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EXACT SOLUTION OF MODE III  
CRACK IN ELASTIC HALF-SPACE 

The elastic half-space contains a straight – line crack which lies in 

some distance from the tangentially loaded boundary. Fourier transform 

technique is used to reduce the problem to the solution of the Fredholm 

integral equation of the second kind. This equation is solved exactly. Field 

intensity factors of stress, crack displacement and the energy release rate 

are determined explicitly. Accordingly to exact analytical solution, obtained 

here, which is new to the author’best knowledge, the behaviour of a crack 

which is located in the neighbourhood of the boundary of a half-space may 

be investigated exactly. 

1. Introduction 

Sih (1963, 1965) was apparently the first to publish the solution of an anti-
plane shear crack for elastic medium. Sih and Chen (1981) did the same. They 
used integral transforms, and their solutions were very convoluted, difficult for 
numerical implementation and for estimation of the solution accuracy. The most 
recent publications can be quoted (Hu et al. (2005); Li and Kardomateas (2006); 
Zhou et al (2005)), where reader can find numerous other references. Additionally 
the numerical procedures are used to obtain the results. When the crack lies near 
the boundary of the medium the numerical procedures become illposed in the 
sense of Hadamard, i.e. small perturbation of the data can yield arbitrarily large 
changes in the result. This makes the numerical solution of governing integral 
equation of the problem quite difficult when the crack is in the neighbourhood of 
the boundary medium. 

Motivated by this consideration the author reconsiders the problem in this 
elaboration to shown exact solution. 

2. Basic equations  

For a linearly elastic medium under anti-plane shear there are only the non-
trivial antiplane displacement w : 

0=xu    ,   0=yu    ,    ( )yxwu z ,=  (1)
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strain components xzγ  and yzγ : 

x

w
xz

∂

∂

=γ    ,    y

w
yz

∂

∂

=γ  
(2)

and stress components xzτ  and yzτ  

 zz
c

αα

γτ 44=   ,    yx,=α  (3)

where 44c is the shear modulus along the z -direction. 
The equilibrium equation (Einstein’s summation convention is used) 

0, =
αα

τ
z    (4)

yields the harmonic equation for displacement w  
02

=∇ w    (5)

where 22222
yx ∂∂+∂∂=∇  is the two-dimensional Laplace operator. 

3. Formulation of the crack problem 

Consider an elastic half-space containing straight-line crack of length a2 , 
parallel to the surface of a half-space which is subjected to mechanical loads 0τ . 
The crack is located along the x -axis from a−  to a  at a depth h  from the loaded 
surface with a rectangular coordinate system, as shown in Fig.1.  

 

Fig. 1. The elastic half-space with a crack parallel to its surface under an anti-plane 
mechanical load  

 
To solve the crack problem in linear elastic solids, the superposition 

technique is usually used. The elementary solution of the medium without the 
crack is 0ττ =

yz . Therefore, we use equal and opposite value as the crack surface 
traction. Thus, in this study, 0τ−  , is mechanical loading applied on the crack 
surfaces (the so called perturbation problem). 
The boundary conditions can be written as:  
 

( ) 0, ττ −=±hxzy    ,      x ‹ a  (6)
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0
zy

 τ =     ,  x ‹ ∞       hy =  (7)

0w  =    ,  ax ≥       hy =  (8)

( ) 00, =xzyτ   ,   x ‹ ∞  (9)

where the notation f f f+ −  = −  and 
+

f  denotes the values for +h while 
−

f   
for −h . 
Of course, in perturbation problem the surface of the half-space is free. 

4. The solution for half-space with discontinuity at y = h 

Define the Fourier transform pair by equations  
 

( ) ( )∫
∞

=

0

)cos(ˆ dxsxxfsf    ,    ( ) ( ) ( )∫
∞

=

0

cosˆ2
dssxsfxf

π

 
(10)

Considering the symmetry about y -axis the Fourier cosine transform is only 
applied in Eqs (5) resulting in ordinary differential equations and their solutions  

 
( ) ( )

sy
esAysw

−

= 1,ˆ  ,                 hy〉  (11a)

( ) ( ) ( )
sysy

esAesAysw 32,ˆ +=

−        ,           hy〈≤0      (11b)

 
In the domain y › h  the solution has the form (11a) to ensure the regularity 

conditions at infinity. 
The unknown functions ( )sA

i , 3,2,1=i , are obtained from the boundary conditions 
(7) and (9), which in transform domain are: 

ˆ 0zy
 τ = 

  ,    hy =  

0ˆ =zyτ     ,   0=y  

(12)

 
where 

( ) ( )
ˆ ˆ ˆ, ,f f s h f s h 

= + − −

 
. 

The result is: 

( ) ( )( )
shsh

eesfsA −=

−ˆ
1  
( ) ( ) ( )

sh
esfsAsA

−

==
ˆ

32  
(13)

Finally, the solution for the half-space with dislocation density functions ( )sf   in 

the domain 0≥y , 〈∞x  is given by: 
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( ) ( ) ( )
( )

[ ] ( )∫
∞

+−−−

−−−=

0

cossgnˆ2
, dssxeehysfyxw hyshys

π

 

( ) ( )
( )

[ ] ( )∫
∞

+−−−

−=

0

44 cosˆ2
, dssxeesfscyx hyshys

zy
π

τ  

(14)

 
where sgn( hy − ) equals 1 as  hy −  > 0 and -1 as hy −  < 0. 

5. Fredholm integral equation of the second kind 

The unknown function ( )sf  can be obtained from the mixed boundary 
conditions (6) and (8) which yield 

 

( )[ ] ( )

44

0

0

2 cos1ˆ2

c
dssxesfs

sh τ

π

−=−∫
∞

−

   ,   ax 〈  (15a)

( ) ( ) 0cosˆ
0

=∫
∞

dssxsf    ,   ax ≥  (15b)

 
The integral equations (15a) may be rewritten as  
 

   ( )[ ] ( )

44

0

0

2 sin1ˆ2

c

x
dssxesf sh τ

π

−=−∫
∞

−  ,   ax 〈  (16)

 

We introduce the integral representation of the unknown function ( )sf̂  as follows 
 

( ) ( ) ( )dusuuJuf
c

sf

a

0

044

0ˆ ∫−=

τ

 (17)

 

where ( )suJ 0  is the Bessel function of the first kind and zero order and ( )uf  is 
new auxiliary functions. This representation satisfies equation (15b) automatically 
and converts equation (16) to the Abel integral equation, which can be solved 
explicitly. The result is the Fredholm integral equation of the second kind 
 

( ) ( ) ( ) 1,
0

=− ∫ dvvuKvfuf

a

 (18)

with the kernel 
 

( ) ( ) ( )∫
∞

−

=

0

00
2, dssvJsuJsevvuK

sh

 (19)
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6. The solution of Fredholm integral equation of the second kind 

The kernel function ( )vuK ,  may be presented in more useful form. Using the 
Neumann’s theorem (Watson, 1966) 

 

( ) ( ) ( )∫=

π

α

π 0

000

1
dsRJsvJsuJ    ,   αcos2222

uvvuR −+=  
(20)

 

and the integral  
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the kernel function becomes 
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d
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The kernel function is presented by means of elliptic integral. The integral 
equation (18) can be solved by consecutive iterations. 
The recurrence formula is  
 

( ) ( ) ( )∫ −

+=

a

ii dvvuKvfuf
0

1 ,1    ,   ( ) 10 =vf    ,   ni ,...2,1=  (23)

 
The n-th approximation gives 
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(24)

where ( )0kK  is the elliptic integral of the first kind defined by 
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The sum of infinite geometric series converges to the solution as ∞→n , giving 
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The range of convergence is given by inequality 
 

( )0

2
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π

 ‹ h
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2
2 0








+          au ≤  

(27)

 
and is satisfied for all of u  and ha . 

For ∞→h , ( ) ( ) 12 0 →kKπ  and 120 →hl  while for 0→h  we have the 
logarithmic singularity of  ( )0kK  for au =  
 

( )0kK ~
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But ( ) 00 lkhK  tends to zero as ∞→ha . 
Thus we have the values 
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4
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2
δ
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h

a
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The values of ( )haf  changes from 1 to 2 for all of ha  and ( )uf  is given 
explicitly by Eq. (26). 
This analytical solution is new to the author' best knowledge.  

7. Field intensity factors 

The shear stress outside of the crack surface can be expressed by  
 

( ) ( ) ( )( ) ( )∫∫
∞

−

−−=±

0

2
0

0

0 cos1
2

, dssxesusJuduufhx
sh

a

zy τ

π

τ  (30)

Using the integral (Rogowski, 2006) 
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equations (30) may be written as 
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The singular term is included in the first term as +

→ ax . Since the singular field 
near the crack tip exhibits the inverse square-root singularity we define the stress, 
intensity factor as follows 
 

( )
xy

ax

axK τ
τ

−=
+

→

2lim  
(33)

 
The intensity factor is obtained as 
 

( ) aafK 0

2
τ

π

τ

=  
(34)

 
The jump of displacement on the crack surfaces can be expressed as 
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∫
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=
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22
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04 τ

π
 (35)

 
If we define the jump of displacement intensity factor as 
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[ ]w
xa

K
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−

=
−

→ 22

1
lim  

(36)

 
then in  view of the results in Eq. (35), we have 
 

τ

K
c

K
w

44

1
=  

(37)

The energy release rate of the crack-tip is obtained from the following integral: 
 

( )[ ]( ){ }drarwarG
yz∫ −++=

→
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The energy release rate is defined as 
 

w
KKG

τ2

1
=  

(39)

or  

( )

44

2
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2

2

c
aafG

τ

π

=  
(40)

8. Result and discussion 

The stress intensity factor 
τ

K  is proportional to the applied mechanical load, 
as Eq. (34) implies. The 

τ

K  therefore is just a function of the geometry of the 
cracked elastic half-space as shown in Fig. 2. 

 

  

Fig. 2. Variation of ( )haf  versus ratio of ha ; stress intensity factor is proportional to 

( )haf  since: ( ) ( )πτ
τ

20 aKhaf =  

 
From the figure 2 we can see that the stress intensity factor increase with ha . 
For small values of ha  these quantities grow at an approximately constant rate 

with increasing ha . For very large ha  (the crack near the boundary of a half – 

space) ( )haf  increases slowly tending to 2. 
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9. Conclusions 

The following conclusions can be reached from the results of this study: 
• The stress intensity factor of mode III changes as follows: 

( ) ( )020
τττ

K
h

a
KK ≤








≤ , where ( ) aK 0)2(0 τπ

τ

= . 

• The energy release rate of a crack mode III changes as follows: 

( ) ( )040 G
h

a
GG ≤








≤ , where ( ) 44

2

0

2 )2(0 caG τπ= , where a  is half –length of 

a crack and h  is the distance of one from the boundary of a half-space. 
• The analytical solution (26) is new to the author’ best knowledge. 

Accordingly, the behaviour of a crack which lies in the neighbourhood of the 
boundary of the medium may be investigated exactly. 

• Note that the solution presented here is also the solution of quarter plane with 
an edge crack of length a  since the plane 0=x   is the plane of symmetry 
and  

xz
τ vanishes on this plane. 
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DOKŁADNE ROZWIĄZANIE DLA SZCZELINY 
TRZECIEGO RODZAJU W SPRĘŻYSTEJ 

PÓŁPRZESTRZENI 

 

Streszczenie  

 
Sprężysta półprzestrzeń zawiera prostoliniową szczelinę usytuowaną  

w pewnej odległości od stycznie obciążonego brzegu. Zastosowana technika 
transformacji całkowej Fouriera sprowadza zagadnienie do rozwiązania równania 
całkowego Fredholma drugiego rodzaju. Równanie to jest rozwiązane dokładnie. 
Współczynniki intensywności pola naprężenia i przemieszczenia oraz energia 
odkształcenia szczeliny są wyznaczone w sposób jawny. Dzięki dokładnemu 
analitycznemu rozwiązaniu, otrzymanemu tutaj, które jest nowym o ile autor 
dobrze wie, możemy badać dokładnie zachowanie się szczeliny usytuowanej  
w bliskim sąsiedztwie brzegu. 
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