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Abstract: A Picard-like scheme using quadrature and differential quadrature
rules, formerly introduced to solve integro-differential equations, is herein adapted
to solve the problem of an oscillator with damping defined by the Riemann-
Liouville fractional derivative and with fuzzy initial conditions. Considering
fuzzy initial conditions has the meaning of a fuzzification of the problem via
the Zadeh’s extension principle. Following Zadeh, fuzziness is a way to take
into account an uncertainty which cannot be identified as randomness. In the
crisp domain, the proposed approach is able to approximate the reference an-
alytical solutions with high accuracy and a relatively low computational cost.
In the linear regime, the technique proposed becomes a non-recursive scheme,
providing semi-analytical solutions by means of operational matrices and vec-
tors of known quantities. In this sense, an example of application is given
by the free damped vibrations of a linear oscillator in a medium with small
viscosity, usually solved by using the method of multiple scales (in the crisp
domain).

1. Introduction

In this manuscript, we investigate a class of fuzzy differential equations in presence of a

Riemann-Liouville fractional derivative

L
(2)
t ũ(t) + δRLDβ(ũ(t)) = f(ũ(t)) + g̃(t), (1)

subject to the initial conditions

L
(i)
t ũ(0) = ãi, i = 0, 1 (2)

where L
(i)
t is the ith-order derivative operator with respect to t, RLDβ is the Riemann-

Liouville fractional derivative of order β, with 0 < β < 1. Besides, f(ũ(t)) is a functional

form in ũ, g̃(t) a given fuzzy-valued function and ãi a fuzzy number, with i = 0, 1. Here,

ũ(t) represents the unknown fuzzy function for t ∈ [0, 1]. Obviously, assuming [0, 1] as the

problem domain is not a loss of generalization, because it is possible scaling the independent

variable t.
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It should be pointed out that (1) may be seen as the fuzzification via the Zadeh’s

extension principle of the same equation but without fuzzy variables and parameters. The

introduction of ‘fuzziness’ in (1) means to take into account an uncertainty in the value of

the equation variables which cannot be read as randomness [1]. Considering fuzziness in

decision processes [2] and in regression analysis [3, 4] is very important. In the same way, it

allows to model adequately realistic problems in science and engineering which traditionally

involve ordinary differential equations [5, 6].

The problem corresponding to (1) in the crisp domain has been solved by means of

several approaches [7], depending on the presence or not of nonlinearity and forcing term.

In the present work, we extend the approach proposed in [8] to solve (1). More precisely,

we discuss a numerical scheme combining differential quadrature rules [9] (which provide

high-order finite-difference approximations) and a Picard-like recursion into the fuzzy do-

main. In spite of its recursive nature, the proposed approach in the linear regime leads to a

non-recursive approximate solution by means of operational matrices and vectors of known

quantities. Notice that the scheme herein discussed is different from the one presented in [10].

As a first example application, we consider herein the free damped vibrations of a linear

oscillator in a medium with small viscosity, which has been solved in the crisp domain by

using the method of multiple scales [11].

Numerical simulations show that results obtained through our method are very accurate

if compared in the crisp domain with the analytical solutions available in the literature.

2. Theoretical background

In this section, some basic notions are provided. Throughout, the set U will represent a

nonempty and fixed (though arbitrary) closed interval of R.

Definition 1. A fuzzy number ũ is defined by a membership function µu(x) : U → [0, 1],

and it satisfies the following properties:

• ũ is normal, that is supx∈U µu(x) = 1,

• ũ is convex on U , meaning that µu(αx + (1 − α)y) ≥ min(µu(x), µu(y)) for each

x, y ∈ U and each α ∈ [0, 1],

• ũ is upper semi-continuous and

• [ũ]0 = cl({x ∈ U : µu(x) > 0}) is compact, where cl denotes closure in the standard

topology of U .

544



Definition 2. An α-cut of the fuzzy number ũ is the crisp set defined by

[ũ]α = {x ∈ U : µu(x) ≥ α} , α > 0. (3)

Notice that for α = 0, the α-cut of a fuzzy number ũ reduces to [ũ]0 in Definition 1.

Definition 3. The parametric form of the fuzzy number ũ is a pair [u(α), u(α)] satisfying

the following properties for each α ∈ [0, 1]:

1. u(α) is a bounded, left-continuous, monotonic increasing function over [0, 1],

2. u(α) is a bounded, left-continuous, monotonic decreasing function over [0, 1] and

3. u(α) ≤ u(α).

The notation [ũ]α = [u(α), u(α)] is employed if such form exists.

In particular, a fuzzy triangular number ũ is generally identified by an ordered triplet of

numbers (dC , dL, dR), where dC is the center, dL and dR are the left and the right spreads,

respectively. Using an α-cut operation, any triangular fuzzy number may be written as

[ũ]α = [u(α), u(α)] = [dC + (α− 1)dL, dC + (1− α)dR] , (4)

for each α ∈ [0, 1].

In what follows, f̃(x) denotes a continuous and Lebesgue-integrable fuzzy-valued func-

tion on the bounded interval [a, b] and Γ(.) represents the Gamma function.

The concept of strongly generalized H-differentiability [12], was extended in [13] to the

context of fractional derivatives. In the latter work, the following definition was considered.

Definition 4. Let 0 < β < 1. The fuzzy-valued function f̃(x) is a Riemann-Liouville

fuzzy fractional differentiable function of order β at x0 ∈ (a, b) if either

RLDβ f̃(x0) = lim
h→0+

ϕ̃(x0 + h)⊖ ϕ̃(x0)

h
= lim

h→0+

ϕ̃(x0)⊖ ϕ̃(x0 − h)

h
(5)

or

RLDβ f̃(x0) = lim
h→0+

ϕ̃(x0)⊖ ϕ̃(x0 + h)

−h
= lim

h→0+

ϕ̃(x0 − h)⊖ ϕ̃(x0)

−h
, (6)

where RLDβ f̃(x0) denotes the Riemann- Liouville fuzzy fractional derivative of f̃ at x0, and

ϕ̃(x) =
1

Γ(1− β)

∫ x

0

f̃(s)(x− s)−βds. (7)

545



Following [13], the α-cut representation of the Riemann- Liouville fuzzy fractional deriva-

tive is

[RLDβ f̃(x0)]α =


[RLDβf(x0, α),

RL Dβf(x0, α)], for (5),

[RLDβf(x0, α),
RL Dβf(x0, α)], for (6),

(8)

for each 0 ≤ α ≤ 1.

With regard to (1), we assume that sufficient derivatives of the solution exist. There

are different notions of fuzzy derivatives [14], but we refer to H-differentiability [15], which

has the advantage that it always exists and provides fuzzy numbers as the solution of fuzzy

differential equations.

In order to obtain numerical solutions of (1), we will use the α-cut approach, which

allows to replace the computation of a function of a fuzzy number by a sequence of interval

computations on successive α-cuts. This approach follows the idea that, in many practical

applications, it is sufficient to know the solution of the problem in a finite set of points in

order to approximate the solution over the entire domain.

Let [ũ(t)]α be the α-cut of a function ũ(t). In light of [16], we may rewrite [ũ(t)]α =

[u(t, α), u(t, α)]. Assuming that the derivatives exist, we obtain (see [15])


L

(2)
t u(t) + δRLDβu(t, α) = f(u(t, α), u(t, α), α) + g(t, α),

L
(2)
t u(t) + δRLDβu(t, α) = f(u(t, α), u(t, α), α) + g(t, α),

L
(i)
t u(0, α) = ai(α), i = 0, 1

L
(i)
t u(0, α) = ai(α), i = 0, 1

(9)

Alternatively, we can write (9) as L
(2)
t U(t, α) + δRLDβU(t, α) = F(U(t, α), α) +G(t, α),

L
(i)
t U(0, α) = ai(α), i = 0, 1

(10)

where

U(t, α)T = (u(t, α), u(t, α)) , (11)

F(U(t, α), α)T =
(
f(u(t, α), u(t, α), α), f(u(t, α), u(t, α), α)

)
, (12)

G(t, α)T =
(
g(t, α), g(t, α)

)
, (13)

ai(α)
T = (ai(α), ai(α)). (14)
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3. Methodology

3.1. Integral and differential quadrature

Integral and differential quadrature are very similar in the underlying principle. The term

integral in addiction to quadrature was introduced by C. Shu in order to highlight the

difference between the two approaches [17]. Integral quadrature consists in replacing the

integral of a function u(t) over an interval, e.g. [0, 1], by a weighted sum of the functional

values u1, u2, . . . , uN at the discrete points 0 = t1 < t2 < . . . < tN = 1, that is

∫ 1

0

u(t)dt =
N∑
i=1

Ciui. (15)

The differential quadrature (DQ) rules provide the approximation of the rth-order derivative

of the function u(t) at a point t = tj by a weighted sum [9] as follows

[
dru

dtr

]
t=tj

=

N∑
i=1

A
(r)
ji ui, i, j = 1, 2, . . . , N (16)

where the constants A
(r)
ji are the weight coefficients computed in N grid points. By letting

u(t) =
∑N

i=1 li(t)ui, where li(t) is the Lagrange polynomial at the point ti, for each i =

1, 2, . . . , N , one gets

Ci(t) =

∫ x

0

li(t)dt, A
(r)
i (t) =

drli
dtr

(t). (17)

Obviously, it is A
(r)
ji = A

(r)
i (tj) for every i, j = 1, 2, . . . , N .

By using Lagrange’s polynomials as test functions, then there is no restriction on the

choice of the grid points, which may be equally spaced or not. Usually grid coordinates

are obtained through the Gauss-Tchebychev-Lobatto (GCL) distribution. As a result of the

fuzzification of the integral and differential quadrature rules, one has respectively:[∫ 1

0

ũ(t)dt

]
α

=

[∫ 1

0

u(t)dt,

∫ 1

0

u(t)dt

]
α

=

[
N∑
i=1

Ciui,
N∑
i=1

Ciui

]
, (18)

[
drũ

dtr

]
α

=

[
dru

dtr
,
dru

dtr

]
α

=

[
N∑
i=1

A
(r)
i (t)ui(α),

N∑
i=1

A
(r)
i (t)ui(α)

]
. (19)

3.2. The Picard-like approach

In this section we extend the approach discussed in [8] to solve (10). Let us consider then

the inverse operator

L−1
t (·) =

∫ t

0

∫ t

0

(·)dtdt. (20)
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In light of Theorems 5–8 in [18] , we may apply (20) on both sides of (10). So by recalling

the definition of the Riemann–Liouville fractional derivative, we obtain

U(t, α) = A(α)w + L−1
t

(
F(U(t, α), α) +G(t, α)− δRLDβU(t, α)

)
, (21)

where

wT = (1, t) , (22)

A(α) =

 a0(α) a1(α)

a0(α) a1(α)

 . (23)

Here, for i = 0, 1, we convey that ai(α) and ai(α) will represent the ith derivative with

respect to t of u and u respectively, at the point (0, α).

Using successive approximations, the solution U(t, α) can be expressed as

U(t, α) =

∞∑
k=0

Uk(t, α), (24)

where UT
k (t, α) = (uk(t, α), uk(t, α)) has to be determined recursively using the formulas

U0(t, α) = A(α)w + L−1
t (G(t, α)), (25)

Uk+1(t, α) = L−1
t

(
−δRLDβUk(t, α) + F(Uk(t, α), α)

)
. (26)

Consider fixed (though arbitrary) partitions t1 < t2 < . . . < tN−1 < tN of the interval [0, 1].

Additionally, if we let uk,j(α) = uk(tj , α) and uk,j(α) = uk(tj , α), then

UT
k (α) =

(
uk,1(α), . . . , uk,N (α), uk,1(α), . . . , uk,N (α)

)
. (27)

Using numerical integration and the differential quadrature rules, we obtain that

U0(t, α) = A(α)w +C(t)Q(α), (28)

Uk+1(t, α) = C(t) [−γBUk(α) + F(Uk(α), α)] , (29)

where γ = δ/Γ(1− β) and

QT (α) =
(
g(t1, α), . . . , g(tN , α), g(t1, α), . . . , g(tN , α)

)
, (30)

C(t) =

 C0(t) 0

0 C0(t)

 , (31)

B =

 B0 0

0 B0

 (32)
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with C0(t) = (C1(t), . . . , CN (t)) and B0 = A(1)C(β). Here, A(1) denotes the matrix of

the DQ weighting coefficients and C(β) the matrix of which entries are, for each i = 1, . . . , N ,

Cβ
i (t) =

∫ t

0

li(s)(t− s)−βds, (33)

with li(s) being the Lagrange polynomial at the point xi.

For the linear case, i.e. f(ũ(t)) = −ω2
0 ũ(t), one gets

Uk+1(t, α) = H(t)Uk(α) (34)

where

H(t) =

 H0 0

0 H0

 (35)

with H0(t) = −C0(t)
(
γB0 + ω2

0I
)
, I being the identity matrix of size N .

Let D be the matrix

D =

 D0 0

0 D0

 (36)

where DT
0 = [H0(t1), . . . ,H0(tN )]T . Since

Uk(α) = DUk−1(α) = DkU0(α), (37)

the truncation of (24) after p terms becomes

U[p](t, α) = U0(t, α) +H(t)

p−1∑
k=0

DkU0(α), (38)

where UT
0 (α) =

(
u0,1(α), . . . , u0,N (α), u0,1(α), . . . , u0,N (α)

)
.

For the remainder of this work, we will represent the spectral radius of the matrix D0

by ρ(D0).

Lemma 5. Suppose that ρ(D0) ≤ 1. Then the solution U(t, α) in (24) is given by

U(t, α) = U0(t, α) +H(t)(I−D)−1U0(α). (39)
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Proof. The proof follows as that of Theorem 1 in [8], by considering that in (38) there is a

geometric series of matrices and that the spectral radius of D is equal to that of D0.

It is the case to point out that an error bound can be derived similarly to the ones

presented in [8], [10].

4. Simulations

As an example application, we discuss herein the free damped vibrations of a linear oscillator

in a medium with small viscosity. The analytical solution of this problem in the crisp domain

has been obtained in [11] by means of the method of multiple scales. In reason of the

Zadeh’s extension principle and in particular the α-cut approach, we compared our solution

on successive α-cuts with the corresponding analytical solution [11] in the crisp domain.

We assumed null initial velocity and a triangular fuzzy number as initial displacement,

that is

[ã0]α = [α− 1, 1− α] (40)

Besides, we fixed δ = 10−4 and ω0 = 1. In our simulations, we assumed N = 9 GCL

points. We used (39) in view that the condition ρ(D0) ≤ 1 holds. Figure 1 shows the

approximate solution for β = 0.75.

With regard to the same value of β, the graphs of the approximate and analytical

solutions obtained for some values of α are depicted in figure 2. The graphs are referred to

the functions u (below) and u (above).

We obtained similar accurate results also for other values of β, such as β = 0.5 and

β = 0.995. In our simulations, we observed that the maximum error, intended as the

distance between the approximate and the analytical solution in accordance with the α-cut

approach, is of the order of 10−5.

5. Conclusions

In this work, a Picard-like numerical scheme which was formerly employed to solve integro–

differential equations, has been extended to handle fuzzy initial value problems involving

Riemann–Liouville fuzzy fractional derivatives. In the linear regime, the technique proposed

here is a non-recursive scheme. As an example application, the problem of free damped vibra-

tions of a linear oscillator in a medium with small viscosity has been considered. Numerical

results show the effectiveness of the proposed approach.
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Figure 1. Approximate solution for β = 0.75. The graphs correspond to the functions u

(below) and u (above).
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