 3 5 22 2
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1 2 3 4 5 2

1 1 53 11 3 15 2
2 4 6
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2 4

1 2 5 4 ln ,
2
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(4.13)

where 
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a aC a a a a a a a a
R R

a aa a a a a a a a
R a R a

Raa a a a a a
R aR a

        

        
 

     


(4.14)

Substituting (4.12) into (4.10), we obtain the physical components of the Cauchy stress state in the 
configuration of the current cylinder in the case of deformation a) and b). The constant occurring in (4.11) 
needs to be determined from boundary condition  We do not give the final formulas for the MV as they are 
quite lengthy. Components of the first Piola-Kirchhoff stress tensor are given by  

1 1, , .r r r r z zS S S          (4.15)

Simple formulas for the components of the stress state are obtained in the case of MR and NH models. Then, 
we consider the following set of material parameters: 

 1 0 4 0 2 3 5, 1 , 0.a f a f a a a        (4.16)

5. SOLUTION TO THE BOUNDARY VALUE PROBLEM

5.1. NH and MR material models 

Relatively simple formulas for the components of the stress state are obtained in the case of the MR and NH 
models. It holds 

 1 0 1 0, 1f f       (5.1)

The NH and MR models in the case of PDS lead to an identical form of the SEF. Hence, the stress states r
and   are the same for the models, respectively. 
From (3.10) and (5.1) in the case of the NH material, it follows that 
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 (5.2)

After substituting (5.2) into (3.11) we have 
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 (5.3)

where C const . We determine the constant from the boundary conditions of the problem a) or b). In the 
case of a)   20,r o o or r R a    , it holds 
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However, for the other case, the integration constant is of the form 
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On the other hand, for the MR model we obtain 
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. (5.6)

Note that the components of the stress state r and   are independent of the material parameter f.  
The formula for the component z  for the NH model can be obtained by substituting 1f  . The expressions 
may be rewritten with dimensionless variables such that 



204 Lightweight Structures in Civil Engineering. Contemporary Problems 

   
 

     

2 2

0 2 2

2 2

0 2 2 2 2

1 1 1 ln ,
2 1 (1 )

3 11 1 ln ,
2 (1 ) (1 )

r
cc
c c c c

c c cc
cc c c c c

  
 

  
   

    
    

   
   

      

. (5.7)

where 
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Fig. 5.1. Stress state components in the final configuration for the NH model.  
Stresses and are the same for the NH and MR models. 

Fig. 5.2. Stress state component   in the final configuration  
for the MR model for different values of the parameter f. 

The stress component in the direction of the cylinder axis is as follows: 
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Fig. 5.1 shows the plots of the Cauchy stress components normalised by the shear modulus 0 for the NH 
model. It should be noted that the stress z  value strongly depends on f, see Figure 5.2. 

5.2. The linearised problem 

From the solution (5.7) for an incompressible hyperelastic material, we obtain the solution of the small strain 
theory problem. We calculate the limit for 0c   which means that the body configurations are 
indistinguishable 
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 (5.10)

 
and assuming that 
 

2 2  , (5.11)
 
which states small strains, we have 
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In the formulas (5.12), the product oR is the displacement of the inner edge of the cylinder given according 
to the radius increase. This is equivalent to prescribed traction in the inner surface of the cylinder cross-section 
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Fig. 5.3. Stress state components in the final configuration for the NH model for small strains. The results obtained 
according to the NH model or formulas (5.12) are indistinguishable on the scale of the drawing. 
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5.3. The UMG and HMG material models 

The solution to the problem for the other constitutive models can be obtained in a similar way (Jemioło 
2002). In this section, we present two solutions for (3.10) and (3.15), which describe the NH model as 
g  . 
The constitutive relation corresponding to SEF (3.10) yields 

0

1

μ
3

gp
g I

  
 

σ I B . (5.14)

From the relations (5.14) and (4.10) we obtain the components of the stress state 
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(5.15)

The formulas are fairly complicated, therefore we do not present them. It is easy to check that if g   ,  
the relation for the NH model is recovered 

0μp  σ I B . (5.16)

In Figure 5.4 we present examples of results for the stress state components normalised by the shear modulus 
for two parameter values g . For 100g  , we obtain a solution that numerically (Wolfram 2018) slightly 
differs from the solution obtained for the NH material model, see Figures 5.2, 5.4. 
In the case of Demiry’s model, the constitutive relationship is given by 

1
0

3μ Exp Ip
g

 
    

 
σ I B . (5.17)

As in the case of the Gent model, for g   we obtain from (5.17) the constitutive relation of the NH model 
(5.16). 

Fig. 5.4. Stress state components in the final configuration for Gent models  
for different values of the parameter g=10, g=100.  
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From the relations (5.17) and (4.10) we obtain the components of the stress state in the cylinder: 
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Fig. 5.5. Stress state components in the final configuration for Demiray’s model  
for different values of the parameter g=10, g=100.  

 
Substituting (5.18) into (4.11), we obtain a differential equation for  p r . The solution can be presented in 
the form of an integral - the result of the integration is not in the form of elementary functions. Therefore, the 
corresponding equations are solved numerically. Plots of the results are shown in Figure 5.5. The curves are 
qualitatively similar to those presented in Figure. 5.4. 

6. INTERPRETATION OF THE SOLUTIONS 

In the section, we compare the obtained results for NH and MV models. We remind that according to (3.9)  
the NH and MR models in the case of PDS lead to the same form of SEF. As a consequence, the stress states 

r  and   are the same for the models, respectively. 
 

Fig. 6.1. Comparison of SEF    1, ,rW W       graphs for the NH and MV models (dotted line),  
the Yeoh model (dashed line) and the V model (solid line).  
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Figure 6.2 presents plots of the stress state components for NH and MV in the case of Alexander’s data. We 
notice a significant qualitative and quantitative influence of the second isochoric deformation invariant on 
values of z . 

NH
MV

30 31 32 33 34
-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

r

σ
r[

M
P

a]

NH
MV

30 31 32 33 34
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

r

σ
φ[

M
P

a]

NH
MV

30 31 32 33 34
0.05

0.10

0.15

0.20

0.25

0.30

r

σ
z[M

P
a]

Fig. 6.2. Components of the stress state in the final configuration for the NH, MV models. 

Fig. 6.3. Stress r  vs the actual inner radius ir  - NH and MV models comparison.  

The NH and MR models provide a qualitatively different solution in comparison to the MV model for large 
cylinder deformations. This is especially noticeable when we analyse the relationship between the pressure 
inside the cylinder and the actual inner radius ir , see Figure 6.3. The boundary conditions of the problem 
show that the pressure inside the cylinder is equal  r ir . In the case of the NH and MR models, the
function  r ir  tends asymptotically to a constant value. We notice that the MV model does not produce  
a monotonic increasing stress value, i.e., the curve shows a local maximum followed by a local minimum, cf. 
Figure 6.3. In the case of cylinder inflation, the qualitative differences between the solutions predicted by 
MR and MV models are much more noticeable than in the case of balloon inflation (Jemioło 2002). 
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7. CONCLUSIONS 

The inflation of a cylindrical tube presented in this chapter can be a benchmark problem of a formulation of 
the hybrid FEM algorithm (Han et al. 2020). 
The solution of the boundary problem of hyperelasticity discussed in the paper allows revealing unstable 
states of cylinder deformation, which are related to the phenomenon of its inflation. This phenomenon 
depends mostly on constitutive relation. Local pressure extremes heavily depend on the initial thickness of 
the tube. Apart from the analytical solution, the numerical results obtained with the ABAQUS program 
(ABAQUS 2015) are also considered. The results are discussed in the next chapter of this monograph, see 
also (Jemioło 2002). 
The NH and MR models in the case of PDS lead to the same form of SEF. Hence, the stress states r  and 

  are the same for the models, respectively. It should be noted that in the case of MR and NH material 
models a monotonic increase of pressure inside the cylinder occurs as the displacement monotonically 
increases which is not the case for the MV model.  
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2. INTRODUCTION 

In the previous chapter, we discussed some aspects of a solution to the boundary value problem of  
a cylindrical tube subjected to an internal displacement. Several hyperelastic incompressible rubber-like 
material models were considered there. In this chapter, we focus on modelling a rubber cylindrical tube in 
the finite element method software ABAQUS (Abaqus 2016 Theory Guide 2015). This problem is known as 
an excellent example of a benchmark problem in an evaluation of numerical results (Anani and Rahimi 2018, 
Dragoni 1996, Han, Duan and Wang 2020, Horgan and Saccomandi 2003). 

3. HYPERELASTIC INCOMPRESSIBLE MATERIAL MODELS 

Several hyperelastic incompressible rubber-like material models are considered in the previous chapter in the 
context of a cylindrical tube inflation problem (Jemioło 2016, Jemioło 2011, Ogden 1984). For the sake of 
clarity, we present relevant stored energy functions here as well. A five-parameter polynomial model (called 
MV) is given by 
 

           2 3
1 2 1 1 2 1 3 1 4 2 5 1 2

1 1 1, 3 9 27 3 9 ,
2 2 3MVW I I a I a I a I a I a I I            


 (2.1)

 
where 1 2,I I  denote the invariants of the modified right and left Cauchy-Green deformation tensors.  
The model states a third-order consistent polynomial expansion of the stored energy function. The Mooney 
model is a special case of (2.1) such that: 
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     1 2 1 1 4 2
1, 3 3 ,
2MRW I I a I a I     


 (2.2)

which reduces to the neo-Hookean model if 4 0a  . Another considered model called EXP-PL one 
(Jemioło 2016), which is not of polynomial type, reads  

        1 3
1 2 1 2, 1 3 3 .

2
a I

EXP PLW I I e b I c I
a
 

      


 (2.3)

The function (2.3) is polyconvex if the parameters are positive. For more details, we refer the reader to 
(Ciarlet 1988). Fig. 2.1 presents nominal stress vs principal stretch for Alexander’s experimental data on 
neoprene (Alexander 1968). Parameters are shown in Tab. 2.1. It should be noted that MV and EXP-PL 
models accurately describe the data for large deformations which is not the case for NH or MR material 
models. However, the range of small deformations is not sufficiently accurate predicted especially in the case 
of biaxial tension mode. Parameters are presented in Tab. 2.1. 
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Figure 2.1. Nominal stress vs principal stretch plots for uniaxial (UT) and biaxial (BT) tension modes in the case of 
Alexander’s data [1] – a) Neo-Hooekan model, b) Mooney model, c) MV model, d) EXP-PL model 

Table 2.1. Parameters for Alexander’s data [1] (neoprene). 
Model a1 [MPa] a2 [MPa] a3 [MPa] a4 [MPa] a5 [MPa] 

MR 3.513 ×10−1 - - 1.364 ×10−2 - 

MV 3.152 ×10−1 −6.469 ×10−3 1.173 ×10−4 1.899 ×10−2 −3.011 ×10−4 

Model   a b c - 
EXP-PL 2.542 ×10−3 6.545 ×10−2 2.351 ×10−1 1.652 ×10−2
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4. FEM MODELLING OF THE CYLINDICAL TUBE PROBLEM IN ABAQUS 

A cylindrical tube of unit length (plane-strain state) is modelled in ABAQUS using two approaches.  
The first one consists of a quarter of the cross-section with boundary conditions that impose symmetry, see 
Fig. 3.2. Finite elements of type CPE4H are applied (seven elements of the tube’s thickness). The internal 
surface is subjected to a prescribed displacement iu . It is worth to notice that the model does not impose an 
axially symmetric solution. 
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ri

ro O Ri
Rori

1

Ro

 

Fig. 3.1. A cylindrical tube of unit length represents a plane stain problem. 
 
The other FEM model involves an axially symmetric stress formulation (Bonet and Wood 2008, Abaqus 
2016 Theory Guide 2015). To this end, we use CAX4H elements (seven elements in the section). Similarly 
to the previous case, the internal surface is subject to a prescribed displacement iu . Material models are 
implemented via UHYPER user-subroutines. 
 

ui

 

Fig. 3.2. The mesh with boundary conditions – CPE4H elements. 
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ui

Fig. 3.3. The mesh with the boundary conditions for the axially symmetric model – CAX4H elements. 

3.1. The neo-Hookean and the Mooney models  

The first test for verification numerical results concerns the neo-Hookean and the Mooney material models 
with the axially symmetric stress formulation. It is known (see the previous chapter) that these material 
models produce the same in-plane stresses if the initial shear moduli match (Jemioło 2002). 
Fig. 3.1 presents plots of the normalised Cauchy stress tensor components through the thickness of the tube. 
The values obtained show high accuracy as presented in Tab. 3.1, where the analytical results computed 
employing MATHEMATICA (Wolfram Research 2020) are collected.  Moreover, ABAQUS produce the 
outer radius 50.4381or   which fully coincides with the analytical result.  
Similar results in terms of accuracy are reported in (Han, Duan and Wang 2020, Wolfram Research 2020), 
where ABAQUS is employed as well to solve several benchmark problems. 

a) b) 

c) 

Figure 3.1. Comparison of analytical (solid lines) and ABAQUS’s results (markers),  Ri=10, Rb=12, ri=50.
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Table 3.1. Results comparison – stress values at the four integration points are equal. 

R  10.1429 10.4286 10.7143 11 11.2857 11.5714 11.8771 

0/r   
ABQ 0.16782 0.14009 0.11311 0.086846 0.061263 0.036326 0.012003 
M 0.16774 0.14009 0.11303 0.086774 0.061194 0.036259 0.011939 

0/   
ABQ 24.120 22.885 21.748 20.700 19.732 18.835 18.004 

M 24.120 22.885 21.748 20.700 19.732 18.835 18.003 

0/z    
(NH) 

ABQ 0.79108 0.81656 0.84124 0.86516 0.88834 0.91083 0.93266 
M 0.79116 0.81664 0.84131 0.86523 0.88841 0.91090 0.93272 

0/z  (MR) ABQ 3.0281 2.9277 2.8365 2.7534 2.6777 2.6085 2.5453 
M 3.0281 2.9278 2.8366 2.7535 2.6778 2.6086 2.5453 

 

3.2. A comparison of FEM models  

As it is shown in the previous subsection, the axially symmetric formulation produces results of excellent 
accuracy. Here we focus on a comparison of the results produced by this model with the results  
obtained with the model involving the quarter of the cross-section. The latter does not impose the axially 
symmetric solution. 
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Figure 3.2. Comparison of ABAQUS’s results of different FEM models a) the neo-Hooekan model,  
b) the Mooney model, c) the MV model, d) the EXP-PL model. 

 
For this purpose, we plot the radial stress  r ir  versus the inner radius in the current configuration. First of 
all, we notice that only the MV model does not produce a monotonic increasing stress value, i.e., the curve 
shows a local maximum followed by a local minimum, see also (Jemioło 2002, Taghizadeh, Bagheri, and 
Darijani 2015). Similarly to the previous case, the model involving the axially symmetric formulation 
produces highly accurate results. The other one gives the same accuracy only for the neo-Hookean material 
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model. Comparing the results of other material models, a deviation from the analytical values is notable as 
the inner radius increases, see Fig. 3.2. However, the error is significant for very large deformations.  
Very similar problems are considered in the monograph (Wolfram Research 2020). It is reported that besides 
the MV models, the Yeoh model produces a non-monotonic increase of the stress value. Besides very large 
stretches and displacements, a significant rotation takes place in the final configuration of the body. Thus, it 
is another aspect of the problem that makes it an excellent benchmark problem. 

5. A SHORT CYLINDRICAL TUBE

The previous sections concern a cylindrical tube problem under the plane deformation assumption, which 
physically may accurately approximate a sufficiently long tube. To show the behaviour of a pressurized short 
cylindrical tube (Soleimani and Funnell 2016), the problem illustrated in Fig. 4.1 is solved by employing 
ABAQUS (CAX4H elements). We use the MV material model. 
The equilibrium path concerning the centre of the tube appears to be qualitatively similar to the one shown in 
Fig. 3.2. The different boundary conditions lead to a significantly higher value of limit point stress in 
comparison to the plane deformation problem. Deformations obtained characterize a typical bulging in the 
middle of the tube (Pamplona, Gonc-Alves and Lopes 2006, Taghizadeh, Bagheri and Darijani 2015), which 
has been confirmed experimentally (Ogden 1984). As the solution does not produce a monotonic increasing 
stress value, the Riks procedure is employed to obtain the path.  
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Fig. 4.1. A short cylindrical tube problem illustration, Ri=19, H=2, L=20. 
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Fig. 4.2. The radial stress  r ir  versus the inner radius in the current configuration – the centre of the tube. 

Figs. 4.3, 4.4 and 4.5 present intermediate and final configurations of the considered short cylinder 
inflation. It should be noted that besides very large stretches and displacements, a significant rotation takes 
place in the final configuration of the body. Thus, the problem should be considered in a regime of large 
deformations and arbitrary large rotations. 
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Fig. 4.3. An intermediate configuration of the short cylinder. 

 

Fig. 4.4. An intermediate configuration of the short cylinder. 
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Fig. 4.5. The final configuration of the short cylinder. 
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6. CONCLUSION

The cylindrical tube problem is an excellent benchmark problem in an evaluation of a numerical method. 
The results obtained show that the axially symmetric stress formulation in the finite element method software 
ABAQUS provides high accuracy for the hyperelastic material models considered. The FEM model 
involving CPE4H elements produces results that do not fully coincide with the analytical ones, but the 
formulation does not impose the axially symmetric solution. In the case of the short cylinder problem, the 
equilibrium path concerning the centre of the tube appears to be qualitatively similar to the one produced by 
the plane deformation problem’s solution. However, applied boundary conditions lead to a significantly 
higher value of limit point stress in comparison to the previous cases. 
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                                                             ABSTRACT: The paper presents a dynamic behaviour structural model of masonry chimney using the finite 
element analysis. The geometry of the chimney is prepared using the 3D laser scanner and the documentation 
of in situ survey to simulate the dynamic response of the structure. The case study of the masonry chimney 
and the 3D laser scanning with the application are described. Next part includes the dynamic behaviour a 
finite element model of the real masonry structure. The dynamic analysis started from determining 
eigenfrequencies and the corresponding eigenmodes of a spatial model. Then the response of the model to a 
base kinematic excitation via a modal response analysis is determined. At the end an earthquake spectral 
analysis of the chimney model is demonstrated. 
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1. INTRODUCTION 

There are many historic masonry structures around us, which often still have useful functions or if do not, 
they cannot threaten the surroundings. Because of the safety of the structures, it becomes necessary to 
periodically check the technical condition. The process of determination of the technical condition and 
potential damages detection in civil engineering structures is important mainly for the protection of human 
health and life as well as for the preservation of architectural heritage. These issues are taken under 
Structural Health Monitoring (SHM) (see more information in Farrar and Worden 2010, Kołakowski 2007, 
Kralovec and Schagerl 2020). Many SHM methods based on the Non-Destructive Testing (NDT) like the 
most basic Visual Testing (VT), Ultrasonic Testing (UT), thermography, the Vibration-Based Damage 
Identification Method (VBA DIMs) and others. Within SHM, numerical simulations as nondestructive 
testing of the real models of the structures are also carried out. The use of SHM is slowly becoming  
a standard in modern infrastructure. Therefore, the possibility of application should be considered and 
included in research works.  
It must be mentioned that in connection to historic structures there are problematic issues e.g., related to 
documentation (sometimes even lack of it), proper conservation, or restoration of this type of facility, which 
will not be discussed here. Overall, the structural analysis of historic objects requires comprehensive 
knowledge of the structure that can be obtained by taking measurements in-situ and conducting complicated 
numerical analyzes. 
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The section presents examples of analyzes carried out for the historic masonry chimney, which may be 
useful for the engineering applications and needs of SHM, especially if the monitoring of that structures will 
be necessary tor the future. Such analysis may be carried out for various structures or structural elements, 
e.g., light steel structures (lattice, plate, etc.), various types of wooden structures, concrete objects,  
or masonry structures which are discussed here. The paper describes numerical simulations with the 3D laser 
scanning process which was used for recognizing structural problems such as damage or geometric 
irregularities of the masonry chimney (Małyszko, Jemioło, Bilko and Gajewski 2015). The scanning data 
was analyzed for cracking at higher levels of the chimney, where the direct inspection was difficult to 
achieve. Next, a real numerical model of the structure was created based on scanning data and the 
simulations of it were carried out in Finite Element (FE) software. 

2. DESCRIPTION OF THE CASE STUDY

The masonry historic chimney which is discussed here is located in Olsztyn, Poland. The chimney was built 
in the years 1884-1889 from ceramic bricks as a part of The Old Boiler House located in Kortowo - one of 
the districts of Olsztyn (Figure 2.1a). The total height of the chimney is equal to 40.45 meters. The bottom 
part is built from a square section, with edges having a length of 4.30 m up to the height of 10.35 m. Higher 
parts, with a length of 30.1 m, are built as circular sections with the outside diameter diminishing from 2.90 
m on the bottom to 2.00 m on the top. The cap of the chimney has an enlarged section. Iron rings, securing 
from fracture, are located with 0.86 m intervals, and are created from 80×6 mm2 bar. 

a) b) 

Fig. 2.1. The masonry chimney in Olsztyn: a) the real view and the dimensions; b) the point cloud. 

A redrawing of the chimney scheme, taken from the University’s archives, is presented in Figure 2.1a. In the 
years 2011-2013, the boiler house with the chimney was renovated and modernized so the technical 
condition currently is considered as good. 

3. USAGE OF LASER SCANNING

The real geometry of the structures can be obtained using non-contact and non-destructive Terrestrial Laser 
Scanning (TLS). The technology of the TLS allows the creation of a high-accuracy real model, as well as the 
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detection and localization of defects of the structures especially in hard-to-reach places.  
The three-dimensional coordinate information of the geometry of the structures, can be also useful for 
comparison of the changing condition of the construction in subsequent years to assess the needs of SHM. 
This is especially important in historical structures which must be constantly monitored. In the case of SHM 
of object deformations, the laser scanning can quickly give the general notion about the displacement 
tendency of the structure. This is in contrast to traditional geodetic measurements, when results can only give 
observations of a rare point set, usually restricted to the critical zones, which have to be earlier appointed. 
Such measurement will provide the precise measure of the deformation and the point cloud will show global 
trend and possible critical zones (Antón, Pineda, Medjdoub and Iranzo 2019, Riveiro, Morer, Arias and 
Arteaga 2011). 
TLS 3D technology belongs to the modern field-of-view method of a distance measurement, which allows 
contact-free determination of space coordinates of different complex structures. It allows to gather several 
thousand points of the point cloud per second and still experiences continuous progress (Riveiro, Morer, 
Arias and Arteaga 2011). The spatial coordinates of point cloud are defined basing on the measured distance 
as the time needed to traverse the distance from the laser to the object and back or as the phase shifting.  
The point data (x, y, z) also includes a reflection intensity value (Fig. 2.1b) and if the scanner has a built-in 
camera then realistic color information can be mapped to the point cloud data. More complex structures must 
be scanned from several places. Then these multiple scans from different positions should be transposed into 
the same reference system. After all the sub-scans are registered, the global point cloud still needs extensive 
processing to obtain useful information in the special software application (Cyclone 2011). The processing 
may include noise reduction, resampling, surface modeling, and filling empty holes. The main technical 
parameters which characterize the scanner are the resolution diameter of the spot scan, the scan rate, the field 
of view, and the minimum size of the measured increment. The resolution diameter of the spot scan decides 
the accuracy of the distance measure and precision of the whole 3D model. One ought also to consider 
attention to the minimum and maximum range scanning, the precision of measured horizontal and vertical 
angle which influences the accuracy of the measurement. The form of the measuring signal is as well of 
prime importance. The phase form gives quick and exact instruments with a limited range of the 
measurement, on the contrary, the impulse form gives slower instruments but with large distant possibilities. 
Table 3.1. shows technical specifications of the laser scanner used in the measurements. 
 
Table 3.1. Technical specifications of laser scanner used in analysis. 

Laser scanning system 

Type Pulsed; proprietary microchip 

Color Green, wavelength = 532 nm visible 

Laser Class 3R (IEC 60825-1) 

Range 300 m @ 90%; 134 m @ 18% albedo (min. range 0.1 m) 

Scan rate up to 50 000 points/sec, max. instantaneous rate 
Scan resolution: spot size, 
                           point spacing 

from 0 – 50m: 4.5 m (FWHH); 7 mm (Gaussian) 
fully selectable horizontal and vertical; 1< mm min. spacing, 

through full range; single point dwell capacity 
Field-of-View:   horizontal/vertical 
                           aiming/sighting 

360 (maximum)/270 (maximum) 
parallax-free, integrated zoom video 

System performance 

Accuracy of single measurement: position/distance, 
                                                      angle (horizontal /vertical) 

6 mm/4 mm 
60 μrad / 60 μrad (12”/12“) 

Modeled surface precision/noise 2 mm 
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Laser scanning has practical application in many industries (Głowacki, Grzempowski, Sudoł, Wajs and Zając 
2017, González-Aguilera, Gomez and Sánchez 2008), mostly in architecture, art preservation, transport 
infrastructure, gathering dimensions of real, deformed structures for further structural computation 
(Castellazzi, D’Altri, Miranda and Ubertini 2017, Fekete, Diederichs and Lato 2010) and landslide 
monitoring (Ossowski, Przyborski and Tysiac 2019). 
The advantages of using laser scanning of numerical modeling of the structure are listed below: 
– obtaining the real geometry of the structure to create a numerical model for the actual analysis of the real

construction,
– the registration of the technical condition of the structure (the real geometry, detection of damages and

cracks especially in difficult to reach areas) also for SHM ,
– the possibility to include damaged areas in a numerical model.

Some important and useful additional information about using TLS 3D technology in modelling of masonry 
structures, which are not described here, can be found in (Rashidi et.al. 2020, Yang, Xu and Neumann 2014). 
In the case of the masonry chimney in Olsztyn, only one scan was performed (Figure 3.1a). The resolution of 
the chimney scan was equal to 1 cm on a 50 m distance, where the horizontal distance from the edge of the 
object was equal to 25 m. 
This scan did not give the whole geometry of the chimney, but it was sufficient to use it to consider the 
axiality of it. In the point cloud processing software, the circles were fitted in the point cloud on many levels 
(Figure 3.1a) and further finding the centers of these circles enabled to find the actual axis of the structure 
(Figure 3.1b). This information was later applied in the real numerical model. 

a)  b) c) 

Fig. 3.1. Geometrical analysis: a) the point cloud; b) geometry preparation; c) the upper part of the FE model. 

The point cloud was analyzed for the location of possible cracks. Due to the recent thorough modernization 
of the chimney, this object has no scratches that were visibly on the registered point cloud. What is more, the 
scan gave information about external real dimensions and showed geometric irregularities of the chimney. It 
turned out, that the structure is not vertical, especially in its upper part. The maximum horizontal 
displacement of the upper part in relation to the base of the chimney trunk was 10 cm, which was included in 
the preparation of the numerical real model of the structure used in numerical analysis. 
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4. NUMERICAL ANALYSIS 

Numerical simulations of the masonry chimney were performed using the commercial finite element analysis 
(FEA) software program (DIANA User's manual 2009). The real model is smeared out in  
a homogeneous continuum and the masonry is considered a homogeneous and isotropic. Material parameters 
are presented in Table 4.1. The finite element mesh consist of 16 280 eight-node isoparametric solid brick 
elements with Gaussian integration. Boundary conditions consists of fully pinned nodes creating the bottom, 
flat surface of the chimney. The upper part of the FE real model of the chimney is presented in Figure 3.1c. 
 
Table 4.1. Technical specifications of laser scanner used in analysis. 

Young’s modulus [MPa] Poisson ratio [ - ] Mass density [kg/m3] 

7 300 0.18 1 800 

 
Three type of dynamic analyses were performed. First the eigenvalue and eigenfrequency analysis was 
performed. Secondly, the model was subjected to a base harmonic excitation of acceleration equal to 1m/s2 in 
the horizontal direction. The unit base excitation with frequencies from 0 to 10 Hz in steps of 0.1 Hz was 
applied. The numerical experiment was performed to determine the structural response in the fixed vibration 
range. The modal superposition analysis was used to solve the equations of motion, assuming the damping at 
the level of 5% of critical damping. Thirdly, the chimney model was evaluated in the spectral response 
analysis. The typical earthquake spectrum used in the FEA program was applied (Figure 4.1), where the 
frequencies f does correspond with load amplification factors SA for the base excitation load. It should be 
mentioned that this is not a model earthquake spectrum for Olsztyn, but also for the whole country, which is 
not located in seismic zones. 
 

Fig. 4.1. The typical earthquake spectrum used in the selected commercial program. 
 
The first ten eigenfrequencies and eigenmodes were found. The first five ones are presented in Figure 4.2. 
The presented eigenmodes are of bending type (treating the chimney as cantilever beam), except the fourth 
one. The maximal frequency, out of the ten found, was equal to 18 Hz, which is typical in this class of objects. 
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1f =1.2Hz 2f =4.5Hz 3f =9.2Hz 4f =14.3Hz 5f =15.4Hz 

Fig. 4.2. First five numerical eigenfrequencies and eigenmodes of the chimney. 

As a result of the harmonic excitation, the amplitudes of displacement, velocity and acceleration of all nodes 
were determined. Figure 4.3 shows the impact of forcing frequency on horizontal displacement and 
acceleration of the selected point - node A in the Figure. In the resonance zone of the first vibration 
frequency, i.e., for an excitation frequency close to 1.2 Hz, a maximum value of the horizontal peak 
displacement amplitude of 0.35 m was obtained. Other resonance zones are visible, although they are more 
distinct at the velocity amplitude diagram and in particular at the acceleration amplitude. 

a) b) c) d) 
Fig. 4.3. Harmonic excitation results: a) location of selected node A; b) displacement  

and acceleration of A node in frequency domain; the equivalent stresses response  
[Pa] according to Huber's strength hypothesis: c) SRSS rule; d) ABS rule. 

Figure 4.3c,d shows the equivalent stresses to get an estimate for the damage inflicted by the earthquake on 
the chimney. The  stresses were calculated according to Huber's strength hypothesis using the ABS rule 
(ABSolute sum) and the SRSS rule (Square Root of the Summed Squares). The maximum peak value of 
equivalent stress equals 2.0 MPa according to the SRSS method and 5.3 MPa according to the ABS method. 
The above maps determine the effort of the structure and indicate the places of the possible damage which 
can be important for structural health monitoring. This enables to perform the numerical simulations of the 
damage model of the structure to see how the damage affects the dynamic properties, like in paper 
(Masciotta,  Ramos, Lourenco and Vasta 2017). Additionally, it should be mentioned that the determination 
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of the equivalent stresses response of the masonry chimney according to Huber's strength hypothesis is  
a very rough estimate, on the grounds that the hypothesis is mainly intended for isotropic materials with  
the same tensile and compressive strengths. However, a realistic estimate of the effort of the structure was 
obtained according to the SRSS method. 

5. FINAL REMARKS AND CONCLUSIONS 

The vibration vulnerability assessment of the masonry chimney was presented as an example of  
a preliminary solution to a practical technical problem: the assessment of the seismic risk of the real 
construction based on linear dynamics with isotropic elastic material. As a result of numerical analysis,  
the areas where stresses are maximum were located. Those areas can be the location for attachment  
of measuring sensors in case of the necessity to perform periodic or permanent monitoring of the chimney 
e.g., as a matter of SHM. 
Terrestrial laser scanning technique give the possibility to acquire and process data to support 3D 
geometrical analysis and numerical analysis of any type of structure, in this case masonries, behaviors at 
different the time span of structures' life-cycle. Laser scanning is a very good complement of sensing 
techniques like visual inspection which are the primary techniques used for identifying cracks, cavities,  
or real dimensions and geometric irregularities of the analyzed structures which are recorded in SHM. The 
collected data as point clouds can be analyzed at any time and what is more, the scans of the inaccessible 
structure or part of it e.g., because of the height, can be helpful in the analysis of the geometry of this object.  
As it was presented in the article, the irregularities in the geometry of the structure, which were recorded on 
the scan, can be next modeled to create a real numerical model that can be further analyzed. Furthermore due 
to the accuracy and the possibility of collecting data on the whole geometry of the structure, terrestrial laser 
scanning can be very helpful especially in periodic monitoring by comparing point clouds recorded at 
different time epoch. Point clouds related to the same reference system can show changes in the geometry of 
the analyzed structure, e.g., related to a settlement, an inclination, failures. 
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                                                             ABSTRACT: The paper emphasizes aspects that have to be addressed when analyzing monopole structures, 
such as vortex excitation occurring due to a repeating pattern of vortex shedding in the flow of air around 
a tower (von Kármán vortex street). The fatigue analysis is discussed in detail in the paper and it presents 
solutions that were introduced on the basis of the analysis results in order to reinforce certain areas of the 
tower (stress concentration in the vicinity of structural details required due to technological reasons). 
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1. INTRODUCTION 

It is difficult to imagine today’s world without high-speed data transmission capabilities at any distance. 
Billions of Earth’s inhabitants use devices designed to make phone calls and send text and graphic messages 
on a daily basis. As technologies used in mobile devices are advancing, including smartphones and tablets 
that replace computers in a number of applications, users demand wireless, high-speed and reliable Internet 
access as standard. 
Today we can see the fifth generation networks (5G) grow with increasing number of devices connected to 
them. Internet of Things (IoT) is a concept of material objects connected with each other and with Internet 
resources via a powerful computer network, i.e. the Internet. The main goal of the IoT is the creation of 
smart areas such as smart cities, transport, products, buildings, power systems, health systems or systems 
related to everyday life. Such a smart area can be developed provided that technologies necessary to 
implement it have been delivered. Data exchange between all users sets increasingly higher requirements on 
networks and their operators. The 5G standard is meant to meet these expectations by providing faster 
Internet connections and enabling many devices to communicate concurrently. One of requirements that have 
to be satisfied in order for 5G to be properly implemented and operated is building new base stations, and the 
Polish Ministry of Digital Affairs expects their total number to be 10 to 100 times bigger than in 3G or 4G 
networks. These new base stations are being built both in open suburban and rural areas and in city centers.  
A wide diversity of support structures erected for telecommunications purposes can be found around the 
world (Smith 2007). The choice of a structure to serve as a support for telecommunications equipment is 
mostly based on purely technical requirements, but aesthetic reasons are also becoming important 
particularly for structures located in urban areas. What is essential is that these objects should not stand out 
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nor require much space and should be relatively fast and simple to build compared to traditional solutions. At 
the same time the structures need to be safe and durable.   
The paper proposes a comprehensive structural solution of a monopole telecommunications tower that 
ideally meets the above mentioned requirements. Technological solutions and the structural analysis are 
discussed including issues that were encountered and ways in which these were solved.  

2. TOWER STRUCTURE

The structure under consideration is a steel tower solid-wall pole measuring 30.0 m in height (32.53 m 
including the spire). The structure is made of 4 segments with the three bottom ones having the cross-section 
in the shape of a regular octadecagon, and the upper one made of a circular hollow section. The middle 
segments (S-2 and S-3) have a taper and are joined to each other by means of a slip joint connection  
(a telescopic connection) with an overlap of about 1.5 m. The other segments and the core of the tower with 
the foundation are joined to each other by means of flanged bolted connections. The entire structure has been 
designed of S355 steel grade. Table 1 summarizes basic characteristics of the tower segments. 

Table 1. Basic characteristics of the tower segments. 

Segment 
Segment 
height [m] 

Cross sections of core members 
/ wall thickness [mm] 

Lower circumcircle/ 
incircle diameter [m] 

Wall thickness 
[mm] 

Upper circumcircle/ 
incircle diameter [m] 

S-1 (top) 7.700 RO 245x12 
- 

- 
- 

S-2 8.044 Regular octadecagon / 5.0 
0.971/ 0.956 

5.0 
0.711/ 0.700 

S-3 8.000 Regular octadecagon / 6.0 
1.170/ 1.152 

6.0 
0.911/ 0.897 

S-4 7.800 Regular octadecagon / 6.0 
1.170/ 1.152 

6.0 
1.170/ 1.152 

Inside the lowest segment of the tower, there is a system of support structures used to mount 
telecommunication devices serving the BTS. Four ventilated doors are provided to access the equipment in 
the member. Additional system members (anchoring devices), designed to provide the telescopic connection, 
are mounted on segments S-2 and S-3.  
Support structures (frames and anchoring devices) are mounted on the circular section of segment S-1;  
by means of these structures, sector antennas (3 pieces) and RRUs are mounted. An antenna beautification 
cover is provided around the segment along its full height, made of two parts: the lower one 3.74 m in height 
and the upper one 3.79 m in height, both 1.35 m in their outer diameter.  
On the tower top, there is a spire made of circular hollow sections Ø76 mm, Ø60 mm and Ø42 mm, to which 
a support structure (a frame) for mounting microwave antennas is fixed. The spire is mounted by means of  
a flanged connection. The view of tower structure is presented on Fig. 1. 
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Fig. 1 The view of tower structure, dimensions in mm. 

3. STRUCTURAL ANALYSIS 

3.1. Alongwind load effects 

It was assumed that the structure would be located in wind load zone 1, for which the basic wind velocity 
pressure is qb = 0.3 kN/m2, in a terrain corresponding to terrain category II (areas with low vegetation, such 
as grass, and single obstacles, such as trees and buildings, not less than 20 times their height apart). 
Wind load on the tower core was calculated according to PN-EN 1991-1-4. Due to the central symmetry of 
the core structure cross-section, a single wind load direction was considered in calculations. 
The mean wind load on the tower in the wind direction was calculated with the following formula: 
 

refepfdsw AzqcccF  )( , (3.1)
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where cscd is structural factor, cf is total wind force coefficient (for the aerodynamic drag), qp(ze) refers to 
peak velocity pressure and Aref describes reference area. 
The aerodynamic drag factor for segments S-2, S-3, and S-4 was determined as for regular polygons 
(octadecagons) and for segment S-1 as for circular cylinders, whereby geometrical data of a segment cover 
were taken in calculations.  
The structural factor was determined using the following formula: 

2 21 2 ( )
1 7 ( )
p v s

s d
v s

k I z B R
c c

I z
    


 

, (3.2)

where kp refers to peak factor defined as the ratio of the maximum value of the fluctuating part of the 
response to its standard deviation, Iv is turbulence intensity, zs describes reference height for calculating  
the structural factor, B2 is out-of-resonance response factor, allowing for the lack of full correlation of  
the pressure on the span, and R2 is resonance response factor, allowing for turbulence in resonance with the 
vibration mode of the structure. 
Wind actions on equipment and support structures were calculated in the same way as the wind force on the 
tower core, each time considering the height where a given device, or a support structure is mounted. 
Aerodynamic drag coefficients for the support structures were calculated as for the core structure dividing 
structural members into those with sharp edges and those in the shape of a circular cylinder.  
The aerodynamic drag coefficient for the telecommunication equipment (the microwave antenna) was taken 
as cf = 1.2. 

3.2. Crosswind action 

In addition to the response of the structure to wind loading parallel to wind direction, possible occurrence of 
vortex excitation, resulting in load fluctuations in the plane perpendicular to wind direction should be 
considered for structures with a solid-wall circular cross-section. This phenomenon occurs when vortices are 
shedding in turn from the opposite sides of a structure. Vibrations of the structure can occur if the frequency 
of vortex shedding matches the eigenfrequency of the structure. This condition is satisfied if wind velocity 
equals critical wind velocity given by the formula: 

1,
,

y
criti i

b n
v

St


 , (3.3)

where St is Strouhal number, for circular cross-sections equal to t = 0.18, b is a cross-section diameter of 
a member and n1, y is eigenfrequency of the structure, for towers defined as: 

1
46n Hz
h

 . (3.4)

Vortex excitation should be considered if the ratio of the largest and the smallest measure of a structure in 
the plane perpendicular to the wind direction is greater than 6; in this case: 

min

30.0 49.2
0.711

h m
b m

  . (3.5)

Vortex excitation does not have to be taken into account if: 
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, 1.25crit i mv v  . (3.6)
 
In this case: 
 

, 11.5 1.25 26.5 33.1crit i
m m mv
s s s

    . (3.7)

 
Considering the above, the possible occurrence of vortex excitation should be taken into account for the 
structure in question. 
The effect of vibrations induced by vortex excitation should be calculated based on inertial forces per unit 
length, exerted in the plane perpendicular to the wind direction at point s, according to the formula: 
 

2
1, , ,max( ) ( ) (2 ) ( )w e y i y FF s m s n s y      , (3.8)

 
where i,y(s) is the natural mode shape of the structure normalized to unity at the point of maximum 
displacement, yF,max is maximum displacement with time of the point at which Φi,y(s) equals 1.  
Approach 1 (according to PN-EN 1991-1-4, Annex E) was used to determine the amplitude of vibration in 
the plane perpendicular to the wind direction: 
 

,max
2

1 1F
w lat

y
K K c

b St Sc
     , (3.9)

 

where Sc is Scruton number, equal to: 
 

2

2 s emSc
b



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


, (3.10)

 
K is mode shape factor equal to K = 0.13 for cantilevered structures, Kw refers to effective correlation length 
factor, for cantilevered structures given by the relation: 
 

2
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L b L b L bK
  
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, 0.6wK  , (3.11)

 
L1 is correlation length for the first mode shape, clat describe lateral load factor, related to the Reynolds 
number, for the case considered equal to clat = 0.2. 
The amplitude of vibration and the correlation length were determined by means of the iterative method.  
The number of loading cycles imposed by vortex-induced vibrations was calculated from the expression: 
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 , (3.12)

where T is design working life of the structure in seconds, 0 is bandwidth factor allowing for the range of 
wind velocities causing vortex-induced vibrations; taken as equal to 0 = 0.3, v0 refers to the modal value of 
the Weibull probability distribution assumed for the wind velocity in [m/s], multiplied by 2 , equal to:  
 

0 0.2 mv v  . (3.13)
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3.3. Calculation model 

The support structure was modeled using the Autodesk Robot Structural Analysis 2014 software, utilizing 
the finite element method, as a solid section structure and a shell structure. Six-degree-of-freedom (6DOF) 
solid section finite elements and triangular and quadrilateral shell finite elements were used. A support fixed 
in foundations was taken as the structural arrangement in both models.  
Wind loads imposed on members were modeled as evenly distributed linear forces, while the load caused by 
antennas and supports as concentrated forces. In the shell structure model, wind loads were modeled as the 
surface loading per unit area.  
The fatigue analysis was performed based on the calculation model developed in the Consteel 12 software as 
a shell structure. Shell finite elements in the shape of a triangle of side 100 mm on average were used. 
Joints were analyzed with the aid of the IDEA StatiCa 9 software using the finite element method. Internal 
forces in each member were replaced with the load of a node in a local arrangement of connected rods. 

3.4. Analysis of load-carrying capacity 

The load-carrying capacity of the support structure for telecommunication equipment was determined 
according to PN-EN 50341.  
Members were considered as solid-wall shell-type poles with a thin-wall cross-section in the shape of an 
octadecagonal hollow section for which the criterion of limit slenderness for the class 4 cross-section is: 

42b
t

 , (3.14)

where b and t are wall length and thickness respectively, ε = square root of 235/fy and fy is the nominal value 
of the yield strength in N/mm2. 
The characteristics of polygonal cross-sections were calculated from the formulas:  
- area: 

( )sin k
k

A d t n t
n
 
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 

, (3.15)

– moment of inertia:
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            
, (3.16)

– elastic section modulus:

2

el
IW d t
 , (3.17)

where d describes outside diameter across angles of the polygon, nk refers to number of sides and df is 
diameter at the crown, equals to: 
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The load-carrying capacity of class 3 polygonal cross-sections, without openings, will be satisfactory if the 
following condition is met: 
 

1

yEd Ed

el M

fN M
A W 

  . (3.19)

 
where NEd and MEd  are design normal force and bending moment, A and Wel are gross cross-section area and 
elastic section modulus, and γM1 is partial factor for resistance, for S355 steel equal to 1.15. 
Tables 2 and 3 below include characteristics of cross-sections, design forces, and verification of the 
condition of load-carrying capacity at 11 points of the tower. 
 

Table 2. Characteristics and effort of cross-sections 1 to 6. 

Cross section 1 2 3 4 5 6 

Diameter, [mm] d 1170 1138 1091 1043 996 948 

Thickness, [mm] t 6 6 6 6 6 6 

Wall length, [mm] b 203.2 197.6 189.5 181.1 173.0 164.6 

Number of sides, [-] nk 18 18 18 18 18 18 
Diameter at the crown, 
[mm] df 1152.2 1120.7 1074.4 1027.2 980.9 933.6 

Gross cross-section, [cm2] A 218.3 212.3 203.5 194.5 185.7 176.7 

Moment of interia, [cm4] I 362128.8 333074.3 293283.5 256053.5 222790.2 191928.1 
Elastic section modulus, 
[cm3] Wel 6222.1 5884.7 5406.1 4938.4 4500.8 4074.9 

Yield strength, [MPa] fy 355 355 355 355 355 355 

Epsilon, [-] ε 0.814 0.814 0.814 0.814 0.814 0.814 

Cross section class check 3 class 3 class 3 class 3 class 3 class 3 class 

Normal force, [kN] NEd 74.02 57.77 55.13 52.6 50.19 47.88 

Bending moment, [kNm] MEd 420.31 222.49 194.81 169.03 145.13 123.07 

NEd/A + Med/Wel, [MPa]  70.94 40.53 38.74 36.93 34.95 32.91 
fy/γM1, [MPa] 
  308.70 308.70 308.70 308.70 308.70 308.70 

Cross-section effort, [%] 23.0% 13.1% 12.6% 12.0% 11.3% 10.7% 

 

 

 

 

Table 3. Characteristics and effort of cross-sections 7 to 11. 
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Cross section 7 8 9 10 11 

Diameter, [mm] d 901 853 806 758 245 

Thickness, [mm] t 5 5 5 5 12 

Wall length, [mm] b 156.5 148.1 140.0 131.6 42.5 

Number of sides, [-] nk 18 18 18 18 18 
Diameter at the crown, 
[mm] df 887.3 840.0 793.8 746.5 241.3 

Gross cross-section, [cm2] A 140.0 132.5 125.2 117.7 87.4 

Moment of interia, [cm4] I 137638.6 116680.7 98334.1 81693.2 5812.3 
Elastic section modulus, 
[cm3] Wel 3072.3 2751.9 2455.3 2169.8 498.9 

Yield strength, [MPa] fy 355 355 355 355 355 

Epsilon, [-] ε 0.814 0.814 0.814 0.814 0.814 

Cross section class check 3 class 3 class 3 class 3 class 3 class 

Normal force, [kN] NEd 45.69 43.62 41.66 37.22 30.63 

Bending moment, [kNm] MEd 102.8 84.28 67.45 52.24 38.61 

NEd/A + Med/Wel, [MPa] 36.72 33.92 30.80 27.24 80.89 
fy/γM1, [MPa] 308.70 308.70 308.70 308.70 308.70 

Cross-section effort, [%] 11.9% 11.0% 10.0% 8.8% 26.2% 

The distribution of stresses reduced according to the Huber hypothesis was checked at the point where the 
cross-section suddenly changes (Fig. 2) and by the openings (Fig. 3); the distribution was then compared 
with the yield strength of steel. 

Fig. 2. Distribution of stresses reduced according to the Huber hypothesis  
at the point where the cross-section suddenly changes 
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Fig. 3. Distribution of stresses reduced according to the Huber hypothesis by the openings 

4. FATIGUE ANALYSIS 

Nominal, modified nominal or geometric stress ranges due to frequent loads ψ1Qk should not exceed the 
following values:  
 

1.5 yf   , (4.1)
 
where ψ1 = 0.2 for wind actions. 
It also should be demonstrated that for fatigue loading the following load-carrying capacity conditions are 
satisfied: 
 

,2 1.0
/

Ff E

C Mf

 
 





. (4.2)

 
where γFf is partial factor for equivalent constant-amplitude stress ranges, γFf = 1.0 (according to PN-EN 
1993-3-1), γMf is partial factor for fatigue strength, taken as γMf = 1.15 for low consequence of failure of 
a structure assessed using the safe-life method, Δσc is the reference value of the fatigue strength at N = 2 
million cycles, ΔσE,2 refers to equivalent constant-amplitude stress range related to 2 million cycles, 
according to the relation: 
 

,2E E     . (4.3)
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ΔσE is stress range related to N number of cycles, λ is equivalence factor given by the formula: 

1

62 10
mN     

, (4.4)

where m is slope of the S-N curve for the case considered m = 5. For cantilevered structures, areas exposed to 
maximum fatigue stress ranges include the area of the joint with the foundation. For the structure considered, 
since the joint was reinforced by stiffening with lateral ribs, maximum stresses will occur in the cross-section 
above the ribs. The reference value of the fatigue strength for circular hollow sections is Δσc = 160.0 MPa. 
For the least favorable case of fatigue loading (load directions are shown in Fig. 5), the equivalent stress 
range is equal to ΔσE,2 = 178.5 MPa, so: 
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 
 
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 


, (4.5)

thus, the condition is not satisfied. 
The solution is to design joint stiffening with larger lateral ribs. Figure 4 shows the differences in equivalent 
stresses without and with stiffening.  

Fig. 4. Equivalent stresses in the tower base, stresses values in MPa. 

Fig. 5. Stress pattern at the joint with the foundation 
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4. RESULTS AND CONCLUSIONS 

Based on the analyses, the following conclusions can be drawn: 
 The analyses indicated that the structural fatigue resulting from potential vortex excitation is crucial for 

monopole tower structures. Special attention should be paid to the connection between the tower’s core 
and base where high values of stress were observed. 

 One aspect that must not be neglected when designing solid-wall structures is technical openings of 
various types which make the cross-section weaker and should be always accounted for in the structural 
analysis. In the analyzed structure there is a stress concentration in the vicinity of the opening in 
segment S-4, providing access to telecommunications equipment serving the base station. To reinforce 
the edges of the openings in order to reduce stresses, L-sections, welded along the whole length of the 
segment should be designed on the inner side of the circular hollow section along the edge.  

 The load-carrying capacity with respect to fatigue is exceeded by about 30%. To keep the load-carrying 
capacity, larger stiffening ribs at the joint of the tower core and the foundation should be provided.  

 In order to reduce lateral vibrations of the structure caused by vortex excitation, and thus to satisfy  
the condition of the load-carrying capacity of the structure with respect to fatigue, the system cover of 
the upper segment of the tower should be equipped with turbulence mixers to disturb the regularity  
of vortex shedding at the upper part of the structure.  

 Vortex excitation will occur only if the system beautification cover is mounted on the upper segment of 
the tower with antennas and equipment. If the telecommunication equipment is left without the cover, 
lateral vibrations will not occur and thus all the conditions of the load-carrying capacity of the structure 
will be met. It should be noted, however, that in this case wind actions on the tower core and the effort 
of each segment and joint would increase and the aesthetic qualities of the structure would deteriorate.  
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