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12. 

Tolerance modelling of stability of thin composite 
plates with dense system of beams 

12.1. Introduction 

The subject of the contribution are thin functionally graded skeletal plates 
with dense system of beams. The considered skeletal plate is made of two 
families of thin homogeneous beams with axes intersecting under the right angle. 
The regions situated between the beams fills a homogeneous matrix material 
(Fig. 12.1). It is assumed that the width of the beams can vary slowly in the 
midplane of the plate. Thus, we deal with composite plate that has space-varying 
microstructure. Since, the apparent properties of the plate are graded in space, we 
deal with a special case of a functionally graded material. The generalized period 

21lll =  of heterogeneity is assumed to be sufficiently small comparing to the 
measure of the midplane of the plate. The fundamental feature of proposed model 
is that the microstructure length parameter l  is similar compared to thickness h  
of the plate. From a formal point of view, the plate with microstructure of this 
kind can be described in the framework of the well-known theories for thin 
elastic plates. However, due to the inhomogeneous microstructure of the plate, 
this direct description of the structure leads to plate equations with discontinuous 
and highly oscillating coefficients. These equations are not a good tool to be 
applied to numerical solutions of specific engineering problems. 

The aim of the presented analysis is to derive and apply the macroscopic 
mathematical model describing stability of the composite plate under consideration. 
The macroscopic model for the plate dynamic analysis of this kind we can find in 
[12.5]. The formulation of the macroscopic mathematical model for the analysis of 
stability of these plates will to be based on the tolerance averaging approach. The 
general modelling procedures of this technique are given by Woźniak et al. in books 
[12.8], [12.9]. The applications of this technique for the modelling of stability of 
various periodic composites are given in a series of papers. Baron [12.1] analyzed 
dynamic stability of an uniperiodic medium thickness plate. In the paper of Michalak 
[12.3] the stability of elastic slightly wrinkled plates is analyzed. The stability of thin 
periodically stiffened cylindrical shells was analyzed by Tomczyk [12.6]. In the 
paper of Wierzbicki et al. [12.7], stability of micro-periodic materials under finite 
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deformations is discussed. The approach, based on the tolerance averaging technique, 
formulating macroscopic model of stability of functionally graded plates was 
presented by Jędrysiak and Michalak [12.2]. In the paper of Perliński et al. [12.4] 
stability of functionally graded annular plate interacting with elastic micro-
heterogeneous subsoil is presented. 

 
Fig. 12.1. Rectangular plate with varying width of the beams 

In the above mentioned papers the thickness h  of the considered plates is 
supposed to be much smaller comparing to the microstructure length parameter  
l . In the presented contribution we deal with the plates which are reinforced by 
two dimensional system of beams, where the microstructure length parameter 

21 lll =  ( 21, ll - dimensions of cell in Fig. 12.1) is similar compared to the plate 
thickness h . 

Throughout the contribution, indices lki ,, … run over 3,2,1 , indices 
,...,, γβα run over 2,1  and ,...,, CBA  run over 2,1 . The summation convention 

holds all aforementioned sub-and superscripts. 

12.2. Direct description 

The subject of presented considerations are rectangular plates shown in  
Fig. 12.1. Let us introduce the orthogonal Cartesian coordinate system 321 xxOx . 
Setting ),( 21 xx≡x  and 3xz =  we assume that the undeformed plate occupies the 
region },2/2/:),{( Π∈≤≤−≡Ω xx hzhz , where Π  is the plate midplane and h 
is the plate thickness. The starting point of this contribution is the direct 
description of the composite plate in the framework of the well-known second 
order non-linear theory of thin plates. The displacement field of the arbitrary 
point of the plate we write in form: 



Selected Problems of Continuum Mechanics 

284 

)()(),(),(),( 3
0

33 xxxxx wzwzwwzw ααα ∂⋅−== (12.1) 

Denoting by )( αxp  the external forces, setting kk x∂∂=∂ /  we also introduce 
gradient operators ),( 21 ∂∂≡∇ , in the framework of the linear approximated 
theory for thin plates, we obtain the following system of equations: 

(i) strain-displacement relations 

3332
10

)()(),(

wwww

zze

αβαββααβαβ

αβαβαβ

κe

κe

−∇=∂∂+∇=

⋅+= xxx
(12.2) 

(ii) strain energy averaged over the plate thickness 

γδαβ
αβγδ

γδαβ
αβγδ εεκκ DBE 2

1
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1)( +=x (12.3) 

where αβγηαβγη

ν
HηED

)1( 2−
=  is the tensile stiffness and αβγηαβγη
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HηEB

)1(12 2
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−
=

with )((5.0 βγαηβηαγβηαγβγαηαβγη ν ∈∈+∈∈++= γγγγH  is the bending stiffness. 

(iii) work of external forces 

3
30 wpwpF += α

α (12.4) 

In order to derive governing equations of considered plate we shall define 
the stationary action functional: 

( )( ) ∫
Π

∇∇=⋅ xwwww dL ),,(A 2 (12.5) 

where Lagrangian EFL −= . 

From stationary action principle ( 0A =δ ) we obtain 
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where generalized forces 
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This direct description leads to plate equations with discontinuous and 
highly oscillating coefficients, which are too complicated to be used in the 
engineering analysis. The above equations will be used as a starting point 
of the modelling procedure. 
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12.3. Modelling concept 

Let the midplane of the considered plate (Fig. 12.1) occupy the region 
],0[],0[ 21 LL ×≡Π . We assume in considered composite plate that the number of 

beams in 1x  and 2x  direction is n  and m , respectively ( )1/1,1/1 <<<< mn . 
Hence nLl /11 =  and mLl /22 =  are dimensions of the cell 

)2/,2/()2/,2/( 2211 llll −×−≡∆ , cf. Fig. 12.2. For the arbitrary cell xx +∆≡∆ )(  
with centre situated at point ),( 21 xx=x  we introduce the orthogonal local 
coordinate system 21 yOy  which is local with its origin at ∆Π∈x , where

Π⊂−×−≡Π∆ )2/,2/()2/,2/( 222111 lLllLl . The beams width is functional 
2,1),( == ααα xαα  but constant for every fixed ∆Π∈x . 

 
Fig. 12.2. A unit cell ∆  geometry 

In order to derive averaged equations for the plate under consideration we 
apply tolerance averaging approach [12.8, 12.9]. We mention here some basic 
concepts of this technique, as a tolerance periodic function, a slowly varying 
function, a highly oscillating function and an averaging operator. 

The first concept of the modelling technique is the averaging operation: 

 Π∈
∆

=>< ∫
∆

xyxyx
x

,),(1)(
)(

dff  (12.8) 

We shall refer (12.8) to as averaging of arbitrary integrable function )(⋅f  for 
every Π∈x . 
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Periodic approximation. Let rH  be the Sobolev space for fixed 0≥r . Function 
)(),(~ 0)( Π∈⋅ Hf k x , Π∈x , rk ,...,2,1=  will be referred to as the periodic 

approximation of )(⋅∂ fk  in )(x∆  (where k∂ - k-th gradient in Π ). For 0=k  we 
define ff ≡∂0 , ff ~~ )0( ≡ .

Tolerance periodic function. Function )(Π∈ rHf  will be called the tolerance 
periodic function (with respect to cell )(x∆  and tolerance parameter ε), 

),( ∆Π∈ rTΠf ε , if for ,,...,1,0 rk =  the following conditions hold: 
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(12.9) 

In the above definition we introduced the so called cluster of cells: 

∆
∆∈

Π∈∆=Π xz
xz

,)(:
)(
∩x (12.10) 

Slowly varying function. Function )(Π∈ rHF  will be called the slowly varying 
function (with respect to the cell )(x∆  and tolerance parameter ε), and denoted by 

),( ∆Π∈ rSVεF , if for ,,...,1,0 rk =  the following conditions hold: 

),( ∆Π∈ rTΠεF  and )](|),(~[)( )(
)( xxx x FF kk ∂=⋅Π∈∀ ∆ (12.11) 

It can be observed that periodic approximation ),(~ )( ⋅xkF  of )(xFk∂  in )(x∆
is a constant function for every Π∈x . In other words, if ( )∆Π∈ ,rSVF ε  then: 

( ) ( ) ( )
( )( )

( )rkFF
H

kk ,...,1,0  ,0 =≤∂−⋅∂Π∈∀
∆

ε
x

xx (12.12) 

Highly oscillating function. Function )(Π∈ rHφ  is called the highly oscillating 
function (with respect to the cell )(x∆  and tolerance parameter ε), and denoted 
by ),( ∆Π∈ rHOεφ , if for ,,...,1,0 rk =  the following conditions hold: 

),( ∆Π∈ rTΠεφ

)],(~|),(~[)( )(
)( ⋅∂=⋅Π∈∀ ∆ xxx φφ k

x
k  (12.13) 

)()(
|)(~)(|),(~)),()(,( )(

xx
xxx

∆∆
∂=⋅∧∆Π∈≡∆Π∈∀ φφ εε

kkrr FφTΠFφSVF

Let by )(⋅ϕ  denote a highly oscillating function, ),(2 ∆Π∈ εϕ HO , defined on Π , 
continuous together with gradient ϕ1∂ . Its second derivative ϕ2∂  is a piecewise 
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continuous and bounded. Function )(⋅ϕ  is called the fluctuation shape function 
of the 2-nd kind, if it depends on l  as a parameter and satisfies conditions: 
1º  )( kk lO −∈∂ αϕ   for 2,,...,1 == ααk , 
2º  0)( ≈>< xϕ    for every ∆Π∈x . 
Set of all fluctuation shape functions of the 2-nd kind is denoted by ),(2 ∆ΠεFS . 

12.4. Averaged model equations 

The modelling technique will be based on the tolerance averaging 
approximation and on the restriction of the displacement field under 
consideration given by: 

 
zugVVgVzw

Vzw
AAAA ⋅+−∂++=

=

))(),()(()(),()(),(
)(),(

3

33

xxyxxxyxx
xx

ααααα

 (12.14) 

for Π∈x , )2/,2/( hhz −∈ and 2,1=A . 

The basic tolerance modelling assumption states that macro-displacements
)(3 ⋅V , )(⋅αV  and fluctuation amplitudes of displacements )(⋅AVα , )(⋅Auα  are slowly 

varying functions together with all partial derivatives. Functions 
),()( 2

3 ∆Π∈⋅ εSVV , ),()( 1 ∆Π∈⋅ εα SVV , ),()( 1 ∆Π∈⋅ εα SVu A , ),()( 1 ∆Π∈⋅ εα SVV A  
are the basic unknowns of the modelling problem. Functions )(⋅Ag  are known, 

dependent on the microstructure length parameter 21lll =  ( 21, ll  - dimensions 
of the cell ∆ ), fluctuation shape functions. 

Let ),(~ ⋅xAg , ),(~ ⋅∂ xAgα  stand for periodic approximation of )(⋅Ag , )(⋅∂ Agα  
in cell )(x∆ , respectively. Due to the fact that )(3 ⋅w , )(⋅αw  are tolerance periodic 
functions, it can be observed that the periodic approximation of  

),(3 x⋅gw , ),( x⋅gwα  and their derivatives in )(x∆ , Π∈x  have the form: 
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Setting gww 33 =  and gww αα =  into Lagrangian ),,( 2www ∇∇L  we can assume 

that ),(),,( 02 ∆Π∈∇∇ εHOL gggg www . Hence the periodic approximation of 
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)(⋅gL  in every )(x∆  we denote by ),,,,,(~
33 ggggg wwwwL βααα ∂∂yx . In order to 

derive the governing equations we shall define tolerance averaged Lagrangian
><−>>=<< ggg EFL : 

∫
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(12.16) 

Substituting the right-hand sides of equations (12.15) into (12.8), on the basis of 
tolerance averaging approximation, we arrive the strain energy averaged over the 
cell )(x∆ : 

33338
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(12.17) 

External load energy averaged over the cell )(x∆  

AA
g VgpVpVpF α

α
α

α ><+><+>>=<< 3
3 (12.18) 

From principle of stationary action of the averaged Lagrangian >< gL  we 
obtain equations responsible for: 

a) plane stress state

0

0

>=<−>∇<

>=<+∇
AA gpgn

pN
α

β
αβ

ααβ
β

(12.19) 

where normal forces 

332
1 VVDVgDVDnN AA
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b) bending state
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where we have denoted: 
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 >∇∇=<>∇=<>=< BABAAA ggBBgBBBB δβ
αβgδgα

β
αβgδgδααβgδαβgδ ~,~,~   

  (12.22) 

From (12.21) we can obtain direct representation of oscillation amplitudes Buγ . 

Let ABKαβ  stands for linear transformation operator such that BCBAAC BK δδτγ
γα

ατ =
~

. 
Thus 

 3
~ VBKu ABAB

γδ
γδα

µαµ ∇=  (12.23) 

Denoting 

 γδττµαβµαβγδαβγδ AABB
eff BKBBB ~~~

−=  (12.24) 

stability equation takes a form 

 0)()( 33 =∇∇−∇∇ VNVBeff β
αβ

αγδ
αβγδ

αβ  (12.25) 

The above equation has an identical form as stability equation for thin plate with 
functional coefficients. Coefficients in the above equation are functional but 
smooth in contrast to equation in direct description. 

 
Fig. 12.3. Simply supported plate under pressure 

12.5. Applications 

Let us consider a rectangular plate simply supported on all edges and 
suppressed in one direction only, cf. Fig. 12.3. The stability equation (12.25) 
transforms then into: 
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where PN −=11 . The above equation in all subsequent examples will be solved 
with Galerkin method using the following assumed form of solution: 
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∞
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where 1/ Lmm πα = , 2/ Lnn πβ = . 

Since coefficients in (12.26) explicitly depend on assumed fluctuation shape 
functions, we must first define them, what is done next. 

12.5.1. Fluctuation shape function 

During tolerance modelling few assumptions had to be state. One of them is 
the form of given fluctuation shape functions. They should satisfy conditions 
mentioned in former sections and they are in number of two. Both of them are 
assumed as a product of linear and quadratic function 

),(),(),( )(
2

)(
1 xyxyxy AAAg ϕϕ ⋅= (12.28) 

where 2,1=A . Graphs of these functions are shown below (Fig.12.4a,12.4b). 

Fig. 12.4a. Fluctuation shape function 1g  

Fluctuation shape functions depend on microstructure parameter l as well as 
on the distribution of heterogeneity: 

( )( )( ))()()()()()(1)( 21122122112 xxxxxxx aaalalalal
l

v −+−−= (12.29) 

Such properties and characteristics assure continuity of displacement field overall 
and stress field continuity along the beams. 
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Fig. 12.4b. Fluctuation shape function 2g  

The exact formulas of these functions: 
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12.5.2. Validation of proposed model 

In order to find out the correctness of the proposed mathematical model and 
its applicability, some benchmark analysis should be first made. Suppose the 
beams (Fig. 12.2)  are made of steel, i.e. for Young’s modulus E′′ = 210 GPa  and 
Poisson’s ratio 3.0=′′ν , meanwhile the matrix is made of concrete for which has 

GPaE 20=′  and 3.0=ν′ . Consider a biperiodic square plate with mLL 421 ==  
and 21 ll =  of thickness mh 1.0= , which consists of beams (20 in each direction) 
of the same thickness: 21 aa = . Due to such a microstructure, all averaged 
coefficients in stability equation are constant and (12.26) reduces to: 
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Now, substituting (12.27) we obtain: 
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where 
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=η (12.36) 

Hence the critical force for the m-th and n-th buckling mode: 

2
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2
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m
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L
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+⋅+
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ηπ
(12.37) 

If m = n = 1 then we deal with the first mode of buckling. 

Let us introduce a parameter 11 / la=β , ]1,0[∈β  as a volume fraction of 
beams material but in this example only. Case of 0=β  stands for an uniform 
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plate made of matrix material (concrete) for which mkNP ccr /10519.4 3
_ ⋅= , and 

case of 1=β  stands for uniform plate made of beams material (steel) for which 
mkNP scr /10745.4 4

_ ⋅= . These values for critical forces are obtained from the 
exact solution. 

 
Fig. 12.5. Critical forces in square biperiodic plate as a function of parameter β 

As we can see in Fig. 12.5, the graph is situated precisely between two 
values for uniform plate. Therefore, there exists a smooth passage from 
biperiodic to uniform plate which proofs the correctness of the proposed model. 

12.5.3. Influence of geometrical and material properties  
on stability of plates 

This section is devoted to some model applications presented in few 
numerical examples. Suppose the material properties of plate components are 
invariant in all following examples, i.e. we deal with concrete matrix and steel 
beams. Square plates ( mLL 421 == ) are only investigated. 

Example 1. Suppose the width of the “vertical” beams 4/11 la = , and width 
of the “horizontal” beams 
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for [ ]2/,2/ 2222 lLlx −∈ , where ( ) 4/2/ 222 lla =  and ( ) ( )2//2/ 22222 laLa=≡ ββ  is
a tested in this example parameter. Such width function implies uniperiodic plate 
with functionally graded effective properties in one of directions, cf. Fig. 12.6. 

Fig. 12.6. Distribution of effective material properties in uniperiodic plate 

Case of 1=β  stands here for biperiodic plate. If 1<β  then we deal with a 
situation where “horizontal” beams are getting wider moving away from the 
centre of the plate. Case of 41 ≤< β  is the opposite one. 

Fig. 12.7. Diagram of critical force in uniperiodic plate 
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The critical force as a function of parameter β  is a strictly monotone 
(strictly increasing) function (Fig. 12.7). It means that concentration of beams 
material in the centre of the plate essentially enlarges the value of critical force. 

Example 2. Suppose now that the width of vertical beams is not constant 
but expressed by similar form to (12.38): 
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for [ ]2/,2/ 1111 lLlx −∈ , where ( ) 4/2/ 111 lla = and ( ) ( )2//2/ 11111 laLa=β . The 
width of the “horizontal” beams is as in Example 1. Moreover, the same 
parameter β  is investigated. Physical interpretation of 1β  is quite similar to β . 

Fig. 12.8. Diagram of critical force in functionally graded plate 

As we can see in Fig. 12.8, two graphs of critical force dependence for two 
different values of 1β  are displayed. Critical force is also strictly increasing with 
respect to parameter 1β . Thus, it suffices to have more beams material in the 
centre of the plate to obtain a greater value of critical force. 

Example 3. The final example is most interesting in our opinion. Suppose 
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Selected Problems of Continuum Mechanics 

296 

for every [ ]2/,2/ αααα lLlx −∈ , 2,1=α , where ]1,0[∈β . In Example 1 for 
12 =β  we have dealt with biperiodic structure from which we can get the value 

of critical force mkNP percr /10552.1 4
_ ⋅=  for some special case. In this particular 

case the volume fraction of the beam material was 0.25 (because of 25.0=β  
from that example). 

Fig. 12.9. Diagram of critical force in functionally graded plate 
in comparison to biperiodic plate 

It occurs, Fig. 12.9, that the same value of critical force, but for the plate 
with variable beams width in both of directions, we obtained for 293.0=β . The 
beams material usage is 0.186 and its smaller then in biperiodic plate where it 
was 0.25. It means also that having variable beams width in our composite, by 
the same material usage in comparison to biperiodic structure, we get the greater 
values of critical force. 

12.6. Summary 

The problem of stability in two-component thin plates is described by the 
PDE with highly oscillating and discontinuous coefficients. Therefore, the 
tolerance technique was applied in order to obtain averaged PDEs with functional 
but smooth coefficients. Hence, the solution of specific boundary problems of 
stability of considered plates can be obtained using typical numerical method. 
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The validation process of the averaged model equations passed satisfactory. 
There is observed a smooth passage from non-uniform to uniform structure from 
the point of view of critical force value. It is obvious that reinforcement of the 
plate enlarge the value of this critical value but what is most important, the layout 
of these reinforcements (beams) plays crucial work in this analysis. It occurs that 
with non-uniform structure we can achieve up to 65% greater values of critical 
force the with biperiodic one. That information could be a crucial one in optimal 
control problems. 
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