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In memoriam 

'Our death is not an end if we can live on in our children and the younger 
generation. For they are us, our bodies are only wilted leaves on the tree of life' 
those comforting words of Albert Einstein were on the obituary which paid the 
last respect to Professor Katarzyna Kowal-Michalska, PhD, DSc, our dear, 
the late lamented friend, mentor, reputable scientist and academic teacher of 
Lodz University of Technology, who died on 7 August 2015 after losing several 
months struggle against serious illness. 

Professor Kowal-Michalska was born on 25 September 1948 in Pabianice in 
the family of Barbara and Edward Kowal. Father was an mechanical engineer 
and for a short time he was professionally associated with the Lodz University of 
Technology where he led classes of machine construction. Professor Kowal-
Michalska graduated Lodz University of Technology in 1972 with a distinction 
gained a degree in the specialization of 'combustion engines'. After graduation 
she stayed in TUL working in the team of Professor Jerzy Leyko at 
contemporaneous Institute of Applied Mechanics, later - after some organisational 
changes in The Department of Strength of Materials and Structures. Prof. Kowal-
Michalska dedicated her entire professional life to the Lodz University of 
Technology as an academic teacher gaining further promotional ladder and 
additional academic degrees. Already in 1976, she defended her PhD (doctoral) 
thesis 'Dynamic stability of cylindrical shell subjected to simultaneous twisting 
and external pressure' whose supervisor was Professor Jerzy Leyko. In 1995, she 
submitted her DSc dissertation focused on the post-critical states in the elastic-
plastic range 'Load capacity and post-critical state in elastic-plastic range of 
compressed orthotropic plates'. She filled the position of the associate professor 
in the Department of Strength of Materials in 1998, and received the title 
of professor in 2014. 

At the turn of the years 1981-1982 she interned semi-annual scientific 
internship in the Netherlands, Delft University of Technology under the 
supervision of Professor Warner T. Koiter, and then twice in 1985 and 1987 
several weeks internships at Strathclyde University in Glasgow. In 1999-2002 
she was deputy dean for science in Faculty of Mechanical Engineering TUL. For 
many years - from 1978 to disband in 2009 she was secretary of the Team of 
Stability of the Section of Fundamentals of Construction of Polish Academy 
of Sciences contributing to a significant activation of its work. 

http://pl.bab.la/slownik/angielski-polski/late-lamented
https://www.diki.pl/slownik-angielskiego?q=contemporaneous
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The leading area of her scientific interests and research activities was the 
subject of stability of the structures - both static and dynamic, and issues of states 
in elastic-plastic range of thin-walled structures. The result of this activity was 
more than 130 scientific publications - including dozens of articles in prestigious 
scientific journals, five independent monographs and co-edited, and more than 60 
scientific papers. For several editions of the Stability of the Structure Symposium 
she was active co-organiser. Over the years she served various functions, firstly 
in the organizing committee as the secretary, member of the organizing 
committee, to - from 1997 enter the Scientific Committee of the Symposium, and 
then repeatedly co-edit conference materials of Symposium. Not being a member 
of the Organizing Committee she still supported this work with a lot of care – 
I remember - she was choosing members of the plenary sessions and their 
chairmen with a high attention. Professor Katarzyna Kowal-Michalska was a 
member of numerous scientific committees regular conferences from 2000. 
Scientific-Technical Conference 'Problems of MES in computer assisted analysis, 
design and manufacturing', in 2006 and 2010 - Shell Structure Theory and 
Application Conference, the conference which was organized by Professor 
Wojciech Pietraszkiewicz. In 2011 she was the member of the Scientific 
Committee of the II Congress of Polish Mechanics and in 2008, co-organized the 
Jubilee Congress of PTMTS and VII conference 'New directions of mechanics' 
development'. 

In the years 2003, 2007 and 2011 she was editor of special issues of the 
Journal of Thin-Walled Structures. Professor Kowal-Michalska was an active 
reviewer in scientific journals as: Thin-Walled Structures, Journal of Theoretical 
and Applied Mechanics, Mechanics and Mechanical Engineering, Fibers and 
Textiles, Journal of Kones, Bulletin of WAT and others. She reviewed dozen 
of doctoral (PhD 12) and postdoctoral (DSC 13) thesis and prepared 4 reviews of 
editorial postdoctoral thesis. 

She took part in 11 science - research projects (grants) fulfilling active and 
leading role. Few of her science-research project results were applied in the 
industry. 

As an academic teacher she took part in education process of mechanical 
engineers and in particular years of others specializations, leading all kinds of 
classes: lecturers, classes, laboratories and doctoral seminaries. She prepared also 
and modified the educational programs of strength of materials, solid mechanics, 
theory of plates and shells, introducing some innovations from her own research. 
All classes conducted in high level were very popular among students, also in 
English. She promoted three Doctor of Science (PhD) in the field of mechanics, 
two of them are professors at University of Technology. On behalf of the Council 
of the Faculty of Mechanical Engineering TUL she was a tutor in doctoral thesis 
from Faculty Mechanical Engineering Gdansk University of Technology. 
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Professor Katarzyna Kowal-Michalska was an active member of the Polish 
Society of Theoretical and Applied Mechanics, where since 2002 she was a 
member of Board of Lodz Division of PTMTS and in 2004-2010 she was a chair 
of Lodz Board. In 2009 she became a member of the Executive Committee of the 
Society. Since March 2009 she was Deputy of General Secretary and since June 
2010 General Secretary of PTMS. She resigned from this function during last 
Congress in May 2015 due to her health. For scientific and organizational 
activity he was awarded the Bronze Cross of Merit and the badge Distinguished 
for Lodz University of Technology. In 1976 she obtained the prize of the 
Minister of III Degree and several dozen prize Rector of the Lodz University of 
Technology for research activities and publishing. She gained a genuine respect 
of the professional and scientific profession. 

We could turn to her with all problems - scientific, professional or personal 
and Kasia always was able to find balanced and reasonable solution. We lost 
extraordinary teacher, reputable scientist, person with a great of authority and 
rules and also exceptional colleague, kind friend and repository. This friendship 
will be deeply missed. 

In family life she was dear and loving wife, mother and grandmother. She 
was particularly proud of her grandchildren: Zuzia and Antoś. She paid 
significant attention on tradition and family relationship. She interested on 
literature and politics - both local Łodz and Pabianice, and also nationwide being 
up to date in the ongoing events. Animals were her special passion. Kasia bred 
with a big love horses and took a big care of dogs - mainly those which have 
needed help. 

The news of the death of Professor Kowal-Michalska attracted a lot of 
condolences to the Head of the Department of Strength of Materials TUL, among 
which the e-mail versions were posted on the website of the Department.  

For years we have published with Kasia and now it is a first time when we 
publish for Kasia. However, to have Her share even in this monograph we decided to 
cite directly Her text prepared for application in the procedure for awarding the 
title of full professor. Thus the Scientific Curriculum Vitae of professor 
Katarzyna Kowal-Michalska, mainly achievements in scientific, organization and 
teaching field are presented as described in details within Her original version of 
the summary of professional accomplishments elaborated by Professor Kowal-
Michalska in the spring of 2013. On the 28th of July, 2014 the President of the RP 
conferred the title of professor, and the act of handing the nomination made 
the President on 24 October 2014, just the day before the tragic diagnosis of 
the disease. Therefore the supplement presents her research achievements since 
the spring of 2013 until her death in August 2015. 

http://pl.bab.la/slownik/angielski-polski/summary-of-professional-accomplishments
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Kasia, thank you for everything we've been through over the years together. 
You have been etched permanently into our benevolent and respectful memory. 

On behalf of all members of our Department and the co-authors 

Editors 

Editors would like to express the heartfelt thanks to all co-authors 
for accepting the invitation to contribute to this monograph as well as 
for their effort, patience and understanding. 
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Katarzyna Kowal-Michalska, DSc, PhD 
Lodz University of Technology 
Faculty of Mechanical Engineering 
Department of Strength of Materials and Structures 

List of professional achievements 

(application for the full professor position; 
stand on April 2013) 

Professional career 

In 1972 I graduated (with distinction) from the Faculty of Mechanical 
Engineering, Lodz University of Technology, in the specialization of 
turbomachinery and I started my professional career in the Institute of Applied 
Mechanics, TUL, as a junior assistant, assistant and then senior assistant. 

In 1976 I defended a PhD dissertation entitled “Dynamic stability of a 
cylindrical shell under simultaneous torsion and external pressure” (published in 
Archives of Mechanical Engineering), which was granted a 3rd Class Ministry 
Award in 1977. In the same year I was employed as an assistant professor in the 
Institute of Applied Mechanics. Since the division of the Institute into three 
departments, which took place in 1991, I have been working in the Department 
of Strength of Materials and Structures. 

A degree of Doctor of Science was conferred upon me in 1995 (DSc 
dissertation entitled ‘Limit load carrying capacity and the post-buckling state of 
orthotropic beams under compression in the elasto-plastic range’) and since 1998 
I have been employed as an associate professor at the Faculty of Mechanical 
Engineering, TUL, in the Department of Strength of Materials and Structures. 

On June 7th, 2002 the Board of the Faculty of Mechanical Engineering, on 
the presentation of positive opinions issued by Prof. Tomasz Kapitaniak, Lodz 
University of Technology, Prof. Stefan Joniak, Poznan University of 
Technology, and Prof. Czesław Szymczak, Gdansk University of Technology, 
unanimously accepted a resolution to apply for conferring a scientific title of 
professor in technical sciences on me to the Central Commission for Scientific 
Title and Scientific Degrees. 

The application was rejected by the Central Commission in June 2004. 
Therefore, while describing my scientific activities after obtaining a DSc degree, 
I have highlighted the period after the year 2002. 
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Within the domain of my scientific activities, I deal with problems 
concerning stability loss, post-buckling states and load carrying capacity of thin-
walled structures under static and dynamic loads. Among these issues, the 
following topics can be enumerated, namely: 

− inelastic stability of thin-walled (iso- and orthotriopic) plate structures 
subject to pure and complex loading, 

− investigations of performance curves of thin-walled plate structures within 
the whole range of loading (elastic and elasto-plastic states) and 
determination of limit load carrying capacity, 

− application of various plasticity criteria in the stability analysis for iso- and 
anisotrorpic materials (Hill and Tsai-Wu criteria), 

− analysis of stability, post-buckling states of multilayer plates (including 
composites and laminates) in the elastic and elasto-plastic state,

− investigations of the influence of load pulse duration, initial deflections, 
dynamic stability criteria, states above the yield point in a response 
analysis of thin-walled composite plate structures under pulse loading,

− stability of functionally graded plates under static and pulse, thermal and 
mechanical loads.

Within the years 1976-80 I took part in the investigations on topic of 03.3 
"Stability and the post-bucking behaviour of thin-walled structures" of key 
problem 05.12 "Stability and optimization of machine and construction 
structures", whereas in the years 1981-85 I was involved in topic 3.1 "Post-
buckling states in the elastic and elasto-plastic range of thin-walled structures 
under static and dynamic loads” of key problem 05.12 "Strength and optimization 
of machine and construction structures". Next, in the years 1986-90 I took part in 
the investigations devoted to topic 02.01-2-2.12 "Stability and the post-buckling 
behaviour of thin-walled grinders in the elastic and elastic plastic range” within 
CPBP 02.01 "Fundamentals of mechanics of materials, machines, structures and 
technological processes", whereas in the years 1986-91 I dealt with topic 
02.04.01 "Development of calculation methods of limit load carrying capacity 
of elements of construction machinery" within CPBP 02.05 "Development of 
fundamentals of heavy machinery design, operation and tests, including 
construction machinery". 

Then, my investigations were devoted to issues related to determination of 
critical stresses in the inelastic region of plates and grinders, in particular an 
analysis of the post-buckling behaviour of thin isotropic plates in the elastic 
plastic range. I co-authored (together with R. Grądzki) a method being a 
combination of analytical and numerical solution that allowed for determination 
of the complete performance curve of the isotropic plate structure, and further, 
on that basis, its limit load carrying capacity. During those investigations, 



Selected Problems of Solid Mechanics 

24 

an analysis of the influence of boundary conditions, material characteristics and 
geometrical inaccuracies was conducted. 

The results of the above-mentioned investigations were widely reported. As 
a result, numerous publications authored or co-authored by me were issued. 
Among the most important, there are: chapters in two monographs, 10 papers 
(including 4 in foreign journals). The results were disseminated during home (13) 
and international (6) conferences. 

In the beginning of the 1990s, my scientific interests started to be focused on 
stability problems of thin-walled structures made of orthotropic materials in the 
elasto-plastic range. My major achievement in that field was an analytical 
solution in the elastic range, which was the basis for a numerical solution, in 
which the Hill criterion of elasticity for orthotropic materials was considered and 
formulated in an incremental form of the Prandtl-Reuss equation. The derived 
relationships and the code developed allowed for analysis of the effect of 
orthotropy coefficients in the elastic range and various characteristics 
of orthotropic materials after yielding on limit load carrying capacity of plates 
with different boundary conditions. The analytical-numerical method for 
orthotropic materials, modified by me, enables determination of complete curves 
of performance (load-shortening) and yield regions. The results of the 
investigations were the basis for the DSc dissertation entitled “Limit load 
carrying capacity and the post-buckling state of orthotropic beams under 
compression in the elasto-plastic region” (1995). 

After conferring a title of Doctor of Science on me, my scientific activities 
were related to problems of widely understood stability loss of plate structures 
made of orthotropic materials in the elastic and elasto-plastic range, including 
thin-walled multilayer and composite structures. Those works were conducted 
within three research projects financed by the Committee for Scientific Research, 
namely: 

− “Stability, post-buckling states and limit load carrying capacity of thin-
walled structures” (No. PB0923/P5/93/04); 

− “Load carrying capacity of thin-walled composite beam-columns, 
including problems occurring in real structures” (No. PB-251/T07/97/12); 

− “Stability, post-buckling states and load carrying capacity of thin-walled 
multilayer plate-shell structures made of orthotropic materials” (No. PB-
0910/T07/99/17). 

I was the main executor in the above-mentioned projects. 

Within the above-listed projects, I dealt with the following issues: 
− modal analysis of elastic and inelastic stability of isotropic and orthotropic 

plate structures - determination of critical stresses and local and global 
buckling modes; among original achievements, one can also mention an 
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application of the method developed for stability analysis in the elastic 
range of orthotropic beam-columns to inelastic problems - references [1.1], 
[2.1], [2.11], [2.12], 2.13]; 

− determination of performance curves of orthotropic beam-columns under 
eccentric compression within the whole range of loading; in the PhD 
dissertation (S. Kędziora, 2001) I supervised, it was shown that an elastic 
solution obtained on the basis of the asymptotic method could be 
effectively applied to analyze plate structures with open and closed cross-
sections in the elasto-plastic range - references [1.1], [2.3]; 

− application of various criteria of plasticity (Hill criterion, Tsai-Wu 
criterion) in the stability analysis - references [2.2], [2.14]; 

− analysis of stability, post-buckling states in the elastic and elasto-plastic 
range of multilayer plates subject to complex loading; within this subject 
scope, in the PhD dissertation (R. Mania, 2002) I supervised, an effect of 
strength of the core materials on stability of three-layer plates in the plastic 
range was investigated; the post-buckling state in the elasto-plastic range 
for multilayer plates built of iso- and orthotropic layers, subject to pure and 
complex loading, was analyzed in references [2.2], [2.14]. Among my 
original achievements, I can mention the development of an analytical 
model that was used in the numerical solution. 

The results of those investigations were disseminated in 27 publications, 
including 2 monographs, 8 papers and 12 contributions to home conference 
proceedings and 5 contributions to foreign conference proceedings. 

From my viewpoint, the most important publications in that period were a 
monograph entitled "Selected problems of instabilities in composite structures" 
[1.1], where I authored or co-authored 5 chapters and was the editor of Part 2, as 
well as papers [2.1], [2.2],[2.3], [2.13],[2.14]. 

Moreover, in the period discussed I was an invited co-editor of "Thin-walled 
structures, advances and developments”, Proceedings of the Third International 
Conference on Thin-Walled Structures [1.2]. 

My achievements after conferring a DSc degree on me until the first 
application for a title of professor covered 29 publications, including 
3 monographs, 9 papers and 17 conference contributions, among them 
5 published in foreign conference proceedings. 

After 2002 I continued my investigations on post-buckling states of thin-
walled plate structures made of iso- and orthotropic layers in the elasto-plastic 
range. I developed an analytical model for multilayered plates subjected to pure 
and complex loads that accounted for various plasticity criteria in the case of 
anisotropic materials. The results of those investigations were disseminated in 
[2.16]. Problems of proper implementation of plasticity criteria in professional 
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FEM software were discussed in [1.8]. A comparison of the results referring to 
the load carrying capacity of multilayered plates obtained with the analytical-
numerical method, the FEM analysis and the kinematic approach was presented 
in [2.6]. 

A list of most significant investigation results from the publications on post-
buckling states in elasto-plastic ranges was presented in monograph [1.14]. The 
monograph covers, among others, a summary of my scientific accomplishments 
in that field that followed from many-year long investigations presented in 
numerous former publications. 

Since 2002 till now I have been involved as the main executor in the 
following research projects, namely: 

− “Nonlinear dynamic stability of thin-walled composite structures” (KBN 
5T07A 0125), 

− ”Load carrying capacity of thin-walled orthotropic beam-columns with 
multi-circumferential cross-sections” (KBN 4T07 A0289),  

− ”Dynamic response of thin-walled composite plate structures under pulse 
loading” (PB MNiSzW 1136/B/T02/2009/36), 

− ”Dynamic buckling of FGM plate structures subject to thermal and 
mechanical loads” (NCN-2011/01/B/ST8/0774) - ongoing project. 

The continuation of my interests in modal analysis and coupled buckling is 
represented in co-authored publications (co-author: Z. Kołakowski) [2.9], 
[1.10a]. 

Within the field of analysis of dynamic stability of composite plate 
structures, I dealt with research on an effect of the following factors: duration and 
shape of the load pulse, initial deflections of structures, geometrical and strength 
parameters and criteria of dynamic stability applied - references [2.4], [2.17], 
[2.20], [1.11]. 

In the majority of works on dynamic loads, the investigations are conducted 
on the assumption of ideal elasticity of the material. It seems significant to extend 
them on the region exceeding the yield strength. I supervised a PhD dissertation 
devoted to this issue (L. Czechowski, 2007) and co-authored a series of 
publications on this topic [2.18], [1.12b], including works covering an effect of 
deformation velocity [1.10b]. 

The state of knowledge on the dynamic stability of composite plate 
structures and the investigation results of the research team conducting that 
project were presented in a monograph [1.5], where I was a co-author and a 
scientific editor. 

Within my scientific interests related to determination of limit load carrying 
capacity of plate structures, I took part in the project ”Load carrying capacity of 
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orthotropic beam-columns with multi-circumferential cross-sections”. The results 
of analytical, numerical and experimental investigations were presented in 
monographs [1.9a], [1.9b], [1.12a], papers [2.5], [2.7], [2.15], [2.19] and 
conference contributions presented both in Poland and abroad.  In these 
publications, the attention was drawn, among others, to a proper description of 
the material characteristics in the computational codes based on the analytical-
numerical method as well as in the professional FEM software. 

At present, I deal with stability problems in FGM plates subject to 
compression and high temperatures, under static and dynamic loads. Functionally 
Graded Materials have been known for 30 years almost, they are composites built 
of two components (usually ceramics and metal). Their material properties vary 
continuously along their thickness. In the literature on this subject scope, one can 
find numerous publications on static loads and vibrations of FG plates, 
nevertheless, solutions to dynamic loads, especially the pulse ones, are lacking. 
In the initial stage of the project, I dealt with development of analytical solutions 
for static thermal and mechanical loads, effects of initial deflections at 
mechanical pulses [[1.9c] ], as well as an influence of the boundary conditions of 
FG plates on the critical thermal load under time-variable temperature pulse 
[1.16]. The results of those investigations were discussed in the above-mentioned 
references, which I co-authored, in 1 paper under print, as well as were presented 
at 5 conferences, including 2 international ones. 

I am an author or co-authored of 13 monographs, an author or co-author of 
35 papers, including 15 from the JCR list. I presented my contributions at numerous 
scientific conferences, seminars and symposia, including 29 international 
conferences. I was an editor or co-editor of 14 monographs. The total number of 
my publications is 123. 

I supervised three PhD dissertations defended at the Faculty of Mechanical 
Engineering, TUL in 2001, 2002 and 2007. I was a reviewer in 12 PhD 
procedures, including 6 at the Faculty of Mechanical Engineering, TUL. 

In 2011 I was also a reviewer in a DSc procedure at the Faculty of 
Mechanical Engineering, TUL. 

I acted as a publishing reviewer in DSc procedures four times (twice at 
Czestochowa University of Technology and twice at Lublin University of 
Technology). 

I was a member of scientific committees of 8th-13th Symposium on Structure 
Stability (1997-2013) and 5th-11th Scientific Conference “FEM problems in 
computer-aided analysis, design and manufacturing” (2000-2013). I was a 
member of the scientific committee at the conference “Shell Structures Theory 
and Applications”. 
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I prepared numerous reviews for scientific journals, among others, for two 
journals from the Thompson-Reuters list, namely: Thin-Walled Structures and 
Journal of Theoretical and Applied Mechanics. I wrote opinions as a publishing 
reviewer for 1 textbook and 1 monograph.  

Since 1978 - until its dissolution, I acted as a Secretary to the Group on 
Stability of Structures of the Committee on Machine Building, Polish Academy 
of Sciences. I took part in preparation of all (since 1978) seminars and 
conferences, organized or co-organized by the Group on Stability. Before a title 
of DSc was conferred on me, I was a group tutor or a year tutor at the Faculty of 
Mechanical Engineering for many times. I took part in activities of the 
Organizing Committees of 3rd, 4th, 5th, 6th and 7th Symposium on Stability of 
Structures. 

After a DSc degree was conferred upon me, I was a plenipotentiary of the 
Dean of the Faculty of Mechanical Engineering for the International Faculty of 
Engineering, I took part in the works of the Commission for Teaching and the 
Commission for Publishing of the Board of the Faculty of Mechanical 
Engineering. 

In the term 1999-2002 I was the Vice-Dean for Science at the Faculty of 
Mechanical Engineering. 

I have been a member of numerous commissions at the Faculty (for teaching, 
foreign cooperation, awards, teaching the Mechatronics major). 

I was a co-organizer of the Third International Conference on Thin-Walled 
Structures, Cracow 2001 and the Jubilee Meeting of the Polish Association of 
Theoretical and Applied Mechanics and 7th Conference “New Directions in 
Development in Fluids Mechanics”, Rogów 2008. 

Since 1978 I have been a member of the Polish Association of Theoretical 
and Applied Mechanics, in the years 2004-2010 I was the chairwoman of the 
Lodz Branch Board, and I have been a member of the Steering Committee of the 
Main Board since 2009; since 2010 I have been the General Secretary to the 
Polish Association of Theoretical and Applied Mechanics. 

Before a DSc title was conferred upon me, I prepared numerous expertise 
and design projects for industry. Among most important engineering 
achievements, I can mention my participation in the project devoted to design 
and implementation of an automatic razor blade packing device prototype for the 
”Wizamet” company in Lodz as well as development of a strength calculation 
method for transformer coils. 

During my professional career, I had three foreign scholarships. From 
September 1980 to March 1981 I had on a 5-month long scholarship at Delft 
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University of Technology, where I dealt with modal stability analysis of beams 
and rod systems, under the supervision of Prof. W. Koiter. The results of those 
investigations were disseminated in 2 papers published in Delft University of 
Technology Reports. I had 2 scientific scholarships at Strathclyde University in 
Glasgow, at the Department of Mechanical Engineering (one-month long and 
two-week long), where I presented my investigations during scientific seminars. 
My cooperation with Prof. J. Rhodes from this university bore fruits in the fact 
that I was appointed editor of several special issues of Thin-Walled Structures. 

Before a DSc degree was conferred upon me, I had tutorials and lab classes 
in strength of materials, lab classes in mechanics of deformable bodies and 
theory of plates and shells for the specialization Applied Mechanics. I co-
authored a textbook for students entitled “Laboratory classes in theory of 
elasticity”. 

After conferring a DSc degree on me, I have had lectures on mechanics of 
deformable bodies for the specialization Applied Mechanics, lectures and 
tutorials and lab classes in strength of materials for the Materials Science and 
Engineering, Energy Generation and Mechatronics degree courses. In all the 
above-mentioned cases, I always significantly modified programmes of studies 
for all types of classes (lectures, tutorials and lab classes). Moreover, for more 
than 10 years I have had tutorials in English at the International Faculty of 
Engineering, TUL. 

I have supervised three MSc theses at the specialization Applied Mechanics. 

In the years 1998-2000 I participated in the project TEMPUS UM_JEP 
13117 "International Quality Education System" - as a member of the “Task 
Force” team who prepared an implementation of the quality education system at 
the Lodz University of Technology, I had two one-week long trainings at Twente 
University, the Netherlands, and University of Lund, Sweden, where I got 
acquainted with the didactic process and the quality education system at those 
universities. 

I have been distinguished with 25 awards of the TUL Rector (the latest in 
2012) for my scientific investigations, teaching and organizational activities, and 
in 1994 I was awarded a Bronze Cross of Merits. 
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List of Achievements in Scientific and Research 
Activities and Teaching Activities 

I. Personal data 

Date of birth: September 25, 1948 
Place of birth: Pabianice 
First names of parents: Edward, Barbara 
Address: Pabianice 

II. Education

1972 MSc in mechanics - diesel engines, Faculty of Mechanical 
Engineering, Lodz University of Technology 

1976 PhD degree – mechanics, Faculty of Mechanical Engineering, Lodz 
University of Technology; the PhD dissertation title ”Dynamic 
stability of a cylindrical shell under simultaneous torsion and 
external pressure”, supervisor - Professor Jerzy Leyko 

1995 DSc degree - mechanics; DSc dissertation ”Limit load carrying 
capacity and the post-buckling state of orthotropic plates under 
compression in the elasto-plastic range” 

The resolution of the Board of the Faculty of Mechanical Engineering, TUL, 
dated 25.09.1995, approved of by the Central Commission for Scientific Title 
and Scientific Degrees on 26.03.1996) 

2002 application for a title of professor (the resolution of the Board of the 
Faculty of Mechanical Engineering, TUL, dated 7.06.2002) 

2004 application rejected by the Central Commission for Scientific Title 
and Scientific Degrees on 13.06.2004. 

III. Professional career

1972 - 1973 assistant at the Institute of Applied Mechanics, TUL 
1973 - 1976 senior assistant at the Institute  of Applied Mechanics, TUL 
1976 - 1998 assistant professor at the Institute of Applied Mechanics, 

TUL, and after its division, at the Department of Strength of Materials and 
Structures, TUL 
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since 1998 TUL associate professor, Department of Strength of Materials 
and Structures, TUL 

IV. Scientific scholarships

− September 1981 - February1982 - scientific scholarship at the Delft 
University of Technology, the Netherlands (5 months) 

− 1985 - scientific scholarship at the Strathclyde University, Glasgow, Great 
Britain (1 month) 

− 1987 - scientific scholarship at the Strathclyde University, Glasgow, Great 
Britain (2 weeks) 

V. Industrial placements 

1986, 1990 - two 3-month long industrial placements at the Pabianice Bulb 
Factory "POLAM" 

VI. Awards and distinctions

− 3rd Degree Ministry Award - 1976 
− 21 awards of the Rector of Lodz University of Technology for research 

and scientific activities and publications 
− 4 awards of the Rector of Lodz University of Technology for teaching 

activities 

VII. Medals

Bronze Cross of Merits in 1994 
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VIII. Scientific activities

1.1.1. Participation in key problems and research projects 
of the Ministry for Science and Higher Education 

A1. Before a DSc degree 

1. 1976-80 - participation in the topic 03.3 "Stability and the post-
bucking behaviour of thin-walled structures " of key problem 05.12
"Strength and optimization of the machine and construction
structures".

2. 1981-85 - participation in the topic 3.1 "Post-buckling states in the
elastic and elasto-plastic range of thin-walled structures under static
and dynamic loads” of key problem 05.12 "Strength and optimization
of the machine and construction structures".

3. 1986-90 - participation in the topic 02.01-2-2.12 "Stability and the
post-buckling state of thin-walled girders in the elastic and elasto-
plastic range" in CPBP 02.01 "Fundamentals of mechanics of
materials, machines, structures and technological processes".

4. 1986-91 - participation in the topic 02.04.01 "Development of
calculation methods for limit load carrying capacity of thin-walled
elements of machines and construction equipment" in CPBP 02.05
"Development of fundamentals of heavy machinery design, operation
and tests, including construction machinery".

5. 1993-1996 - main executor in the State Committee for Scientific
Research project “Stability, post-buckling states and limit load
carrying capacity of thin-walled structures” (No. PB0923/P5/93/04).

A2. After a DSc degree: 

Main executor in the following research projects: 

1. ”Load carrying capacity of thin-walled composite beam-columns,
including problems occurring in real structures”( No. PB-
251/T07/97/12).

2. ”Stability, post-buckling states and load carrying capacity of thin-
walled multi-layer plate-shell structures made of orthotropic
materials” (No. PB-0910/T07/99/17).

3. ”Non-linear dynamic stability of thin-walled composite structures”
(KBN 5T07A 0125).
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4. ”Load carrying capacity of thin-walled orthotropic beam-columns
with multi-circumferential cross-sections” (KBN 4T07 A0289).

5. ”Dynamic response of thin-walled composite plate structures under
pulse loading” (PB MNiSzW 1136/B/T02/2009/36).

6. ”Dynamic buckling of FGM plate structures under thermal and
mechanical loading” (NCN-2011/01/B/ST8/0774).

Publications 

B1. before a DSc degree 

− monographs -   4 
− papers - 13 
− contributions to international conference proceedings -   6 
− contributions to home conference proceedings - 11 

B2. after a DSc degree*) 

− monographs    - - 19 (3) 
− papers - 23 (8) 
− contributions to international conference proceedings - 23 (12) 
− contributions to home conference proceedings - 25 (6) 

*)In brackets, there is a number of publications before 2002 - before the first 
application for a title of professor 

Total number of publications - 123 

Number of points according to the current list of the Ministry for Science 
and Higher Education (as regards p. B2) 172 points 

Scientific reviews 

C1: Reviews in journals: 

− Thin-Walled Structures 
− Journal of Theoretical and Applied Mechanics 
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− Mechanics and Mechanical Engineering 
− Fibers and Textiles 
− Journal of Kones 
− Military Academy of Technology  Bulletin 

C2: Reviews of monographs and textbooks 

− Publishing review of the textbook “Introduction to Engineering”, ed. 
R. Grądzki, Łódź, 2009 

− Publishing review of the book “Mathematical modelling and analysis in 
continuum mechanics of microstructured media. Professor Margaret 
Woźniak pro memoria” ed. Cz. Woźniak, Silesian University of 
Technology Publishing House, 2010 

More important research projects for industry 

− Participation in the project ”Design of a new aggregate for cellophane 
wrapping of boxes containing razor blades and making 2 items of such 
devices in metal”, 1976-1981, implementation at the ”Wizamet” factory, 
Łódź (co-author of the project, 20% contribution) 

− Participation in the project ”Development of the strength calculation 
method of transformer coils against effects of radial compression forces”, 
1982, Institute of Power Engineering, Department of Transformers, (co-
author of the calculation method of the coil strength model, approx. 35% 
contribution) 

− Strength calculations of 5, 7, 10 and 15 ton vats, 1985, (co-author of the 
calculation model, approx. 30% contribution) 

IX. Activities in the field of promotion of young scientists

− Supervisor of the PhD procedure of Sławomir Kędziora, MSc. Dissertation 
title: "Limit load carrying capacity of orthotropic thin-walled beam-
columns with open and closed cross-sections in the elasto-plastic range". 
The dissertation defended and the PhD title conferred in 2001. The PhD 
dissertation obtained a distinction from the Board of the Faculty of 
Mechanical Engineering. 

− Supervisor of the PhD procedure of Radosław Mania, MSc. Dissertation 
title: “Analysis of the effect of material properties of the core on stability 
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of a three-layer trapezoid plate". The dissertation defended and the PhD 
title conferred in 2002. The PhD dissertation obtained a distinction from 
the Board of the Faculty of Mechanical Engineering. 

− Supervisor of the PhD procedure of Leszek Czechowski, MSc. 
Dissertation title: ”Dynamic stability of composite plates under complex 
pulse loading in the elasto-plastic range”. The dissertation defended and 
the PhD title conferred in 2007. 

Reviews: 

Reviews in PhD procedures 

1. Ibrahim Kamal Mohamed El-Beshtawy, "Experimental and numerical
analysis of sandwich construction deformations under thermal local
load" - Wroclaw University of Technology, 1997

2. Tomasz Kubiak, "Nonlinear stability analysis of orthotropic thin-
walled rods with various shapes of cross-sections" - Faculty of
Mechanical Engineering, Lodz University of Technology, 1998

3. Michał Ciach, “Biomechanical aspects of analysis of the cervical and
lumbar intervertebral disc with new implant systems” - Faculty of
Mechanical Engineering, Lodz University of Technology, 2000

4. Piotr Stasiewicz, “Parametric optimization of dimensions of the
horizontal circular cylindrical shell filled with a liquid, including
stability analysis”, Faculty of Machine Design and Management,
Poznan University of Technology, 2000

5. Miłosz Olejniczak, ”Influence of constitutive models on the evaluation
of strength of thin-walled frame structures”, Faculty of Machine
Design and Management, Poznan University of Technology, 2003

6. Piotr Paczos, ”Stability problem of an open orthotropic two-layer
conical shell in the elasto-plastic range”, Faculty of Machine Design
and Management, Poznan University of Technology, 2005

7. Mirosława Łęcka, ”Theoretical and experimental investigations of
rigidity and strength of structures made of corrugated paper”, Faculty
of Mechanical Engineering, Lodz University of Technology, 2005

8. Jacek Jankowski, ”Dynamic response of thin-walled composite thin-
walled beam-columns with open and closed cross-sections”, Faculty
of Mechanical Engineering, Lodz University of Technology, 2007

9. Michał Mariański, “Investigations of bus body strength against
impacts at sideway rollover of the vehicle”, Faculty of Mechanical
Engineering, Lodz University of Technology, 2009
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10. Włodzimierz Werochowski, ”Static and strength analysis of cold bent
Z-sections”, Faculty of Civil Engineering, Gdansk University of
Technology, 2009

11. Michał Gajdzicki, ”Numerical determination of the anti-torsional
rigidity of the flexural Z-section purlin”, Faculty of Architecture and
Civil Engineering, Lodz University of Technology, 2011

12. Piotr Włuka, ”Modelling and analysis of composite structures with
piezo-electrical elements for stress-strain control”, Faculty of
Mechanical Engineering, Lodz University of Technology, 2013

Publishing reviews in DSc procedures 

1. Jacek Przybylski, PhD, MSc ”Vibrations and stability of pre-coupled
two-segment rod systems under non-conservative loads”,
Czestochowa University of Technology, 2002

2. Janusz Szmidla, PhD, MSc ”Free vibrations and stability of slim
objects under specific load”, Czestochowa University of Technology,
2009 

3. Andrzej Teter, PhD, MSc ”Multimodal dynamic buckling of thin-
walled structures with ribs under compressive pulse loading”, Lublin
University of Technology, 2010

4. Hubert Dębski, PhD, MSc ”Numerical and experimental
investigations of stability and load carrying capacity of composite
thin-walled beams subject to compression”, Lublin University of
Technology, 2013

Reviewer in the DSc procedure (appointed by the Faculty 
of Mechanical Engineering, TUL) 

1. Dorota Pawlus PhD, MSc ”Dynamic stability of three-layer ring plates
with a viscoelastic core”, Lodz University of Technology, 2011

Scientific tutor appointed by the Faculty of Mechanical Engineering, 
TUL, in the PhD procedure of Wiktoria Wojnicz, MSc, Faculty of Mechanical 
Engineering, Gdansk University of Technology, entitled: “Modelling and 
simulation of behaviour of the arm-forearm skeletal muscle system” (supervisor 
Prof. E. Wittbrot). The dissertation defended in 2009. 
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X. Teaching activities 

Before a DSc degree 
Textbook: Laboratory classes in theory of elasticity” - edited by J. Leyko, 
TUL Publishing House, 1982 (description of Laboratory Class no. 1) 

Moreover, I conducted the following types of classes: 

− tutorials and laboratory classes in strength of materials, 
− laboratory classes for the specialization Applied Mechanics in: mechanics 

of deformable bodies and theory of plates and shells, 
− laboratory classes in numerical analysis of structures, 
− participation during preparation of didactic stands in the laboratory of 

mechanics of deformable bodies. 

After a DSc degree 
A. Teaching programmes: 
− Preparation and modification of the teaching programme for the subject 

Strength of Materials for the Materials Science and Engineering degree 
programme and for the specialization Technology and Commerce (1999-
2003) 

− Preparation and modification of the teaching programme for the subject 
Strength of Materials for the Mechatronics degree programme and the 
Energy Engineering I degree programme (2009-2012) 

− Preparation of a multimedia presentation of lectures for the subject 
Strength of Materials for the Mechatronics  degree programme (2009-
2011) and the Energy Engineering degree programme (2009-2012) 

− Preparation and modification of the teaching programme for the subject 
Mechanics of Deformable Bodies for the Mechanics and Machine Design 
degree programme, specialization Applied Mechanics II (2009) 

 B. classes with students 
− lectures in mechanics of deformable bodies for the specialization Applied 

Mechanics 
− lectures, tutorials and lab classes in Strength of Materials for Mechatronics 

and Energy Engineering degree programmes 
− lab classes (in English) in Basic Mechanical Engineering (mechanics and 

strength of materials) 

C. Supervisor of MSc theses - 3  MSc theses in the field of stability and load 
carrying capacity of thin-walled structures (including FGMs) and strength 
analysis of structures for the Applied Mechanics degree programme 
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XI. Activities in scientific societies and scientific and
technical associations 

− Secretary to the Group on Stability of Structures at the Committee on 
Machine Building, Polish Academy of Sciences - from 1978 till its 
dissolution in 2009. 

− Member of the Board of the Lodz Branch of the Polish Association of 
Theoretical and Applied Mechanics since 2002. 

− Chairwoman of the Lodz Branch of the Polish Association of Theoretical 
and Applied Mechanics  in the years 2004-2010.    

− Member of the Steering Committee of the Polish Association of Theoretical 
and Applied Mechanics  in the years 2009-2014. 

− Secretary General to the Main Board of the Polish Association of Theoretical 
and Applied Mechanics  in the years 2010-2014.  

XII. Activities in favour of the scientific community

Since 1997 - member of the Scientific Committee of Symposia on Stability 
of Structures 7th ÷ 12th 

Since 2000 - member of the Scientific Committee of the periodic Scientific 
and Technical Conference “FEM problems in computer aided analysis, design 
and manufacturing” 

2006-2010 - member of the Scientific Committee of the SSTA Conference 

2011 - member of the Scientific Committee of 2nd Congress of Polish 
Mechanics 

2008 - co-organizer of the Jubilee Meeting of the Polish Association of 
Theoretical and Applied Mechanics and 7th Conference “New directions in the 
development of mechanics” 

XIII. Organizational activities at the Lodz University of
Technology 

A. before a DSc degree 
− Plenipotentiary of the Dean of the Faculty of Mechanical Engineering for 

the International Faculty of Engineering – in the years 1993 –1998 
− Member of Organizing Committees of 6th, 7th, 8th and 9th Symposium on 

Stability of Structures 
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B. after a DSc degree 
1998-1999 plenipotentiary of the Dean of the Faculty of Mechanical 
Engineering for the International Faculty of Engineering, 

1999-2002     Vice-Dean for Science, Faculty of Mechanical Engineering, 
TUL 

1999-2003 member of the Commission for Science and the Commission 
for Foreign Cooperation of the Board of the Faculty of Mechanical 
Engineering 

2001  member of the Organizational Committee of Third International 
Conference on Thin-Walled Structures (organized by Lodz University of 
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SUMMARY 

1. MONOGRAPHS - 23
− before a DSc degree         4 
− after a DSc degree (until 2002)*        3 
− after a DSc degree (after 2002)    16 

2. PAPERS**  - 36, including 15 from the Thompson-Reuters list
− before a DSc degree 13(6) 
− after a DSc degree (until 2002)*   8(3) 
− after a DSc degree (after 2002) 14(6) 

3. IINTERNATIONAL CONFERENCES - 29
− before a DSc degree   6 
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− after a DSc degree (until 2002)* 12 
− after a DSc degree (after 2002)  11 

4. OTHERS - 26
−  before a DSc degree 11 
−  after a DSc degree (until 2002)*   6 
−  after a DSc degree (after 2002)  19 

*2002 r - first application for a title of professor

**In the brackets, there is a number of papers from Journal Citation Reports 

TOTAL NUMBER OF PUBLICATIONS - 123 

Number of points for publications after a title of DSc was conferred upon 
me, according to the Ministry for Science and Higher Education scoring - 172 
points. 

Hirsch Index: 

− acc. to Web of Science  h = 3, 
− acc. to Scopus   h = 5 
− acc. to Publish or Perish h = 6. 
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1. 

Multi-aspect design methodology for steel 
skeleton multi-storey buildings 

1.1. Introduction 

From among structural materials steel is particularly attractive in application 
to light weight-structures and opens the way for architects to apply a wide range 
of technical and aesthetic structural solutions. A great variety of hot- and cold-
formed steel sections is at designers’ disposal. The choice of steel when 
designing multi-storey building means selection of a material having a low cost, 
strength, durability, design flexibility, adaptability and vulnerability to recycling. 
This decision also means the choice to engage in sustainable development. 
Modern highly automated cutting, drilling welding and corrosion protection 
make possible to design and prefabricate optimal structural elements, which can 
be easily assembled using unified welded or bolted connections. In case of steel 
skeleton multi-storey buildings the bearing structure consist of columns and 
beams which constitute support for different construction solutions of floors. 
Optimizing the number of points of load is an issue that is always discussed at 
the design stage, and its solution must take into account the intended use of 
the building. Considering the spatial layout, columns are always considered to 
be an obstacle, whose number should be reduced to a minimum. It must be 
underlined that the spatial layout of columns is important but not the only special 
aspects in design procedure of steel skeleton multi-storey buildings. Designers 
must seriously take into account such aspect as architectural preferences, 
constructional solutions of floors, configurations position relative to the structure 
of the facades, the cost of steel products, assembly costs, easiness of assembly 
and connections with secondary structural elements (in the case of the facade, 
walls, floors). Multi-storey building, regardless of the destination is made of 
a number elements or sub-elements influencing parameters: no only construction 
and building envelope, but also technical installations allowing to maintain 
the integrity of the building such heating and air conditioning, ventilation, power 
supply high and low voltage installations. Therefore, designers should ensure the 
possibility to control the interaction between installations and the structure of the 
building through an easy access to the system for maintenance, easy replacement 
of components whose service life is shorter than the durability of the building. 
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A modern form of inclusion of those aspects is Building Information 
Modelling (BIM) which distributed information in sub-sectoral studies and 
organized them in a transparent manner in the form of a model. The matrix is 
usually a model building created by architects. This model is supplemented by 
industry description, which accurately reflects the process that takes place on 
site. Modern open source software like  Autodesk Revit or ArCADia BIM makes 
possible to conduct the design process in parallel way, and the designers of 
individual industries can watch the progress of work and they are constantly "up 
to date", which greatly simplifies the arrangements and eliminates the possibility 
of a collision. General availability of information and its readability increases the 
importance of all participants in the investment process from the initial design 
stages of investment. Specialists involved in the process have full knowledge of 
the project and can on a regular basis respond to emerging problems. They are 
fully aware of what limits the overall level of risk and number of errors. BIM 
model may also be associated with the data on the construction schedule, and the 
actual market, the materials and construction products. BIM design can become a 
tool for direct automated control of the investment, and can also provide 
invaluable assistance during the subsequent operation of the building. Moreover, 
the BIM allows designers to ensure the basic requirements of safety, not only 
because of construction namely bearing capacity, fire and corrosion protection 
but also because maintenance personnel in the field of facility management, 
which is at constant risk of electrical shock, falls, crushing, cuts and bruises. This 
issues are widely discussed in [1.10], where the authors present a BIM-based 
framework to support safe maintenance and repair practices during the facility 
management phase and rule-based decision making a user interface. In [1.9] 
information from BIM in conjunction with genetic algorithms was utilized to 
develop an optimization algorithm framework site layout models that consider 
the actual travel paths of on-site personnel and equipment. Furthermore, the 
paper presents a method to determine optimized dimensions for each facility, 
thus allowing for an increase in the efficiency of layouts. 

It can be concluded that BIM enables the exchange of ideas and 
collaboration between the architect, builder and various other participants of the 
investment process. However, at each stage of the project, there is always a need 
for structural safety analysis in terms of static, strength and cost analysis. 
Accordingly, the constructor activity cannot be replaced by BIM but 
accompanied to it. 

In this paper the multi-criteria analysis of steel skeleton multi-storey 
buildings was carried out. In the first step of the study the optimization was 
performed using the program ACE. Based on the conducted analysis the choice 
of the optimum concept based on assumptions flowing from the static and 
strength analysis supported by minimizing of cost and material consumption was 
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made. Generated design solution and decisions taken on the basis of ACE have 
been verified in the second stage of the study. In this stage the verification of 
the optimal project was carried out using FEM and Eurocode recommendations 
for checking the ultimate and serviceability limit states. 

1.2. Optimal designing 

It is rather obvious that automated design supported by CAD and BIM 
should make possible arriving at optimal solutions in the design process. 
The optimal solution is considered here in general terms. Using the formalism 
of the optimization theory it means that a wide set of design variables including 
dimensional, material and topological ones should be accounted for. They are 
continuous or discrete. Fuzzy sets or interval variables can be faced, too. 
Moreover, a number of implicit constraints must be introduced. Surely, many 
local optima would appear. Nonlinear programming methods cannot be applied 
to a problem formulated in a such general way. Artificial neural networks (ANN) 
can handle the problem, but training the ANN would be rather difficult. There 
remain optimization solvers using genetic algorithms, however they would be 
extremely time consuming when applied to so built up problems. Therefore it 
seems reasonable to apply problem oriented methods of optimization, where 
the rational approach is combined with formal optimization. 

In the present paper the application of Advanced Cost Estimator (ACE) 
system is demonstrated. In this system the decomposition of the problem, sub-
structuring and simplified optimization methods e.g. fully stress design are used. 
The user can interact with the system by for example by limiting the range of 
design variables. 

1.3. ACE - Advanced Cost Estimator 

1.3.1. General information 

There are many available tools which can be used for optimal designing of 
civil engineering structures. However, in the process of rational and optimal 
designing the most important issue is properly defining the optimization 
criterion, project parameters and constrains. Therefore, the choice of optimisation 
software is often considered of secondary importance. In fact the choice of 
optimisation software strongly affects the numerical efficiency of computation 
and what is more important, allows to find the global optimum. In this paper 
the authors decided to use Advanced Cost Estimator (ACE) [1.1, 1.2] because it 
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allows introduction of a wide range of design variables, namely topological, 
material and dimensional. 

The main aim of the ACE software is price or weight estimation of the steel 
constructions based on I-profiles. The tool allows to perform computations for 
the single beam, industrial hall, single module (analysis of one floor system) and 
multi-module (analysis of the whole floor system) both for single and multi-
storey constructions (up to 20 storeys). After choosing one of the mentioned 
modulus and defining basic geometry of the model (width, length, column 
spacing, minimum height of the floor including free and service space, number of 
storeys) the next parameters of the construction should be specified. The ACE 
software allows the users to specify the following construction parameters: 

− the value of permanent and variable load, 
− steel and concrete class, 
− type of the beam and slab (the possible beam-slab combinations were 

shown in  Table 1.1), 
− layers of the floor, 
− bracing type, 
− type of foundation (spread or plate footing), 
− type of soil (sand 0.5MPa, gravel 0.6MPa or clay 0.35MPa). 

Table 1.1. Available beam-slab connections 

Non composite Composite 

I-profiles steel 
deck 

precast 
slab 

hollow core 
slab 

steel 
deck 

precast 
slab 

Cellular 
beam 

steel 
deck 

precast 
slab 

hollow core 
slab 

steel 
deck 

precast 
slab 

Slim floor 
IFB, SFB* --- --- hollow core 

slab --- --- 

* IFB - integrated floor beam; SFB - slim floors

Additionally the following data may be included in the analysis: 

− type of fire protection (intumescing paint, sprayed material or rigid 
panels), 

− fire resistance conditions R30 - R120, 
− placement of splices (place of column cross-section change), 
− cost of ground floor, roof, façade, internal finishing, service and other 

preliminary cost which may be defined as a percentage of the total 
cost of the structure. 

It is worth to mention that ACE is not a software for accurate computation of 
the construction and the results obtained by it are based on the implemented 
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databases. Therefore, the results should be verified using finite element 
computations. 

1.3.2. Price estimation 

ACE allows to estimate the total cost of the construction which is defined by 
the sum of the following components: steel frame (beam, columns, connections, 
bracing, roof construction, corrosion and fire protection, pre-cambering and 
propping, assembly and transport), concrete slab, ground floor, foundations and 
overheads. Additionally, in the cost estimation there is a possibility to include 
the price of: waterproofing membrane, façade, internal finishing and service. 

The cost of a steel frame evaluated by ACE consists of the following 
constituents. 

− Material: the weight of the component multiplied by the unit price 
(depended on the steel grade). An additional security cost is increased 
by 5%. 

− Manpower: the cost of the manpower depends on the total weight of 
the steel elements. 

− Connections: the price of a typical connection is multiplied by 
the number of the same joints (beam to beam, beam to column or 
column to column). Each type of the connection has a different price, 
which changes linearly as a function of beam weight and manpower. 

− Studs: the price is a function depending on stud type, number of studs, 
type of the slab and manpower. 

− Bracing: the price is represented by a nonlinear function depending on 
the height of the building. 

− Corrosion protection: the price is calculated as a function of 
the external surface area of a steel profile. Two layers of corrosion 
protection (primer and finishing) are considered. 

− Fire protection: the cost depends on the type of fire protection, shape 
and dimensions of the steel profile. 

− Erection: the cost of the crane and erection manpower which depend 
on the weight of the construction element. 

− Pre-cambering or propping: the price depends on slab type and span. 
− Transport: the cost is a function of weight of the construction element. 

Additionally the cost of tower wagons is added. 
− Overheads: steel contractors overheads expressed as a percentage of 

the sum of the above mentioned costs. 
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Table 1.2. The list of prices used in the analysis 

Item description Price 

Steel quality 
S235 0.812 €/kg 
S355 0.837 €/kg 
S460 0.837 €/kg 

Steel for angels 0.699 €/kg 

Bolts (grade 8.8) 
M16-60 0.27 €/unit. 
M20-60 0.52 €/unit 
M22-60 0.94 €/unit 

Propping slab 3.50 €/m2 
beam 10.0 €/m 

Crane 40 tons 299.8 €/day 
100 tons 599.5 €/day 

Tower waggons 15.0 €/h 
Transport 0.03 €/kg 
Overhead 15 % 

Precast slab 5cm 20.0 €/m2 
Concrete chape 67.0 €/m3 

Reinforcement in precast slab 0.587 €/kg 

Hollow core 

12 cm 22.0 €/m2 
16 cm 22.0 €/m2 
20 cm 25.0 €/m2 
27 cm 29.0 €/m2 
32 cm 30.0 €/m2 
40 cm 35.0 €/m2 

Steel decking 12.50 €/m2 
Concrete 85.0 €/m3 

Concrete - reinforcement 0.587 €/kg 
Concrete - timbering 6.0 €/m2 

Manpower 7.5 €/h 

Corrosion protection primer 2.0 €/m2 
finish 2.0 €/m2 

Fire protection 
15 mm rigid panel 30.0 €/m2 

material paint 6.5 €/kg 
material spray 0.65 €/kg 

The price of the slab is estimated as follows: 
− Concrete slab: the price is a function of concrete volume and 

reinforcement. 
− Steel deck: cost is linearly dependent on the floor span. 
− Precast slab: the price of a fixed amount of precast slab corresponding 

to the price with a thickness of 5 cm. 
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− Hollow core slab: the price depends on the thickness of 
the implemented slab. 

Additionally the price of the slab is supplemented by the cost of manpower, 
which depends on the floor area. 

The total price of the foundation includes the following costs:  

− Concrete: the price depends on the volume. 
− Reinforcement: the price is a function of weight of the reinforcement. 
− Formwork: the cost is a function of needed formwork area expressed 

in m2. The formwork area is determined by multiplying the area of 
foundation base by 5. 

− Manpower: the price depends on the man-hours needed to perform 
the foundation. 

In estimating the cost of the construction it is assumed that the cost of 
the roof is taken as 60% of the price of the floor system plus the price of 
the additional waterproofing. By default, the price of the ground floor is equal to 
the floor system (excluding the price of the steel frame). In the price estimation, 
both the roof and ground floor price can be typed in euro per square meter of 
usable area. 

Moreover, in the ACE software it is possible to add to the total price of 
the building  the following costs (by typing directly the prices): 

− façade, 
− internal finishing of the building, 
− additional service costs. 

The list of prices in Poland, which have been implemented in the ACE 
software, are used in the considered example and are presented in  Table 1.2. 

1.4. Optimal design of steel skeleton multi-storey 
buildings 

1.4.1. Formulation of the optimization problem 

The problem of the multi-aspect design is presented on the example of 
the steel skeleton 6-storey office building with the dimensions in plan 24×48 m. 
The visualisation of a segment part of the analysed construction were presented 
in Fig. 1.1. We assume that communication space (lifts, stairs) will be situated in 
the core, located in the centre of the construction. 
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Fig. 1.1. Visualisation of a segment part of the analysed construction 

As optimization criterion the total price of the construction is assumed. 
Moreover, the weight of the steel frame will also be analysed. It includes 
the following elements: 

− beams and columns, 
− bolts, 
− other components of connection (the implemented connection types 

were presented in the Fig. 1.2), 
− bracings, 
− construction of the roof. 

a) 

b)
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c) 

  
Fig. 1.2. Types of the available connections: a), b) beam-column, c) beam-beam  

In the next step the characteristics that describe the structure were divided 
into design parameters and variances. To the design parameters which will be 
constant throughout the whole designing process, the following data were 
included: 

− function of the building:   office, 
− soil:       sand, 
− number of storeys:    6, 
− building plan dimensions:  24×48 m, 
− floor type:      hollow core slab, precast slab, 
− type of foundation:    spread foundation. 

Directly with the established function of the building the following 
parameters are related: 

− free spacing:     2.75 m, 
− fire resistance:     R120, 
− permanent load:    3.00 kN/m2, 
− variable load:     3.00 kN/m2. 

 
Fig. 1.3. Possible beam and column schemes (respectively  

with 0, 1 and 2 secondary beams)  

Other parameters were classified in the group of design variables: 

− beams and columns column cross-sections (IPE, HEA, HEB and 
HEM), 

− beam and columns schemes (Fig. 1.3), 
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− beam orientation, 
− steel class (S235, S355, S460), 
− concrete class (C30/37, C40/45). 

Moreover, each of the mentioned computations are performed for 6 variants 
of column spacing: 2 square and 4 rectangular column grid (see Fig. 1.4). 

Variant 1: 8x8m Variant 2: 6x6m 

Variant 3: 6x8m Variant 4: 8x9.6m 

Variant 5: 6x9.6m Variant 6: 6x16m 

Fig. 1.4. Analysed dimensions of the column grid 

In the last stage of the analysis the limitations are defined as the regulations 
specified by engineering codes (Eurocodes). In the computations the limit state 
methods are used. 

1.4.2. Results of the analysis 

As it was mentioned before, the analysis was performed using the ACE 
software in order to find the best (the cheapest) solution of the steel skeleton 6-
storey office building. The results of the analysis were illustrated by three graphs 
(Fig. 1.5-Fig. 1.7). In the diagrams the total weight of the steel frame depending 
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on the applied floor system was presented. The following notation for the floors 
was used: the first letter indicates the type of the floor beam (A: cellular beam, I: 
I-beam); the second letter N means that the only the non-composite type of floor 
system was taking into account; the third letter defined the type of the floor slab 
(H: hollow core slab, P: precast slab). Additionally, the total weight of the steel 
frame for each of the floor system was presented depending directly on the steel 
grade and indirectly on the concrete class. Three grades o steel were considered: 
S235, S355 and S460. For the first two steel grades, it was assumed that the slab 
is made of C30/37 concrete class and for the steel S460 the concrete C40/45 was 
introduced. 

 
Fig. 1.5. The weight of the steel frame for the variant 2 

 
Fig. 1.6. The weight of the steel frame for the floor with cellular beam  

with non-composite hollow core slab  

The above graph presents the total weight of the steel frame depending on 
the type of the floor system (for variant 2 - 6x6 m square column grid). 
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Additionally, three steel grades were analysed. In the case of the floor systems 
based on the I-beams (INH and INP), increasing the steel grades causes 
the reduction of the steel frame weight. It is a logical conclusion that increasing 
steel grades allows to use smaller cross-section. However, in the case of the floor 
systems based on the cellular beams (ANH and ANP) increasing the steel grades 
caused the increase of the steel frame weight. This results from the fact that ACE 
software, as the main optimization criterion assumed the cost of the structure not 
its weight. It turned out that it is cheaper to use other floor system configurations 
with stronger steel (despite the increase of the weight of the steel frame) than 
changing the steel grade without changing the floor system. 

Fig. 1.7. The weight of the steel frame for the floor with I-profile beam with non-
composite hollow core slab 

The two next graphs present the total weight of the steel frame depending on 
the type of the beam (I-beam or cellular one) and the column grid spacing. Due to 
the fact that the first two variants were related to the square column grid, 
the result for both X and Y directions were the same. In other four variants, 
where the column grids were in the shape of rectangular, the results for the X and 
Y directions were different. Therefore, each analysis was performed for two 
beam orientations: both X and Y, where X direction determines the shorter side 
of the rectangular. 

1.4.3. The optimal result 

As a result of the foregoing considerations it was found that the optimal 
solution (the cheapest one) is variant 2, namely the square column grid which 
dimension of the side is equal to 6 meters. Incidentally, this is the minimum size 
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of the column grid recommended for commercial buildings [1.8]. In the Fig. 1.8 
the graph showing the distribution of cost in the considered example was 
presented. It can be concluded, that a significant impact on the total cost of 
the construction have costs of the slab (41%) and steel frame (28%). Wherefore, 
it is worth to mention that properly designing of slab, beams, columns and their 
connections leads to reduction of the cost of the entire construction. 

Fig. 1.8. The total cost distribution into cost components 

Basing on the results of the foregoing analyses the square column grid 6 m 
was accepted for next design steps. In the Table 1.3 the detailed technical data of 
the optimal variant was presented. 

Fig. 1.9. Beam scheme in the optimal solution 
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Table 1.3. Technical details of the chosen conception 

Steel grade S 460 
Concrete type C 40/45 

Total height of the storey 3.81 m 
Total weight of the steel frame 110 365.50 kg 

Beam type I-profiles 
Floor type hollow core slab 

Beams (per one floor) 12 x IPE 330 
22 x IPE 400 

Columns 

A1/A5/I1/I5 
floor 1. 2 HEA 180 
floor 3. 4 HEA 160 
floor 5. 6 HEA 120 

A2/A3/A4/B1/B5/C1/C5/D1
/D3/D5/E1/E2/E4/E5/F1/F3/

F5/G1/G5/H1/H5/I2/I3/I4 

floor 1. 2 HEA 220 
floor 3. 4 HEA 180 
floor 5. 6 HEA 140 

B2/B3/B4/C2/C3/C4/G2/G3/
G4/H2/H3/H4 

floor 1. 2 HEA 260 
floor 3. 4 HD 260 x 54 
floor 5. 6 HEA 180 

D2/D4/F2/F4 
floor 1. 2 HD 260 x 54 
floor 3. 4 HEA 220 
floor 5. 6 HEA 180 

Foundations 

A1/A5/I1/I5 

base 1.2 x 1.2 m 
height 0.42 m 

concrete 0.7 m3

steel 66.2 kg 

A2/A3/A4/B1/B5/C1/C5/D1
/D3/D5/E1/E2/E4/E5/F1/F3/

F5/G1/G5/H1/H5/I2/I3/I4 

base 1.7 x 1.7 m 
height 0.59 m 

concrete 1.7 m3 
steel 174.2 kg 

B2/B3/B4/C2/C3/C4/G2/G3/
G4/H2/H3/H4 

base 2.3 x 2.3 m 
height 0.82 m 

concrete 4.7 m3 
steel 471.2 kg 

D2/D4/F2/F4 

base 2.1 x 2.1 m 
height 0.72 m 

concrete 3.3 m3 
steel 328.3 kg 

Percent distribution of the steel frame weight in the optimal solution into 
components parts was presented in the Fig. 1.10. 
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Fig. 1.10. Percent distribution of the total weight of the steel frame  

in the optimal solution  

1.4.4. The numerical verification 

In the following part of the study the numerical computations using Finite 
Element Method are performed in order to verify the results obtained from 
preliminary analysis (in ACE software). The computations are performed in two 
dimensional model for one of the middle frames (axis C). It was assumed to 
design the office building with the same dimensions, material parameters, 
column and beam cross-sections as those obtained from the analyses performed 
in ACE (Table 1.2). However, the authors adopted their own assumptions about 
the designed building. 

In a first step the location of the designed office building was assumed. It is 
worth to mention that in the ACE software there is no possibility to define 
the location of the construction. The values of the climate loads are adopted on 
the base of the average statistic data collected for the countries of the European 
Union. The authors decided that the building is placed on Polish territory in 
the city of Poznan, which is located in the second zone of the snow load and 
the first zone of the wind load (according to the maps contained in [1.12, 1.13]. 
The climate loads were determined on the basis of these standards for 
the building located in an urban area. The value of the wind load was determined 
both for the exterior surfaces (wind blowing on the front wall or on the side wall) 
and for the interior surfaces. 

The values of the permanent (G) and imposed loads were calculated. 
The permanent load was defined as a sum of the weight of the following 
elements: 

− steel frame: included in the calculating program; 
− concrete slab: specific load of the reinforced concrete multiplied by 

the thickness if the slab - 3.19 kN/m2; 
− other permanent load - 3.00 kN/m2. 
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The value of imposed load is specified in the first part of European standards 
[1.4]. Value of the imposed load of the floors for the building of the B category 
(i.e. office space) should be taken from 2.00 to 3.00 kN/m2. In the further 
calculation the value equal to 3.00 kN/m2 was assumed. 

Afterwards, the combinations of actions both in the ultimate limit state and 
the serviceability limit state were considered. The combinations were performed 
according to the Eurocode 0 [5.3]), they should be expressed either as (1.1) or 
alternatively as the lower value of (5.2a and 5.2b). 
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where: “+” - implies “to be combined with”, 
   Σ - implies “the combined effect of”, 

 γ - partial factor which depends on the situation and has the following 
        values: 

  - permanent load: 1.00, 1.15 or 1.35, 
  - imposed, snow and wind load: 0.00 or 1.50, 

  ψ - factor for combination, 
  ξ - reduction factor for unfavourable permanent actions G. 

The permanent and imposed loads were applied at each beam with 
the difference that the permanent load is always acting, whereas the imposed load 
does not need to appear or may be applied to one or several beams 

The wind load was determined both for the external and internal surfaces of 
the building (according to the [1.11]. The walls and the roof were divided into 
special zones in order to calculate the value of the external wind load on each 
of the wall and roof slope. Moreover, the possibility of wind acting on each side 
of the building was considered. 

Table 5.4. The values of factors for combinations 

Ψ0 Ψ1 Ψ2 
Imposed load 0.7 0.5 0.3 

Snow load 0.5 0.2 0.0 
Wind load 0.6 0.2 0.0 

The values of factor for combination ψ were also adopted in accordance to 
the annex of this standard and were presented in the Table 1.4. 
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After calculating the loads acting on the designed structure, the internal 
forces (bending moment, shear force and axial force) were computed using FEM. 
The authors decided to design the rigid connection of columns into foundations 
(similarly as in ACE). We assumed, the rigid end-plated connections between 
columns and beams, in order to increase the stiffness of the construction and to 
reduce the values of the bending moment, though in ACE non-rigid connections 
were assumed. 

In the next step the authors verified the safety and economy of the structure 
which had been the outcome of the ACE software. Therefore, basing on the cross 
sectional and material parameters of columns and beams following from ACE, 
the FEM analyses were carried out for various load combinations described 
above. For each element the resistance of cross-section and buckling resistance 
were computed according to the [1.5, 1.6]. For bending elements (beams) it was 
assumed that the adopted slab (hollow core slab) protected the element against 
the lateral-torsional buckling. Whereas, the effective length of the frame columns 
was determined on the basis of the graph presented in the Fig. 1.11. The values of 
the parameters: η1 and η2 are dependent on the moment of inertia of the columns 
and beams and their real length. They were determined separately for each 
element. 

 
Fig. 1.11. The effective length coefficient of the columns [1.11]  

The structural effort factors of all members are shown in Fig. 1.12. They 
express the relative load bearing capacity exhausted by the structural members. 
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Fig. 1.12. The load bearing capacity factors 

The presented results demonstrate that columns in the even storeys have 
smaller effort factors than the ones in the odd storeys, because it was assumed 
that a jump of the column cross-section took place in every second storey. At this 
point we leave it as an open question if it would be recommended the variation of 
column sections at each storey. 

It is also evident that the beams have lower values of effort factors than 
the columns. There are two possible reasons. Firstly, we introduced rigid beam-
to-column connections, whereas in ACE flexible connections had been assumed. 
Secondly, in ACE the technological conditions of minimal flange 180 mm in 
I section was introduced (Fig. 1.13a), to make possible the supporting of 
the hollow core slab. This is satisfied by the section IPE 400 which is too 
conservative. At this point an additional analysis might have been conducted by 
consideration another supporting of the slab, e.g. shown in Fig. 1.13b. 
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a) b)  

Fig. 1.13. The method of the placing the concrete slab on the beam: a) directly  
on the beam flange, b) by angle profiles fixed to the beam web 

a) 

 
 

b) 

  
Fig. 1.14. The proposals of the construction of the rigid beam  

to column end-plated connection  

Concluding these computational considerations it may be stated that 
the differences may also reflect the adoption of a rigid connection. The end-
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plated connection between the beam and column was calculated (according to 
the [1.7]). Two constructional solutions of the end-plated connection were 
proposed. Each of the solution consists of ten bolts (spaced in 5 rows) with 
the diameter equal to 16 mm and class 8.8, what means that the value of their 
ultimate tensile stress is equal to 800 MPa and the value of yield stress is equal to 
640 MPa. Both joints were strengthened by two horizontal stiffening ribs with 
the thickness of 8 mm. The thickness of endplate is equal to 20 mm. In the first 
case (Fig. 1.14a) the endplate is 470 mm high and extends above the upper flange 
of the beam 60 mm where the first row of the bolts was placed. In the second 
example (Fig. 1.14b) the endplate extends below the lower flange of the beam 
150 mm. In this case also the strengthen steel element in the shape of T-letter 
(located under the beam) was used. In both cases applied construction actions 
were performed in order to increase the bearing capacity of the connection on 
bending. Placing the assumed bolts only between the flanges of the beam was not 
enough. 

Selection of one of the solutions depends on technological reasons of 
the designing floor construction. The first one definitely is a cheaper solution but 
the second one may additionally reduce the value of bending moment in 
the beam, what may also lead to decrease the beam cross-section. 

1.5. Concluding remarks 

1.5.1. Cost as the main optimization criterion 

In the paper the cost expressed in €/m2 of usable area was taken as the main 
optimization criterion. It was assumed that the price is a function of the main 
elements: steel frame, floor construction, fire and corrosion protection, foundations, 
transport and overheads. For detailed price estimation the contribution of all costs 
connected with designing and executing of the construction should also be taken 
into account. Additional costs arising during the designing and executing of 
the construction can play a significant role. 

It seems rather obvious that the price is the principal criterion in selection of 
the design solution. However, due to complicated form of the cost function 
(depending on a number of components) specification of this function is not an 
easy task. For this reason formulation of the optimization problem as a cost 
criterion is used only at the stage of the preliminary designing. While, in 
the subsequent stages of the project, taking the cost as a main criterion is not 
recommended, because of a large number of design variables and implicit 
relations between these variables and the total cost. 
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It is worth to mention that the specific costs do not remain constant in time, 
but are influenced by variable economic conditions. Moreover, the design 
solution which in one country is taken as the optimal solution (the cheapest one) 
does not necessary have to be the best solution in another region or country. It is 
the result both of the different material cost and of the other value of the man-
power rate. In the presented example the total price was calculated according to 
the price list in Poland. In the graph 1.15 the total price expressed in the €/m2 of 
usable area of optimal solution (in Poland - Fig. 1.9) in different European 
countries was presented. 

 
Fig. 1.15. The costs of the optimal solution in different European countries  

1.5.2. Conclusions 

The problem of optimal designing of steel skeleton multi-storey buildings 
was presented on the example of the office building which the dimensions in plan 
24×48 m. The minimal construction cost in Poland was assumed as a main 
optimization criterion. The total cost was expressed as a price in € on the square 
meter of usable area. Six variants of column grid were analysed: 

- variant 1 (8 x 8 m):   105,35 €/m2, 
- variant 2 (6 x 6 m):   77,16 €/m2, 
- variant 3 (6 x 8 m):   89,01 €/m2, 
- variant 4 (8 x 9,6 m):   113,74 €/m2, 
- variant 5 (6 x 9,6 m):   92,97 €/m2, 
- variant 6 (6 x 16 m):   113,04 €/m2. 

In the cheapest solution (variant 2) the non-composite hollow core slab 
based on the I-beams was applied. 

The results of the performed analyses and computations allow to formulate 
the following conclusions:  
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1. The cost of executing the construction decreases with decreasing
the spacing of columns.

2. The floor system contributes strongly to the total cost, hence
inappropriate choice of the floor construction in one variant of column
grid can cause an increase of the total cost up to 66%.

3. Changing the column grid can increase the cost of the construction
by 47%:

variant 2 (the cheapest one):    77,16 €/m2, 
variant 4 (the more expensive): 113,74 €/m2. 

4. Executing of one foundation slab under the entire structure instead of
separate footings under each of the column causes 2-3 fold increase of
the total price of foundation. This difference decreases with increasing
number of storeys of the building.

5. In the case of the rectangular column grid it is more cost effective to base
the floor system on the beams orientated in the shorter dimension.

In order to verify the reliability of the ACE software the computations using 
Finite Element Method were performed. The computations algorithms on: 
collecting loads, statics and dimensioning were adopted from the European 
standards. 

It can be concluded that software for cost estimation, like ACE, can be very 
helpful in a preliminary construction designing. ACE specified safe structure 
thou it was a little conservative. The output of the system similar to ACE is an 
excellent starting point to precise FEM analyses and final design. 
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2. 

On the tolerance modelling of periodic 
inhomogeneous media 

The aim of the paper is to provide a brief description of some tolerance 
modelling method (homogenization) of periodic inhomogeneous media. The 
method is based on the so-called tolerance averaging of coefficients of partial 
differential equations, which coefficients are discontinuous and highly 
oscillating. Unlike the classical method of asymptotic homogenization, where a 
microstructure size parameter (basic cell diameter) is formally equated to zero, 
the parameter in the tolerance modelling is constant, in accordance with his 
physical character. The basic concept in this method is a slowly varying function, 
i.e. the function, which can be considered as constant within the basic cell, along 
with its derivatives. The tolerance averaging technique is an averaging where the 
slowly varying function can be excluded outside an averaging operator, with 
the assumption that this operation is done within a certain tolerance. In result, 
the averaged equations of mechanics of periodic media have effective constants - 
the coefficients depending also on the microstructure size parameter. 

2.1. Models and modelling of material media 

The object of consideration are real material media, which have already been 
interpreted as mathematical objects. Therefore, we will consider their abstractive 
models, which we define as some relational structures, [2.2]. 

As the model or the structure we will call system nRRRXM ,...,,, 21=
where X is an established space, called base space, from a certain class of sets A; 

iR , , are relations, meant as subsets in the sets ∈iX  A; ii XR ⊂ . In 
the models which are considered in mechanics, it is generally assumed that X is 
the set of real numbers. 

For example, a binary relation between elements ⊂∈Yy A will be each 
subset 2Y⊂ρ . The elements Yyy ∈21, are in a relation when 

2
21 ),( Yyy ⊂∈ρ . 
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The model example is a system >=< MFURM LS ,,, 0
1 , which can be 

interpreted as an elastic body model. In this model, the basic space R is a set of 
real numbers, 0, FU  are spaces of functions determined in 3, RI ⊂Ω×Ω , 

1
10 ),( RttI ⊂= , having the values in 3R , and M is a relation in 0FU × . 

To determine M , we will assume HGFPBF ××××=0 , where the spaces 
B, P, F, G, H are functional spaces of functions 3: RIb →×Ω , 3

1: RIp →×Ω∂ , 
3

2: RIf →×Ω∂  and 
I

uf
×Ω∂

=
2

, Uu∈ , 3
0}{ Rtg →×Ω=  and 

}{ 0t
ug

×Ω
= , 

Uu∈ , 3
0}{ Rth →×Ω=  and 

}{ 0t
uh

×Ω
=  , Uu∈ , respectively. 

The functions from the spaces U are interpreted as displacements of the 
body, whereas the functions from the spaces B, P, F, G, H are respectively:  
B - body forces, P - surface load on a part of the boundary Ω∂1 , F - applied 
displacements on a part of the boundary Ω∂2 , G - applied initial conditions for 
displacements and H - applied initial conditions for speed of displacements. 
Segmentation of the boundary Ω∂  on the regions Ω∂1 , Ω∂2  fulfils the 
conditions Ω∂∪Ω∂=Ω∂ 21 , ∅=Ω∂∩Ω∂ 21 . 

Moreover, let us introduce a representation SUT →: , )(uTs = , where S  
is a space of symmetric tensors 33: ×→×Ω RIs , which representation describes 
the constitutive relation and s are stresses. A function 1: +→×Ω RIρ  is a mass 
density. 

Basic relations (equations of equilibrium or equations of motions with 
initial-boundary conditions) will take form of an operator 0: FUM → , where 

 { } { }],,,)(,)([)(
0021 ttII

uuunuTuudivTuM
×Ω×Ω×Ω∂×Ω∂

−= ρ  (2.1) 

With reference to the operator (2.1), a problem is formulated in the model 
LSM  in a following form 

Let 0f  be a given element 0F . Find Uu ∈0  such as  

 00 )( fuM =  (2.2) 

Each function Uu ∈0  satisfying Eq. (2.2) is an exact solution and the 
approximate solution of Eq. (2.2) is an approximate solution in the model LSM . 

In similar way, in Point 2.4, we will define a multicomponent Kirchhoff 
plate model. The solution obtained within the frame of such model will be also 
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an exact solution. This exact solution (a plate deflection) will be an approximate 
solution in a three-dimensional model of elastic body if we interpret it as three-
dimensional displacements of the plate, using kinematic hypotheses or a proper 
form of displacement constraints. 

It is an individual matter whether a plate model is simpler or not if compared 
to another model, for example the model LSM  of elastic body. We will assume 
that a simpler model is such a model which established from another model, as a 
result of a procedure recognized as simplifying.  

It will turn out that the tolerance modelling which will be described in a 
further part of the paper, is such simplifying procedure, thus the models obtained 
as a result of application of this method will be simpler models. 

The tolerance modeling was introduced to mechanics by Cz. Woźniak as the 
microlocal parameter method [2.8] and the tolerance averaging technique [2.5, 
2.9]. In this paper we will base on the tolerance averaging technique. 

2.2. Selected models of mechanics 

The equation (2.1), presented above, is a particular case of the equation 

0)1(
0 0

)()(
)(1 =
∂∇
∂

⋅∇−∑∑
= =

+
P

p

R

r
pr

prr

w
L

(2.3) 

where 0,0 ≥> RP , ),(,),,( 10 tttRxtxww n ∈⊂Ω∈= , klmnkl Ckc ,,,ρ , 

)(...))((
11...

)( xfxf
rr iiii

r ∂∂≡∇ , niii r ,...,2,1,...,, 1 = and , ,...2,1,0=p , 

[2.5]. 

Objects pL occurring in Eq. (2.3) are functionals 

),...,,,( )()()()( prpp
pp wwwxLL ∇∇= . These functionals contain scalar or vectorial 

functions ),( txww = , nRx ⊂Ω∈ , ),( 10 ttt∈  being sought. 

If we assume that 0=P  and the functional 0L  occurring in Eq. (2.3) is the 
Lagrangian, then Eq. (2.3) will be the Euler-Lagrange equations for this 
functional. Next functionals 1L , 2L , for 0>P , can describe such properties of 
physical systems like, for example, plasticity etc. 

If there is defined a functional p

P

p

pLL ∑
=

=
0
τ , where 0>τ  is a time dimension 

parameter, Eq. (2.3) takes the form 
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 0)1(
0 0

)()(
)(1 =
∂∇

∂
⋅∇−∑∑

= =

−+
P

p

R

r
pr

rpr

w
Lτ  (2.4) 

The particular case of the functional L is a linear functional  

 [ ] fwwwxKPL
P

p

R

r

prpr
pr

p +∇⊗∇⋅=≡ ∑∑
= =0 0

)()()()( )()()(
2
1 τ  (2.5) 

Coefficients )(xK pr  are functions nRx ⊂Ω∈ . For this reason, Eq. (2.4), in 
case of the functional (2.5), are linear differential equations with various 
coefficients. 

As an example we will consider the functionals P for heat conduction and 
linear elasticity of inhomogeneous media. 

Taking P in form 

 θθθθτ fkcP jiij ++= ),,(
2
1 2  (2.6) 

Eq. (2.4) will be equal  

 01
),(

,

=
∂
∂

−
∂
∂

−







∂
∂

θθτθ
PPP

ii
  (2.7) 

Putting (2.6) to Eq. (2.7) we obtain the classical Fourier equation for 
inhomogeneous conductors 

 0)),( =+− fkc jiijθθ  (2.8) 

If 

 kknmlkklmnkk wfwwCwwP ++= ),,(
2
1 2 ρτ  (2.9) 

then Eq. (2.4) will be equal 

 01],
),(

[ 2 =
∂
∂

−
∂
∂

−
∂
∂

kk
l

lk w
P

w
P

w
P

τ
 (2.10) 

Putting (2.9) to Eq. (2.10) we obtain kklnmklmn wfwC ρ=+),,( . Coefficients 

klmnkl Ckc ,,,ρ  occurring in Eq. (2.9)-(2.10) are specific heat, mass density, 
components of heat conduction tensor and components of elasticity tensor, 
respectively. By θ  we denoted temperature and by 3,2,1, =kwk , displacements 
of the body. 
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2.3. Periodically inhomogeneous media 

In further parts of the paper we assume that the objects under consideration 
are periodic inhomogeneous objects. This is an important class of material 
bodies, not only for cognitive reasons but also for utilitarian ones. In case of the 
periodic bodies presented in Eq. (2.5), the functions prK  (not necessarily all) are 
periodic functions. In many problems, these functions can be periodic in one, two 
or three independent directions determined by vectors cd  from the three-
dimensional space 3R , where 1=c  or 2,1=c  or 3,2,1=c  (if more than one 
system is available, then such a system should be chosen where c is of the highest 
value and the sum of vector lengths is the lowest). 

An arbitrary function )(⋅g , determined in 3R  space, is periodic, if for every 
couple of arguments x  and c

cdkx +  of this function, holds 

)()( c
cdkxgxg +=

where ck  are integer numbers. 

Vectors cd  define in 0cR  sets of a form { })(,: 2
1

,2
10 −∈=∈ c

c
c

c dxRx ηη , 
3,2,10 =c , wherein if 10 =c  then this set takes a form of a section with a width 

1d , if 20 =c  then the set is a parallelogram determined by cd , 2,1=c , whereas 

in case of 30 =c  - a parallelepiped determined by three vectors cd , 3,2,1=c . 

These sets are called representative elements or basic cells. An arbitrary but 
ascertained representative element we will denote below by ∆  and the functions 

)(⋅g  we will call as ∆ -periodic. 

As it has been pointed out, in case of periodic media, in the Eq. (2.9) - (2.10) 
the coefficients klmnkl Ckc ,,, ρ , are periodic functions which are generally 
discontinuous and experience jumps in small domains of determinacy. The 
tolerance modelling allows to average these coefficients in the way that the 
obtained new model equations will contain constant coefficients, thus these 
models will be simpler. 

If the medium under consideration is periodic in micro-scale - and such a 
situation occurs when the medium is densely periodic, i.e. there is plenty of 
repeatable elements - then a lot of difficulties arise when equations of statics or 
dynamics are being solved. Such situation seriously makes difficult and often 
even impossible to apply analytical and computer methods. The body 
heterogeneity in micro-scale is being modelled in macro-scale by using the 
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homogenization technique. After the homogenization, the description of the body 
is usually homogeneous. 

The basic concept in the tolerance modelling is a slowly varying function 
with respect to the periodicity cell. 

Let us denote by d  a trio of positive number ),,( 10 ddld ≡ . A scalar function  
f  determined in a domain Ω , Rf →Ω: , we will call a slowly varying 

function and will denote as )(1 Ω∈ dSVf , if, for every 2),( Ω∈yx , it follows 
from lyx kk ≤−  that 0)()( dyfxf ≤−  and 1)(,)(, dyfxf kk ≤− , 3,2,1=k . By 
⋅  we denote the absolute value. 

Moreover, we will assume that the basic cell ∆  consists of parts (finite 

elements) a∆ , 0,...,2,1 aa = , such as ∪
0

1

a

a
a

=

∆=∆ , ∅=∆∩∆ ba , for every ba ≠ . 

By 
∆
∆

= a
aη  we denote saturation of the periodicity cell with the components 

a∆ . We assume that every part a∆  is homogeneous, i.e. that the mass density ρ , 
c, klk , and tensor components klmnC  are constant within these parts 

const
ax

a ==
∆∈

ρρ , constcc
ax

a ==
∆∈

, constkk
axkl

a
kl ==

∆∈
, 

constCC
axklmn

a
klmn ==

∆∈
. 

If such ba ≠  exist that at least one from the inequalities: ba ρρ ≠ , ba cc ≠ ,  
b
kl

a
kl kk ≠  or b

klmn
a
klmn CC ≠ , 0,...,2,1 aa = , 3,2,1,,, =nmlk , is fulfilled, then we will 

call the body as the multicomponent body (composite), [2.3, 2.7]. 

2.4. Model of multicomponent plates 

A plate is a three-dimensional body but described by displacements, strains 
and stresses depending only on two variables determined on some space in this 
body, so-called mid-surface. It means that the plate, having some thickness, can 
be reduced to a plane area and the displacements (deflection) or stresses being 
sought are determined only on this area. 

Attempts of description of three-dimensional state of strain and stress of 
plate by functions determined on its mid-surface were made by A. Cauchy and S. 
Poisson in years 1828-29. The suggestions which were presented at that time 
contained mistakes and only in 1850 G. Kirchhoff published a paper which now 
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is recognized as the beginning of a theory which today is called as Kirchhoff’s 
theory or Navier-Kirchhoff’s theory [2.6]. 

The basic assumptions of this theory are hypotheses: kinematic and static. 
The kinematic hypothesis can be written in the form of limitations (constraints) 
in class of displacements 

),,(),,,(
),,(,),,,(
),,(,),,,(

213213

21233212

21133211

txxwtxxxu
txxwxtxxxu
txxwxtxxxu

=
−=
−=

(2.11) 

The function ),,( 21 txxw  is the plate deflection. 

Moreover it is assumed that the functions describing elastic properties of the 
plate should be different than elastic constants klmnC . These new functions αβγδB , 

2,1,,, =δγβα  now depending on two variables (determined on the mid-surface), 
are called stiffness moduli and they are equal  

2,1,,,,3
2
3

2

2
3333

3333 =







−= ∫

−

δγβαγδαβ
αβγδαβγδ dxx

C
CC

CB

h

h
 (2.12) 

The relation connecting the introduced concepts is the following global 
relation 

( ) ( ) ( ) 







+=∈∀ ∫∫

−+ Π∪Π
−+

Π

rdapprdarwBVr γδαβαβγδ ,, (2.13) 

where V  is a space of acceptable deflections Rr →Π:  which are compatible 
with the constraints (2.11), +p , −p  are loads on the upper and lower plate area. 

After application of the variational formalism for Eq. (2.13), we obtain the 
equation of thin plate for the plate deflection 

pwhwB =+ ργδαβαβγδ ),,( (2.14) 

where −+ += ppp . 

A solution of Eq. (2.14) which fulfills appropriate initial-boundary 
conditions, is the exact solution within the frames of classical plate model. This 
exact solution (plate deflection) will be an approximate solution in the three-
dimensional model described in Point 2.2, if we will interpret it as three-
dimensional displacements of the plate with application of the constraints (2.11). 
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In case when a plate is periodically inhomogeneous, the model described by 
Eq. (2.14) can be simplified to a form where the coefficients αβγδB  will be 
constant, not functions. 

2.5. An averaged model of periodic inhomogeneous plates 

We will assume that the plate is periodically inhomogeneous and the 
repeatable element - the basic cell, is a section with the length 1l , ),0( 1l≡∆  
(periodicity in one direction) or a rectangle with the dimensions 21,ll , 

),0(),0( 21 ll ×=∆  (periodicity in two directions). In that case the plate mid-plane 
Π  will be divided - in the first case into layers ),0( 2L×∆ , in the second one into 
rectangles. 

We assume about each layer and each rectangle that they have identical 
material properties, i.e. if a translation of one layer onto another or one rectangle 
onto another is done, then a result will be the identical inhomogeneous medium. 

Another assumption is that the layers and rectangles in the plate are 
conglomerate of various homogeneous components. The system of these 
components will be described in a following way: 

In case of layers the section ),0( 1l=∆  is divided into parts 

)
2

,
2

()( 1
1

1
11

lxlxx aaaa +−=∆≡∆ , where 
2
1

1
laxa = , 0,...,2,1 aa = . Hence, a layer 

),0( 2L×∆  consists of laminas ),0( 2La ×∆ , 0,...,2,1 aa = , there is 0a  laminas in 
the layer. 

Analogically, the rectangle is divided into parts ),( 21
baab xx∆≡∆ , where ax1  is 

determined as above and 
2
2

2
lbxb = , 0,...,2,1 bb = . It’s easy to notice that the 

points ax1  are central points of the parts a∆  and ),( 21
ba xx  - central points of the 

parts ab∆  (i.e. the points dividing the rectangle sides into halves). 

With reference to the parts a∆  of the periodicity cell we assume that they are 
homogeneous, what means that 

 const,const ===
∆∆ aa

aa BB ραβγδαβγδ  (2.15) 

and analogically for ab∆  
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const,const ===
∆∆ abab

abab BB ραβγδαβγδ (2.16) 

The equation of motion (2.14) of the plate is also the equation of motion for 
the periodically inhomogeneous plates, described here. However, according to 
(2.15) and (2.16), if there is a lot of basic cells, the coefficients occurring in Eq. 
(2.14) are discontinuous and have fast changing values in small domains of 
determinacy. 

We will construct a model where the coefficients (2.15)-(2.16) will be 
averaged. This averaging will retain an influence of inhomogeneous structure on 
the solutions and the solutions will depend on dimension of the basic cell. 

An essential element of tolerance modelling is a decomposition of the values 
being sought (here the plate deflection) into two components 

  t,x,xvx,xht,x,xut,x,xw AA )()()()( 21212121 += (2.17) 

where Π∈),( 21 xx , 10 , ttt∈ , NA ,...,3,2,1= . 

In this decomposition, the functions u  and Av  are being sought (there 
is N1 +  of them) and are interpreted as the averaged deflection and fluctuations 
describing an influence of plate heterogeneity on the deflection. The functions 

Ah  are fluctuation shape functions - known, periodic and oscillating. We assume 
that these functions are dimensionless and take value which is of order of the cell 
dimension. In case of periodicity in one direction, Ah  are only functions of 1x  but 
for periodicity in two directions Ah  are functions of 21,xx . Moreover, we assume 
that u  and Av  are slowly-varying. 

We define the tolerance averaging of the functions determined in Π  as 

∫ ∫
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dydyyyf
ll

xxf (2.18) 

For the plate under considerations, let us take a functional P in the form 

pwwwBwP −−= γδαβαβγδρτ ,,
2
1)(

2
2

2

 (2.19) 

where τ  is parameter. 

Substitution of the decomposition (2.17) of the plate deflection to the 
functional (2.19) and averaging it by (2.18) yields in the model equations having 
form of the Euler-Lagrange equations of this averaged functional 
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αβαβαβγδαβγδρ 
 (2.20) 

where ρ and αβγδB  are the averaged mass density and averaged material 
functions 

 abababab BB αβγδαβγδ ηρηρ == ,  (2.21) 

and ba
ab

21 ηηη = , 
2
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2
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1
1   ,

l
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l
l b

b
a

a == ηη . 

The remaining coefficients are equal  
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ababAAA

BhhBE
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αβγδαβγδγδαβαβγδ
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η

η
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where ∫∫∫∫
∆∆

∆=∆=
abab

dhh
ll

dhh
ll

BAabABBAabAB
γδαβαβγδηη ,,1  ,1

2121

. 

In case if the matrix ABE  will be nonsingular, then from Eq. (2.20)2 we can 
determine fluctuations Av  

 αβαβ ,)( 1 uEEv BABA −−=  (2.23) 

where 1)( −ABE  is the inverse matrix of ABE , NBA ,...,,2,1, = , 2,1, =βα . 

Substituting (2.23) to Eq. (2.20)1 we obtain 

 puEu =+ αβγδαβγδρ ,0  (2.24) 

where 

 BABA EEEBE γδαβαβγδαβγδ
10 )( −−=  (2.25) 

The quantities defined by Eq. (2.25) are effective stiffness moduli, obtained 
as a result of using the tolerance averaging technique. 

Eq. (2.24) has an analogical form to the well known equation of plate 
deflection, but with the difference that Eq. (2.24) doesn’t contain the stiffness 
moduli αβγδB  (which are functions) but effective stiffness moduli which are 
constant. These moduli are not postulated but calculated, provided the fluctuation 
shape functions are known. 
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Eq. (2.22) describes dynamics of periodically inhomogeneous plates. In case 
of isotropic body the stiffness moduli (2.12) take the form  










+
−++= abab

ab
ababab hB

µλ
δδλ

δδδδµδδλ γδαβ
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12

23

. 

In case of isotropic and homogeneous plate, the values occurring in (2.24) 
have a form wu =  and αβγδαβγδ EE =0  as well as are explained by means of the 

well known stiffness 
)2(3

)(
)1(12

3

2

3

µλ
µµλ

ν +
+

=
−

=
hEhD  where DEE == 22221111  and 

DEEEEEE 2211212212211212112121122 =+++++ . Eq. (2.24) will get the classical form 

pDwDwDww =+++ 2222112211110 ,,2,ρ . 

2.6. Free vibrations of uniperiodic inhomogeneous plates 

Let us consider a uniperiodic plate, simply supported on all edges. 

Boundary conditions are assumed in the form  

− 0=u  and 02
1
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=
∂
∂
x
u  at 01 =x  and 11 Lx =

− 0=u  and 02
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=
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∂
x

u  at 02 =x  and 

whereas initial conditions will be analogical as in [2.4]; 
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ππ

where 0c  denotes an initial, sufficiently small deflection in a central point of the 
plate and 0v  is the velocity of  displacement of the plate mid-surface in the time 
instant 0=t . 

In this case, equation of motion (2.24) of the plate has the form 

0,,, 22220

0
2222

11220

0

11110

0
1111 =+++ uEu

E
uEu

ρρρ
 (2.26) 
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The equation of a deformed plane of the plate - the eigenfunctions of the 
presented boundary problem - are assumed in the form 
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where ,..,2,1=m  ,..2,1=n . 

The eigenvalue will be equal 
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A solution of Eq. (2.26) has the form  
where 0w  is the solution given by Kaliski in [2.4], for homogeneous plates 
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where 12 −= km , 12 −= jn , ,...3,2,1=k , ,...3,2,1=j  whereas 1w  is the 
solution obtained by Jeleniewicz in [2.3], describing the effect of periodic 
heterogeneity 

)(),,(=),,( 1
1

2

2
11

1
22

2

1
11

1
11

210211 xh
L
n

E
E

L
m

E
Etxxwtxxw 





















+








⋅−

ππ  

The fluctuation shape function  is assumed in this example in the form 
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where a constant 1c  is the order of 2l . 

To show the solution in a graphical form, following plate parameters had 
been assumed: side lengths mLL  521 == , thickness  2,0=h m, periodicity cell 
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length mll 3.021 == , material constants: PaE 9
1 1027 ⋅= , 2.01 =ν , 

31 2200
m
kg

=ρ , PaE 9
2 10190 ⋅= , 

32 7900
m
kg

=ρ .

The plate is reinforced and its saturation with reinforcing rods is described 
by the function v , 2.01 =ν . 

The dependence between the plate deflection, frequency of free vibrations 
and saturation of the basic cell with rods were analyzed. The basic cell dimension 
was assumed as  05.0=l m and the saturation function - 0.9, 0.7 and 0.5. The 
dimensions and material constants of the matrix and rods remain unchanging. 

a)

b)

c)

Fig. 2.1. The averaged plate deflection at time 5.1=t s 
for saturation a) 0.9, b) 0.7, c) 0.5 

The figures 2.1 show the averaged plate defection for every case of 
saturation at the same time 5.1=t s. The graphs were made as spatial figures and 
contour line figures. The contour line figures are characterized by various 
intensity of colour depending on position relative to the vertical axis. 
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The figure 2.2 shows the cross-section of the plate deflection w  for three 
cases of saturation with rods for the same time. 

1 2 3 4 5
x1 �m�0.002

0.004
0.006
0.008
0.010

w�m�

 
Fig. 2.2. Plate deflection - cross-section for x2=L2/2 at the time 5.1=t s  

for saturation 0.9 - black line, 0.7 - red line, 0.5 - blue line 

Fig. 2.3 presents the deflection of the plate centre at the time 0.1 s. The 
graph was made for every values of saturation (0.9 - green line, 0.7 - red line, 0.5 
- blue line) with the assumption of a certain free vibration frequency 11ω . As it 
results from the graph, reduction of the saturation causes reduction of the free 
vibration frequency. The vibration amplitude is the same in every cases. 

0.02 0.04 0.06 0.08 0.10
t �s�

�0.015
�0.010
�0.005

0.005
0.010
0.015

w�m�

 
Fig. 2.3. The plate displacement in the point with coordinates  (L1/2; L2/2) 
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Fig. 2.4. The dependence between free vibrations frequency of the plate 

and Lamé constants (a, b) and mass density (c) 

Fig. 2.4 shows a dependence between free vibration frequency of the plate 
and the Lamé constants as well as plate mass density. The graphs were made for 
three values of frequency: 11f  - black line, 33f  - red line , 55f  - blue line. Basing 
on Fig. 2.4a we can conclude that along with increase of 2µ  (for the 
reinforcement) the free vibration frequency of the plate under consideration also 
increases. Moreover, we can notice that the higher frequency number is being 
considered, the stronger is the monotonicity of this dependence. The increase of 
value of 2λ  has a negligible effect on the increase of vibration frequency. The 
larger is the mass density, the lower is vibration frequency. In this case, we can 
also notice that the higher number of the frequency is being considered the 
stronger is the monotonicity of the dependence. 

2.7. Summary 

The methods of tolerance averaging, presented in this paper, concern the 
micro-periodic inhomogeneous media. 

The tolerance averaging technique bases on the observation that the 
description of a material medium and properties of this medium is achieved by 
means of numbers obtained from an experiment, hence is not explicit. It depends 
on some „small” parameter ε ≥ 0 which defines the precision of measurements 
and calculations. According to the tolerance technique, if Rs ∈1  is the result of 
measurement of a certain quantity Rs∈ , then we consider that this solution can 
be identified with s with a certain precision ε if .1 ε≤− ss  Every other number 

Rs ∈2  which satisfies the inequality ε≤− 2ss  can be identified with the 
quantity s with the same precision. If a quantity being analyzed was equal 0, then 
all numbers from the set εε ,−  could be identified with this zero value with the 
precision ε.  
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The idea presented here was expressed in 1992 by Fichera, [2.1], in the 
following way:  in Physics the statement „the quantity s is equal to zero” has a 
different meaning than in Mathematics, since it expresses only the fact that 

ε<s , where the positive number ε  must be regarded as a physical constant 
which should be determined before formulating any mathematical model of the 
physical phenomenon under consideration. 

The described methods of tolerance averaging can be generalized on account 
of functionally graded materials (FGM) if variability of functions, describing 
physical properties of the body, can be admitted for several neighboring 
representative elements as periodic with an established tolerance. 

As a result of application of the tolerance modeling we can obtain both non-
asymptotic models and asymptotic ones, i.e. such that the periodicity cell size is 
equated to zero. The asymptotic tolerance models contain microstructure 
parameters which occur in effective constants. These constants can be determined 
from appropriate equations. 

The tolerance averaging techniques are convenient way of modelling of 
inhomogeneous media, alternative to classical methods of homogenization. 
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3.  

Tolerance modelling of medium thickness 
functionally graded plates 

Various averaging approaches based on the known Hencky-Bolle-type plate 
assumptions are proposed in many papers to model medium thickness 
functionally graded plates with a microstructure. It can be shown that the effect 
of the microstructure size plays a crucial role in different thermomechanical 
problems of similar plates, cf. [3.2, 3.5, 3.7, 3.29, 3.68÷3.70]. However, 
governing equations of most of averaged models neglect the effect of the 
microstructure size on the overall behaviour of these plates. This lack of these 
models is supplemented in the tolerance model, which is based on the tolerance 
modelling approach, cf. [3.64, 3.65, 3.66]. 

3.1. Introduction 

Fig. 3.1. A fragment of a functionally graded plate with a microstructure, cf. [3.23] 

In this chapter vibrations of medium thickness functionally graded plates 
with a microstructure are considered. It is assumed that the plate has tolerance-
periodic structure on the microlevel along only one direction parallel to the 
x1-axis, but on the macrolevel it has functionally graded properties along this 
direction, cf. [3.21÷3.24, 3.57]. Material properties of the plate are assumed to be 
constant along the x2-axis. In plates of this kind a “basic cell” can be 
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distinguished, with a span l. The length l is assumed to be of an order plate 
thickness d, d∼l. A fragment of the plate is shown in Fig. 3.1. 

Composites and structures with functionally graded properties are usually 
described using the known methods, which are applied for periodic media. Some 
of them are shown in [3.57]. Similar approaches can be used for functionally 
graded plates with microstructure. Models based on the asymptotic 
homogenization method, cf. [3.4], are very interesting and useful, cf. [3.33]. 
Other modelling approaches for various periodically microstructured media are 
also proposed and applied in a series of papers, e.g. a homogenization based on 
microlocal parameters is used to model periodic plates by Matysiak and Nagórko 
[3.38] or to analyse temperature distributions in a periodically stratified layer by 
Matysiak and Perkowski [3.39]; natural frequencies of thick square plates made 
of orthotropic and hexagonal materials are considered by Batra et al. [3.3]; 
stability of multi-cell thin-walled columns is analysed by Królak et al. [3.34]; 
dynamic stability and buckling of beams or plates with metal foam core with 
variable mechanical properties are considered by Magnucka-Blandzi [3.36], 
Jasion et al. [3.16], Grygorowicz et al. [3.15]. 

In a series of papers there are shown many theoretical and numerical results 
of various problems of functionally graded structures. The modified Donnell type 
dynamic stability and compatibility equations are used to analyse stability of 
functionally graded cylindrical shells by Sofiyev and Schnack [3.56], where 
solutions are obtained by Galerkin’s method. Natural frequencies are investigated 
applying some meshless methods in a few of papers, e.g. for functionally graded 
plates by Ferreira et al. [3.14], for sandwich beams with functionally graded core 
by Bui et al. [3.6]. A collocation method with higher-order plate theories is used 
to analyse vibrations of FG-type plates by Roque et al. [3.53]. A GDQ solution 
for free vibrations of shells is presented by Tornabene et al. [3.61]. Higher order 
deformation theories are used to analyse thermomechanical problems for plates, 
which are functionally graded along their thickness by Akbarzadeha et al. [3.1] 
and also for functionally graded plates and shells by Oktem et al. [3.47]. 
Tornabene and Viola [3.60] consider a static behaviour of functionally graded 
shells. Modal analysis of functionally graded beams with effect of the shear 
correction function is shown by Murin et al. [3.45]. A new low-order shell 
element is used to investigate shell-like structures with functionally graded 
material properties by Kugler et al. [3.35]. In the paper of Jha et al. [3.31] there 
are analysed free vibrations of functionally graded thick plates with shear and 
normal deformations effects. Higher-order shear and normal deformable plate 
theory is applied by Sheikholeslami and Saidi [3.55] to consider vibrations of 
functionally graded rectangular plates. A numerical analysis of heat transfer in 
polycrystalline composites, containing metallic or elastic interfaces is shown by 
Sadowski and Golewski [3.54]. A problem of single-pulse chaos for 
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a functionally graded materials rectangular plate is considered by Yu-Gao 
Huangfu and Fang-Qi Chen [3.67]. Non-linear analysis of functionally graded 
plates based on a certain shear deformation theory is presented by Derras et al. 
[3.10]. Laminated plates are investigated by Fantuzzi et al. [3.13], where a strong 
formulation finite element method based on GDQ technique is shown. 

It is necessary to observe that governing equations of these models neglect 
usually the effect of the microstructure size, cf. [3.5]. In order to analyse this 
problem it can be applied the tolerance averaging method, cf. [3.21, 3.64, 3.65, 
3.66], which makes it possible to take into account this effect on the overall 
behaviour of microstructured media. Various problems of dynamics and stability 
for periodic structures and thermoelastic problems for periodic composites were 
analysed using this method in a series of papers, e.g. for thin periodic plates by 
Jędrysiak and Woźniak [3.29], Jędrysiak [3.17÷3.20]; for periodic fluid-saturated 
grounds by Dell’Isola et al. [3.9]; for plane periodic structures by Wierzbicki and 
Woźniak [3.62]; for periodic wavy-type plates by Michalak [3.42]; for thin plates 
reinforced periodically by a system of stiffeners by Nagórko and Woźniak [3.46]; 
for periodic medium-thickness plates by Baron [3.2]; for periodic thin plates with 
the microstructure size of an order of the plate thickness by Mazur-Śniady et al. 
[3.41]; for multiperiodic fibre reinforced composites by Jędrysiak and Woźniak 
[3.30]; for honeycomb lattice-type plates by Cielecka and Jędrysiak [3.8]; for 
periodic shells by Tomczyk [3.58, 3.59]; for microperiodic composite rods with 
uncertain parameters by Mazur-Śniady et al. [3.40]; for medium thickness plates 
resting on a periodic Winkler’s foundation by Jędrysiak and Paś [3.27]; for thin 
periodic plates with large deflections by Domagalski and Jędrysiak [3.11]; for 
vibrations of geometrically nonlinear slender periodic beams by Domagalski and 
Jędrysiak [3.12]; for dynamics of periodic three-layered plates by Marczak and 
Jędrysiak [3.37]. 

The tolerance modelling can be successfully used to consider various 
thermomechanical problems of functionally graded structures, e.g. for stability of 
transversally and longitudinally graded plates by Jędrysiak and Michalak [3.26]; 
for heat transfer in transversally graded laminates by Jędrysiak and Radzikowska 
[3.28]; for dynamics of plates with longitudinally graded structure by Michalak 
and Wirowski [3.44], Wirowski [3.63], Perliński et al. [3.51]; for vibrations of 
transversally graded thin plates with the plate thickness small in compare to the 
microstructure size by Jędrysiak [3.21], Kaźmierczak and Jędrysiak [3.32], 
Jędrysiak and Kaźmierczak-Sobińska [3.25]; for dynamics of thin plates having 
the microstructure size of an order of the plate thickness by Jędrysiak [3.22-
3.24]; for dynamic problems of a thin-walled structure with dense system of ribs 
by Michalak [3.43]; for non-stationary heat transfer in a hollow cylinder with 
functionally graded material properties by Rabenda [3.52]; for heat conduction in 
cylindrical composite conductors with non-uniform microstructure by Ostrowski 
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and Michalak [3.48, 3.49]; for thermoelastic problems in transversally graded 
laminates by Pazera and Jędrysiak [3.50]. A lot of examples of applications of 
the tolerance method to analyse these composites and structures can be found in 
the books [3.21, 3.64, 3.65]. 

In this chapter there are derived the tolerance model equations of the 
medium thickness microstructured functionally graded plates with the 
microstructure size of an order of the plate thickness, which describe the effect of 
the microstructure size. Moreover, these equations and equations of the 
asymptotic model are applied to analyse vibrations for a simply supported 
microstructured plate band. Formulas of vibration amplitudes and resonance 
frequencies are obtained by using the Ritz method. 

3.2. Modelling foundations 

3.2.1. Preliminaries 

A plate is considered in the orthogonal Cartesian coordinate system Ox1x2x3. 
Let t be the time coordinate and subscripts i,k,l run over 1,2,3, but α,b,γ run over 
1,2. Introduce x≡(x1,x2), x≡x1, z≡x3 and denote the region of the undeformed plate 
by },2/2/:),{( Π∈≤≤−≡Ω xx dzdz , where Π is the plate midplane and d(⋅) is 
the plate thickness, which can be a tolerance-periodic function in x. Derivatives 
of xα are denoted by ∂α and also ∂α...d≡∂α...∂d. Let }0{]2/,2/[ ×−≡∆ ll  be the 
“basic cell” on Ox1x2, where l is its length dimension along the x1-axis, which 
satisfies conditions d∼l and l<<L1. Hence, it is called the microstructure 
parameter. Introduce also an interval ],0[ 1L≡L . All material and inertial 
properties of the plate, as mass density ρ=ρ(⋅,x2,z) and elastic moduli 
aijkl=aijkl(⋅,x2,z), are assumed to be also tolerance-periodic functions in x,  
even functions in z and independent (constant) of x2. Denote 
cαbγd≡aαbγd−aαb33aγd33(a3333)−1, cα3γ3≡aα3γ3−aα333a33γ3(a3333)−1, where aαbγd, aαb33, 
aα3γ3, a3333 are the non-zero components of the elastic moduli tensor. Denote also 
plate displacements by ui (i=1,2,3) and total loadings in the z-axis direction by p. 

3.2.2. Governing equations 

The medium thickness plates under consideration have properties described 
by tolerance-periodic functions of x - a mass density per unit area µ, a rotational 
inertia ϑ and stiffnesses bαbγd, dαb, defined by the following formulas 
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Using the kinematic assumptions of the Hencky-Bolle-type plate theory, the 
following action functional can be written 
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 (3.3) 

where: w=u3(x,t) is a plate deflection; φα(x,t), α=1,2, are plate rotations. It is 
assumed that   is tolerance-periodic, highly oscillating function of x. Using the 
principle of stationary action to functional  , (3.2), and Lagrangean  , (3.3), 
we arrive at the known system of partial differential equations for deflection 
w(x,t) and rotations φα(x,t) of the medium thickness plate: 
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(3.4) 

The above equations describe vibrations of medium thickness functionally 
graded plates with microstructure. Equations (3.4) have highly oscillating, non-
continuous functional coefficients. Hence, an application of these equations to 
special problems is rather difficult and it is necessary to propose an averaged 
approach of them or Lagrangean  , (3.3). 

3.3. Tolerance modelling 

3.3.1. Basic concepts 

Basic concepts of the tolerance modelling method, which is used here, were 
defined in the books [3.21, 3.64÷3.66] and also in a series of papers, e.g. for 
transversally graded plates in [3.23÷3.24]. Here, these concepts can be only 
mentioned: the tolerance system, the tolerance-periodic function f, 

),( ∆L∈ rTPf d , the slowly-varying function F, ),( ∆L∈ rSVdF , the highly 
oscillating function φ, ),( ∆L∈φ d

rHO , the fluctuation shape function g, 
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),( ∆L∈ d
rFSg , where d is a tolerance parameter, 0<d<<1, r is a kind of the 

function, r>0. 

Introducing a cell ∆+≡∆ xx)(  at ∆L∈x , })(:{ L⊂∆L∈=L∆ xx , the 
averaging operator for an integrable function f can be defined by 

 .,),(),(
)( 2

1
2 ∆∆

L∈=>< ∫ xdyxyfxxf
xl  (3.5) 

The averaged value of a tolerance-periodic function f, calculated from (3.5), 
is a slowly-varying function in x. 

3.3.2. Fundamental modelling assumptions 

Using the introductory concepts two fundamental assumptions of the 
tolerance modelling can be formulated, cf. [3.64÷3.66] and for thin functionally 
graded plates in [3.23÷3.24]. 

The first assumption is the micro-macro decomposition, which lets to 
decompose medium thickness plate displacements in the form 

 
)],,()(),([),,(
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txgtztzu
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xxx
xx

ααα θϕ +=
=

 (3.6) 

where: new unknowns - macrodeflection w, macrorotations ϕα (α=1,2), and 
fluctuation variables θα (α=1,2), are slowly-varying functions in x 
( ),(),,(),,,(),,,( 1

222 ∆L∈⋅θ⋅ϕ⋅ dαα SVtxtxtxw ); the known fluctuation shape function 
g, ),(),,()( 1 lOgFSg ∈∆L∈⋅ d  has the form of a saw-type function of x. Similar 
assumptions were introduced for periodic plates - thin, cf. [3.41], and medium 
thickness, cf. [3.2]. 

The next fundamental assumption is the tolerance averaging approximation, 
such that terms of an order of tolerance parameter d are negligibly small in the 
modelling procedure, e.g. for functions ),,(1 ∆L∈ dTPf  ),,(1 ∆L∈ dFSh  

),,(1 ∆L∈ dSVF  in formulas: ),()()( d+>=<>< Oxfxf  
),()()()( d+>=<>< OxFxfxfF  )()()()()( d+>∂=<>∂< OxFxhfxhFf , and 

they can be neglected. 

3.3.3. Modelling procedure 

The tolerance modelling procedure of thin functionally graded plates, having 
thickness d, which is small in comparing to the span of cell l, cf. [3.21, 3.32], can 
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be easily adopted to consider plates with the span l being of an order of the plate 
thickness, cf. [3.22÷3.24]. 

In the first step Lagrangean   in the form (3.3) is formulated. The second 
step is the substitution of the micro-macro decomposition (3.6) into formula 
(3.3). In the next step the averaging operator (3.5) is used to the resulting 
equation. Applying in the fourth step the tolerance averaging approximation the 
tolerance averaged lagrangean >< g  is derived in the following form 
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(3.7) 

From the principle of stationary action used to formula (3.7) the Euler-
Lagrange equations for unknown functions ),,(),,,(),,,( 222 txtxtxw ⋅θ⋅ϕ⋅ αα  can be 
derived 
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(3.8) 

3.4. Governing equations 

Substituting Lagrangean (3.7) into equations (3.8), after some manipulations 
governing equations for functions ),,(),,,(),,,( 222 txtxtxw ⋅θ⋅ϕ⋅ αα , α=1,2, are 
obtained 
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which are a system of partial differential equations. Equations (3.9) with micro-
macro decomposition (3.6) stand the tolerance model of medium thickness 
functionally graded plates with a microstructure. Underlined terms of equations 
(3.9) depend on the microstructure parameter l. Hence, the tolerance model takes 
into account the effect of the microstructure size. Coefficients of (3.9) are slowly-
varying functions in x. The basic unknowns - w, ϕα, θα, are slowly-varying 
functions in x. Boundary conditions should be formulated for macrodeflection w 
and macrorotations ϕα on all edges, but for fluctuation variables θα only for 
x2=const. 

In order to compare and evaluate obtained results an approximate model, 
which governing equations neglect the effect of the microstructure size, is 
introduced. The equations of this model can be derived from equations (3.9) after 
vanishing underlined terms and can be written as 
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(3.10) 

The above equations stand the asymptotic model of medium thickness 
functionally graded plates with a microstructure. On the contrary to equations 
(3.9) they do not describe the effect of the microstructure size on vibrations. 
Equations (3.10) have also slowly-varying coefficients. 

3.5. Example - vibrations of medium thickness functionally 
graded plate band  

3.5.1. Preliminaries 

 
Fig. 3.2. A fragment of a functionally graded plate band 
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Let us consider vibrations of a simply supported plate band, with a span 
L≡L1, cf. Figure 3.2. It is assumed that the plate band is made of two elastic 
isotropic materials, with Young’s moduli EE ′′′, , Poisson’s ratios ν′′ν′,  and mass 
densities ρ′′ρ′, . Both materials are perfectly bonded across interfaces. It is 
assumed that ,),(),( L∈ρ xxxE  are tolerance periodic, highly oscillating functions 
in x, )(),()(),( 00 L⊂∆L∈⋅ρ⋅ d HTPE , but Poisson’s ratio ν′′=ν′≡ν  is constant. 
Under condition EE ′′≠′  and/or ρ′′≠ρ′  the material structure of the plate can be 
treated as functionally graded in the x-axis direction. Hence, these plate 
properties can be assumed in the form 
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λγ+λγ−∈′=⋅
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(3.11) 

where γ(x) is a distribution function of material properties, cf. Figure 3.3. 

Fig. 3.3. A basic cell of a functionally graded plate under consideration, cf. [3.23] 

Because the cell ),(x∆  ,L∈x  of the plate band, has the form shown in 
Fig. 3.3 the periodic approximation of the fluctuation shape function can be 
assumed in as 
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where )(, xyx ∆∈L∈ ; )(~ xγ  is a periodic approximation of the distribution 
function of material properties γ(x), cf. Fig. 3.4. 
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Fig. 3.4. A fluctuation shape function for the cell of the plate, cf. [3.23] 

3.5.2. Governing equations of vibrations 

Because vibrations of a medium thickness plate band are considered it is 
assumed that all basic unknowns are independent of argument x2. Hence, the 
governing equations of the tolerance model (3.9) take the form 
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 (3.13) 

Equations (3.13) are decoupled on two systems of equations: the first of 
differential equations for unknown functions - macrodeflection w, macrorotation 
ϕ1, fluctuation variable θ1, and the second - for macrorotation ϕ2 and fluctuation 
variable θ2. 

Obtained results can be evaluated using the governing equations of the 
asymptotic model (3.10), which have the form 
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(3.14) 

They are also decoupled on two systems of equations. It can be observed that 
for fluctuation variables θα, α=1,2, there are only algebraic equations (3.14)3,5. 

3.5.3. Approximate solutions to the governing equations 

Equations (3.13), (3.14) have slowly-varying functional coefficients of x1 
argument. Hence, they are not a good tool to solve special problems of these 
plates. But some known approximate methods can be used, for instance the Ritz 
method, such for thin functionally graded plates in [3.21, 3.22÷3.25, 3.32]. For 
the plate band under consideration and using the following denotations 
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Lagrangean >< g , (3.7), takes the form 
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Solutions to equations (3.13) can be assumed in the form satisfying proper 
boundary conditions for a simply supported plate band 
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where: α is a wave number; w is a free vibration frequency; 
2211

,,,, θϕθϕ AAAAAw  
are amplitudes. 

Using these solutions (3.17) and introducing the following denotations 
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 (3.18) 

the maximal kinetic energy TM
maxK  and the maximal potential energy TM

max  by the 
tolerance model can be written as: 

− the maximal kinetic energy TM
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− the maximal potential energy TM
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Similarly, these energies in the framework of the asymptotic model take the 
form: 
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Using the conditions of the Ritz method 
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(3.21) 

to formulas (3.19) and (3.20) systems of linear algebraic equations for amplitudes 
2211

,,,, θϕθϕ AAAAAw  can be obtained. 

For the tolerance model these algebraic equations take the form of two 
decoupled systems: 
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− the second for amplitudes 
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Below, our considerations are restricted only to equations (3.22a). Solving 
this system formulas of amplitudes 

11
,, θϕ AAAw  take the form 
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where 21, −− ϖϖ  are two lower and 1+ϖ  the higher resonance frequencies, 
respectively. Introducing the following denotations 
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and also 

 

,4

,3

,9227

3 32

2

32

bααd

b

α

−−+≡

−≡

−+≡

i

bca

cbabad

 (3.25) 

formulas of the abovementioned resonance frequencies take the following form 
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It can be observed that formulas (3.26) are identical to these, which describe 
free vibration frequencies of medium thickness functionally graded plate band 
with microstructure in the framework of the tolerance model. There are two 
fundamental lower frequencies 21, −− ϖϖ  of free macro-vibrations and one higher 
frequency 1+ϖ  of free micro-vibrations. 

On the other side, using the conditions of the Ritz method (3.21) to the 
asymptotic model formulas of the maximal energies (3.20) the systems of 
algebraic equations are obtained: 
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− the second for amplitudes 
22

, θϕ AA

.0~
,0~)(

22

22

22

2
2

2
2

2

=+α

=α+ϑw−+α

θϕ

θϕ

ABAB

ABADB




(3.27b) 

Restricting our considerations to equations (3.27a) and solving this system 
formulas of amplitudes 

11
,, θϕ AAAw  have the form 
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where 21
~,~

−− ϖϖ  are two lower resonance frequencies. Introducing denotations 
similar to (3.24) 
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formulas of the abovementioned resonance frequencies take the following form 
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Formulas (3.30) are identical to these of free vibration frequencies of 
medium thickness functionally graded plate band with microstructure in the 
framework of the asymptotic model. They are only two fundamental lower 
frequencies 21

~,~
−− ww  of free macro-vibrations.  

It can be observed that only in the framework of the tolerance model the 
effect of the microstructure size of the plate strip can be analysed in the form of 
higher vibration frequencies, (3.26)3. However, in the asymptotic model this 
effect is neglected and the fundamental lower frequencies can be only 
investigated, (3.30). 

3.6. Final remarks 

The main problem considered in this chapter is modelling of vibrations of 
medium thickness functionally graded plates having a microstructure. 
Unfortunately, most averaging approaches applied to analyse these problems 
neglects phenomena related to the microstructure size of the plate. In order to 
take into account the effect of the microstructure size the tolerance method is 
used. Applying this method the known differential equations, based on the 
Hencky-Bolle-type plate assumptions, with tolerance-periodic, non-continuous, 
functional coefficients is replaced by governing equations with smooth, slowly-
varying coefficients. The derived tolerance model equations describe the effect of 
the microstructure size on the overall behaviour of microstructured medium 
thickness functionally graded plates under consideration. However, the 
asymptotic model equations neglect this effect and describe these plates on the 
macrolevel only. 

Following the obtained analytical results some general remarks can be 
formulated. 

1 The tolerance model take into account the effect of the microstructure 
size in dynamic problems of microstructured medium thickness 
functionally graded plates, e.g. the “higher order” vibrations related to 
the plate microstructure; 

2 The asymptotic model lets to investigate only lower order vibrations 
of these microstructured plates; 
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3 Solutions obtained in the framework of the tolerance model have to 
satisfy the condition to be slowly-varying functions in x1. This 
condition stands a posteriori verification of results of this model. 

Some other thermoelasticity problems of the medium thickness functionally 
graded plates will be considered in forthcoming papers, where certain evaluations 
and comparisons with other averaged models could be presented. 
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4.  
 
Application of structural topology optimisation 
for planetary carrier design 

A planetary gear train is very common in automatic gearboxes nowadays as 
well as in manual gearboxes for a low range or reduces. The main advantage of 
this gear train is compactness with a connection to a high possible gear ratio. 
Additional advantages such as a possibility to change of the gear ration and 
direction of rotation with a very simple method by stopping one of three main 
components of the gear train can be found. Of course, the planetary gear train has 
disadvantages like a complex design that requires precise gears and a planet 
carrier with high torsional stiffness. 

The presented work concerns a very important part of the planetary gear 
train, namely, a design of the planet carrier. An application of heavy-duty 
commercial gearboxes is selected because large torque levels dominate in this 
application and then the design of the carrier is crucial. One of the most 
important parameters of the plant carrier is its torsional stiffness, which has a 
direct influence on stress level gears. The low stiffness leads to uneven contact 
between the gears during loading which reduces pitting resistance of the gears. 
The next important parameter is the stress level in the planet carrier, because of 
varying torque the planet carrier is exposed to fatigue failure. These two 
parameters are taken in a design process as the main factors. 

A topology optimization method [4.1, 4.3, 4.6] was used to find a direction 
to design the torsional stiff carrier also taking into account a size limit of the 
carrier. 

The project is done with the purpose of showing that the usage of the 
optimization tool helps significantly to design a new part, which excels a 
standard part in terms of structural performance. 

As it was said, a critical parameter in terms of working conditions between 
mating gears is the torsional stiffness of the planet carrier. The stiffer the carrier - 
the better results in terms of durability of the train gear are achieved. It is 
generally well known that quality of a contact between the mating gears has a 
significant influence on durability of the gears. The contact quality is effected by 
the low stiffness of the carrier because the contact is uneven characterising an 
edge-to-surface contact type instead of a surface-to-surface type. This leads 
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directly to rising of contact stresses and therefore reducing pitting lifetime of the 
gears, especially the sun gear. The sun gear is loaded by more cycles resulting 
from a number of the mating planetary gears - normally they are from 3 to 5. 

In order to reduce this effect of contact changes due to the low stiffness 
carrier, a simple method can be implemented, namely the gears can have very 
small helix angle to compensate the planet carrier deformation, see Figs.: 4.14 
and 4.15. This solution looks brilliant at first glance. Unfortunately, the real 
implementation is more complex because it should reflect a particular torque 
level and then the correction is constant for all torque levels. However, this is 
meant to be only for selected torque levels, the gear train works in the optimum 
configuration and the rest of the time the contact is disturbed, the gears work in 
the conditions that are far from optimal. Therefore, the implemented correction 
cannot be suitable for a very much different duty cycle. The selection method of 
this additional helix angle correction is complex and an entire procedure can be 
found in the existing norms and standards. Hence, the best solution for the carrier 
is a very stiff design and then the correction can be neglected without any 
dramatic reduction of the pitting lifetime of the gears. At that time, an effect of 
the unwanted edge to surface contact is small in wide range of the used torque 
levels. 

A second parameter - the maximum stress level is also important for the 
carrier but it is somehow driven by the carrier stiffness. The stiff design normally 
can be optimized quite easily to meet the required maximum stress level. To 
conclude, the torsional stiffness of the carrier is crucial for robustness of the 
planetary gear train and therefore critical during the design process. 

The presented work is an attempt to design the carrier, which has the 
improved torsional stiffness with low stress levels in a predefined space 
envelope. The presented research corresponds to a typical design task of a design 
project of the planetary gear train. 

To solve the established problem a design software SolidThinking Inspire 
for Altair Corporation [4.5] was utilized, this tool is developed to help engineers 
to find an initial shape of structures/ designs using topology optimization 
employing a finite element method among others. The usage of this tool can 
improve the design process significantly and it can bring measurable benefits as 
it is shown in this paper. 

4.1. Goals 

The purpose of this work is to create the carrier design with the improved 
torsional stiffness with less than 2.5 minutes of angular displacement at an input 
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torque of 50% of a maximum nominal torque. The design is limited by the pre-
defined space – the envelope in which the planet-carrier must be fitted see  
Fig. 4.4. For a comparative reason a standard design on the carrier was analysed 
as well and the new stiff carrier design must have the same mass as the standard 
one. The standard design is shown in Fig. 4.1 and it represents a typical design 
existing on the market in heavy-duty gearboxes. 

 
Fig. 4.1. Standard design of planet carrier used as reference 

 
Fig. 4.2. Defined space envelope of planet carrier 
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The design of the carrier is very much determined by technology used to 
manufacture and it creates numerous design limitations. Therefore, in case of this 
work it is assumed that the both carriers are made from two forging pieces of 
alloy steel, then heat treated, machined and welded using a laser welding process. 
This welding technology is currently available on a market and a defined weld 
depth of 10 mm is completely feasible. Additionally, the laser welding ensures a 
stability in the manufacturing process, which translates directly to better product 
quality. 

Table 4.1. Input data used to design planet carrier, see Figure 4.2 

Input Data Value Remarks 

Maximum input torque of the 
planetary gear train, Nm 9500 Fixed value 

Number of the planet gears 5 Fixed value 

Number of teeth of sun gear 25 Fixed value 

Number of teeth of sun planet 28 Fixed value 

Number of teeth of ring gear 85 Fixed value 

Centre distance between sun and 
planet gears 81.7 Fixed value 

Maximum diameter of plane carrier 
Dmax, mm 248 Maximum material without 

planets gears 

High of planet carrier Lmax, mm 100 Maximum material 

Minimum required safety factor 
against fatigue strength at 50% of 

maximum torque 
1.2 Minimum required 

Maximum angular displacement of 
planet carrier at 50% of maximum 

torque, min 
2.5 For the planet carrier crown 

 itself only. 

Material of planet carrier SAE 8620 Or similar material according 
EN standard 

4.1.1. Input data 

The following input data set in Table 4.1 and Fig. 4.2 was used to design the 
planet carrier; the data corresponds to the heavy-duty gearboxes and their manual 
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versions. The commercial heavy-duty gearboxes are characterized by the input 
moment for 1400 Nm up 3300 Nm, and GCW (gross combination weight) 
between 20 - 60 tones. 

4.1.2. Manufacturing aspects of planet-carrier 

The carrier has a complex mechanical part; therefore, its production is 
expensive. Typically, the carrier is made by forging from two pieces, which are 
machining, then welding, and then again machining. The welding process can be 
different; it can be a standard arch welding method as well as a laser welding. It 
is assumed in the presented work that the planet carrier is made using the 
described process with the laser welding with a depth of maximum 10 mm. The 
location of the weld is placed in the middle of the carrier as it is shown in  
Fig. 4.3. 

 
Fig. 4.3. Weld location in planet carrier reference  

4.2. Analysis method 

The analysis method depends on an estimation of a targeted shape of the 
planet carrier using the topology optimization with an objective to maximize the 
torsional stiffness. Then, steps of an interactive process of designing and FE 
analysis are done so to get the design of the carrier according to required 
constrains. In the presented work steps with shape and fatigue analyses were 
omitted because the elaborated design basing on the first step optimization is 
satisfactory in terms of the obtain stress levels, see Fig. 4.12. As further check, 
fatigue analysis could be done if a duty cycle is known. In the presented work the 
duty cycle is not defined therefore the fatigue analysis is not performed. The duty 
cycles are completely determined by used applications of the gearbox and 
without a deep analysis of the application is very hard to find the right cycle 
loading. 
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All calculations are done for two designs of the carrier; one called a standard 
design and the other one - the improved design defined basing on the topology 
optimization. The loads and the boundary conditions are the same for all 
analyses. Moreover, there is a requirement that the both designs must have the 
same mass. As a result, a comparison is made between them in terms of the stress 
levels and the torsional stiffness and the stiffness is metric, which is used to 
measure a design improvement. 

The topology optimization was done using the commercial software 
SolidThinking Inspire (Altair Corporation) the rest of the calculations using the 
finite element methods were done ANSYS 15 [4.4] and 3D modelling was done 
using Autodesk Inventor 2015. 

A material model is linear isotopic since allowable stresses must be lower 
than the fatigue strength. The nonlinearity is introduced in the FEA model 
through a contact definition. The fictional contact with friction coefficient of 0.1 
is used. 

The FEA was conducted only a one fifth of the carrier and asymmetry 
conditions were used in the cutting planes since the applied load is asymmetric. 
The FEA analysis is done in two steps first to get required press-fit between the 
carrier and the axle and then the bearing load is applied on the axle. 

The details of the math models are presented in the next chapters of this 
paper. 

Table 4.2. Material mechanical properties [4.2] 

Material 
Yield 

strength, 
[MPa] 

Tensile 
strength, 
[MPa] 

Fatigue 
strength at 106 
Cycles, R=-1, 

[MPa] 

Hardness, 
HRC E, 

[MP]a 
Poisson’s 

ratio 

Alloy steel, 
SAE 8620 
(Quench 
Medium) 

~690 ~990 ~380 35 2.12 105 0.3 

4.2.1. Material properties 

The planet carrier and the axles are made from alloy steel and the heat 
treatment of the planet carrier is planned to get the mechanical properties as 
shown in Table 4.2. The axle is not taken into any assessment, therefore the heat 
treatment and stress limits are not set up for the axle. The isotopic linear material 
model was used during calculations since the acceptable stress levels are limited 
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only to elastic range. Alloy steel. SAE 8620 was selected as the material for the 
carrier as it is a standard material for gears and shafts in commercial vehicles. 
The material is assumed to be heat treated to get the required strength, which 
translates to hardness requirements of 35 HRC. 

4.2.2. Topology optimization 

An initial model shown in Fig. 4.4 is used to conduct the topology 
optimization analysis; a design space and a fixed design were predefined in order 
to fulfil requirements concerning boundary conditions, which should be applied 
on the fixed design only. The design space is a space, which is subjected to 
material removal during an optimization process and in fact, it defines the 
envelope of the planet carrier design. The fixed design is the part of the model 
that is not subjected to any changes. 

The used boundary conditions are shown in the Fig. 4.5 and they reflect real 
working conditions of the carrier. The green arrow in the figure means a degree 
of freedom, which is free on a particular surface. The full model of the carrier is 
used during the optimization process to check if an expected symmetric shape of 
the optimal design is obtained and this is an additional check of the math model. 

Optimization parameters are summarized in Table 4.3, and the objective of 
the optimization process is to find a shape of the planet carrier with maximum 
torsional stiffness for the defined loads and for the given boundary conditions. 
The obtained shape of the carrier serves only to create a conceptual model for the 
iterative CAD-FEA analysis.  

Table 4.3. Topology optimization parameters employed during the calculations 

Input Data Value Remarks 

Maximum input torque of 
the planetary gear train, 

[Nm] 
+/-9500 Fixed value 

Objective Maximize stiffness No value 

Thickness constrains 
minimum 10 mm Fixed value 

Total design space volume 30%  

Contacts bounded No separation 

Applied gravity no  
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Stress constantans are not requested, because further FEA analyses of the 
designed carrier are conducted where the stress levels are precisely determined 
and controlled by the created geometry. 

Fig. 4.4. Initial model for topology optimization 

The contact definition between the design and fixed space is defined during 
the topology optimization employing a bounded contact see Fig. 4.5. This means 
that all bonding surfaces in the defined contacts are glued together. 

Fig. 4.5. Contact definition between model components 

4.2.3. Results of topology optimisation 

An obtained shape of the carrier is shown in Fig. 4.6 and this shape 
approximates somehow the real carrier design, because manufacturing constrains 
and the press-fit load should be taken into account. All these aspects are included 
in the final design of the carrier shown in Fig. 4.7. 
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Fig. 4.6. Results of topology optimization with target of 30% of initial volume 

4.2.4. Concept design based on topology optimization results 

The obtained concept model of the carrier was used to design a realistic 
model where manufacturing and other requirements were taken into account. 
This model was analysed basing on a standard iteration process of FEA and 
redesigned in order to meet the requirements concerning stress levels and the 
manufacturing aspects. In the presented work, only two iterations are conducted 
to get the final carrier design. The elaborated design carrier is shown in Figure 
4.7b and it can be seen that the shape is much different from the standard design 
shown in Fig. 4.7a. 

 
Fig. 4.7. Two concept designs: a) standard design, b) concept design  

basing on topology optimization 
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4.2.5. FEA models 

The finite element model recalls the model used for the topology 
optimization in terms of the loads and the boundary conditions. A small change 
can be seen, namely the final model of the carrier is integrated with an output 
shaft, and this does not have any influence on the level of the stresses and the 
stiffness of the carrier. Additionally, only one-fifth of the model is used because 
the load is asymmetric and the geometry has five symmetry planes. This 
procedure helps speeding up the calculations without losing a precision see 
details in Figure 4.8. As well, second order elements are employed to get a 
precise stress estimation. The FEA configuration parameters are shown in Table 
4.4. The load corresponding of 50% of the maximum torque is applied as a 
bearing load on the axle as shown in Fig. 4.9. 

Table 4.4. Analysed components, assigned materials, and FEA element type 

Materials Material Element Type 

Planet Carrier SAE 8620 Tet10 

Axles SAE 8620 Hex20, Wed15, Pyr13 

Fig. 4.8. Finite element model of concept design of planet carrier 
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Fig. 4.9. Load and boundary conditions 

4.2.6. Press-fit between planet axles and planet carrier 

The press-fit connection between the planet axle and the carrier was 
modelled in order to take into account a stiffness benefit obtained by this 
connection. The calculations were made for two values of the interference fit: 
maximal and minimal interferences. Applied tolerances are shown in Table 4.5 
and the maximum interference is 0.028 mm and the minimum one of 0.002 mm. 

Table 4.5. Tolerance between planet carrier holes and axles 

Parts Planet carrier holes Axles 

Nominal dimension, [mm] 26 26 

Top, [mm] +0.013 +0.028 

Low, [mm] 0 +0.015 

4.2.7. Solution 

The problem is numerically solved using the finite element method and the 
calculations are made using the commercial software ANSYS 15 [4.4]. The 
conducted analyses are nonlinear due to implementation of a realistic fictional 
contact between the carrier and the planet axle. The fiction coefficient of 0.1 is 
used in the defined contact between hard steel over hard steel. 
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The material model is linear because the acceptable stress level is below the 
yield strength, which unambiguously means that linear material model is 
sufficient. 

As it was explained, the FE analysis was done in two steps in the first the 
interference fit is implemented and in the second step when the bearing is 
applied. This method allows calculating an alternating stresses due to the applied 
torque and a mean stress produced by the interference fit. The alternating stress is 
taken for the further structural assessment as a more dangerous for the carrier and 
causing fatigue failure. It is good to emphasize here that the carriers fail normally 
due to fatigue fracture. As it was said, in order to make any fatigue estimation, 
the duty cycle is required. In the presented case, the duty cycles is unknown 
therefore the safety factor of 1.2 for the alternating stress is requested in 
reference to fatigue strength. 

4.3. Results and discussion 

The shown design method basing on the topology optimization with the final 
tuning using the standard finite element method can be easily implemented for 
designing complex mechanical parts. Thanks to the topology optimization, the 
new carrier has the greater torsional stiffness adequately for maximum and 
minimum interference by 17.3% and 19.8% than the standard design keeping the 
same mass. The developed carrier is shown in Fig. 4.10. 

Fig. 4.10. Final concept design of the planet carrier 

The obtained stiffness benefits may be unimpressive, but it should be taken 
into account that any stiffness gain of the carrier brings advantage in terms of a 
longer lifetime of planetary train gears. Moreover, the elaborated concept model 
has significantly a better stress distribution without any stress concentration, 
which also improves the lifetime of the carrier. The proposed shape of the carrier 
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differs significantly from the standard design and without the topology 
optimization it is almost impossible to design it. 

The standard design of the carrier has major stress concentrations due to the 
usage of the manufacturing process of welding and thus the defined geometry. 
The stress concentration locations are shown in Fig. 4.11. These areas can be 
places of an initiation of fatigue fractures and the worst location is the ending of 
the weld where the gradient of the stress is the largest. The best solution is to 
eliminate this problem if there is such a possibility. Unfortunately, very often the 
stress concentrations are accepted because the failure fatigues are not observed 
during a particular fatigue test. The tests are normally limited in number of cycles 
because of costs and they reflect only the selected duty cycles. Often, the fatigue 
tests are accelerated and a level of the load is inappropriate; that can make failure 
modes not realistic. Therefore, the best option is to remove the geometric stress 
concentrations especially if they are located close to the welds because the 
material is the weakest there. 

 
Fig. 4.11. Alternating von Mises stresses for maximum interference 

for standard planet carrier 

The new carrier does not have this problem because its shape is properly 
designed to avoid any stress concentrations. Moreover, a thickness of the carrier 
in a place where the weld is located is reduced to get a full through wall weld. 
The required safety factor of 1.2 is achieved with the new carrier design as 
shown Fig. 4.13.  
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Fig. 4.12. Alternating von Mises stresses for maximum interference 
for new concept planet carrier 

Fig. 4.13. Safety factor (alternating stress/fatigue strength) for new planet carrier 

Fig. 4.14. Total displacement for maximum interference 
for new concept planet carrier 
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Fig. 4.15. Total displacement for maximum interference for standard planet carrier 

The torsional stiffness is calculated as a ration of the applied torque divided 
by the relative twist angle between two axle holes of the planet carrier, 
Fig. 4.16. 

 
Fig. 4.16. Points: A and B used to calculate stiffness of planet carrier 

The comparison results are presented in Tables 4.6 and 4.7, the torsional 
stiffness improvement is adequately 17.3% and 19.8% for the maximum and 
minimum interference is obtained. The obtained results are satisfactory taking 
into account the design stiffness requirement. The applied method gives the 
satisfactory results meeting the initial goals. The improvement can be seen as 
small but it should be considered that the torsional stiffness of the planet carrier 
is crucial for the sustainability of the planetary gear train. Therefore, the gain 
improvement is fully satisfactory. Moreover, the comparison is made with the 
very stiff standard design, which makes the new design more attractive. 
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Fig. 4.17 shows the comparison of the dimensionless torsional stiffness for 
both carriers and for the maximum and minimum interference fit between the 
axle and the carrier. It can be clearly seen that the new carrier has greater 
stiffness about 20% independently from the implemented interference fit. 
Obviously, the greater interference fit brings the extra stiffness improvement and 
this can be used to gain the additional stiffness by smart selection of the 
tolerances for the carrier and the axles. 

Table 4.6. Torsional stiffness of both planet carrier designs 

Torsional stiffness, 
[N mm/deg] 

Geometry parameters 
Table 4.1 

Design Max 
interference 

Min 
interference 

Dmaxy, 
[mm] 

Lmax, 
[mm] 

Mass, 
[kg] 

Standard design 1.785E6 1.473E5 245.0 84.5 27.9 
New concept 

design 2.158E6 1.835E6 248.0 99.0 27.3 

Table 4.7 Angular deformation 

Torsional angular deformation 
at 50% of maximum torque, [deg] 

Design Max interference Min interference 

Standard design 2.66 3.23 

New concept design 2.20 2.59 

4.4. Conclusions 

Based on the conducted analyses the following conclusions can be drawn: 

− SolidThinking Inspire software is a topology optimization tool, which 
can significantly improve the concept design of mechanical parts 
aiding to design more robust and therefore better mechanical parts; 

− Thanks to an application of the topology optimization, the stiffness of 
the proposed planet carrier can be improved by about 20%, see 
Fig. 4.17; 

− The proposed analysis method is efficient and can be implemented in 
any design office. Calculation time and computer power are not any 
limitations. The whole analyses can be done on a CAE/CAD 
workstation in a few hours; 
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− The entire process is straightforward and therefore to be easily 
implemented in design offices. The method is of practical value for 
industrial interest; 

− The extra torsional stiffness of the carrier can be achieved by the 
tighter tolerance between the axles and the carrier. 

 
Fig. 4.17. Comparison between both designs of planet carrier  

at 50% of maximum torque 
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5. 

Elastic-plastic stability of FML panel 
and columns of open and closed cross-section 

5.1. Introduction 

In the last few decades of the past century a rapid development of research 
on post-buckling behaviour of thin-walled structures in the elastic and elastic-
plastic range until fracture took place. There are numerous publications 
concerning mainly singular isolated plates of different isotropic material 
properties. There are relatively few works dedicated to plate structures made of 
composite and/or laminate materials [5.2÷5.4, 5.7, 5.16]. In the last years, due to 
widespread of professional Finite Element Method software application, several 
publications appeared where full force-shortening curves of structures were 
determined. It concerns structures with a complex cross section made of different 
materials - also including orthotropic material [5.9, 5.14, 5.15]. 

In few works [5.6, 5.7, 5.13] the authors show the solution to the stability 
problem of thin-walled columns made of isotropic and orthotropic materials in 
elastic-plastic range. In the current study analogous issue for multi-layered 
materials of Fiber Metal Laminate type is considered. 

Fiber Metal Laminates (FMLs) are hybrid materials, built of thin layers of 
metal alloy divided by layers of fiber reinforced epoxy resin. These materials are 
manufactured by bonding composite plies to metal ones mostly in an autoclave 
process. FMLs, when refers to metal layers, can be divided into FMLs based on 
aluminium alloys (ARALL - laminated with aramid fibers, GLARE - glass fibers, 
CARALL - carbon fibers) and others. Nowadays materials such as GLARE 
grades (glass fiber/aluminium) due to their very good fatigue and strength 
properties combined with the low density have been finding increasing 
application in an aircraft industry [5.17]. 

GLARE consists of alternate aluminium sheets and unidirectional high-
strength glass fiber layers pre-impregnated with adhesive. Usually each glass 
composite layer is composed of a certain number of unidirectional (UD) plies 
which are stacked either unidirectionally, in a cross-ply or angle-ply 
arrangement. The number of layers, plies orientation and the stacking sequence 
of the UD plies in the entire FML panel depend on the GLARE grade. For 
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example, a GLARE 2 has two UD plies in a particular composite layer with the 
same 0-degree orientation, while a GLARE 3 has two mutually perpendicular UD 
plies (cross-ply arrangement). The most common type of aluminium applied in 
GLARE is 2024-T3 Alloy. 

In current investigation it is assumed that the material of particular structure 
is GLARE 3 [5.10, 5.11] with an even number of glass reinforced layers, whereas 
the outer layers are always of aluminium. Thus the number of glass prepreg 
layers is always one less than the number of metallic ones. The overall laminate 
is symmetric with reference to the midplane. The thickness of each UD GFRP 
ply is 0.125 mm, so that the doubled prepreg layers of both Glare 2 and 3 grades 
have a total thickness of 0.25 mm.  

The orthotropic glass fiber prepreg properties of a 0/90 degree (cross-ply) 
combination allow in the conducted here analysis to consider the composite 
doubled layer as one isotropic layer. Furthermore, the small anisotropy of the 
rolled aluminium sheet observed only for yield limits is not taken into account. 

The overall dimensions of considered structures are chosen in such a way 
that the stability loss occurs in the elastic-plastic range for aluminium layers. 
Elastic-plastic moduli are used for the aluminium layers in combination with the 
Ramberg-Osgood (RO) curve fitting method for the stress-strain behaviour [5.7, 
5.14]. 

When the plate structure made of GLARE is subjected to in-plane uniform 
compression in the elastic-plastic range of stresses, the buckling occurs in such a 
way that the aluminium layers become plastic but the glass fiber layers remain 
elastic. Therefore the behaviour of such structures differs significantly from the 
behaviour of pure aluminium ones. 

5.2. Method of solution 

The problem of buckling in the elastic-plastic range of thin-walled FML 
columns, axially uniformly compressed, is examined using the analytical-
numerical method (ANM) elaborated for the analysis of the elastic stability of 
multi-layered thin-walled columns [5.8]. The constitutive relationships between 
stress and strain for a singular elastic-plastic component layer is derived on the 
basis of the J2-deformation theory of plasticity (i.e. DT) or the J2-flow theory 
(incremental theory of plasticity i.e. IT) for Ramberg-Osgood formula. 

An assumed for consideration material of FML metallic layers in the elastic 
range is simply defined as: 

 εσ E=     for   0σσ ≤  (5.1) 
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whereas the elastic-plastic stress-strain behaviour of FML aluminium layer is 
described by a Ramberg-Osgood representation of the following type: 
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where: σ  - stress, ε  - strain, E  - Young’s modulus, 0σ  - proportional limit, 

Yσ  - conventional yield limit, yE  - tangent modulus corresponding to the yield 
limit Yσ , N  - exponent in the Ramberg-Osgood formula. The orthotropic 
composite layers are assumed to have elastic properties due to linear stress-strain 
characteristic up to fracture. 

For any orthotropic plate the constitutive relationships for the elastic range 
and the elastic-plastic range have very similar or even identical form (Eq. 5.3): 
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(5.3) 

Comparing the appropriate coefficients in both relations the instantaneous 
conventional parameters of ‘elastic composite’ for particular layers of entire 
FML structure can be found out. Thus the problem of inelastic stability of FML 
structures can be investigated in the analogous way as the problem of elastic 
composite structures. The coefficients 3311 AA −  (Eq. 5.3) determined on the basis 
of the J2- deformation or J2- flow theory of plasticity depend on the appropriate 
Young’s modulus, secant and tangent moduli for the considered material layer 
characteristics in the inelastic range. 

The analysed problem is solved in a numerical way. The elastic problem is 
solved by the asymptotic Koiter’s theory [5.5], formulated by Byskov and 
Hutchinson [5.1]. The solution of the first order approximation enables one to 
determine the values of buckling global and local loads and the corresponding 
buckling modes. This analytical-numerical method [5.7, 5.8, 5.12] created to 
solve the elastic problem is applied here to calculate critical load values and 
buckling modes for inelastic thin-walled FML columns and panels. For a given 
geometrical parameters, material data constants of particular FML layer and for 
the assumed number of buckling half-waves, the elastic buckling stress for the 
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considered composite structure is calculated. The most important advantage of 
this method is that it enables one to describe a complete range of a buckling 
behaviour of thin-walled structures from a global (i.e. flexural, flexural-torsional, 
lateral, distortional buckling and their combinations) to a local stability, including 
a mixed buckling modes [5.7, 5.8, 5.12]. 

Furthermore, a zero value of the function )( eff σσ −=  is searched to apply 
the method of secants, where eσ  is the value of the critical stress of the “elastic 
orthotropic” structure. During the computations it is assumed that eσσ ≈ , when 

%01.0/%100)( ≤⋅− σσσ e . 

The proposed method allows to consider the transition of buckling mode 
together with the increase of loading as distinct from the usual assumption that 
the elastic-plastic buckling mode is analogical to the elastic one. 

For a given geometrical parameters, material constants of each FML layer 
and for the assumed number of buckling half-waves the elastic buckling stress for 
the considered composite structure is then calculated. 

b

L

R

t

 
Fig. 5.1. Cylindrical shallow panel geometry 

 
Fig. 5.2. Closed cross-sections analysed columns 
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Fig. 5.3. Open cross-sections analysed columns 

5.3. Some results of calculations 

As some examples of proposed method of solution to the elastic-plastic 
problem of thin-walled FML hybrid composite structure a shallow cylindrical 
panel and a complex plate structure has been considered (Fig. 5.1÷5.3). It was 
assumed that the loaded edges of considered structure are simply supported at 
both ends. In order to account for all modes of global, local and coupled 
buckling, a plate model of thin-walled structure has been employed. As it was 
mentioned previously the overall dimensions of selected structures are chosen in 
such a way that the stability loss occurs in the elastic-plastic range for aluminium 
layers. 

In presented work the detailed analysis was performed for the four chosen 
FML members which overall and cross-section parameters were as follows: 

− a cylindrical panel simply supported along all edges subjected to axial 
compression (Fig. 5.1): =R 430 mm, =L 860 mm, =b 430 mm, 

− a beam/column profile with a square cross-section (Fig. 5.2a) and 
=L 1300 mm, =b 130 mm, 

− a beam/column profile with a trapezoidal cross-section (Fig. 5.2b) and 
=L 1300 mm, =1b 100 mm, =2b 140 mm, =3b 140 mm, 

− a beam/column profile with a top-hat (Fig. 5.3a) and a lip channel 
cross section (Fig. 5.3b); =L 1300 mm, =1b 130 mm, =2b 65 mm, 

=3b 15 mm. 

In all cases L  indicates the column length. Constructions under investigation 
are built of alternate aluminium sheets and unidirectional high strength glass 
fiber layers so this stacking corresponds to GLARE 3 grade with 2024-T3 sheets 
[5.11, 5.18]. The total number of layers in considered material equals 13 what 
leads to the total wall thickness of column/panel wall equal to =t 4.3 mm where 
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the thickness of singular aluminium sheets equals 0.4 mm and particular doubled 
fiber layer 0.25 mm. Mechanical properties of both isotropic layers are presented 
below in Table 5.1 [5.10, 5.18]. 

Table 5.1. Material data of GLARE 3-7/6-0.4 (13 layers) [5.18] 

Material 
data of 

GLARE 
3-7/6-0.4 

Elastic properties Plastic properties 
Young’s 
modulus 

Poisson’
s ratio 

Proportio
nal limit 

Yield 
limit 

Tangent 
modulus 

Exponent 
in Eq. (3) 

E  ν  0σ  Yσ  YE  N  
[GPa] [-] [MPa] [MPa] [MPa] [-] 

Al 
 2024-T3 700 0.3 170 290 12.1 1.8 

Prepreg 30.75 0.144 - - - - 

Obtained results of the critical stress crσ  calculations for the considered thin-
walled FML structures (Figs. 5.1÷5.3) are shown in Figs. 5.4,5.7,5.10,5.13,5.17, 
respectively. Applied into the analysis three plasticity theories are distinguished 
in these figures as: elastic theory EL, J2-deformation theory DT and J2-
incremental theory IT. For considered FML's cross-sections a stability loss can 
occur under symmetry (S) and anti-symmetry (A) conditions along symmetry 
axis of the cross-section. In the plots determined critical stress values are 
presented as a function of the number of half-waves m  formed in the 
longitudinal direction. The lowest values of crσ  are summarized in Tables 
5.2÷5.6. The buckling modes of analysed FML structures are also presented in 
Figs. 5.5,5.6,5.8,5.9,5.11,5.12,5.14÷5.16,5.18÷5.20. 

5.3.1. Cylindrical panel 

In Figs. 5.4÷5.6 and Table 5.2 computation results for the cylindrical 
shallow panel are presented. According to defined above geometrical data 
analysed panels were of a short type because 2/ =RL  and 1/ =bR , 
respectively. 

The lowest values of critical stresses crσ were obtained for 1=m  in the case 
when the symmetry conditions at symmetry axis (i.e. S) were assumed, while for 
the assumption of asymmetry conditions (A) the number of half-waves was 

2=m . Determined values of critical stresses crσ  for elastic-plastic range are 
lower than for elastic material behaviour. For deformation theory (DT) lower 
values of critical stresses were obtained in comparison to incremental theory (IT). 
This is a general, well-known from the literature relationship of results for both 
theories of elastic-plastic formulation. 
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Fig. 5.4. Buckling stress crσ  versus number of half-waves m for symmetry and 
antisymmetry conditions imposed along cross-section symmetry axis 

for shallow panel ( Yσ  - aluminum yield limit, 0σ  - proportional limit) 

Fig. 5.5. Shapes of local antisymmetric (A) buckling modes for elastic (EL) 
and inelastic range (DT, IT) for panel 

Fig. 5.6. Shapes of local symmetric (S) buckling modes for elastic (EL) 
and inelastic range (DT, IT) for panel 
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Revealed local buckling modes (Figs. 5.5, 5.6) of all three considered 
plasticity theories are very similar for each other for both assumed symmetry 
conditions at symmetry axis. 

Table 5.2. Panel buckling stress and modes 

Elastic range 
EL 

Elastic-plastic range 
Conditions along 
symmetry axis of 

cross-section 

DT IT 

crσ  [MPa] m  crσ  [MPa] m  crσ  [MPa] m
 

244 1 184 1 188 1 S 
233 2 190 2 205 2 A 
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Fig. 5.7. Plots of buckling stress crσ  versus number of half-waves m  

for a column of square cross-section 

5.3.2. Closed cross-sections 

In the following analysis the length of considered columns was assumed as 
=L 1300 mm. Thus for these overall dimensions (Fig. 5.2) only local buckling 

modes should be considered due to significantly higher values of global buckling 
critical stresses in comparison to the yield limit Yσ  (see Table 5.1). 

Square cross-section 

The plots in Fig. 5.7 present critical stress values crσ  for the square cross-
section from Fig. 5.2a. Particular curve corresponds to particular plasticity theory 
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and gives the crσ  value as a function of half-waves number in longitudinal 
direction of the compressed column. In Table 5.3 the lowest values of critical 
stresses for considered symmetry conditions on symmetry axis are shown for 
comparison. Critical stress values crσ  for symmetry conditions (S) are lower than 
for anti-symmetry conditions, as it was expected. The lowest value of critical 
stress crσ  was obtained with deformation theory (DT) application. From Table 
5.3 it is clearly visible that the number of half-waves corresponding to the lowest 
value of crσ  is different for elastic theory (i.e. 14=m ) from those of 
deformation theory (i.e. 13=m ). Both local buckling modes determined for 
considered theories are very similar for assumed boundary conditions (Figs. 5.8, 
5.9). 

Table 5.3. Square cross-section 

Elastic range EL 
Elastic-plastic range Conditions along 

symmetry axis  
of cross-section 

DT IT 

crσ  [MPa] m crσ  [MPa] m crσ  [MPa] m
232 10 195 10 219 11 S 
315 13 239 13 280 14 A 

Fig. 5.8. Shapes of local antisymmetric (A) buckling modes for elastic (EL) 
and inelastic range (DT, IT) for square cross-section 
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Fig. 5.9. Shapes of local symmetric (S) buckling modes for elastic (EL)  

and inelastic range (DT, IT) for square cross-section 
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Fig. 5.10. Buckling stresses crσ  versus number of axial half-waves m  

for trapezoidal cross-section  

Trapezoidal cross-section 

For the trapezoidal cross-section from Fig. 5.2b, there are critical stress 
values crσ  as a function of half-waves number in longitudinal direction presented 
in Fig. 5.10 for all considered plasticity theories. Further, in Table 5.4 the lowest 
values of critical stresses for considered boundary conditions on symmetry axis 
are given. The local buckling modes for assumed boundary conditions are shown 



Selected Problems of Continuum Mechanics 

138 

in Fig. 5.11 and 5.12. The conclusions from the elastic-plastic analysis of FML 
columns of the trapezoidal cross-section are very similar to the previous 
comments formulated for the square cross-section FML column. When the final 
results of square and trapezoidal cross-section columns are compared one can 
observed that the critical stress values are lower for a trapezoidal-cross section 
column. 

Fig. 5.11. Shapes of local antisymmetric (A) buckling modes for elastic 
and inelastic range for trapezoidal cross-section 

Fig. 5.12. Shapes of local symmetric (S) buckling modes for elastic 
and inelastic range for trapezoidal cross-section 
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Table 5.4. Trapezoidal cross-section results 

Elastic range EL 
Elastic-plastic range Conditions along 

symmetry axis  
of cross-section 

DT IT 

crσ  [MPa] m  crσ  [MPa] m  crσ  [MPa] m  

214 10 183 10 203 11 S 
276 12 219 12 249 13 A 

5.3.3. Open cross-sections 

In the case of investigated open cross-section columns/profiles (presented in 
Fig. 5.3) i.e. top hat and lipped channel, for assumed overall dimensions all 
global buckling modes should be examined during the analysis. Thus flexural 
mode (S), distortional-flexural mode (S), flexural-torsional mode (A), distortion-
flexural-distortional mode (A)) and local buckling mode including distortional-
local modes, should be taken into account. Therefore additional indication is 
introduced for open cross-section profiles - global buckling mode (i. e. 1=m ) 
is denoted by G and local buckling mode (i.e. 1≥m ) by L. 
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Fig. 5.13. Buckling stresses crσ  versus number of axial half-waves m for top hat 

Top hat 

For the top hat cross-section columns/profiles (Fig. 5.3a) results of critical 
stresses as a function of half-waves number m are presented in Fig. 5.13. The 
lowest values of global and local critical stresses crσ  are shown also in Table 5.5. 
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As it can be seen in this case a flexural-torsional global buckling mode 
(i.e. 1=m , A) took place in the elastic range because the following relationship 
is fulfilled MPaMPacr 17097 0 =<= σσ . While a flexural buckling is observed 
in the elastic-plastic range (i.e. 1=m , S). Following this observation the flexural 
global buckling modes could be named as "pure bending" (Fig. 5.14) while anti-
symmetry mode for elastic range is a distortional-flexural-torsional mode 
because the lips are not perpendicular to the flanges (see EL_A_G curve in 
Fig. 5.14). 

Fig. 5.14. Shapes of global buckling modes for top hat 

Fig. 5.15. Shapes of local anti-symmetric (A) buckling modes for a top hat profile 
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Fig. 5.16. Shapes of local symmetric (S) buckling modes for top hat profile 

It can be seen in Table 5.5 that the value of the local critical stress crσ  of 
symmetric mode (i.e. 4=m , S) for elastic range is lower in comparison to a local 
anti-symmetric mode buckling stress (i.e. 2=m , A) for elastic range. However, 
values of crσ  for both elastic-plastic formulations and antisymmetrical modes are 
lower than the symmetric ones. For 1≥m  buckling modes are distortional-local 
modes for both boundary conditions (Figs. 5.15, 5.16). Buckling modes are 
practically the same for each of applied theories. 

Table 5.5 Top hat results 

Elastic range EL 
Elastic-plastic range Conditions along 

symmetry axis of 
cross-section 

DT IT 

crσ  [MPa] m crσ  [MPa] m crσ  [MPa] m
201 1 177 1 178 1 S 
257 4 201 4 220 4 S 
97 1 - - - - A 

267 2 196 2 202 2 A 

Lipped channel 

In Fig. 5.17 critical stress values crσ  as a function of half-waves number m 
are presented for the FML column of lipped channel cross-section. Table 5.6 
shows as well the lowest values of global and local crσ  for both considered 
boundary conditions while corresponding to them buckling modes are given in 
Figs. 5.18÷5.20. 
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Fig. 5.17. Buckling stresses crσ  versus number of axial half-waves m 
for lip channel column 

The lowest value of critical stresses =crσ 128 MPa corresponds to a global 
flexural-torsional mode (i.e. 1=m , A) in elastic range (see EL_A_G line in 
Fig. 5.18). The global buckling stress value =crσ 198 MPa ( 1=m , S) 
corresponds to a distortional-flexural buckling mode for elastic range (Fig. 5.18). 
Symmetric global buckling modes are similar for considered constitutive 
theories. Local buckling stress values are lower for symmetric modes in 
comparison to anti-symmetry ones. 

Fig. 5.18. Shapes of global buckling modes for lip channel 
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Presented in Figs. 5.19 and 5.20 buckling modes are of distortional-local 
symmetric and anti-symmetric type. It should be emphasized that local 
symmetric buckling modes (Fig. 5.20) differ slightly between themselves at the 
junction of flanges with the lips. In works [5.6, 5.11] for one-layered isotropic 
and orthotropic structures there was a lot of variety local and global buckling 
modes obtained which differed significantly between themselves for elastic and 
elastic-plastic range. 

 
Fig. 5.19. Shapes of local anti-symmetric (A) buckling modes for lip channel 

 
Fig. 5.20. Shapes of local symmetric (S) buckling modes for lip channel  

As it can be seen from presented in current work buckling modes for FML 
multi-layered structures determined buckling modes differ at least slightly 
between themselves because particular elastic glass fibre layers work within 
elastic range. Thus mechanical properties of glass fibre layer remain unchanged 
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in elastic-plastic range of entire FML wall, when aluminium layer changes own 
properties from isotropic to orthotropic. It makes that multi-layered structures are 
not as sensitive to changes of buckling modes as one-layered structures. The 
latter change their mechanical properties across whole thickness in the elastic-
plastic range [5.6, 5.13]. 

Table 5.6. Lipped channel results 

Elastic range EL 
Elastic-plastic range Conditions along 

symmetry axis  
of cross-section 

DT IT 

crσ  [MPa] m crσ  [MPa] m crσ  [MPa] m
198 1 176 1 177 1 S 
232 4 187 4 203 4 S 
128 1 - - - - A 
383 5 256 5 291 5 A 

5.4. Conclusions 

In work the comparison of critical stresses for thin-walled FML structures in 
elastic and elastic-plastic range is presented. Two plasticity theories were 
considered i.e. J2-deformation theory and J2-incremental theory. The lowest 
values of critical stresses for all analysed structures were obtained in elastic-
plastic range for the deformation theory. It is fully consistent with results 
presented in literature survey. Moreover it ought to be pointed out that: 

− the solutions given here are valid in the cases of the uniform 
compression of the thin-walled FML structure. Other types of loadings 
would need further investigation, 

− the usual assumption, made in many works in the field, that the 
buckling modes in the elastic and elastic-plastic range are identical 
cannot be true in some cases, 

− it should be noted that the buckling modes in elastic and elastic-plastic 
range can be not always cover-up. 
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6. 

Crack propagation in thin-walled structures 
under cyclic variable loads.  
The numerical and experimental studies 

6.1. Introduction 

The modern design of load-bearing structures is accompanied by constant 
multiple improvements of the theoretical concepts verified through experimental 
studies. Among the many engineering calculation methods of today, which make 
it possible to solve complex problems related to the design of load-bearing 
structures in a way worthy of today’s requirements, the numerical methods 
remain the dominant ones. Like any other computational methods, the numerical 
ones require experimental verification. Because, without underestimating the 
many opportunities and the practical usefulness offered by the numerical 
methods, one should take into account that they involve rough calculations and 
their results refer to no real structures but to their idealized models. 

The wider in respect of formulated assumptions and the more rigorous in 
respect of assumed technical conditions the problem under consideration 
becomes, the more complex is the form taken by its calculation model, and the 
results obtained remain in many cases dubious. In similar situations, an 
experiment appropriate for the problem concerned is the only reliable source of 
information about the behaviour of the structure. On the other hand, verification 
of prototypal solutions for load-bearing structures is a costly and time-consuming 
undertaking, and needs to be carried out in due course as part of the design 
process as well. These limitations are often the cause of the delay in receiving 
information on to what extent the structural solution under implementation 
remains in concordance with the said assumptions, especially in respect of the 
crucial details. That is why improvements in computational methods are 
observed along with a process of systematic refinement of the methods and 
concepts for conducting experimental studies which could be a form of 
verification of calculations and which could be applied as part of the design of 
load-bearing structures when substantial corrections can be made prior to the 
costly and laborious implementation of a prototypal solution. The tests refer to 
complete structures (global tests) but can also be local in character, covering 
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selected, crucial areas of the planned structure. The purpose of the latter is 
primarily to identify imperfect detail solutions and to eliminate them sufficiently 
in advance as they could be the cause of premature failure of the structure. 

Within the broad spectrum of experimental testing methods that meet the 
above requirements, those relating to model mechanics are of major significance. 
The assumption that, based on the model similarity theory, the quantitative 
conclusions can be - in the broad sense - transferred from the observation of 
physical phenomena in a certain mechanical system onto another system of a 
different scale, is fundamental to those methods. The notion of a scale does only 
not refer to the object geometry here. Enabling mechanical properties to be 
programmed, the development of the chemistry of plastics, including the plastics 
with an effect of temporary double refraction in polarized light, has become an 
important factor affecting the domain of application of model tests. Apart from 
the widely used epoxy resins, examples of representative materials include 
polycarbonate, optically active material with a wide range of uses as construction 
material with its instantaneous characteristic showing elastic and inelastic 
deformation phases. Model tests can also be carried out on objects made of the 
actual construction materials. Both the scale and the selection of the model 
material is the outcome of striving to obtain results which give the basis for their 
transposition into the real object based on the model similarity theory. 

Because of the above-mentioned factors and economic considerations, which 
are not negligible, model tests as the reasonably economical expansion of the 
domain of experimental testing find broad application in the physically and 
geometrically nonlinear analyses of states of stress and deformation of load-
bearing structures, thus becoming an effective tool for verifying the results of 
numerical analyses. 

It is common for all theoretical concepts related to the design of load-bearing 
structures to idealize the structures to a greater or lesser degree. If we expect 
experimental studies to provide more information on to what extent the adopted 
calculation model for the planned load-bearing structure remains in concordance 
with the actual state confirmed in an experiment, irrespective of the type and 
scope of the tests, and, when the experimental verification function is fulfilled by 
model tests, the object - the model intended for use in experimental testing must 
strictly meet all the requirements, from those on geometric similarity and on 
similarity of a material’s physical characteristics to, in some situations, the 
requirements on similarity in reflecting the effects of a manufacturing process, 
e.g. the state of assembly stress. Preparing objects for the tests that meet the 
requirements in question is no simple undertaking in technical terms. Fatigue 
tests on thin-walled structures require special attention and considerable 
experience as well. When the planned structure is composed of a number of sub-
assemblies (and in practice this is usually the case), it is necessary to reproduce 
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the mechanical properties of the structure tested including the required variable 
load resistance, and in particular when the operation process starts with a local 
defect. 

The versatility of thin-walled load-bearing structures has shaped an equally 
extensive area of constructional solutions and testing methods. This special 
category of structures covers thin-walled aircraft structures, for which broad 
experimental studies determine the competent authority’s decisions to certify the 
aircraft fit for flying tests.  During the design and construction of a prototype, its 
load-bearing structures are subjected to extensive tests, from segment, static and 
fatigue tests on the constructional solution details, through global static tests, 
fatigue and resonance tests, to factory-based and national flying tests. 

When it comes to the role of model tests, then, as a rule, they function as 
a tool for testing selected areas of elements. They are no validation tests. Their 
purpose is to analyze, in particular with regard to the verification of the 
calculation model adopted, those elements or areas of the planned structure, in 
which strong discontinuities relating to the structure stiffness may appear because 
of the geometry resulting from the functionality. The discontinuities may be due 
to the passes, local reinforcements, press-formed stiffening and points of 
connection between elements made of materials with diverse moduli of elasticity, 
and due to local defects as well. These areas are crucial to the structure, or the 
major factors determining its service life and reliability. 

These determinants are reflected in all the design stages of load-bearing 
structures, in particular in the procedures involving the determination of fatigue 
life which can today be determined numerically, and thus as early as in the 
structure design stage. Extreme allowable stresses corresponding to post-
buckling deformations form the basis for the calculation of fatigue life. The 
determination of stress fields in advanced stages of post-buckling deformation of 
thin-walled structures, in particular those with high geometric complexity is only 
feasible by numerical methods. 

Not understating the significance of numerical analyses as unquestionably 
effective tools and not ignoring the problems related to the certain measure of 
result unreliability that is always present, and in the end, given that for 
engineering practice, which requires absolute confidence in the results of every 
numerical analysis, it is reasonable, and in a number of situations even necessary 
to introduce special tests to support the design which could considerably enhance 
the reliability of numeral analysis results. 

The many years’ experience of a number of centres show that this function is 
increasingly taken over by appropriately configured special experimental studies 
that enable ongoing evaluation of the calculation models adopted and their 
reasonable correction. Therefore, it becomes reasonable to continue the 
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modernization of the design process of load-bearing structures based on 
continuously improved calculation models and aimed at enhancing the reliability 
of the numerical calculation results verified through experimental studies. 

This paper attempts to assess the result relevance for the study of 
propagation of fatigue cracks in thin-walled structures made of a model material 
into structures of real materials. The model material was chosen to be 
polycarbonate which is today widely used in many fields of technology, also as a 
constructional material, the instantaneous characteristic of which exhibits elastic 
and inelastic deformation phases. The attainment of the aims of the study 
required the determination of stresses in the components of the structures with 
the passes and cracks subjected to variable loads. The problem was solved on the 
grounds of numerical methods and experimental studies. 

6.2. Structure fatigue 

The loads acting on the structure change with time and are often random in 
character because of the service conditions (Fig. 6.1). Variable stresses induce a 
complex state of stress in the material. These are phenomena that favour 
premature failure of the structure. 

Fig. 6.1. Examples of distribution of stresses in an aircraft’s wing 

The material fatigue process is commonly characterized by a graph called 
the Wöhler curve (Fig. 6.2). The curve is obtained by bringing a specific number 
of model samples to failure through changing the stress amplitude of the cycle σa 
for the established value of the steady-stress component σm. Each value of σa or 
σmax has a corresponding number of load cycles causing fatigue damage N, 
provided stress σa does not decrease to the fatigue limit ZG once the basic number 
of cycles NG is reached. 

In the most common system of coordinates σ, log N, the graph appears to be 
a curved line (Fig. 6.2). The turn point, or the point of intersection of both the 
graph segments defines the theoretical limiting number of cycles N0 which to a 
varying degree can deviate from the adopted basic number of cycles NG [6.4, 6.6, 
6.8]. 
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Fig. 6.2. Example of a Wöhler curve for a sample of normalized steel 45 subjected to 

rotational bending, in the system of σ, log N 

On account of the multitude of load factors, the process of destruction may 
take on various forms: from gently plastic destruction to sudden brittle cracking. 
There is a wide range of intermediate forms between the types of destruction 
mentioned above. And so, plastic or ductile cracking is always preceded by 
plastic macro-strains and is caused by slip. Crack surfaces are characterized by 
systems of pits and bulges that impart to the surfaces a honeycomb or scaly 
structure. 

Brittle cracking goes quite differently. It develops at a speed close to the 
speed of sound, which is typical of a given material within the conventionally 
elastic range, and thus without any macroscopic elastic deformations, in the 
normal direction to the largest material elongation. Cracking arises along certain 
crystallographic planes, so called cleavage planes. Such cracking is called 
cleavable transcrystalline cracking. Another type of brittle cracking is one that 
goes along the grain boundaries, forming intercrystalline scrap. 

 
Fig. 6.3. A diagram of a plate with a centre crack  

for the description of Griffith’s criterion 
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Mixed cracking, that is partially brittle and partially plastic cracking is very 
common. Out of the cracking types, brittle cracking is the most dangerous due to 
the lack of clear signs of cracking directly prior to the destruction. 

The basis for the calculation of a material’s resistance to brittle cracking is 
formed by Griffith’s theory [6.8]. The theory is based on the energy balance of an 
elastic disc with an elliptic hole under uniaxial tension. 

With an infinitely small growth of the crack length (cracking initiation), the 
elastic deformation energy decreases. It is: 

∆𝑈𝑈𝑠𝑠 = − 𝑐𝑐
2
𝜋𝜋𝜎𝜎2𝑙𝑙2 (6.1) 

where 

𝑐𝑐 = �2(1 − 𝜈𝜈2)/𝐸𝐸
2/𝐸𝐸

Eq. (6.1) denotes the so-called crack opening work. 

At the same time, the energy related to overcoming the cohesive forces (the 
phenomenon of adhesion of two surfaces), i.e. the surface energy increases 𝑈𝑈𝛾𝛾. 

𝑈𝑈𝛾𝛾 = 4𝑙𝑙𝛾𝛾 (6.2) 

Where γ is the energy needed to form a free surface unit. 

The sum of the above energy makes up the total energy for crack 
development 

𝛥𝛥𝑈𝑈 = 𝑈𝑈𝛾𝛾 − 𝛥𝛥𝑈𝑈𝑠𝑠 (6.3) 

A decrease of the total energy U is a sine qua non for cracking initiation, so 
it is required that the first derivative of this function goes to zero in relation to the 
crack surface A=2l x 1. 

𝑑𝑑𝑈𝑈
𝑑𝑑𝑑𝑑

�
𝑙𝑙=𝑙𝑙𝑘𝑘𝑘𝑘

= 0 

Considering equations (6.1), (6.2) and (6.3), we will obtain 
𝑑𝑑𝑈𝑈𝛾𝛾
𝑑𝑑𝑑𝑑
�
𝑙𝑙=𝑙𝑙𝑘𝑘𝑘𝑘

= −𝑑𝑑𝑈𝑈𝑠𝑠
𝑑𝑑𝑑𝑑
�
𝑙𝑙=𝑙𝑙𝑘𝑘𝑘𝑘

(6.4) 

𝑑𝑑𝑈𝑈𝛾𝛾
𝑑𝑑𝑑𝑑
�
𝑙𝑙=𝑙𝑙𝑘𝑘𝑘𝑘

= 2𝛾𝛾 = 𝑅𝑅 (6.5) 

𝑑𝑑𝑈𝑈𝑠𝑠
𝑑𝑑𝑑𝑑
�
𝑙𝑙=𝑙𝑙𝑘𝑘𝑘𝑘

= − 𝑐𝑐
2
𝜋𝜋𝜎𝜎2𝑙𝑙 = 𝐺𝐺 (6.6) 

Relationship, Eq. (6.6) represents the energy criterion of cracking, which 
states that a crack will start propagating when the energy release rate G is equal 
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to the material’s crack resistance R. Therefore, spontaneous development of a 
crack is only possible when its length reaches a critical value l = lkr. To a critical 
crack length corresponds buckling stress σkr. This value results directly from 
formula (6.6) 

 𝜎𝜎𝑘𝑘𝑘𝑘 = �
4𝛾𝛾

𝑐𝑐𝑐𝑐𝑙𝑙𝑘𝑘𝑘𝑘
 (6.7) 

After transformation, from equation (2.6) we receive 

 𝜎𝜎√𝜋𝜋𝑙𝑙 = �4𝛾𝛾
𝑐𝑐

= 𝐾𝐾 (6.8) 

The value K is a stress intensity factor which for the critical values lkr and σkr 
becomes a critical value Kc and is called crack resistance. 

The interpretation of the phenomena occurring in fracture mechanics 
requires a knowledge of the stress field and the displacement in the front of and 
around the crack. The three main cases of crack development are considered. 
Case 1 was described as normal crack opening. Case 2 refers to transverse shear, 
while case 3 to longitudinal shear of a crack. 

In practice, case 1 is most significant. Our further discussion is limited to 
this case. 

 
Fig. 6.4. Three main cases of crack development 

 
Fig. 6.5. A plate with a centre crack and a system of coordinates marked  

for equations (6.9) 
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As a result of his study, Irwin formulated the following equations for the 
diagram as in Fig. 6.5: 

𝜎𝜎𝑥𝑥 = 𝜎𝜎√𝑐𝑐𝑙𝑙
√2𝑐𝑐𝑘𝑘

𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑
2
�1 − 𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑

2
𝑐𝑐𝑠𝑠𝑠𝑠 3

2
𝜑𝜑�

𝜎𝜎𝑦𝑦 = 𝜎𝜎√𝑐𝑐𝑙𝑙
√2𝑐𝑐𝑘𝑘

𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑
2
�1 − 𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑

2
𝑐𝑐𝑠𝑠𝑠𝑠 3

2
𝜑𝜑�

𝜏𝜏𝑥𝑥𝑦𝑦 = 𝜎𝜎√𝑐𝑐𝑙𝑙
√2𝑐𝑐𝑘𝑘

𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑
2
𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑

2
𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑

2

𝜎𝜎𝑧𝑧 = 𝜈𝜈�𝜎𝜎𝑥𝑥 + 𝜎𝜎𝑦𝑦�
𝜏𝜏𝑦𝑦𝑧𝑧 = 𝜏𝜏𝑥𝑥𝑧𝑧 = 0 ⎭

⎪
⎪
⎬

⎪
⎪
⎫

(6.9) 

𝑢𝑢 = 𝜎𝜎√𝑐𝑐𝑙𝑙
2𝐺𝐺𝑠𝑠𝑠𝑠

� 𝑘𝑘
2𝑐𝑐
𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑

2
�𝜅𝜅 − 1 + 𝑐𝑐𝑠𝑠𝑠𝑠2 𝜑𝜑

2
�

𝑣𝑣 = 𝜎𝜎√𝑐𝑐𝑙𝑙
2𝐺𝐺𝑠𝑠𝑠𝑠

� 𝑘𝑘
2𝑐𝑐
𝑐𝑐𝑠𝑠𝑠𝑠 𝜑𝜑

2
�𝜅𝜅 − 1 + 𝑐𝑐𝑐𝑐𝑐𝑐2 𝜑𝜑

2
�

𝑤𝑤 = 0 ⎭
⎪
⎬

⎪
⎫

(6.10) 

In formulae (6.10), the value k for plane stress is 

𝜅𝜅 = 3−𝜈𝜈
1+𝜈𝜈

 (6.11a) 

and for the plane state of strain, it is 
𝜅𝜅 = 3 − 4𝜈𝜈 (6.11b) 

𝜈𝜈 denotes Poisson’s ratio here, while the symbol Gsp represents a rigidity 
modulus. 

The value 𝜎𝜎√𝜋𝜋𝑙𝑙 appearing in the equations is a pre-defined stress intensity 
factor K and makes up a measurement of stress growth rate for the cracking zone. 
The factor K depends on external loads, the crack geometry and the element 
geometry. The effect of an element’s edges on the stress fields increases with the 
growth of the crack length in relation to the width of the element. A correction 
factor β, accounting for the finiteness of the element’s dimensions, is then 
introduced into the formula. Depending on the computational methods adopted, 
different forms of the formulae for determining the factor β are obtained. 

Generally, we can write: 

𝐾𝐾 = 𝛽𝛽𝜎𝜎√𝜋𝜋𝑙𝑙 (6.12) 

Sudden development of a crack occurs when the stress intensity factor KI 
reaches a critical value KIc, so, the value of critical stresses σkr for known 
dimensions of the crack can be defined for the plane state of strain as 

𝜎𝜎𝑘𝑘𝑘𝑘 = 𝐾𝐾𝐼𝐼𝐼𝐼
𝑀𝑀𝑘𝑘𝐼𝐼�𝑐𝑐𝑙𝑙𝑘𝑘𝑘𝑘

(6.13) 
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The value of factor K depends substantially on the element’s thickness as 
shown diagrammatically in Fig. 6.6. However, from the thickness determined for 
a given material, the factor K does not change. It is just the lowest critical value 
of the stress intensity factor that was adopted as crack resistance KIc. 

 
Fig. 6.6. The effect of the element’s thickness on the stress intensity factor 

The stress intensity factor K is a criterion of local cracking as formulated by 
Irwin. This is a force-related criterion that corresponds to Griffith’s energy 
criterion, which was discussed earlier in this paper and the exponent of which is 
the unit energy of crack development G. The above factors are basic values in 
linear fracture mechanics and are interrelated as follows 

 𝐺𝐺 = 𝐾𝐾2𝑐𝑐
2

 (6.14) 

Crack development in real metal materials is closely linked to the plastic 
strain zone before the front of the crack and considerably limits the applicability 
of the principles of classical fracture mechanics. According to Irwin’s theory, the 
size of this zone  for plane stress (𝑟𝑟𝑝𝑝𝑙𝑙) and the plane state of strain (𝑟𝑟𝑝𝑝𝑙𝑙𝑝𝑝) 
respectively is, for a diagram as in Fig. 6.7, the following 

 𝑟𝑟𝑝𝑝𝑙𝑙 = 𝐾𝐾𝐼𝐼𝐼𝐼2

2𝑐𝑐𝑅𝑅𝑒𝑒2
𝑐𝑐𝑐𝑐𝑐𝑐2 𝜑𝜑

2
�1 + 3𝑐𝑐𝑠𝑠𝑠𝑠2 𝜑𝜑

2
� (6.15) 

and 

 𝑟𝑟𝑝𝑝𝑙𝑙𝑝𝑝 = 𝐾𝐾𝐼𝐼𝐼𝐼2

2𝑐𝑐𝑅𝑅𝑒𝑒2
𝑐𝑐𝑐𝑐𝑐𝑐2 𝜑𝜑

2
�1 + 3𝑐𝑐𝑠𝑠𝑠𝑠2 𝜑𝜑

2
− 4𝜈𝜈(1 − 𝜈𝜈)� (6.16) 

The dissimilarity of the state of stress along the crack width causes 
differences in the zone sizes on the surface of the plate (plane stress) and in its 
centre (plane state of strain). The quotient 𝑟𝑟𝑝𝑝𝑙𝑙/𝑟𝑟𝑝𝑝𝑙𝑙𝑝𝑝 = 1/(1 − 2𝜈𝜈)2 for ν=1/3 is as 
the ratio of 9:1. This demonstrates a serious impact of stress on crack 
development. 

The plastic strain zone affects the stress intensity factor K, so it becomes 
necessary to make appropriate corrections. According to Irwin, the correction 
comes down to the adoption of the apparent crack length consisting of the real 
length extended by the size of the plastic zone, that is 



Selected Problems of Solid Mechanics 

156 

𝐾𝐾𝐼𝐼 = 𝜎𝜎��𝑙𝑙 + 𝑟𝑟𝑝𝑝𝑙𝑙�𝜋𝜋 (6.17) 

Along with an increase in the quotient σ/Re, there will also be an increase in 
the factor K calculation error. For example, for σ/Re≈ 0.7, the error is over 20%, 
thus limiting the application of linear fracture mechanics. For σ/Re ≤ 0.4, virtually 
no correction is required because the calculation error does not exceed 5%. 

Fig. 6.7. The shape of a plastically deformed zone in the front 
of a crack in a thick-walled plate 

A crack growth is to be understood as a crack growing longer at stable rate, 
from length lo to critical length lkr, the reach of which is assumed to be damage to 
the element. In fracture mechanics, damage or destruction as a consequence of 
variable loads is known as “fatigue failure”. 

Fatigue crack development takes place in stages (Fig. 6.8). The initial stage 
is nucleation (initiation) of a macrocrack with a length that is large enough for 
the description of the crack behaviour to be accurate enough on the grounds of 
deformable body mechanics. Cyclic variable loads make energy accumulate near 
the internal material discontinuities. This in turn causes the microdefects to grow 
and connect with each other until a macrocrack, called a fatigue crack, is formed 
after a certain number of cycles N. The second stage is growth (propagation) of 
the fatigue crack from length li to length lkr. The duration of this stage is 
determined by the number of cycles Np. The last stage is unstable growth of the 
crack, equated with fatigue failure. The total number of load cycles that can be 
safely transferred by a structural element is a sum of the number of cycles prior 
to crack initiation N and the number of cycles corresponding to crack 
propagation Np . The numerical values of both these quantities depend on many 
factors, i.a. the type of material, the quantities describing the load and the crack 
geometry; hence it is difficult to state any general regularities. It is all the more 
difficult because the first stage, the initiation of a fatigue crack is still poorly 
understood, both in terms of experiment and theory. However, it is in many cases 
accepted that the determining factor for the evaluation of the service life of a 
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structure is the fatigue crack propagation phase, so, a knowledge of the number 
of cycles is enough. 

The independent parameters that describe stresses caused by cyclic variable 
loads with constant amplitude are: steady-stress component σm, stress amplitude 
σa and frequency ω. 

The typical curve representing the dependence of the crack length from the 
number of cycles is shown in Fig. 6.8. The real initial crack length l0 must be 
large enough in order to apply the principles of fracture mechanics to the 
description of behaviour of the crack. The smallest crack length that can be 
detected in non-destructive testing is marked as ld. This length is adopted as the 
initial length. Crack length ld is determined by a so-called inspection range, i.e. a 
range, within which experimental observation of the crack is possible). As a 
result of the changing load, the crack grows slowly from the initial length until it 
reaches a certain length lr. Then, the crack growth clearly accelerates. This period 
of the work of the element with the crack is regarded as useful service life. Once 
the crack has reaches the critical length, its growth becomes very rapid and 
uncontrollable, and is equated with destruction of the element. The number of 
cycles corresponding to destruction is Nf. The determination of the element’s 
lifetime, defined by the number of cycles prior to destruction Nf, and of curve 
l=l(N) is the basic objective of the analysis of crack growth at fatigue. 

 
Fig. 6.8. Example of a fatigue crack propagation curve 

The mechanics behind the crack growth under variable loads is connected 
with the local stress field near the crack top. Plastic strains can occur even under 
very light loads as a result of high stress concentration in the crack top region. 

The fatigue crack growth is connected with local stress concentration. It can 
therefore be presumed that crack growth is connected with stress intensity factor 
(SIF) K. For any configuration, this factor can be written as 
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𝐾𝐾 = 𝛽𝛽𝜎𝜎√𝜋𝜋𝑙𝑙 (6.18) 

where β is a (numerical or functional) coefficient related to finite body 
dimensions and σ denotes the load applied. Previously introduced as a parameter 
controlling the process of destruction, the stress variability range can be replaced 
with an SIF variability range. Considering that for the particular cycle as defined 
by variability of stress between σmin and σmax, the following relationships occur 

𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚 = 𝛽𝛽𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚√𝜋𝜋𝑙𝑙 (6.19) 

𝐾𝐾𝑚𝑚𝑚𝑚𝑥𝑥 = 𝛽𝛽𝜎𝜎𝑚𝑚𝑚𝑚𝑥𝑥√𝜋𝜋𝑙𝑙 (6.20) 

the SIF variability range can be expressed by the following equation 

𝛥𝛥𝐾𝐾 = 𝛽𝛽𝛥𝛥𝜎𝜎√𝜋𝜋𝑙𝑙 (6.21) 

while stress ratio R is 

𝑅𝑅 = 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚
𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚

⇒ ∆𝐾𝐾 = (1 − 𝑅𝑅)𝐾𝐾𝑚𝑚𝑚𝑚𝑥𝑥 (6.22)

The fatigue crack propagation rate is defined as an increase in the crack 
length felling on one cycle - so, it is expressed by derivative dl/dN with a 
dimension of [mm/cycle]. The equation for the fatigue crack propagation rate can 
be written as 

𝑑𝑑𝑙𝑙
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝛥𝛥𝐾𝐾,𝑅𝑅) (6.23) 

It can be shown that function f is an increasing function on account of both 
arguments. Because of the considerable difficulty in formulating a mathematical 
description by way of theoretical analysis, function f is determined based on 
experimental methods. 

It has become customary in fracture mechanics to use the very propagation 
rate curve (and not the growth curve l (N)) to describe the growth of fatigue 
cracks, although the curve is not obtained directly through experience but 
through transformation of the growth curve. 

Fig. 6.9. Fatigue crack growth: a) experimental crack growth curve, 
b) constructed crack propagation rate curve
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The fatigue crack growth curve is obtained during a fatigue test performed 
on any given sample with known factor β. During the test, the current crack 
length is recorded in the function of the number of load cycles (Fig. 6.9). This is 
the entire information obtained through experiment and nothing but the 
processing of this information allows us to determine the function, Eq. (6.9). 

The curve shown in Fig. 6.10b is characterized by three distinct phases: in 
phase 1, the crack propagation rates are low and stay within the range of 0÷10-5 
mm/cycle, in phase 2, the rates are medium, within the range of 10-5 ÷10-3 

mm/cycle, and in phase 3 - high, over 10-3 mm/cycle. These are indicative values 
which can vary according to materials, loads, environmental conditions and so 
on. 

On a double-logarithm scale for phase 2, the graph dl/dN vs ΔK is almost 
linear, which is reflected in the empirical formulae defining function, eq. (6.10). 

Fig. 6.10. A schematic description of the nature of fatigue crack development at 
different stress amplitudes σa1< σa2< σa3< σa4  a) and a logarithmic graph for cracking rate 

dl/dN according to range ΔK or the highest Kmax of the stress intensity factor b) 

Fatigue crack growth is not possible if a certain threshold value ΔKth is not 
exceeded. It is assumed that ΔKth corresponds to ca. 106 cycles. From Eq. (6.22) 
it appears that the critical value is 

𝛥𝛥𝐾𝐾𝑘𝑘𝑘𝑘 = (1 − 𝑅𝑅)𝐾𝐾𝐼𝐼𝑐𝑐 (6.24) 

Our qualitative observations resulting from the experimental tests covering 
crack propagation under fatigue loads allow us to understand the “structure” of 
the numerous suggestions to formulate a detailed equation for crack propagation 
rate eq. (6.23). For the linear phase 2 on graph log(dl/dN ) vs logΔK, the crack 
propagation rate equation is formulated as follows [6.2, 6.7, 6.10]. For one 
specific cycle asymmetry coefficient R, we can, using the general equation for 
straight line y = mpx + b, where y = log(dl/dN); x = log(ΔK), write an equation for 
this straight line in the form 



Selected Problems of Solid Mechanics 

160 

𝑙𝑙𝑐𝑐𝑙𝑙 �𝑑𝑑𝑙𝑙
𝑑𝑑𝑑𝑑
� = 𝑚𝑚𝑝𝑝 𝑙𝑙𝑐𝑐𝑙𝑙(𝛥𝛥𝐾𝐾) + 𝑙𝑙𝑐𝑐𝑙𝑙 (𝐶𝐶𝑝𝑝) (6.25) 

Considering the logarithmic function properties, we will obtain, after simple 
transformations, an equation in the form 

𝑑𝑑𝑙𝑙
𝑑𝑑𝑑𝑑

= 𝐶𝐶𝑝𝑝(𝛥𝛥𝐾𝐾)𝑚𝑚 (6.26) 

Equation (6.26), known as Paris’ law or the Paris-Erdogan law, was 
introduced into the literature jointly by Paris and Erdogan [6.8] The constants mp 
and Cp are determined based on experimental data. A knowledge of two points 
(ΔK, dl/dN) is obviously enough but better results are obtained if the constants 
are determined based on a greater number of measuring points. 

For most materials, constant mp stays within the range of 3÷5, constant Cp 
depends more strongly on the material, and what is more, it depends on the units 
used for the calculation. 

Indicative constant values for some materials are compiled in Table 6.1. The 
data relate to a load cycle with asymmetry coefficient R = 0; crack propagation 
rate dl/dN is expressed in mm/cycle, while variability range ΔK - in 𝑀𝑀𝑀𝑀𝑀𝑀√𝑚𝑚. 

There is a number of empirical dependencies for specific material classes 
which associate constants m and C in Paris’ equation with the values of yield 
point Re and ultimate tensile strength Rm. They allow us to determine m and C, at 
least approximately, when it is necessary to make fatigue calculations and no 
experimental data relative to the material are available [6.7]. 

Table 6.1. Indicative constant values in Paris’ equation (2.25) 

Material Yield strength 
Re [MPa] 

Tensile strength 
Rm[MPa] Cp mp 

Aluminium 
alloy PA7 420 510 7×10-11 4 

With a description of the non-linear phase 3 of this graph in mind, in which 
phase for ΔK = ΔKc = Kc(1-R), (Fig. 6.10b), Forman et al. [6.7] suggested the 
following adaptation of Paris’ equation  

𝑑𝑑𝑙𝑙
𝑑𝑑𝑑𝑑

= 𝐶𝐶𝐹𝐹
(𝛥𝛥𝐾𝐾)𝑚𝑚𝐹𝐹

(1−𝑅𝑅)𝐾𝐾𝐶𝐶−𝛥𝛥𝐾𝐾
, (6.27) 

Kc denotes crack resistance under specific load conditions. If relevant data 
are not available, KIc should be used. Forman’s equation enables determination of 
the crack growth rate with any cycle asymmetry coefficient R. 

A large group of equations refers to the initial phase on the crack 
propagation rate curve. They all contain the threshold value for the variability 
range of stress intensity factor ΔKth as one of the parameters. 
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𝑑𝑑𝑙𝑙
𝑑𝑑𝑑𝑑

= 𝐶𝐶(𝛥𝛥𝐾𝐾 − 𝛥𝛥𝐾𝐾𝑡𝑡ℎ)𝑚𝑚 (6.28) 

A knowledge of the threshold value ΔKth is crucial for the possibility to use 
this equation. Usually, the form as below, is used for this calculation 

𝛥𝛥𝐾𝐾𝑡𝑡ℎ = (1 − 𝑅𝑅)𝛾𝛾𝛥𝛥𝐾𝐾𝑡𝑡ℎ0 (6.29) 

where ΔKth0 is the threshold value for a cycle characterized by coefficient RR = 0 
and γ is a parameter relating to the material and staying within the range of 
0.5÷1.0. 

The formulae suggested by Vosikovsky, which link ΔKthz to yield strength 
Re and tensile strength Rm, are considered relations giving a good estimation of 
the threshold value for different grades of steel and asymmetry coefficient R = 0. 
The formulae have the following forms 

ΔKth0 =11.17 - 0.0032 Rm (6.30) 

ΔKth0 =11.40 - 0.0046 Re (6.31) 

For cycles with coefficient R ≠ 0, the following equation can be used 
ΔKth =ΔKth0 - BR (6.32) 

where 
B =10.39 - 0.0052 Re (6.33) 

An equation describing the threshold value for aluminium alloys was given 
by Mackay 

𝛥𝛥𝐾𝐾𝑡𝑡ℎ = �1−𝑅𝑅
1+𝑅𝑅

�
0,5
𝛥𝛥𝐾𝐾𝑡𝑡ℎ0 (6.34) 

The aim of the analysis of the issue of fatigue crack growth is to determine a 
crack propagation curve and the number of load cycles, after which the element 
tested fails. This number, marked in Fig. 6.8 with symbol Nf, defines the service 
life of an element with a fatigue crack. For cyclic loads with constant amplitude, 
the service life can be determined on condition that the load parameters and the 
form of stress intensity factor (6.18) are known. Equation (6.23) implies the 
following relation 

𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑙𝑙
𝑓𝑓(∆𝐾𝐾,𝑅𝑅)

(6.35) 

Hence, after integration, a number of cycles prior to destruction or a number 
determined by test requirements is obtained in the form 

𝑑𝑑𝑓𝑓 = ∫ 𝑑𝑑𝑙𝑙
𝑓𝑓(∆𝐾𝐾,𝑅𝑅)

𝑙𝑙𝑘𝑘
𝑙𝑙0

(6.36) 



Selected Problems of Solid Mechanics 

162 

where lo denotes the crack’s initial length assumed or found in the element, and lk 
denotes the crack’s final length which is often equated with critical length lkr 
determined based on one of cracking criteria. 

When a necessity arises to make quick calculations, instead of the integral 
formula (6.36), a rough formula in the following form can be used 

𝑑𝑑𝑓𝑓 = ∑ 𝑑𝑑𝑙𝑙
𝑓𝑓(∆𝐾𝐾,𝑅𝑅)

𝑙𝑙𝑘𝑘
𝑙𝑙0 (6.37) 

6.3. Experimental and numerical studies 

6.3.1. A plate strip weakened by a crack

The service life of thin-walled structures is determined by different forms of 
damage, like cracks, fractures, passes etc. Although local defects, in and 
of themselves, constitute no direct hazard to the structure, they can under certain 
conditions lead to its premature damage. In plates and coatings whose thickness 
is small compared to the characteristic dimensions in the proximity of fractures, 
cracks or passes, local buckling can occur, also in the process of tension [6.3]. 
The occurrence of local buckling defined as structure wrinkling, caused by the 
occurrence of local compression zones, results in a change in the state of stress 
within the distorted geometry zone because apart from the membrane state that 
prevails on the plate, also a flexural state occurs in some places.  

The subject of the study was a thin rectangular plate with a centrally located 
crack with an initial length of 30 mm (Fig. 6.11), subjected to cyclic variable 
tension loads within the range: Pmin = 0, Pmax = 1500N. The crack propagates in 
the presence of local buckling with an increase in the number of load cycles, 
until it reaches the critical length.  The crack growing over time causes the local 
buckling zone to expand which has an impact on the crack propagation rate. 

Fig. 6.11. Overall dimensions of the sample and the method of fastening and loading 
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The studies involved the analyses of propagation of fatigue cracks carried 
out for samples with identical geometry. Figs. 6.12 present crack growth for a 
demonstration sample. The first cracks were observed after about 11,000 load 
cycles. The cracks then propagated in the direction perpendicular to the longer 
plate edge until the plate failed. 

During the fatigue tests, the lengths of fatigue cracks were monitored. On 
this basis, graphs were drawn to present the dependence of fatigue crack 
propagation in the function of the number of load cycles (an example of the 
graph in Fig. 6.13). 

a)   b)  

c)   d)  

e)  

Fig. 6.12. Crack growth during experiment after number of load cycles: 
a)10 812 (first crack), b)11 303, c) 16 205, d) 49 800, e) 83 309 

 
Fig. 6.13. Fatigue crack growth in the function of the number of load cycles 
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Based on the test results, graphs for crack growth rate Δl/ΔN in the function 
ΔK (Fig 6.14) were drawn, where 

∆𝐾𝐾 = 𝐾𝐾𝑚𝑚𝑚𝑚𝑥𝑥 − 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚 

𝐾𝐾𝑚𝑚𝑚𝑚𝑥𝑥 = 𝜎𝜎𝑚𝑚𝑚𝑚𝑥𝑥√𝜋𝜋𝑙𝑙 ∙ 𝛽𝛽 

𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚√𝜋𝜋𝑙𝑙 ∙ 𝛽𝛽 

𝛽𝛽 = �1 + 0.128
𝑙𝑙
𝑤𝑤
− 0.288 �

𝑙𝑙
𝑤𝑤
�
2

+ 1.529 �
𝑙𝑙
𝑤𝑤
�
3

� 

Using the relationships Δl/ΔN vs ΔK on a logarithmic scale, the constants mp 
and Cp in the Paris-Erdogan equation were identified 

𝑑𝑑𝑙𝑙
𝑑𝑑𝑑𝑑

= 𝐶𝐶𝑝𝑝(∆𝐾𝐾)𝑚𝑚𝑠𝑠 

The “service life”, or the number of cycles, after which the sample fails, was 
calculated 

𝑑𝑑𝑓𝑓 =
2

𝛽𝛽�𝑚𝑚𝑝𝑝 − 2�𝐶𝐶𝑝𝑝(∆𝜎𝜎)𝑚𝑚𝑠𝑠𝜋𝜋0.5𝑚𝑚𝑠𝑠
�

1

𝑙𝑙0
0.5�𝑚𝑚𝑠𝑠−2�

−
1

𝑙𝑙𝑘𝑘
0.5�𝑚𝑚𝑠𝑠−2�

� 

Table 6.2. Calculated values Nf 

Sample no. Cp mp Nf 
1 4.315∙10-9 7.06 61155 
2 2.415∙10-8 3.94 60637 
3 9.35∙10-9 5.35 53110 

Fig.6.14. Dependence: 𝑑𝑑𝑙𝑙
𝑑𝑑𝑑𝑑

 in the function K∆



Crack propagation in thin-walled structures… 

 
165 

6.3.2. Numerical analysis 

Modern software enables numerical determination of the Stress Intensity 
Factor (SIF) [6.5]. For this purpose, a crack is to be modelled and an area for the 
determination of SIF values is to be selected. Fig. 6.15 presents an area of a 
degenerate finite element grid marked out by a circle with a radius of 5 mm. The 
aim of the degeneration of the grid consisting in the modification of the elements 
in the immediate proximity of the crack front is to force occurrence of a 
singularity to enable determination of a stress pattern in such a zone with higher 
accuracy than that achieved with a traditional method of modelling. Fig. 6.16 
presents examples of distribution patterns for effort near the crack top obtained as 
a result of using the above-described method of modelling and of application of 
the traditional division into finite elements. 

 
Fig. 6.15. Numerical model geometry and boundary conditions. Area of a degenerate 

finite element grid 
 

 
Fig. 6.16. Example of a comparison of effort distribution patterns 

a) normal grid  b) fragment of a degenerate grid 

The SIF value is determined in consecutive so-called contours covering a 
larger and larger area in the region of the crack front. Fig. 6.17. shows the areas 
equated with consecutive contours. 



Selected Problems of Solid Mechanics 

166 

Contour 1  Contour 2  Contour 3  Contour 4  Contour 5 

Fig. 6.17. Finite element nodes within consecutive contours 

Three modelling versions were considered on account of the finite elements 
used and of the procedure to find a solution. Table 6.3 contains information about 
the numerical models created. Model A was digitized by means of disc elements 
of plane stress CPS8R with four nodes, each characterized by three degrees of 
freedom (two translational and one rotational). In Model A, no large 
deformations were allowed (the Newton-Raphson procedure option related to the 
definition of a strain tensor). 

a)

b)

Fig. 6.18. Dependence of SIF from the acting load 
a) Model A, b) Model B2
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Models B1 and B2 were built from plate/shell elements S4R, each having 
four nodes with five degrees of freedom. The difference between Models B1 and 
B2 lay in enabling (for Model B2) the option of large deformations. The aim of 
the verification of the results obtained under the assumption of finite 
deformations was to assess the possibility of determining SIF when modelling 
plate wrinkling. 

Table 6.3. Numerical models 

Marking Type of 
element 

Element 
name 

Large 
deformations 

Model A 2D disc CPS8R None 
Model B1 3D plate S4R None 
Model B2 3D plate S4R Enabled 

Below are presented the results for the models considered in the form of 
displacement and effort fields as well as the graphs demonstrating SIF (for 
consecutive contours) changing with increasing loads. 

For Model A that was treated as a reference case, the value obtained for 
stress intensity factor (under maximum load) was nearly the same in all the 
contours used for the calculation (a difference of ca. 3%). For Model B1, the SIF 
value did not show any differences greater than 4%in particular contours but 
compared to Model A, the SIF value obtained was 25% higher. 

Different results were obtained for Model B2, for which the differences in 
SIF reached 3% to 39% between consecutive contours. The graph in Fig. 6.18b 
further indicates nonlinear nature of the SIF changes for contours 1 and 2. The 
comparison of the results obtained for Model A shows that the differences reach 
even 43%. This forces a statement that the available strategy to find SIF values 
by way of numerical analyses may turn out to be ineffective if it assumes finite 
deformations to occur in the case of analyzing a plate strip with wrinkling taken 
into account. 

Table 6.4. Stress intensity factor values for the models under consideration 

KI [MPa m^1/2] for loading of 1200 N 
 Contour 1 Contour 2 Contour 3 Contour 4 Contour 5 

Model A 1.428576 1.475392 1.47809 1.477331 1.476208 
Model B1 1.783119 1.845156 1.847594 1.846334 1.846334 
Model B2 1.366232 1.702543 1.322278 1.030216 0.836329 

Table 6.5 presents the crack opening sizes during the application of force of 
1200 N, obtained through numerical analyses. According to the previous analysis 
of deformation fields, the opening sizes were similar for Models B1 and B2. 
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Whereas, in spite of lower stiffness, Model A indicated a 20% smaller crack 
opening than that in models built from plate/shell elements. 

Table 6.5. Crack opening size (load of 1200 N) 

Model A Model B1 Model B2 
Crack opening [mm] 0.132 0.165 0.165 

6.3.3. Stress pattern for a crack-weakened structure 

In terms of their character, the effort distribution patterns obtained by 
numerical methods are in concordance with the results of the experimental 
studies. During the experimental studies, the phenomenon of wrinkling was 
observed. It is extremely troublesome to reproduce the phenomenon numerically. 
As a plane structure in numerical calculations, it does not buckle spontaneously. 
Initial bending of the plate is smoothed away by a load in the form of tensile 
force that “tries” to straighten the element in question. The following figures 
show a qualitative comparison of the numerical analysis and experimental 
results. For polymer samples, the numerically calculated effort distribution is, 
according to the hypothesis maxτ , concurrent enough, in terms of quality, with the 
picture of isochromatic lines making up the result of photoelastic tests [6.9]. 

 b) 

Fig. 6.19. A comparison of effort distribution patterns according to the hypothesis 
τmax obtained by FEM a) and the picture of optical effects obtained  

by way of photoelastic tests b) 

a)  b) 

Fig. 6.20. A comparison of main strain distribution patterns - the maximum strains 
a) FEM result, b) DIC experimental results
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Aluminium structures were tested using the digital image correlation (DIC) 
method [6.1, 6.11]. The photos presenting a comparison of the results obtained 
by this way and the results of numerical analyses also indicate high concurrence. 

a)  b)  
Fig. 6.21. A comparison of main strain distribution patterns - the minimum strains 

a) FEM result, b) DIC experimental results 

Also pictures of isochromatic lines in the crack front zone were recorded 
using a reflection polariscope. For this purpose, a coat of fluorescent paint was 
applied to one side of the test plate. Fig. 6.22. presents the isochromatic fields in 
advanced stages of crack propagation. 

 
Fig. 6.22. Isochromatic field for the centre crack 

 
a) 2a=30 mm                        b) 2a=50 mm                        c) 2a=70 mm 

Fig. 6.23. Pictures of moiré fringes illustrating the quantitative  
character of transverse strains 
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The crack grows and the plate stiffness decreases as the number of load 
cycles increases. This is expressed by the visible growth of the wrinkling effect. 

In order to quantitatively determine transverse strains (bending) in the 
particular phases of deformation, the shadow moiré method was applied. 

Fig. 6.23 shows the contour lines for identical bending values in the buckling 
zone. The distance between the neighbouring lines corresponds to 0.26 mm 
bending. So, the maximum bending values are, respectively: 3.12 mm, 4.42 mm, 
5.72 mm. 

6.3.4. Fatigue crack development in a plate subjected to shear 

When taking up the issues of fatigue crack development in the structure 
under consideration, a monocyclic load spectrum was adopted (Fig. 6.24). The 
lower limit for a load cycle was minimally raised in relation to the spectrum 
pulsating from zero in order to avoid the troublesome loading force sign 
inversion that can occur in similar situations. In order to shorten the duration of 
the fatigue tests, a rate of force development of 3 kN/s was adopted. 

Fig. 6.24. Load spectrum for the plate tested 

For the purposes of the experiment, a plate fastening system was designed 
and made in the form of a stiff four-jointed frame. The frame consisted of eight 
flat steel bars, four on each side of the plate, joined in the corners with bolts. The 
frame components were connected with the plate with screw-nut gears, 
monitoring uniformity of pressure over the entire edge length during the 
assembly. This type of connection ensured occurrence of friction force between 
the contacting surfaces. 

The sufficiently high stiffness of the flat steel bars did not enable the plate 
edges to rotate. This created fastening conditions close to ideal restraint. 

The schematic diagram of the test stand is shown in Fig. 6.25. The lower 
frame node was connected to the testing machine base. The upper node with the 
machine’s traverse enabled introduction of loading force. This method of 
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introducing external forces ensured occurrence of internal loads on the plate 
edges in the form of tangential expenditure constituting the impact of the frame 
components on the plate (Fig. 6.25). 

 
Fig. 6.25. Schematic diagram for the load and the test stand 

The tests on the plate revealed the first 0.5 mm long fatigue cracks after 
45,000 load cycles at points of connection with the frame (Fig. 6.26). The cracks 
indicate that there occurs extreme effort in these areas. After about 55,000 load 
cycles, cracks on the plate diagonal appeared. After about 73,000 cycles, 
formation of four cracks with similar lengths and angle orientation in relation to 
the plate edges was observed. During the subsequent 6,000 load cycles, those 
cracks formed two large cracking zones. Fig. 6.27 shows the development of the 
cracks described till the plate failure. 

 
Fig. 6.26. The first fatigue cracks and their locations on the plate surface 

No significant changes in the global stiffness of the structure were found 
during the first 83,000 cycles. During that cycle period, the fatigue cracks 
reached as large lengths as 50 mm. The last 2,500 cycles caused distinct gradual 
degradation of the structure which manifested itself in loss of stiffness, i.e. in an 
increase in the displacement of the upper plate attachment point, from the value 
of 2.6 mm to over 10 mm. 

The failure occurred as a result of reaching a critical length by one of the 
fatigue cracks. The crack propagation rate suddenly increased, causing the crack 
to reach the critical length (Fig. 6.28).  
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Fig. 6.27. Fatigue crack development (in frames: number of load cycles times 103) 

Fig. 6.28. Failure of the plate (84,658 load cycles) 

6.4. Summary 

It seems clear that the modern testing and calculation methods not only 
enable but simply require consideration of factors that have been often passed 
over in the design of thin-walled load-bearing structures because of mathematical 
or equipment-related difficulties. The modern tools in the form of computer 
programs and broad laboratory equipment enabling static and dynamic testing 
(fatigue, resonance tests, flight tests) form the primary basis for the design and 
implementation of new, original concepts. The better and better availability of 
the tools obliges the designer to take a closer look at the opportunities offered by 
the contemporary technology in this regard. 

This paper raised a number of issues that have a significant effect on the 
service life of thin-walled load-bearing structures, both those planned and those 
in use (periodic repairs, repairs after damage etc.). 
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The above issues include, first and foremost, the occurrence of cracks that do 
not mean failure of the structure but require the determination of critical lengths. 

The experimental study and numerical calculation methodology was 
presented in the form of suggestions about choosing the appropriate tool for 
studying the aforementioned phenomenon. The suggestions are based on the 
modern generation measuring technology. Attention was also drawn to the 
effectiveness of conventional photoelasticity. 

The experimental studies and numerical analyses carried out enabled us to 
formulate detailed remarks which may be important for the design process. For 
example, the comparison of the experiment results (photoelasticity, moiré 
method, DIC method) allows us to state that the phenomenon of wrinkling has 
virtually no effect on premature destruction of thin-walled structures weakened 
with advanced cracks.  
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7. 

Deformation and buckling of axially compressed 
cylindrical shells with transversal cut in 
numerical and physical experiments 

7.1. Introduction 

Difficulties of the design of axially compressed smooth circular cylindrical 
shells are connected with an essential effect of small perturbations of idealised 
models of shells on their bearing capacity. Additional problems appear in the 
case of various discontinuities of shells (openings, cut-outs) which can be 
consequences of the design and technological nature or structural damages. 
A great number of researches (experimental, analytical and numerical) deal with 
the study of stability of shells with cut-outs. A particular problem of definition of 
buckling loads for cylindrical shells with cut-outs became separate in 1947 after 
the studies made by A.I. Lurie [7.14] and devoted to the stress concentration 
around circular openings. Early researches by R.C. Tennyson [7.24] that included 
experimental results of the buckling problem of axially compressed elastic shells 
with a small circular cut-out were one of the pioneer investigations. The first 
theoretical research performed by P. Van Dyke [7.25] provided a very good 
agreement with the experimental data [7.24]. Detailed information on the initial 
stage of the stability investigation of shells with openings is presented in the 
reviews of I.N. Preobrazhenskii [7.17-7.18], E.I. Grigolyuk and L.A. Filshinskii 
[7.5], A.N. Guz and Yu.A. Ashmarin [7.2], G.J. Simitses [7.20], J.G. Teng 
[7.23], C.-Y. Song [7.21], I. Elishakoff [7.4].  

The research [7.8] of J.F. Jullien and A. Limam should be related to the 
works of “modern” times associated with an intensive implementation of 
program codes based on the finite element method (FEM) for problems of the 
shell buckling. The paper contained results of an original experiment as well as 
results of numerical simulations of the stability problem of shells with singular or 
several cut-outs. Among variable parameters there were different shapes 
(rectangular or circular) of openings, their locations and sizes in the 
circumferential and longitudinal directions. Besides, two types of the loading 
conditions (kinematic compression with possible or restrained edges rotations, 
[7.10]) and the effect of initial imperfections on the shells bearing capacity were 
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studied. One of the most important conclusions of the authors was an estimation 
of the coupling effect between initial geometrical imperfections and openings on 
the buckling loads. 

The monograph [7.16] of N.I. Obodan, A.G. Lebedev, V.A. Gromov 
discussed the buckling problem of shells with large cut-outs subjected essentially 
to external pressure as well as to axial compression. Stability of short reinforced 
and smooth shells with singular damages was studied in the work of 
R.M.K. Kwok [7.13]. 

Researches [7.3] performed by A.P. Dzyuba, E.F. Prokopalo, P.A. Dzyuba 
generalised the experimental data of numerous tests of shells with openings of 
various shapes and number under different types of loading: axial compression, 
flexion, torsion, and some their combinations. 

We should also mention a cycle of studies [7.6, 7.7, 7.12] of the stability of 
composite cylindrical shells that were carried out by the scientists of NASA with 
the participation of M.W. Hilburger in the last two decades. The researches 
included testing and numerical results for the shells with reinforced and 
unreinforced openings. The influence of geometrical imperfections, effect of 
delamination and non-uniform loading provoked by imperfect edges of a shell 
were estimated. 

Despite numerous experimental and theoretical researches of the buckling of 
axially compressed cylindrical shells with cut-outs, this problem cannot be 
considered as solved. In particular, a singular opening or cut generates essential 
non-uniform stress-strain state (SSS) of a shell in the longitudinal and 
circumferential directions with consequent possible larges deflections. Moreover, 
because of non-uniform SSS, the buckling behaviour and bearing capacity of the 
shell can be influenced by the nature of loading (force or kinematic loading), as 
well as by the conditions of load application to shell edges. Obviously, a linear 
model of shells behaviour may be insufficient in this case. Meanwhile, the 
theoretical analysis of geometrically nonlinear problem reflects the essence of the 
real buckling process. But in the presence of an essential non-uniform pre-critical 
SSS a successful analysis turns out very difficult. 

The realisation of such analyses appears possible just recently due to an 
intensive development of computer technologies and universal FEM-based 
program codes. The most important aspect of analyses in the environments of 
software is an evaluation of possible analysis realisation, as well as estimation of 
the accuracy of numerical approaches. In this case, recognised criteria of the 
evaluation are comparisons of numerical results with experiments and analytical 
solutions. Proceeding from the above, a combined numerical and experimental 
research of insufficiently studied buckling behaviour of circular cylinders with 
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one transversal cut of various lengths under certain loading nature and loading 
conditions of axial compression is a very important and actual problem. 

7.2. Methodology and results of the experimental research 

7.2.1. Experiment preparation 

All experiments were carried out on small size specimens produced of 
drawing paper Goznak of mark “B” (GOST 597-73, former Soviet Union state 
standard specification) with following mechanical characteristics: modulus of 
elasticity Ey=6.9 GPa, Еx=3.45 GPa (hereinafter y corresponds to the direction 
along shell generatrix and х corresponds to the circumferential direction 
according to the coordinate system of ANSYS software); shear modulus 
G=1.92 GPa; Poisson’s ratio νy=0.3, νx=0.15; ultimate strengths σy=45 MPa, 
σx=30 MPa. The test diagram of the paper is presented in Fig. 7.1. Geometrical 
parameters of the shells were: radius R = 37.5 mm, length L = 75 mm, thickness 
h = 0.23 mm (R/h = 163, L/R = 2.0). The longitudinal size of cuts was 
preliminary determined and designed equal а=2 mm (see Fig. 7.3) to avoid 
touching of cut boards in the loading process. The cut length l varied from 
3.0 mm to 60 mm and corresponded to angles γ from 4°.6 to 92°. The total 
number of tested specimens comprised 24 shells: two specimens of the same 
geometry including two shells without cuts. 

Fig. 7.1. Test diagram of the paper (Whatman paper, GOST 597-73) 

Shells were made of flat rectangular sheets of 240×115 mm. Boards of 
sheets were joined with the glue BF-2 (GOST 12172-74) around metal cylinders 
of diameter equal to 75 mm. The width of glue over-lapped joints was about 5 mm. 
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The centre of a cut was located in the middle section of each shell diametrically 
opposite to the centre of a joint. After glue joints polymerisation finished shells 
were set on massive steel test disks that had central circular openings. A tight 
contact of shell and disk was also kept by the glue BF-2. 

An axial compressive force was applied to the upper disk through the central 
spherical joint. This joint was connected with a long steel rod that extended 
through the opening of fixed bottom disk and was attached to a flat circular 
platform. The loading was applied by means of a system of weights placed on the 
platform. General view of the test installation is presented in Fig. 7.2a. It is 
obvious that the concerned loading scheme corresponds to the force loading. 
Besides, the transfer of loads to a shell allowed free rotations of its rigid disks 
(see Fig. 7.2). 

The loading of shells was realised till their general (overall) buckling 
occurred. To prevent a total specimens collapse, the restriction of sharp vertical 
displacements of the upper disk caused by reaching the limit load was envisaged 
(see the support in Fig. 7.2а). The test process of shells was video filming. 

a)      b) 

Fig. 7.2. Test installation: a) general view, b) tested specimen 

7.2.2. Quality of shells 

Because of the lack of special facilities, the control of shells quality 
consisted in the visual inspection of specimens. Shells which were taken off 
technological cylinders had some geometrical deviations observed with the naked 
eye. In particular, cross-sections of shells were different from circular and similar 
to drop-shaped thus the pointed end of “drops” was nearby the glue joint. The 
other initial imperfection was clearly observed only for shells with large cuts. 
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Edges of cuts were not mirror images of each other, so they formed a little stair 
in the middle of their length. 

Fitting shells on the rigid disks almost completely eliminated drop-shaped 
cross-sections. At the same time, they had no influence on imperfections of the 
offset edges of cuts. On the other hand, rigid disks initiated some other 
imperfection. Particularly, generatrices of cylinders bended, and shells became 
barrel-shaped. As well under the weight of disks, rotations of the top shell edge 
occurred to the centre of cuts; thus, longitudinal sizes in the middle of cuts 
decreased а' < 2 mm (see Fig. 7.3).  

a) b) a' ≠ a 

Fig. 7.3. Initial imperfections of patterns 

Results of the preliminary tests of shells without cuts showed that buckling 
loads were equal N = (0.56÷059)Ncl. According to the classification [7.9] 
of shells quality, considered specimens of the cylinders without cuts should be 
referred as quality shells. 

7.2.3. Results of the experiment 

The deformation of intact shells and shells with small cuts l=3÷4 mm 
occurred in the same way. During the loading no changes were visually detected. 
The buckling happened instantly with the formation of a closed belt of 
circumferential dents (see Fig. 7.4b). Sometimes the cut turned out to be in the 
buckle between two dents (see Fig. 7.4а). To distinguish the location of the first 
dents formation was only possible by means of a slowed video of the loading 
process. The analysis of sweeps of tested buckled shells showed that the total 
number of circumferential dents was between 6 and 8. Dimension of the biggest 
dents were about from 35×40 mm to 40×45 mm (hereinafter the first number 
indicates the height of a dent). 
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a) b) c) d) 

e)  f)  g)  h) 

Fig. 7.4. Experimental buckling modes: c), e) local, a)-b), d), f)-h) overall 

Buckling of the most of shells with cuts l=5÷60 mm (except two specimens 
that we discuss further) was characterised by formation of one or two local dents 
asymmetric in relation to the cut line (see Fig. 7.4e and Fig. 7.4c, respectively). 
Then, there were two possible ways of the deformation evolution. In the first case 
with constant axial compression Nloc, a local dent (or two local dents) slowly 
developed and formed the overall buckling mode (see Fig. 7.4f). In the second 
case the transformation of the initial dent to the post-critical buckling mode 
occurred when axial compression increased (see Fig. 7.4d). But independently of 
the deformation evolution, overall buckling modes were significantly developed 
nearby the cut. There was almost no buckling along the glue joint. The total 
number of dents was between 8 and 13. For the buckled shells with cuts 
l = 5÷14 mm the cut was situated in the area of the biggest post-critical dent of 
dimension about from 25×50 to 40×50 mm. For the shells with cuts 
l = 20÷60 mm the biggest post-critical dent with dimensions from 30×40 to 
40×50 mm was located away from the cut, and there were also two separate dents 
along the cut lines (see Fig. 7.4h). 

For some shells with large cuts l = 30 and 40 mm there were no local 
buckling modes detected. During the loading initial “barrel-shaped” 
imperfections increased and developed. The buckling of these shells was 
accomplished with asymmetric displacements of the cut edges (see Fig. 7.4g). 
The total number of dents was n = 13 for the shell with l=30 mm, and n = 10 for 
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the shell with l = 40 mm. The biggest post-critical dent formed away from the 
cut and covered the area with diagonals 35×45 mm and 45×45 mm, respectively. 

The Table 7.1 contains results of considered tests. Depending on a cut size 
(given in millimetres and in degrees) there are presented following values: local 
( locN1  and locN2 ) and general ( 1N  and 2N ) buckling loads for two specimens of 
the same geometry, arithmetic average values of general buckling loads ( avN ) 
and their relative values cl

av NNN = , where )1(32 22 νπ −= EhN cl  is the 
classical critical axial compression found for an isotropic shell with average 
mechanical characteristics of the paper Е = 5.175 MPa and ν = 0.225. 

Table 7.1. Results of the tests 

l, 
[mm] γ, ° locN1 , N 1N , N locN 2 , N 2N , N 

2
21 NN

N av
+

= , N cl
av NNN =

0 0 - 570 - 595 582.5 0.572 
3 4.6 - 575 - 628 601.3 0.590 
4 6.1 - 625 - 590 607.5 0.596 
5 7.6 - 565 530 530 547.5 0.537 
7 10.7 495 495 545 550 522.5 0.513 
10 15.3 490 522 515 532 527.0 0.517 
14 21.4 475 515 465 490 502.5 0.493 
20 30.6 488 488 470 470 478.8 0.470 
30 45.8 420 428 - 472 450.0 0.442 
40 61.2 378 378 - 367 372.5 0.365 
50 76.4 320 329 285 290 309.5 0.304 
60 91.7 268 268 285 285 276.3 0.271 

7.3. Methodology and results of the numerical study 

The numerical analysis of SSS and buckling of axially compressed 
cylindrical shells with considered cuts was accomplished in ANSYS software. 
Below there are proposed methods of a creation of geometrical and finite element 
(FE) models, methodology of applying loads and boundary conditions, and 
technics of the results processing. 
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7.3.1. Numerical finite element modelling 

Numerical models were created using standard options of ANSYS software. 
First, three-dimensional geometrical models of circular cylindrical shells without 
any cut or with one transversal cut of different length were generated by means 
of up-going modelling procedure. Then mechanical characteristics of shells 
material were set. These elastic constants strictly conformed to real experimental 
data taking into account principal orthotropy directions of the paper. Missing 
material parameters along the thickness were assumed equal to the smallest 
values known for the paper. Thus, the material of shells was orthotropic and 
elastic. 

Geometrical models also included two rigid disks. The disks imitated end 
testing devices that were attached to the upper and bottom edges of shells. Rigid 
disks were simulated as short cylinders of the diameter equal to the diameter of 
shells (75 mm) and of the height equal to 3 mm. The rigidity of disks were 
similar to the rigidity of end testing devices and were defined by a high value of 
modulus of elasticity of an homogeneous elastic isotropic material (E = 2·1015 Pa 
and ν = 0.3). 

FE mesh of shells was created with a four-node element SHELL181 from 
the standard ANSYS element library. Each node of elements has six degrees of 
freedom: three translations and three rotations about local axes (see Fig. 7.5а). 
This element is well-suited for linear and geometrically non-linear analyses of 
shell structures of small and moderate thickness taking into account large 
displacements and rotations that are governed by the first-order shear-
deformation theory (referred to as Mindlin-Reissner shell theory [7.1]). Using FE 
SHELL181 considers the application of a full integration option for possible 
asymmetric deformation with incompatible modes [7.1]. 

FE modelling of the rigid disks was carried out by means of three-
dimensional element SOLID185 (see Fig. 7.5b) having eight nodes with three 
degrees of freedom at each node that represented three translations in the nodal 
directions of local axes. 

a)    b) 

Fig. 7.5. Geometry of FE in ANSYS software: а) SHELL181, b) SOLID185 
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FE discretisation was realised on the base of standard ANSYS generator – 
MESHING. At first, geometrical models of the shells were covered with FE. 
Then created shell meshes were refined along free edges of the cut lines. At the 
end, solid FE filled the volumes of the rigid disks (see Fig. 7.5b). FE mesh of an 
entire shell surface (except refined areas around the cut) was built of regular 
square in plan elements with a side of 1.5 mm. The size of elements was chosen 
by the procedure of successive mesh refinements based on criteria of stable 
results of critical and limit loads for an ideal shell. Moreover, the size of FE was 
checked in the edge effect zone equal to Rh.721 . There were four FE at least. 

a)  b)  с) 

Fig. 7.6. Scheme of the force loading of a shell with one transversal cut а), its FE model 
including rigid disks b), scheme of pre- and post-critical behaviour of a shell caused by 

possible out-of-plane rotations of its edges c) 

Meshes of the rigid disks were free and proportional to FE meshes of the 
shells. Arbitrary elements were referred to special points (points C in Fig. 7.6a) 
in the centre of disks where loads were applied. So, the total number of FE varied 
between 35000 and 37500, including between 13600 to 16000 shell elements 
depending on the cut length. 

Loads and boundary conditions were performed in ANSYS processor 
DEFINE LOADS. Fixing of an entire shell in the longitudinal direction was 
realised in the middle section of the shell height. An axial compression was 
applied as axial compressive forces N (force loading) with possible out-of-plane 
rotations of shell edges during the loading (Fig. 7.6c). Exactly this loading 
scheme was implemented in the experiment. For its accurate realisation by means 
of ANSYS facilities there were two special “hard points” created on the external 
surfaces of rigid disks and situated on the axe of the shell. Concentrated forces N 
were applied to the “hard points”. The boundary conditions considered restrained 
radial and tangent displacements (in ANSYS designations - ux = 0, uy = 0 in the 
nodal coordinate system of FE) on the top edge of the upper disk and on the 
bottom edge of the lower disk. Besides, on the upper and lower edge of the shell 
rotations were limited (in ANSYS designations - roty = 0 in the nodal coordinate 
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system of FE). Restricted rotations corresponded to clamped edges of the shell. 
This clamped connection between shells and disks distinguished the loading 
scheme 1 of the present study from the scheme 1 proposed in [7.11]. 

7.3.2. Types of analyses and numerical procedure 

All solutions were specified as STATIC. During static analyses we studied 
the influence of time-constant static loads (loads and reactions could change 
slowly in time [7.1]) on considered shells. While the loading process of the 
shells, values of displacements and internal forces were determined, as well as 
values of stresses were controlled. 

Depending on considered problems we performed three following types of 
numerical analyses for generated FE models of the shells without or with cuts: 

1 geometrically linear buckling analysis taking into account linear pre-
critical deformations in order to define minimal eigenvalues ( crN ) 
and eigenmodes (analysis I); 

2 geometrically nonlinear static analysis of SSS for the definition of 
limit loads ( limN ) and corresponding deformations (analysis II); 

3 geometrically nonlinear analysis with initial imperfections. These 
imperfections corresponded to the first eigenmode obtained out of a 
preliminary linear buckling analysis of shells without or with cuts 
(Fig. 7.7a,b). The magnitude of imperfections was assumed to be 
depending on the shells quality, i.e., it was equal to the magnitude that 
provided buckling loads of a shell without cuts adequate to average 
loads found in the experiment [7.9] (analysis III). 

It should be noted here that a simultaneous comparative research of three 
mentioned types of analyses is extremely important for certain localisations and 
sizes of cuts (as opposite to the investigation of deformation and buckling of 
cylindrical shells without any openings and dissections). This fact is easy to be 
explained by the physical nature of the buckling of shells with a cut. Particularly, 
the first bifurcation (as a result of the analysis I) appears in this case like a 
separation of cut edges during the loading. Obviously, this distortion of shell near 
a cut can occur for rather low loads. Therefore, a judgment on total exhaustion of 
the bearing capacity of a shell is possible valid only in comparison with the 
results of geometrically nonlinear analyses II and III. 

As far as any measurement of initial imperfections of tested specimens was 
not carried out, the magnitude of “bifurcational” imperfections for the analysis III 
was imposed in the following way. In geometrically nonlinear analyses we found 
limit loads for considered specimens without cuts and with “bifurcational” 
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imperfections of different magnitudes hww /0 = . Results of these simulations 
were generalised as the dependence of limit loads on magnitudes of 
imperfections “ 0

lim wN − ” (see Fig. 7.7c). 

By the results of tested shells without cuts, an average value of experimental 
buckling loads expN = clN572.0 (see table 1). According to the dependence 
“ 0

lim wN − ” (Fig. 7.7c), this limit load was realised for the magnitude of 
imperfections hw 12.00 = . That was the value of imperfections which was put in 
the analysis III for the definition of limit loads of the shells with cuts and initial 
imperfections. 

a)  b)  с) 

Fig. 7.7. Eigenmodes of axially compressed shells: a) without cut, b) with a cut, 
c) the dependence of limit axial compressive forces on magnitudes

of “bifurcational” imperfections 

The eigenvalues were determined by Lanczos method [7.1]. 

During the nonlinear analyses we plotted pre- and post-critical equilibrium 
paths “load-deflection”. 

Both types of nonlinear analyses were accomplished by arc-length method. 
That was connected with loading particularities. For the force schemes of 
compression, forces are applied step by step. But in the vicinity of limit points a 
change of the loading parameter is required to obtain a post-critical branch that is 
only possible in the case of the arc-length method. 

Another important feature of geometrically nonlinear analyses of shells with 
cuts was that the best way for selection of main solution parameters (number of 
substeps, maximal and minimal multiplier of the reference arc-length radius – 
MAXARC, MINARC) based only on the results of nonlinear deformation of an 
ideal cylindrical shell was insufficient. Moreover, we ought to increase the 
number of substeps for each series of shells with a cut versus their number for a 
shell without cuts (approximately in two times). Finally we admitted the 
parameters that provided smooth post-critical branches without snap-backs to the 
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initial equilibrium paths [7.19, 7.22]. Note that too many substeps may 
essentially increase the solution time with no accuracy changes. Besides, size and 
shape of FE are not the least of factors for correct post-critical paths. Irregular 
shapes of FE can cause not only poor convergence of the solution, but also lead 
to wrong, overrated values of critical and limit loads on the pre-critical 
equilibrium paths.  

7.3.3. Processing and presentation of numerical results 

The processing of numerical results was performed in GENERAL 
POSTPROCESSOR of ANSYS software. For the most comprehensive and 
convenient analysis it is recommended to save results after each substep. In this 
case a result file contains the most complete information on executed nonlinear 
solutions: parameters of strains, stresses, efforts in all nodes and elements in 
appropriate form (tables, contours, graphs, etc.). 

The evaluation of obtained results was carried out on the basis of 
correspondence of numerical solutions with the experimental data. Because 
of the experiment scantiness, along with buckling modes, buckling loads were 
the main criteria of results evaluation. A complete picture of the buckling 
behaviour of shells with cuts were reconstructed by means of the plotting 
dependences of displacements of special points (points B, C, see Fig. 7.6a) on 
loads level. We also registered stresses which corresponded to special loads on 
the pre- and post-critical branches of equilibrium paths. 

Note the particular importance of the post-processing review and evaluation 
of results. The influence of applied loads and boundary conditions, validation of 
FE mesh, substeps value, etc. can be estimated only at this stage of the numerical 
research. 

7.3.4. Analysis of numerical results, comparison with 
experimental data and discussion 

For a demonstrable comparison of the numerical simulation results with 
experimental data in Fig. 7.8 the buckling loads are presented as the dependences 
on the cut length l (γ). Here, “one” of the y-axis corresponds to the value of the 
critical axial compressive force of an isotropic shell with average mechanical 
characteristics of the paper (Е = 5.175 MPa and ν = 0.225). In Fig. 7.8 red 
triangles correspond to general buckling loads of the experiment. Local 
experimental loads locN  appear as red rhombs. White dots represent critical 
loads of the geometrically linear solution I; black dots show limit loads of the 
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geometrically nonlinear solution II; blue and white dots show limit loads of the 
geometrically nonlinear solution III. 

Studying the graph presented in Fig. 7.8 shows that for a small size of cuts 
(l<7 mm) the geometrically linear analysis I is higher than geometrically 
nonlinear analysis II, but increasing the cut leads to inversion of limit and critical 
loads. However, in the small cut region the experimental values of buckling loads 
are much lower than numerical buckling loads due to the initial imperfections 
observed for real structures, which are absent in FE models of numerical analyses 
I and II. A sharp drop of both limit and critical loads for small cuts till the value 
of 0.62Ncl can be explained by an extreme sensitivity of buckling loads to local 
perturbing factors, in particular to the transversal cut in this case. In the region of 
large cuts a smooth decrease of limit and critical loads is distinguished till the 
value of 0.39Ncl caused by progressive reduction of the working area of a shell. 

experiment 

experiment, local load 

linear analysis I 

nonlinear analysis II 

nonlinear analysis III with 
imperfections w0 = 0.12h 

first limit load in  
nonlinear analysis III 

Fig. 7.8. Dependences of relative experimental and numerical critical 
and limit loads on the cut length l (γ) 

Mention two local maximums in the region of decreasing limit loads of the 
analysis II near the cuts l=10 and 30 mm which can be also observed in a smooth 
form for the experiment. The first rise is connected with a constrained 
deformation near the cut. In the second case, a certain strengthening of shells 
leads to the increase of deformation zone. A pre-critical dent (Fig. 7.9a; 
hereinafter framed buckling modes correspond to the maximal value of limit 
loads) is not able to cover the entire cut, and as a result it transforms into two 
separate local post-critical dents at the edges of the cut (Fig. 7.9b,c). On the other 
hand, imperfections of the analysis III eliminate both rises of loads. 
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a) b)  c) 

Fig. 7.9. Deformations of the shell with l = 30 mm in the analysis II: 
a) pre-critical, b, c) post-critical

The best agreement of numerical results with the experimental data is 
observed for the limit loads obtained in the nonlinear analysis III. The maximal 
difference between the analysis III and experimental data is less than 10%. On 
the one hand, it indicates an excellent qualitative and good quantitative 
correspondence of the numerical analysis and experiment. And, on the other 
hand, this lets us complete the lack of the experimental data with numerical 
results concerning pre- and post-buckling behaviour of the shells with the cuts. 

Fig. 7.10a-b,d-e describes typical dependences of displacements on load 
values in the analysis III for the shells with cuts l = 5 mm and l = 30 mm. 
Studying these graphs lets us determine that at the buckling moment the relative 
longitudinal displacement ΔZ of point C (see Fig. 7.6a; C is situated in the middle 
of external surfaces of rigid disks) is equal to 0.24h and 0.21h, respectively. For 
the entire series of shells ΔZ = 0.20h÷0.27h. Relative radial displacements w  of 
points В (points B are situated in the vertical line of symmetry on the edges of 
cuts; positive translations w  are out of the centre of a shell curvature) are equal 
up to 1.24h and 2.32h, respectively. For the entire range of considered shells 
w  = 0.10h÷2.51h. 

Thus for real shells with one transversal cut produced according to the 
considered technology, the cut presence leads to initial geometrical imperfections 
similar to the first eigenmode (bifurcation) that is revealed like symmetric 
distortions of the cut edges. During the loading this initial pre-deformation 
develops intensively near the cut, and the shell buckling occurs after reaching a 
limit point. Note that the bearing capacity of shells with large cuts is determined 
by reaching the first limit load (Fig. 7.10d). And in the case of small cuts the 
buckling happens after overloading the first limit point (Fig. 7.10a). 

Numerical experiments realised according to the proposed methodology in 
the frame of geometrically nonlinear analysis III with “bifurcational” 
imperfections (preliminary obtained in the buckling linear solution I) allow a 
complete study of the buckling behaviour of cylindrical shell with singular 
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transversal cuts. This fact is confirmed by a good qualitative and quantitative 
correspondence between numerical results and data of the physical experiment. 

a)  b) 

c) 

d)   e) 

f) 

Fig. 7.10. Typical behaviour in the analysis III and buckling modes 
for the shells with cuts: а-c) l = 5 mm, d-f) l = 30 mm 

7.3.5. Stress state around the cuts 

It is known that cut-outs and openings provoke stress concentrations which 
can significantly influence on the pre- and post-critical deformation of a shell. 
Therefore, we control stresses along dissections in the geometrically nonlinear 
buckling analyses of considered shells (in the experiment stresses were not 
measured). The main results of this study are following. 

The most important characteristics of the strength assessment of a shell are 
membrane stresses (in ANSYS designations – stresses in the middle layer of FE). 
As a rule, they use to evaluate the strength of shells produced of plastic materials 
by equivalent von Mises membrane stresses (energetic strength theory). In Fig. 
7.11 there are contours of equivalent von Mises membrane stresses at different 
levels of loads. Framed stress states of the shells (full pictures and near 
concentrations) correspond to limit loads. Furthermore there is a coloured scale 
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of stresses (in pascals) measured at the buckling moment for each shell with a 
cut. Nodes of maximal stresses in the shell are automatically marked with the 
symbol “MX”. 

l =3 mm (γ=4.6°), maxσ =34.7 MPa 

a) b) c) d) e) 

l=60 mm (γ=91.7°), maxσ =33.9 MPa 

f) g) h) i) j) 

Fig. 7.11. Distribution of von Mises membrane stresses (Pa) at different loading time 

A detailed analysis of the stress distribution indicates that the highest 
stresses appear near cuts at one node situated along the height of cut edges (see 
Fig. 7.11b,i). Maximal buckling stresses are equal about 35 MPa, and they are 
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obviously results of the concentration as far as average values of the stress fields 
are 2.5-3.0 times lower. 

The stress distributions as well as registered values of membrane stresses, 
which do not exceed dangerous stresses for the material, prove that the buckling 
of tested axially compressed cylindrical shells with singular transversal cuts 
happens in the elastic stage of material deformation. Besides, a pronounced 
concentration of stresses is observed around the cut irrespective of its length. 

7.4. Conclusions 

A series of tests of axially compressed identical circular cylindrical shells 
with singular transversal cuts in the middle section were carried out. The cut 
length varied in the wide range (angle sizes of cuts in the circumferential 
direction were between 4.6° and 92°). Shells were produced of sheets of the 
dense paper (Whatman paper) with a weak orthotropy of its elastic properties (the 
longitudinal modulus of elasticity was two times higher than circumferential 
one). The pre-critical deformation and buckling occurred in the elastic stage of 
the material work. 

Numerical simulations of the experiment (concerning deformation and 
buckling of axially compressed orthotropic shells with transversal cuts and 
without cuts) were realised in ANSYS software according to the methodology 
proposed by authors. The analysis was based on three types of solutions: 1) linear 
buckling problem (bifurcations of linear pre-critical deformation); 
2) geometrically nonlinear problem for the definition of limit loads of perfect
shells with cuts; 3) geometrically nonlinear analysis of considered shells with 
initial geometrical imperfections of the middle surface. Initial imperfections 
imposed like a family of buckles and dents corresponded to the first eigenmode 
of an axially compressed shell with a cut of considered length. The magnitude of 
imperfections was equal to 0.12h. This proper magnitude provided that the 
numerical limit compressive force matched with an average value of buckling 
loads found for shells without cuts in the experiment. 

The best agreement, both quantitative and qualitative, of numerical results 
with the experimental data is observed in the case of the third analysis for all 
considered cuts. The buckling of shells with transversal cut, which occurs in this 
analysis, corresponds to the values of limit loads about 0.295÷0.576 from the 
classical critical force of an isotropic shell with average elastic constants. The 
maximal difference between the third analysis and experiment is less than 10%. 
Such a good result is the consequence of taking into account of all important 
features of the physical experiment in the numerical analysis. These features 
include: material orthotropy, initial geometrical imperfections, loading nature 
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(force loading), and conditions of load application (loading through the rigid 
disks with their unrestricted rotations during the pre-critical deformation and 
buckling of a shell). According to the classification in [7.10], this loading is 
referred to the “loading scheme 1”. 

In the region of medium and large cuts γ > 15° a very good agreement with 
the experiment is provided by linear bifurcational analysis I without initial 
imperfections. However, numerical values of critical loads are lower than the 
bearing capacity of tested shells in this region. 

Furthermore, the performed numerical analysis allows completing the testing 
results with missing data on the pre- and post-critical behaviour of shells with 
considered cuts. Particularly, in numerical buckling analyses we detected up-
going post-critical branches of equilibrium paths for the shells with medium and 
large cuts. 

The numerical study of von Mises membrane stresses shows that an 
essentially pronounced stress concentration takes place near the longitudinal 
edges of cuts. Maximal stresses exceed the average values of stress fields in 
2.5-3.0 times, and for the maximal limit loads they are equal about 35 MPa. 

All above mentioned proves an extremely high applicability of ANSYS 
software for the problems of deformation and buckling of shells with essentially 
non-uniform stress-strain state. 
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8. 

Corner radius effect in the thin-walled columns 
of regular polygon cross-section on the local 
buckling and load carrying capacity 

It is a common observation that the thin-walled columns of flat walls are 
widely used in engineering practice. However, despite high strength materials 
applied for their manufacturing, those structures couldn’t be fully exploit due to 
mostly low values of critical stress of a local buckling. In the stability of 
structures it is obvious that increasing the local stability could be gained by 
simple treatments: as thicker walls, stiffeners or by changing the cross-section 
shape. But those methods lead to making a structure larger and heavier. 
Nowadays, the optimization of the material distribution is the crucial factor 
during projecting and design process. It encourages to find the best coherence 
between a local buckling load or an ultimate load and cross section shape of 
specific structure without enlarging its cross-section area i.e. its total mass. As an 
example in [8.4] authors proof that the load carrying capacity of thin-walled 
multi-cell columns can be increased by changing their cross-section shape but not 
its entire area. Tillman and Williams [8.11] were searching for an agreement 
between the tests and the theory for the problems associated with defining the 
buckling loads of practical columns. The performed comparison tests gave results 
to be good in the main with theory. Camotim at all [8.2] applied the generalised 
beam theory (GBT) formulation to perform first-order and buckling analyses of 
arbitrary thin-walled members, namely members with cross-sections that 
combine closed cells with open branches. Królak at all [8.6] analysed multicell 
closed cross-section columns and girders to determine their critical load and 
postbuckling response. There isotropic structures were considered whereas in 
[8.4, 8.7] orthotropic properties of column walls were assumed. The same 
authors team investigated analogous problem in laboratory experiments to 
validate the previous analytical approach with satisfactory results [8.5]. The 
problem of an influence of corner radii of square cross-section short thin-walled 
columns on the buckling and postbuckling response was introduced in [8.9]. 

It should be emphasize that the question of the local buckling of thin-walled 
columns has a numerous and well-known literature and has been thoroughly 
investigated. In particular within the literature survey, one can find some studies 
presented the influence of a cross section shape i.e. open or closed, on the local 
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stability [8.3, 8.8]. However, one can still find issues worth to be studied. 
Authors of this work have been investigated a corner radius effect on the local 
buckling of thin-walled structures. For each considered regular cross-section 
shapes (i.e. triangular, square, regular pentagon or hexagon) different values of 
corner radii were applied taking into account a constant area of a column cross-
section. This study appears to be some kind of an optimizing analysis of thin-
walled members without fundamental formulation. 

8.1. Introduction 

During axial-compression of a plate thin-walled steel column of regular 
polygon cross-section (mainly column with an even number of walls - it is 
square, regular hexagon or octahedron), we can determine the local buckling 
critical stress from the formula valid for a long uniformly-compressed 
rectangular plate simply supported at all edges (Eq. 8.1) [8.3, 8.8, 8.13] 
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where: E - Young’s modulus of column material, 
ν - Poisson’s ratio, 
bo - width of column single wall or a long rectangular plate, 
t - wall thickness (or plate thickness). 

Assuming that for steel E = 200 GPa, ν  = 0.3 and bo = 1 m, t = 1 mm, 
t = 2 mm, t = 3 mm and t = 4 mm, respectively, we got the following results 

=crσ  0.723 MPa   for   t = 1 mm, 

=crσ  2.894 MPa   for   t = 2 mm, 

=crσ  6.507 MPa   for   t = 3 mm, 

=crσ  11.57 MPa   for   t = 4 mm. 

As we can see, these are very small values of critical stresses in comparison 
to the structural steel yield limit. Thus, the strength mechanical properties of 
applied material cannot be fully utilized in considered columns [8.8]. 
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8.2. The problem formulation 

We consider the local stability and load carrying capacity of thin-walled 
columns of a regular polygon (equilateral triangle, square, regular pentagon, 
hexagon, heptagon, octahedron etc.) cross-section with corner radii. In the frame 
of this analysis critical stresses of local buckling and load carrying capacity of 
thin-walled columns of various (mentioned) cross-sections subjected to axial-
compression are considered. Among these cross-sections there are some with 
introduced radius corner (r ≠ 0) and some without radius corner (i.e. r = 0, 
b = b0). For comparison reasons we assume that the material, column length, wall 
thickness and cross-section perimeter of all columns are the same. The radius of a 
corner between two adjacent walls could be changed between cn rr ≤≤0 , where 
rc - radius of a circle with total circumference equal to a total perimeter of each 
considered of columns (it is the radius of cylindrical shell). 

8.3. Column cross-section geometry description 

In Fig. 8.1 some basic cross section dimensions of considered columns are 
presented and designated. They are respectively: rn - a corner radius of regular 
polygon columns, nb0 - a single wall width of regular polygon cross section 
column with n walls and with radius 0=nr , bn - a flat wall element width (‘net’ 
width between radii) of regular polygon cross section with n walls and a corner 
radius 0≠nr . 

b0n bn B=b +2rn n

bn

t=const.

rn

Fig. 8.1. Cross-section of a square section column with corner radii 
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We consider columns with a global number of walls 83÷=n . The single 
wall width onb  of any regular polygon without corner radii is referred to a square 
column cross-section ( 4=n ), where a single wall width is marked as - 04b . 

From the equality of a column perimeter it follows that 044bnbon = . 
Therefore 

nbbon 044= (8.2) 

After comparing perimeter of columns without corner radii and with corner 
radius nr , we simply got .20n nn πr+nb=nb  From the later relationship it follows 
that 

nn r
n
πb=b 2

0n − (8.3) 

For each of considered columns we obtain a cylindrical shell in the case 
when 0=bn  - thus for walls without flat parts. This shell radius equals to 

040n
2

2
bbn=rn ππ

= (8.4) 

and it is identical for all considered columns (it is not dependable on n a total 
number of walls of regular polygon). Thus after a simple recalculation 

0404 63662.02 bb=rn =π and therefore corner radius between adjacent walls 
could be changed between the limits of 0463662.00 brn ≤≤ . 

rn rn

dndn

W

O

D
αn

βn

corner radius

flat wall

Fig. 8.2. Vertex geometry 

In Fig. 8.2 an exemplary vertex of a regular polygon cross-section is shown. 
We indicate as nα  an angle between adjacent (corner) walls because this angle 
depends on n the number of column walls. For a regular polygon with n 
component walls we can define these distinctive angles as follows 



Selected Problems of Solid Mechanics 

198 

n
n

n
=n

)2(2 −
=−
πππα

and also 

n
= nn

παπβ 2
=−

In Fig. 8.2 the distance between flat part of a wall in the polygon with corner 
radius and without corner radius is denoted by nd . As it is also shown in this 

figure, the length of segment WD  equals to nnn r
n
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Fig. 8.3. Family of pentagon cross-sections 

The position of the centre of any corner radius (point O in Fig. 8.2) counted 

from node W, results from a sine function of the angle 
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=
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To limit the range of considered possibilities the following data quantity has 
been assumed for computations: 

− material modulus: 5102 ⋅=E MPa, 3.0=ν ; 
− to maintain the same perimeter of all considered cross-section 

shapes it was assumed that the ‘starting’ width of a particular wall 

without corner radius is: mb
3
4

03= , mb 104= , mmb 8.0
5
4

05 == , 

mb
3
2

06= , mb
7
4

07= , mb
2
1

08= , respectively. 

− four wall thicknesses: mmt 11= , mmt 22= , mmt 33= , mmt 44=
- for all columns. 

Among all possible corner radius values one can indicate few common radii 
lengths undependable on n number of column walls so the same dimension for 
particular column. Assuming again that mb 104 =  these radii are given below and 
will be further applied for comparative juxtaposition: 

00=r - for columns without corner radius, 

mbbrr c 1273.01
5
2

5
22

5
1

5
1

04041 ===⋅==
πππ

, 

mbrr c 25465.01
5
4

5
4

5
2

042 ====
ππ

, 

mbrr c 38197.01
5
6

5
6

5
3

043 ====
ππ

, 

mbrr c 5093.01
5
8

5
8

5
4

044 ====
ππ

, 

mbrr c 63662.0122
045 ====

ππ
- a cylinder with radius rc. 

For the comparative analysis presented above radii values will be given in 
plots with numerical results. 
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8.4. Numerical model 

To illustrate the impact of the corner radius insertion on the buckling stress 
and load carrying-capacity extent some computations were performed. The Finite 
Element Method was employed as an efficient tool for that purpose. The solution 
to the considered problem of a nonlinear buckling analysis of short thin-walled 
columns might be solved by application of a chosen variational method. 
However, the governing differential equations would be a mixture of a flat plate 
and a curved shell formulations with required junction conditions, what would 
lead to rather complex expressions. In a consequence the solution to that equation 
set would require numerical integration or generally numerical methods 
application. It all explains the FEM advantage and reasons of our choice to it 
application. 

Fig. 8.4. Exemplary numerical models 

The parametric numerical models of considered closed profile cross-section 
shapes were prepared in commercial package ANSYS [8.14] which is based on 
the FEM. The presented study concerns a thin-walled structure and the plane 
stress state, therefore a shell finite element was chosen to discretization and to 
formulate the finite element model. It was the SHELL181 - finite quadrilateral 
shell element of ANSYS software library. This element is suitable to nonlinear 
applications (strain and material) and is governed by the first order shear 
deformation theory in the case of multilayered composite cross-section. Each of 
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its four nodes has six degrees of freedom i.e. translations in the x, y, 
and z directions, and rotations about the x, y, and z-axes of a local coordinate 
system. Hereby the in-plane rotational (drill) stiffness is added at the nodes for 
solution stability. A penalty method is then used to relate this independent 
rotational degree of freedom about the normal to the shell surface with the in-
plane components of displacement. That formulation offers excellent accuracy in 
curved-shell-structure simulations. 

The developed numerical models of considered columns were discretized 
with an uniform mesh of finite elements (Fig. 8.4) and the full geometry was 
used to simulate assessed buckling and post-buckling response of a particular 
column. Despite of the existing geometrical symmetry of a considered structure, 
it was resigned from modelling only part of it to be able to analyse different 
deformation modes which could be lost in opposite case. The total number of 
finite elements approached ten thousands. It was a series of additional tests 
performed to check if the produced finite element model gives a reliable 
representation of the structure being analyzed. These tests are not described here 
due to limited scope of the paper. 

The boundary conditions at loaded column edges followed the analytical 
assumption of simply supported type (Fig. 8.5). They were attained through 
constrained displacement of model edges in normal to a wall surface direction. 
For the limit shape i.e. cylindrical columns not only the radial but tangential 
displacements of column loaded edges were restricted. To fulfil additionally the 
condition of loaded edges being rectilinear the coupling constrains were 
introduced. Therefore, the applied system of displacement constrains allowed a 
replication of a column edge behaviour of a classical structural strength 
approach. It recalls also the standard conditions during a static compression test 
in a strength test machine. 

Fig. 8.5. Simply support BC defined in FEM model 
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Conducted analysis concerned an axial compression of studied short closed 
cross-section profiles/columns thus the loading was obtained by uniform nodal 
force distribution along ‘upper’ column edge where the ‘lower’ one was 
constrained against axial displacement. 

The main interest of a nonlinear buckling analysis was the load carrying-
capacity of an individual column which was preceded by the linear eigenbuckling 
analysis. From the first one, the critical load was determined as well as the first 
buckling mode. Obtained in this way eigenbuckling mode was introduced into 
the numerical model as initial imperfection. The eigenmode mapping technique 
was here applied. The magnitude of this out of flatness imperfection referred to a 
column wall thickness was in the range of 0.01÷0.1. The full Newton-Raphson 
iteration procedure was used as the incremental technique in the finite element 
structural analysis [8.1]. 

Fig. 8.6. First buckling modes for b04 = 500 mm and equal r length 

The material model assumed in computations was defined by a bilinear 
characteristic with isotropic hardening. The static yield limit was taken as equal 
to =yσ  200 MPa with a tangent modulus Et = 2000 MPa, with the Young’s 
modulus and Poisson ratio defined within the text above. Some considerations of 
applying the Needelman-Tvergard formula for approximation of material 
characteristic [8.10] or an input of a real material characteristic as multi-linear 
curve to eliminate the abrupt slope change in bilinear material description were 
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performed but their results did not improve the numerical process in a visible 
way and were skipped therefore. The yield surface was established with Huber-
Mises-Hencky criterion hence the same yield stresses value in uniaxial tension 
and compression for ductile isotropic material was assumed. 

Fig. 8.7. First buckling modes of hexagon cross-section column 
for a series of r length (0.2; 0.4;…0.8 of rc) 

8.5. Results of buckling stress computations 

A lot of numerical analysis was performed with reference to four chosen 
cross-section shapes of thin-walled columns. These were regular polygons, i.e. 
equilateral triangle, square, regular polygon and regular hexagon. For comparison 
reasons it was assumed the equal perimeter of each polygon and then the 
formulas for the length of particular polygon side - defined above within the data 
for computations - were fulfilled. Two perimeter lengths were considered 4m and 
2m, with four cases of column wall thickness. For particular column cross-
section type a series of computations were performed where the buckling load - 
buckling stress, buckling modes and the load carrying-capacity were 
determined. To focus the attention on a local buckling phenomenon the total 
length of all considered columns were assumed three times a side length 
of a considered regular polygon. Thus all investigated thin-walled profiles were 
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of a short column class. Exemplary results are presented below in the following 
graphs and figures. 

Within the first step of buckling analysis it was critical load determined as 
well as buckling modes. Some exemplary first modes of considered column 
shapes are presented in Figs. 8.6 and 8.7. In Fig. 8.6 there are presented buckled 
shapes of all profile cross-section types when the reference mb 5.004=  and the 
same value of corner radius π204b=rn  was assumed. One can observe the same 
number of halve waves along all column walls with visible modulation effect of 
buckles magnitude between loaded column ends. This effect is more pronounced 
when a cross-section shape tends to a cylinder (see Fig. 8.7). The length of a 
single buckle is shorter than nb0  the flat part of a column wall. The very 
characteristic of detected modes is the fact that despite the cross-section shape 
and corner radius dimension, buckles occurred only throughout the flat part of 
walls. Buckling deformations of curved parts of column walls were never 
observed. 

The predictable effect of buckling wave number and length connected with 
the increase of corner radius length is presented in Fig. 8.7. It corresponds to the 
previous conclusion that the width of a flat part of column wall influences the 
length thus a number of buckles along the column length. Also the modulation 
effect is visible too. However, for almost cylindrical columns the few first 
eigenbuckling values are very close each other (difference up to 5%) and their 
modes are similar with small difference in buckles magnitude only. 

The impact of corner radius on the buckling load is presented on plots in 
subsequent figures for different juxtapositions. 
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Fig. 8.8. Critical stress value as a function of corner radius value 
for different cross-section shapes of nb03×  columns 
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In Fig. 8.8 there are charts presenting the influence of corner radius length 
on the critical stress value increase for columns of four chosen cross-section 
shapes where the reference width of square cross-section wall is equal to 

mb 104= . The pronounced jump of critical stress value between regular polygon 
and cylindrical cross-section is up to almost 400 times for regular triangle of 

mmt 11= . This effect decreases when the number of polygon walls increases as 
well as the wall thickness does. The increasing effect of stress value is observed 
even for low dimensions of corner radii for polygons of greater number of walls 
whereas for triangle or square is visible for cross-section shapes closer to 
cylindrical shell. 
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Fig. 8.9. Critical stress value as a function of wall thickness 
for different corner radius values and cross-section shapes 
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Similar conclusions are valid for columns which reference cross-section 
perimeters differ (are greater or lower) to mb 44 04=× . Then the critical stress 
relationship for regular polygon column and cylindrical column are in similar 
relationships as the their perimeters are to mb 44 04=× . 
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Fig. 8.10. Critical stress value as a function of corner radius values 
for different cross-section shapes 

Analyzing an impact of corner radius introduction between adjacent column 
walls on the buckling load one can compare this effect when changing the cross-
section shape for constant wall thickness and the same perimeter length. From 
Fig. 8.9 it is visible that this effect is connected in greater degree with number of 
column walls (see triangle and hexagon) and it is more efficient for bigger corner 
radius length. However, the increase of critical stress value for the column of 
triangle cross-section when compared to a hexagon cross-section is greater for 
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thinner walls (i.e. mmt 11= ) than thicker on approximately 30%. This statement 
can also be referred to a shorter perimeter case and is more potent for a shorter 
radii (Fig. 8.9a). The changes in inclinations of the lines on the graphs in Fig. 8.9 
are grater for an increasing number of column walls. 

The conclusions drawn above are again confirmed by both scatter plots in 
Fig. 8.10, where exemplary results for two limit wall thicknesses 1t 1= mm and 

1t 4= mm are presented. Despite the widespread ranges of critical stress absolute 
values for increasing corner radius dimension the relative relations between the 
buckling loads vary in a narrower range. However these ranges are broader for 
shorter perimeter length multiwall cases. 

Table 8.1. Critical load and ultimate load for some column cases 

pentagon t = 1 mm t = 2 mm t = 3 mm t = 4 mm 

04br crσ
[MPa] cr

ult

N
N crσ

[MPa] cr

ult

N
N crσ

[MPa] cr

ult

N
N crσ

[MPa] cr

ult

N
N

0 4.8 5.691 19.2 2.690 43.1 1.760 76.4 1.329 
0.063662 7.3 4.121 22.8 2.304 46.5 1.640 79.1 1.277 
0.127324 9.0 4.028 34.9 1.869 70.4 1.633 109.8 1.054 
0.190986 11.2 3.489 40.2 1.737 86.8 1.224 151.3 1.012 
0.254648 14.5 2.843 51.5 1.500 105.3 1.167 177.5 0.999 
0.31831 19.4 2.311 68.2 1.291 139.6 1.033 226.2 0.834 

0.381972 27.3 1.830 91.6 1.098 184.0 0.896 297.6 0.635 
0.445634 42.6 1.597 135.0 1.033 256.9 0.726 401.6 0.485 
0.509296 71.4 1.346 203.4 0.867 360.8 0.532 533.5 0.366 
0.572958 130.2 1.075 306.5 0.617 491.7 0.394 681.0 0.286 

For assumed column overall dimensions and shapes in the most cases the 
calculated critical stress values are very low when compared to the yield limit for 
assumed structural steel. Thus the load carrying-capacity of these columns gives 
a broad reserve of loading. Higher critical stress values were determined for 
thicker column walls and greater corner radius dimensions what makes a column 
stiffer. The later values determined in the linear eigenbuckling analysis are in 
many cases above the yield limit for assumed material properties. In the 
nonlinear buckling analysis - in a geometrical approach and in terms of a real 
material characteristic, a critical load is restricted by the structural steel yield 
strength. This type of analysis requires too two steps and time consuming 
computations. Hence the assessment of an impact of corner radii effect on the 
ultimate load of considered columns was performed for limited number of 
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structures. The exemplary results of this analysis are summarized in Table 8.1. 
Nevertheless, the drawn conclusions can be extended to all investigated short 
columns of regular polygon cross-sections. 

The representative results presented in Table 8.1 were obtained for a column 
of a pentagonal cross-section with the reference width of a single wall 

mb 5.004= , what makes mb 4.005=  and the profile total length equal to 
mb 2.13 04=× . A critical stress determined for a thin wall solution of analysed 

columns allows a post-buckling work of a column in a much wider range than for 
thicker walls structure. The available excess of loading up to the ultimate load 
reaches few times the critical stress. This relationship reduces with the increase 
of corner radius length and with the wall thickness. Then from obvious reasons 
the quotient crult NN  of ultimate force and critical force is lower than one. Here 
again it should be emphasized that also in the post-buckling range local buckling 
deformations are observed over the ‘flat’ parts of column walls. For a small 
reserve of axial compression ( crult NN  a bit greater than 1) local buckles follow 
the eigenbuckling pattern and enter the curved parts of column walls in deep 
post-buckling range. This phenomenon is shown in Fig. 8.11. In the far post-
buckling stage the wall deformations are shifted towards the loaded edge and 
form deep inside deflections. Due to relatively flat hardening part of stress-strain 
diagram assumed for computations (Et = 2000 MPa) the equivalent stress value 
gained 221 MPa in the region close to the column loaded end. 

a) b)

Fig. 8.11. a) Post-buckling displacements, 
b) stress map of a short pentagon column

8.6. Conclusions 

The performed investigations confirmed the impact of corner radii solution 
on the thin-walled column local buckling load value. The buckling strength of 
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a column can be controlled (increased) by introduction of a curved radial junction 
of adjacent walls. This statement is valid for different cross-section shapes. 
However, the increase effect is more visible for columns of greater number of 
walls. In the performed FEM computations, where the buckling shapes 
of analysed structures were possible to watch both at critical load state as well as 
in the post-buckling range, it has been never observed buckles over curved parts 
of column walls, only flat strips of walls exhibited deformations. 

Application of medium values of corner radii for columns of thinner walls 
has given better effect for ultimate load surplus. For thicker walls the yield stress 
value was crucial for restricting the axial column load. This effect was enhanced 
by greater dimension of corner radius. 

Columns of greater number of walls exhibit better properties as it goes on 
local buckling load and react in a more profitable or useful way on the corner 
radius introduction. 
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9. 

Local and global elastic buckling of I-beams 
under pure bending 

9.1. Introduction 

Thin-walled beams are main parts of contemporary machines. The main 
constraints of structural design are strength, stability and geometric conditions. 
The basis of calculation of local and global elastic buckling and optimization 
problems of thin-walled beams, plates and shells are described in many 
monographs, for example by Bažant and Cedolin [9.5], Brzoska [9.7], Iwicki 
[9.24], Kołakowski and Kowal-Michalska [9.29, 9.30], Kotełko [9.32], Kowal-
Michalska [9.35, 9.36, 9.38], Kowal-Michalska and Mania [9.37], Królak [9.40], 
Kubiak [9.46], Magnucka-Blandzi [9.54], Magnucki and Ostwald [9.59], Murray 
[9.67], Mutermilch and Kociołek [9.68], Paczos [9.76], Trahair [9.90], Ventsel 
and Krauthammer [9.91], Vlasov [9.92], Volmir [9.93], Weiss and Giżejowski 
[9.95]. The detailed study related to buckling problems of thin-walled beams 
with open cross sections, in particular I-beams, are presented in many papers, by: 
Andrade and Providência [9.1], Aydin [9.2], Basaglia et al [9.3], Batista [9.4], 
Bacque and Rasmussen [9.6], Camotim et al [9.8, 9.9], Cheng and Schafer [9.10], 
Chróścielewski et al [9.12], Chu et al [9.13], Davies [9.14], Dinis nad Camotim 
[9.15], 9.16], Dubina and Ungureanu [9.17], El-Mahdy and El-Saadawy [9.18], 
Gonçalves [9.19], Hancock [9.20, 9.21, 9.22], Hancock and Rasmussen [9.23], 
Lewiński and Magnucki [9.47], Li and Chen [9.48], Loughlan and Yidris [9.49], 
Ma and Hughes [9.50], Macdonald et al [9.51, 9.52], Magnucka-Blandzi and 
Magnucki [9.55, 9.57], Magnucki and Monczak [9.58], Magnucki et al [9.62, 
9.63], Manevich and Raksha [9.65], Mohri et al [9.66], Naderian et al [9.69], 
Narayanan and Mahendran [9.70], Ozbasaran et al [9.72], Paczos et al [9.73, 
9.74, 9.75], Pala [9.77], Pastor and Roure [9.78, 9.79], Rasmussen [9.80], Rondal 
[9.82], Samanta and Kumar [9.83], Schafer and Peköz [9.84], Schafer [9.85], 
Silvestre and Camotim [9.86], Song et al [9.87], Szymczak [9.89], Wang and 
Ikarashi [9.94], Young [9.96] and Zirakian [9.99, 9.100].  

To a special group of the thin-walled constructions belong the beams with 
non-classical structures. The important studies concerning the buckling and 
ultimate load problems of these beams are presented by: Kołakowski [9.25], 
Kołakowski et al [9.26], Kołakowski and Królak [9.27], Kołakowski and Kowal-
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Michalska [9.28], Kotełko [9.31], Kotełko and Królak [9.33], Kowal-Michalska 
and Grądzki [9.34], Królak [9.39], Kólak and Młotkowski [9.41], Królak et al 
[9.42, 9.44, 9.45], Królak and Kowal-Michalska [9.43]. Ovesy et al [9.71] and 
Zaraś et al [9.97, 9.98]. 

The problems presented in these monographs and papers are to-day 
extensively studied in many specialist teams. The results of these studies are 
applied to practice and, in consequence, are conducive to improvement of 
contemporary thin-walled structures in mechanical and civil engineering.  

The subject of the chapter includes three types of I-beams: the first one 
- a standard beam (B-1), the second - a non-standard beam (B-2) with lipped 
flanges, and the third one - a non-standard beam (B-3) with sandwich flanges. 
Local and global buckling problems of these beams are studied.  

9.2. Buckling of the standard-universal I-beam (B-1) 

The cross-section of the first I-beam (B-1) is shown in Fig. 9.1. 

Fig. 9.1. The cross-section of the standard I-beam (B-1) 

The sizes of the cross-section are as follows: D - total depth, b - width of the 
flanges, tf  - thickness of the flanges, tw - thickness of the web.  

9.2.1. Local buckling 

Analytical study. The upper flange of the I-beam under pure bending is 
axially compressed, however the lower flange is tensioned. The simple 
theoretical model of the half of the flange is a rectangular plate with three edges 
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simply supported and one edge free. The critical stress of this plate - half upper 
flange, taking into account the papers [9.5, 9.54, 9.59, 9.91, 9.93], is in the 
following form  
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Then, the critical bending moment of I-beam for the local buckling  
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where zJ  - moment of inertia with respect to the z axis (Fig. 9.1). 

The dimensionless measure of the quality of the I-beam is assumed based on 
the paper [9.56] in the following form  

 ( )
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flanCRAnB
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where A  - total area of the cross-section. 

Example 1. The first beam (B-1) with the following sizes of the cross-
section: mm210=D , mm134=b , mm10=ft , mm4.6=wt . Then, the 
geometrical properties of the cross-section are as follows: total area 

2mm3960=A , torsion constant 44 mm10681.10 ⋅=tJ , and moments of inertia 
46 mm10067.31 ⋅=zJ , 46 mm10010.4 ⋅=yJ , 69 mm10102.40 ⋅=ωJ . 

Thus, the values of the characteristic quantities are as follows:  
( ) MPa8.2002,1

, =− AnB
flanCRσ  for mm250=wL  - the critical stress (9.1);  

( ) kNm2.622,1
, =− AnB
flanCRM  - the critical bending moment (9.2);  

( ) 01248.0,1 =Φ − AnB
flan  - the dimensionless measure of quality (9.3).  

Numerical study - finite strip method (CUFSM 3.12). The numerical model 
FSM of the standard I-beam (B-1) (Fig. 9.1) is elaborated for the sizes as in the 
Example 1. The results of numerical calculations and the shape of local buckling 
of the beam are shown in Fig. 9.2. The mathematical bases of the finite strip 
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method (FSM) and its application in structural analysis is described by Cheung 
[9.11], while the CUFSM system was developed by Schafer [9.85].  

Fig. 9.2. The local buckled shape - the flange of the first I-beam (B-1) 

The value of the critical stress for local buckling of the standard I-beam 
calculated with the use of the FSM is ( ) MPa8.2300,1

, =− FSMB
flanCRσ  for mm250=wL  

and exceeds the analytical value by 15%. The analytical model gives the lower 
estimation of the critical stress for the local buckling, because the interaction 
with the web is ignored. It should be noticed that the local buckling of the beam 
related to the flange does not occur in elastic range. 

9.2.2. Global buckling 

Analytical study. The analytical models of the global buckling - lateral 
buckling of the thin-walled beams are described in details in the papers: [9.5, 
9.53, 9.54, 9.59, 9.95, 9.99, 9.100]. The critical moment for the lateral buckling 
is in the following form  
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where: L  - length of the beam, ωJ  - warping moment of inertia. 
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Then, the critical stress of the I-beam for global – lateral buckling 
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and the dimensionless measure of quality 
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Thus, the values of the characteristic quantities for the data of Example 1 are 
as follows:  

( ) kNm69.80,1
, =− AnB
globCRM  - the critical bending moment for m4=L  (9.4); 

( ) MPa8.259,1
, =− AnB
globCRσ  - the critical stress (9.5);  

( ) 001619.0,1 =Φ − AnB
glob  - the dimensionless measure of quality (9.6). 

Numerical study – finite strip method (CUFSM 3.12). The results of 
numerical calculations with consideration of the data of Example 1 are shown in 
Fig. 9.3. 

Fig. 9.3. The global buckled shape of the first I-beam (B-1) 

The value of the critical stress for global buckling of the standard I-beam 
calculated based on the Finite Strip Method is ( ) MPa3.258,1

, =− FSMB
globCRσ  for the

length of the beam m4=L  and is by 0.6% smaller than analytical value. 
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9.3. Buckling of the non-standard I-beam with lipped 
flanges (B-2) 

The cross-section of the second I-beam (B-2) is shown in Fig. 9.4. 

Fig. 9.4. The cross-section of the I-beam with lipped flanges 

The sizes of the cross-section are as follows: D - total depth, b - width of the 
flanges, c depth of the bend, t - thickness of the flanges and the web. 

9.3.1. Local buckling 

Analytical study. The upper flange of the I-beam under pure bending is 
axially compressed, however the lower flange is tensioned. The simple 
theoretical model of the half of the lipped flange is described as rectangular plate 
with three simply supported edges and one edge free. Taking into account the 
papers [9.54, 9.60, 9.61, 9.81, 9.86, 9.90, 9.93, 9.99, 9.100] the critical stress of 
the upper lipped flange is formulated in the following form  
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2  - dimensionless parameter, wL  - half-wavelength. 

Therefore, the critical bending moment of this beam for the local buckling 
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and the dimensionless measure of quality 
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Example 2. The second beam (B-2) with sizes of the cross-section: 
mm4.206=D , mm134=b , mm2.44=c  mm4.6=== ttt wf . Then, the 

geometrical properties of the cross-section are as follows: total area 
2mm3960=A , torsion constant 44 mm10407.5 ⋅=tJ , and moments of inertia 

46 mm10371.27 ⋅=zJ , 46 mm10478.6 ⋅=yJ , 69 mm10587.84 ⋅=ωJ . 

Thus, the values of the characteristic quantities are as follows: 
( ) MPa6.1751,2

, =− AnB
flanCRσ  for mm625=wL  - the critical stress (9.7);

( ) kNm4.479,2
, =− AnB
flanCRM  - the critical bending moment (9.8); 

( ) 009620.0,2 =Φ − AnB
flan  - the dimensionless measure of quality (9.9). 

Numerical study – finite strip method (CUFSM 3.12). The numerical model 
FSM of the second I-beam (B-2) (Fig. 9.4) is elaborated for the sizes as in the 
Example 2. The results of numerical calculations and the shape of local buckling 
of the beam are shown in Fig. 9.5. 

Fig. 9.5. The local buckled shape - the flange of the second I-beam (B-2) 
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The value of the critical stress for local buckling of the standard I-beam 
calculated based on the finite strip method is ( ) MPa5.2178,2

, =− FSMB
localCRσ  for 

mm625=wL  and is by 24% greater than the analytical value. The analytical 
model gives the lower estimation of the critical stress for the local buckling, 
without the interaction with the web. It should be noticed that the local buckling 
of the beam of the flange does not occur in elastic range. 

9.3.2. Global buckling 

Analytical study. The analytical models of the global buckling – lateral 
buckling of the thin-walled beams are described in the papers: [9.5, 9.53, 9.54, 
9.59, 9.95, 9.99, 9.100]. The critical moment for the lateral buckling is in the 
following form  
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where: L  - length of the beam, ωJ  - warping moment of inertia. 

Then, the critical stress of the I-beam for global - lateral buckling 
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and the dimensionless measure of quality 
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Thus, the values of the characteristic quantities for the data of Example 1 are 
as follows:  

( ) kNm0.108,2
, =− AnB
globCRM  - the critical bending moment for m4=L  (9.10); 

( ) MPa6.394,2
, =− AnB
globCRσ  - the critical stress (9.11); 

( ) 002167.0,2 =Φ − AnB
glob  - the dimensionless measure of quality (9.12). 

Numerical study – finite strip method (CUFSM 3.12). The results of 
numerical calculations of the global buckling – lateral buckling with the data of 
Example 2 are shown in Fig. 9.6. The cross section of the beam rotates, while the 
shape of the cross section after lateral buckling remains unchanged. The value of 
the critical stress for global buckling of the standard I-beam calculated with the 
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use of the FSM is ( ) MPa1.391,2
, =− FSMB
globCRσ  for the length of the beam m4=L  and 

is by 0.9% smaller than the analytical value. 

Fig. 9.6. The global buckled shape of the second I-beam (B-2) 

9.4. Buckling of non-standard I-beam with sandwich 
flanges 

The cross-section of the third I-beam (B-3) [9.64] is shown in Fig. 9.7. 

a)     b) 

Fig. 9.7. The cross-section of the I-beam with sandwich flanges: 
a) front view of the I-beam, b) component parts of the I-beam
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The sizes of the cross-section are as follows: D - total depth, b - width of the 
flanges, ft  - total thickness of the sandwich flanges, t - thickness of the sheets. 

9.4.1. Local buckling 

Analytical study. The upper flange of the I-beam under pure bending is 
axially compressed. The simply buckle shape of this flange is shown in Fig. 9.8. 

Fig. 9.8. The sandwich upper flange and the scheme of the buckle shape 

The theoretical model of the flange is described as rectangular orthotropic 
plate with three simply supported edges and one edge free. Taking into account 
the papers [9.7, 9.56, 9.60, 9.61, 9.64, 9.91, 9.93] the following analytical model 
is elaborated. The elastic strain energy for orthotropic plate  
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where: yx DHD ,,  - flexural and torsional rigidities of the plate-flange, and 
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πsin,  - the deflection, pfb  width of the half plate (Fig. 9.8). 

The work of the load 
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where o
xN  - intensity of the load - longitudinal compression. 

The critical intensity of the load and the critical stress are obtained based on 
the principle of stationary total potential energy in the form  
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where pfA  - area of the cross section of the half plate-flange. 

Then, the critical bending moment of this beam for the local buckling 
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and the dimensionless measure of quality 
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Example 3. The third beam (B-3) with sizes of the cross-section: 
mm220=D , mm140=b , mm134=mfb , mm10=ft , mm2=wt , mm1=t . 

Then, the geometrical properties of the cross-section: total area 2mm1391=A , 
torsion constant 44 mm10830.4 ⋅=tJ , moments of inertia 46 mm10298.12 ⋅=zJ , 

46 mm10396.1 ⋅=yJ , 69 mm10358.16 ⋅=ωJ , and the rigidities of the plate-

flange [9.91] Nmm1032.131 5⋅=xD , Nmm104.71 5⋅=H . 

Thus, the values of the characteristic quantities are as follows: 
( ) MPa2.2660,3

, =− AnB
flanCRσ  for mm850=wL  - the critical stress (9.15); 

( ) kNm6.311,3
, =− AnB
flanCRM  - the critical bending moment (9.16); 

( ) 03003.0,3 =Φ − AnB
flan  - the dimensionless measure of quality (9.17). 

The web of the I-beam under pure bending is loaded by linearly distributed 
in-plane compression. The critical stress of the web [9.7]  
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Then, the values of this critical stress ( ) MPa7.650,3
, =− AnB
webCRσ . 

Numerical study – finite strip method (CUFSM 3.12). The numerical 
model FSM of the third I-beam (B-3) (Fig. 9.7) is elaborated for the sizes 
as in the Example 3. The results of numerical calculations an the shape 
of local buckling of the flange of the beam are shown in Fig. 9.9. The 
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value of the critical stress for local buckling of the third I-beam calculated with 
the FSM is ( ) MPa8.2826,3

, =− FSMB
flanCRσ for mm625=wL  and is by 6% greater 

than the analytical value. The analytical model gives the lower estimation 
of the critical stress for the local buckling, without the interaction with the web. 
The rigidities of the sandwich flanges are decidedly greater as compared to the 
rigidities of the web. 

Fig. 9.9. The local buckled shape - the flange of the third I-beam (B-3) 

The local buckling of the web is shown in Fig. 9.10. 

Fig. 9.10. The local buckled shape - the web of the third I-beam (B-3) 
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The value of the critical stress for local buckling of the web based on the 
Finite Strip Method is ( ) MPa6.655,3

, =− FSMB
webCRσ  for mm100=wL  and is by 0.8% 

greater than the analytical value. It should be noticed that the local buckling of 
the beam of the flange and the web does not occur in elastic range. 

9.4.2. Global buckling 

Analytical study. The critical moment for the lateral buckling is similar to 
the first and second beams, and is in the following form  
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Then, the critical stress of the I-beam for global – lateral buckling 
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and the dimensionless measure of quality 
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Fig. 9.11. The global buckled shape of the third I-beam (B-3) 

Therefore, the values of the characteristic quantities for the data of Example 
3 are as follows:  
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( ) kNm83.32,3
, =− AnB
globCRM  - the critical bending moment for m4=L  (9.19); 

( ) MPa3.280,3
, =− AnB
globCRσ  - the critical stress (9.20); 

( ) 003164.0,3 =Φ − AnB
glob  - the dimensionless measure of quality (9.21). 

Numerical study - finite strip method (CUFSM 3.12). The results of 
numerical calculations with the data of Example 3 are shown in Fig. 9.11.  

The value of the critical stress for global buckling of the third I-beam 
calculated with the Finite Strip Method is ( ) MPa7.273,3

, =− FSMB
globCRσ  for the length

of the beam m4=L  and is by 2.4% smaller than the analytical value. 

9.5. Conclusions 

The three considered types of the I-beams are distinguished by significant 
resistance to the local buckling of the flanges or webs which does not depend on 
the total length of the beam. The local buckling of these beams occurs only in the 
elastic-plastic range. The global buckling depends on the length of the beam. The 
shape of the flanges affects the value of the critical moment of the global – lateral 
buckling. The assumed dimensionless measure of quality discloses the effect of 
the flange shape on the global buckling resistance (Table 9.1).  

Table 9.1. The values of the dimensionless quality measure for global buckling beams 

Beam type B-1 B-2 B-3 
( )AniB
glob

,−Φ  0.001619 0.002167 0.003164 

The I-beam with sandwich flanges (B-3) (Fig. 9.7) is nearly twice as 
resistant as the standard I-beam (B-1) (Fig. 9.1).  

The dimensionless measure of quality (9.3), (9.6) and similar next 
expressions enable comparison of the resistance values for local or global 
buckling of the beams with various cross sections.  
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10. 

Forced oscillations of a viscoelastic Timoshenko 
beam with dampers and dynamic vibration 
absorbers 

Steady-state forced oscillations of viscoelastic Timoshenko beam with 
dampers, dynamic vibrations absorbers and point masses under harmonic 
excitation are studied. An analytical series solution has been obtained with using 
natural modes of elastic Timoshenko beam (without dampers, absorbers and 
point masses). A numerical parametric analysis is performed with particular 
emphasis on cantilever beams. Effects of shear flexibility, viscous internal and 
external friction and the absorber parameters on characteristics of forced 
oscillation are studied. Special attention is paid to appearance of running waves. 

10.1. Introduction 

Investigation of forced vibration of beams equipped with dampers or/and 
dynamical vibration absorbers (DVA) is of great practical interest in view of the 
problem of oscillations suppression for various civil engineering structures 
(towers, bridges and others). For many such structures one-dimensional (beam) 
model is applicable but it is necessary to take into account the shear 
deformability, as well as the internal and external viscous damping (especially in 
the vicinity of resonances). The relatively simple and sufficiently exact approach 
to this problem is provided by Timoshenko beam model (TB) and Kelvin-Voigt 
model for a viscoelastic material. 

Beams with dampers and DVAs are distributed parameters systems which 
undergo, along with distributed or concentrated external loads, local forces 
applied at certain points and depended on the motion of the beam itself. It is often 
argued (Korenev, Reznikov [10.5]) that in such problems the method of 
expanding the solutions on natural modes of free oscillations is too cumbersome 
as at account of damping the natural modes become complex; and they should be 
recomputed  iteratively at presence of the frequency-dependent forces. So the 
authors [10.5] claim that in these problems more preferable are methods of civil 
engineering (method of initial parameters, methods of forces and displacements). 
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One of the objectives of this article is to show that the series method is rather 
effective if to use the expansion on natural modes of the elastic Timoshenko 
beam without dampers, DVAs and point masses. Such an approach allows one to 
escape the recalculation of eigenmodes and eigenfrequencies, retaining the 
advantages of the method - simplicity of determination of basic modes, exact 
satisfying boundary conditions. 

For the elastic TB a general scheme of solution of the forced oscillation 
problem using superposition of the natural modes has been worked out in early 
papers by Anderson [10.1], Dolph [10.2], Hermann [10.4]. The principal 
distinction and main difficulty for the TB (in comparison with the classical Euler-
Bernoulli (E-B) mode) lies in orthogonality conditions. In distinction to the 
classical model where the stress-strain state is entirely defined by the 
displacement function ( , )y x t , the deformation in TB is defined by a two 
dimensional vector [ ( , )y x t , ( , )x tψ ], where ( , )x tψ  is the angle of the cross-
section rotation (or by other two independent variables, e.g., bending and shear 
deflections). Correct orthogonality conditions, which have vector form, have 
been obtained by Dolph in 1951 (see [10.2]) and then have been used in [10.2, 
10.4]. 

For viscoelastic TB (without local frequency-dependent loads) the forced 
oscillations problem was studied by Newman [10.11] (by use of a Laplace 
transformation technique) and by Lee [10.6] (steady-state motions). Both these 
authors consider the material which is viscoelastic only in extension, not in shear. 
A solution for more exact formulation of the problem has been obtained by Pan 
[10.12]. Further references can be found in Grigoluk, Selezov [10.3] and in other 
reviews. 

In our previous work [10.10] we consider steady-state vibration of the 
viscoelastic TB with DVAs for simply supported beams where due to sinusoidal 
natural modes the orthogonality conditions were not required. Here the solution 
is presented for a wide class of boundary conditions for which the orthogonality 
conditions play an important role (special attention is paid to case of cantilever 
beam). 

In distinction on [10.10], where a single four-order PDE has been used, here 
we employ a set of two second-order PDEs. This enables us to simplify 
essentially the theoretical scheme and to present more transparent and usable 
solutions. In the numerical parametric analysis the effects of shear flexibility, 
viscous internal and external friction and the absorber parameters on 
characteristics of forced oscillation are studied on the example of the cantilever 
beam. Special attention is paid to studying running waves which appear due to 
the viscous friction and become significant in presence of local loads. 
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10.2. Governing equations for viscoelastic Timoshenko beam 
loaded by a distributed load 

Bearing in mind that in analysis of forced oscillations of the viscoelastic TB 
we should account for different loads (from external forces, dampers, dynamic 
vibration absorbers, point masses, Fig. 10.1), we start from differential equations 
of oscillations of TB loaded by an arbitrary distributed load 0 ( , )q x t . Such 
equations for viscoelastic TB were obtained in several works, from earlier papers 
[10.6, 10.11, 10.12] till recent works [10.7÷10.10] where the equations have been 
presented in rather convenient dimensionless form. These equations are extended 
below to take into account also distributed moments 0 ( , )m x t  (due to inertia 
forces moments in attached masses) and external damping (concentrated forces 
will be described by δ -functions). For the viscoelastic material we use the Voigt 
model. 

 
Fig. 10.1. The mechanical model 

Deformations of TB are specified by two independent functions –total 
displacement ( , )y x t and the angle of cross section rotation ( , )x tψ . Total slope 
of the bent axis is /y x ψ γ∂ ∂ = +  (γ  is the shear angle). 

Constitutive relations are assumed according to the Voigt law for normal 
stresses as well as for shear ones in the form  

 
11x xE

t
σ µ ε

 ∂
= + ∂        

21G
t

t µ γ
 ∂

= + ∂   (10.1) 
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where 1µ  and 2µ  are internal viscous friction parameters. The bending moment 
and the transverse shear force in the cross section are specified by known 
expressions 

11M EJ
t x

ψµ ∂ ∂ = − + ∂ ∂ 
21 yQ k AG

t x
µ ψ

 ∂ ∂ ′= + −  ∂ ∂    (10.2) 

where k′  is the shear factor depended on the cross-section shape. 

The equations of forces balance for the beam loaded by a distributed load 
0 ( , )q x t  and a distributed moment 0 ( , )m x t  with account of the rotatory inertia 

and viscous external friction (associated with linear velocity 1 /y tβ− ∂ ∂  and 
angular velocity 2 / tβ ψ− ∂ ∂ ) are as follows 

2

1 02 ( , ) 0Q y yA q x t
x t t

ρ β∂ ∂ ∂
− − + =

∂ ∂ ∂ (10.3) 
2

2 02 ( , ) 0MJ Q m x t
t x t
ψ ψρ β∂ ∂ ∂

− + − − + =
∂ ∂ ∂

These equations with account of relations (10.2) result in two differential 
equations of motion in y  and ψ : 

2

2 1 021 ( , ) 0y y yk G A A q x t
t x x t t

µ ψ ρ β
 ∂ ∂ ∂ ∂ ∂ ′ + − − − + =   ∂ ∂ ∂ ∂ ∂   (10.4) 

2 2

2 1 2 02 21 1 ( , ) 0yJ k AG EJ m x t
t t x t x t
ψ ψ ψρ µ ψ µ β

 ∂ ∂ ∂ ∂ ∂ ∂   ′− + + − + + − + =    ∂ ∂ ∂ ∂ ∂ ∂    

In dimensionless variables and parameters 

0

x
r

x =
, 0

yY
r

=
, 0

c t
r

t =
, 

E
k G

χ =
′ , 0

j j
c
r

µ µ∗ =
, 

0 0q rq
E A

=
(10.5) 

0mm
E A

= ,  0
1 1

cr
EA

β β∗ = ,   2 2
c

EA
β β∗ =  

where 2
0 /r J A= , /c E ρ= , Eqs (10.4) take the form 
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2

2 121 ( , ) 0Y Y Y qµ ψ χ β χ χ x t
t x x t t

∗ ∗   ∂ ∂ ∂ ∂ ∂
+ − − − + =   ∂ ∂ ∂ ∂ ∂    (10.6) 

2 2

2 1 22 21 1 ( , ) 0Y mψ ψ ψχ µ ψ χ µ β χ χ x t
t t x t x t

∗ ∗ ∗  ∂ ∂ ∂ ∂ ∂ ∂ − + + − + + − + =    ∂ ∂ ∂ ∂ ∂ ∂     
We consider the following boundary conditions (in dimensionless variables): 

1. Simply supported edge: 

 0Y = ,   0M =   →   
0ψ

x
∂

=
∂  (10.7) 

2. Clamped edge: 

 0Y = ,   0ψ =  (10.8) 

3. Free edge:  

 0M = ,   0Q =  →   0ψ
x

∂
=

∂
;   0Y ψ

x
∂

− =
∂

 (10.9) 

10.3. Natural modes of elastic TB and conditions of their 
orthogonality 

In the analysis of non-autonomic dynamics of viscoelastic TB with viscous 
friction, point masses, dampers and DVAs we use expansions of the forced 
oscillations modes on natural modes of TB without internal and external damping 
and concentrated influences. Such an approach allows one to satisfy boundary 
conditions for TB, using simply derived functions. So below we briefly present 
equations which provide orthogonal natural modes of free oscillations for the 
elastic TB. 

10.3.1. Natural modes of elastic TB 

For free oscillations of elastic TB ( 0q = , 0m = , 1 2 0µ µ= = , 1 2 0β β= = ) 
Eqs. (10.6) yield  

 

2

2 0Y Yψ χ
x x t
 ∂ ∂ ∂

− − = ∂ ∂ ∂   (10.10) 
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2 2

2 2 0Yψ ψχ ψ χ
t x x

 ∂ ∂ ∂
− + − + = ∂ ∂ ∂   

Putting for free oscillations 

( , ) ( )iY e Yωtx t x= 
    ( , ) ( )ie ωtψ x t x= Ψ  (10.11) 

we reduce set (10.10) to the set of ordinary differential equations (wave symbol 
above Y  further is dropped) 

2dYd Y
d d

χω
x x
 

−Ψ = − 
 

 
2

2
2 (1 )d dY

d d
χ χω

x x
Ψ

+ = Ψ − (10.12) 

from which one can obtain eigenfrequencies jω and eigenmodes ( jY , jΨ ), 
1,2,...j = . This problem was solved in many earlier works. But in view of new 

form of the governing equations we present here solutions which will be used 
below. 

The characteristic equation for set (10.12) (obtained after substitution 
( ) k

j jY y e xx = , ( ) k
j j e xx ψΨ = ) is as follows (index “j” at jω , as well as at 

quantities β , 1,2k  and the constants below is dropped) 

( ) ( )4 2 2 2 21 1 0k kω χ ω χω+ + + − =
(10.13) 

In case 2 1χω <  (“low frequencies”) two roots 1,2 1k α= ±  are real and two 

3,4 2k iα= ±  are imaginary, where 

( ) ( ) ( )22 2
1,2 1 4 1 1

2
ωα ω χ χω ω χ = + + − +  



(10.14) 

In case 2 1χω >  (“high frequencies”) all roots are imaginary: 1,2 3k iα= ± , 

3,4 2k iα= ± , where 

( ) ( ) ( )22 2
3 1 1 4 1

2
ωα ω χ ω χ χω = + − + + −   (10.15) 

Solution to set (10.12) for case 2 1χω <  is 

1 1 2 1 3 2 4 2( ) ch sh cos sinjY C C C Cx α x α x α x α x= + + +
 (10.16) 

1 1 2 1 3 2 4 2( ) ch sh cos sinj D D D Dx α x α x α x α xΨ = + + +
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The constants mC  and mD  are coupled through the first Eq. (10.12)  

 1 1 2C Dν= ,  2 1 1C Dν=  , 3 2 4C Dν= ,   4 2 3C Dν= −  (10.17) 

where 

 

1
1 2 2

1

αν
α χω

=
+       

2
2 2 2

2

αν
χω α

=
−  (10.18) 

The four remaining unknown constants are determined by boundary 
conditions (10.7)-(10.9). 

Solution for case 2 1χω >  can be written similarly (or obtained from (10.16) 
by transferring from hyperbolic functions to trigonometric ones). 

10.3.2. The case of elastic cantilever beam 

As an example which is important for the following analysis let us consider a 
cantilever beam ( 0Y = , 0ψ =  at 0x =  and / 0ψ x∂ ∂ = ; / 0Y x ψ∂ ∂ − =  at 

0/L rx = ). It follows from conditions (10.17) together with the boundary 
conditions that 

 2 4 2 1 3 2 2 1 1( ) (cos ch ) ( sin sh )jY D Dx ν α x α x ν α x ν α x= − − +
 (10.19)

 

 

2
3 2 1 4 2 1

1

( ) (cos ch ) sin shj D D νx α x α x α x α x
ν

 
Ψ = − + − 

   

where constants 3D , 4D  satisfy the set of linear homogeneous equations 

 

1 2 2 1 2
3 1 2 4 1 2

0 0 1 0 0

sh sin ch cos 0L L L LD D
r r r r
α α ν α α

α α α α
ν

   
+ + − =   

     (10.20) 

( ) ( ) ( ) ( )1 2 2 1 2
3 1 1 2 2 4 1 1 2 2

0 0 1 0 0

1 ch 1 cos 1 sh 1 sin 0L L L LD D
r r r r
α α ν α α

ν α ν α ν α ν α
ν

   
− − + + − − + =   

     
Condition of vanishing determinant of this set determines, with account of 

(10.14), natural frequencies jω  in terms of parameters 0/L r  and χ . Ratio 

3 4/D D  is specified from (10.20) 
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2 2 1
2 1

3 0 1 0
3

1 24
1 2

0 0

cos ch

sh sin

L L
D r r

L LD
r r

α ν αα α
ν

ν
α αα α

−
≡ =

+
(10.21)

Then the eigenmodes can be written as follows (C is an amplitude factor) 

[ ]2 2 1 3 2 2 1 1( ) (cos cosh ) ( sin sinh )jY Cx ν α x α x ν ν α x ν α x= − − +
(10.22)

2
3 2 1 2 1

1

( ) (cos ch ) sin shj C νx ν α x α x α x α x
ν

 
Ψ = − + − 

   (10.23) 

10.3.3. Conditions of orthogonality 

Orthogonality conditions for eigenmodes in TB which hold for three 
boundary conditions (10.7)-(10.9) [10.2], in the dimensionless variables and 
parameters are as follows 

0/

0

( ) 0
l r

m n m nY Y dx+ Ψ Ψ =∫
(10.24) 

If to consider eigenmodes of TB as vector-functions jZ =( jY , jΨ ), then 

these orthogonality conditions are written as 
0/

0

0
l r

m nZ Z dx =∫ .

The natural modes are normalized by the conditions 
0/

2

0

1
l r

jZ dx =∫
 or 

( )
0/

2 2

0

1
l r

j jY dx+ Ψ =∫
(10.25) 

The following statement is necessary in order to use series on the natural 
modes of elastic TB for presentation of forced scillations of viscoelastic TB (with 
damping and concentrated forces) [10.2] 

Two arbitrary functions ( )f x  and ( )g x  on interval ( 0 , l ) can be expanded 
in natural modes jY , jΨ  in the form 

1
( ) ( )j j

j
f x Y xζ

∞

=

=∑
1

( ) ( )j j
j

g x xς
∞

=

= Ψ∑
(10.26) 
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Possibility of such expansion (with the same coefficients jζ  for both 
functions) and expressions for coefficients jζ  yield from property of 
completeness of sets of natural modes and from the following consideration. If to 
introduce vector-function [ ]( ) ( ), ( )x f x g xΕ =  with scalar product 

[ ]1 2 1 2 1 2
0

( ) ( ) ( ) ( ) ( ) ( )
l

x x f x f x g x g x dxΕ Ε = +∫i
 

then expansions (10.26) are equivalent to expansion of the vector-function 

 1
( ) ( )j j

j
E x Z xζ

∞

=

=∑
 (10.27) 

Multiplying (10.27) by ( )jZ x  and integrating from 0 to l , one obtains with 
account of orthogonality conditions (10.24) and normalization (10.25) 

 0

( ) ( )
l

j jE x Z x dxζ = ⋅∫
   or   0

( ) ( ) ( ) ( )
l

j j jf x Y x g x x dxζ  = + Ψ ∫
 (10.28) 

Thus coefficients jζ  are uniquely determined for arbitrary pair of functions 
( )f x  and ( )g x . 

10.4. A series solution for steady-state forced oscillations  
of viscoelastic TB 

10.4.1. General solution 

We consider forced oscillations of the TB under action of the harmonic 
external load 

 ( ) iq q e tx Ω=       ( ) im m e tx Ω=  (10.29) 

where Ω  is the frequency in time t . We will seek only steady-state (stationary) 
solutions which are also harmonic oscillations with the same frequency: 

 ( , ) ( )i
sY e Ytx t xΩ=     ( , ) ( )i

se tψ x t xΩ= Ψ  (10.30) 

Then the set (10.6) reduces to ordinary differential equations  
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( ) 2
2 11 ( ) 0d dYi Y i Y q

d d
µ ψ χ β χ χ x

x x
∗  

+ Ω − +Ω − Ω + = 
  (10.31) 

( ) ( )
2

2
2 1 221 1 ( ) 0dY di i i m

d d
ψχ ψ µ ψ χ µ β χψ χ x

x x
∗ ∗ 

Ω + + Ω − + + Ω − Ω + = 
    

Further the normalized coefficients of internal friction for linear and angular 
velocities are assumed to be equal: 1 2µ µ µ∗ ∗ ∗= = , as well as those for external 
friction: 1 2β β β∗ ∗ ∗= = . 

Functions ( )Y x  and  ( )xΨ  are expanded on the eigenfunctions jY , jΨ  of 
the elastic TB 

1
( ) ( )j j

j
Y Yx ζ x

∞

=

=∑       
1

( ) ( )j j
j

x ς x
∞

=

Ψ = Ψ∑  (10.32) 

All terms in these expansions satisfy the above specified boundary 
conditions for TB, so we have to satisfy only the set of ODEs (10.31). 
Substitution of (10.32) into (10.31) gives 

( )
2

2
2

1
1 ( )j j

j j j
j

d Y d
i Y i Y q

d d
ζ µ χ β χ χ x

x x

∞
∗ ∗

=

  Ψ
+ Ω − + −Ω + Ω =      

∑
(10.33) 

( )
2

2
2

1
1 ( ) ( )j j

j j j j
j

Y
i i mζ µ χ x χ β χ χ x

x x

∞
∗ ∗

=

  ∂ ∂ Ψ
+ Ω − − + Ψ −Ω Ψ + Ω Ψ =   ∂ ∂   

∑

This set of equations in view of Eqs (10.12) for eigenmodes can be written in 
the form 

( )2

1

( )( )
1j j j

j

qY
i
xζ ω λ x
µ

∞

∗
=

− =
+ Ω∑ (10.34) 

( )2

1

( )( )
1j j j

j

m
i
xζ ω λ x
µ

∞

∗
=

− Ψ =
+ Ω∑

where 

( )
1

i
i

β
λ

µ

∗

∗

Ω Ω −
=

+ Ω
(10.35) 
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Now we multiply both Eqs. (10.34) by ( )kY x  and ( )k xΨ , respectively, for 
1, 2,...k = , integrate the obtained equalities above the beam length and add both 

the equalities. With account of orthogonality conditions (10.24) we obtain 

 ( ) ( )
0 0/ /

2 2 2

0 0

1( ) ( ) ( )
1

l r l r

k k k k k kp Y d q Y m d
i

ζ ω x x x x
µ∗− + Ψ = + Ψ

+ Ω∫ ∫  (10.36) 

whence in view of normalization (10.25) coefficients of the expansion are 

 

( ) ( )
( )

0 0/ /

0 0
2 2 2 2

( ) ( ) ( ) ( )
1

1 ( )

l r l r

k k k k

k
k k k

q Y m d q Y m d

i i

x x x x x x
ζ

µ ω λ ω µ ω β∗ ∗ ∗

+ Ψ + Ψ
= =

+ Ω − −Ω + Ω +

∫ ∫

  
  (10.37) 

This expression can be written in polar form:  

ki
k ka e θζ = ,

( )

( )

0/

0
22 2 2 2 2

( ) ( )

( )

l r

k k

k

k k

q Y m d
a

x x x

ω µ ω β∗ ∗

+ Ψ
=

−Ω +Ω +

∫

,
( )2

2 2
k

k
k

tg
µ ω β

θ
ω

∗ ∗Ω +
= −

−Ω
  

  (10.38) 

The amplitude functions of total deflection and angle of cross-section 
rotation (10.32) are 

 1
( ) ( )ki

k k
k

Y a e Yθx x
∞

=

=∑
      1

( ) ( )ki
k k

k
a e θx x

∞

=

Ψ = Ψ∑
 (10.39) 

Finally the solution to steady-state forced oscillation of viscoelastic TB 
(10.30) is as follows: 

 1
( , ) ( )kii

k k
k

Y e a e Yθtx t x
∞

Ω

=

= ∑
      1

( , ) ( )kii
k k

k
e a e θtx t x

∞
Ω

=

Ψ = Ψ∑
 (10.40) 

or in algebraic form ( Im( , ), ( , )ReY Yx t x t  and Im( , ), ( , )Re x t x tΨ Ψ  are real and 
imaginary parts of ( , )Y x t  and ( , )x tΨ ) 

 Im( , ) ( , ) ( , )ReY Y iYx t x t x t= +      Im( , ) ( , ) ( , )Re ix t x t x tΨ = Ψ + Ψ  (10.41) 

where 
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( )
1

( , ) ( )cosRe k k k
k

Y a Yx t x t θ
∞

=

= Ω +∑ ( )Im
1

( , ) ( )sink k k
k

Y a Yx t x t θ
∞

=

= Ω +∑

( )
1

( , ) ( )cosRe k k k
k

ax t x t θ
∞

=

Ψ = Ψ Ω +∑ ( )Im
1

( , ) ( )sink k k
k

ax t x t θ
∞

=

Ψ = Ψ Ω +∑

(10.42) 

The real and imaginary parts of (10.41) are solutions to the problem for 
excitation force with time functions cos tΩ  or sin tΩ , respectively.  

10.4.2. Action of a concentrated harmonic force 

If the external load is a concentrated harmonic force with amplitude P , 
applied at point 0P Px r x= , then 0 ( ) ( )Pq x P x xδ= − . In dimensionless 
parameters with account of known identity for δ - function of 0x r x= : 

0( ) ( ) /x rδ δ x=  we have 

0 0( ) ( )P
q rq P
E A

x δ x x≡ = −


 (
PP
EA

=


) (10.43) 

The nominator in formulas (10.37), (10.38) with account of 0m =  equals to 

0 0/ /

0 0

( ) ( ) ( ) ( ) ( )
l r l r

k k P k Pq Y d P Y d PYx x x x δ x x x x= − =∫ ∫
 

(10.44) 

and (10.37), (10.38) yield 

( )2 2 2

( )
( )

k P
k

k k

PY
i

x
ζ

ω µ ω β∗ ∗
=

−Ω + Ω +


,   

( )22 2 2 2 2

( )

( )

k P
k

k k

PYa x

ω µ ω β∗ ∗
=

−Ω +Ω +



(10.45) 

(formulas (10.39)-(10.42) remain the same). 

10.4.3. Single-mode approximation 

It is apparent that in certain cases the single-mode approximation might be 
sufficient, e.g., in case when the load frequency is close to (or less than) the first 
eigenfrequency, and the second and other eigenfrequencies are considerably 
higher. Then only the first term in expansion (10.32) is significant (except of 
special cases of application of a concentrated force), and other terms can be 
neglected. Similarly, if the frequency of external load is very close to a certain 
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eigenfrequency kω  one can expect that the forced oscillation mode will be close 
to the k -th eigenmode. 

For the single-mode approximation, e.g., with 1k = , solution (10.40)-
(10.42) reduces to 

 
1( )

1 1( , ) ( )iY a e Yt θx t xΩ +=    
1( )

1 1( , ) ( )ia e t θx t xΩ +Ψ = Ψ  (10.46) 

where 

 
( )

( )

0/

1 1
0

1 22 2 2 2 2
1 1

( ) ( )

( )

l r

q Y m d
a

x x x

ω µ ω β∗ ∗

+ Ψ
=

−Ω +Ω +

∫
   

( )2
1

1 2 2
1

tg
µ ω β

θ
ω

∗ ∗Ω +
= −

−Ω
 (10.47) 

In the case of action of a concentrated force, one has 

 
( )

1
1 22 2 2 2 2

1 1

( )

( )

PPYa x

ω µ ω β∗ ∗
=

−Ω +Ω +


 (10.48) 

It is convenient to introduce the dynamic amplification factor as 

 
( )

2 2
1 1 1

22 2 2 2 21
1 1

( ) ( )
dyn

P

a p pk
PY x ω µ ω β∗ ∗

= =
−Ω +Ω +

  (10.49) 

where 1p  is the first eigenfrequency in classical E-B model. Introducing in 
(10.49) new dimensionless parameters 

 1/ pΩ =Ω
      1 1 1/ pω ω=       1pµ µ∗=       1/ pβ β ∗=  (10.50) 

we obtain 

 
( )22 2 2 2 2

1 1

1

( )
dynk

ω µω β
=

−Ω +Ω +   
 (10.51) 

This expression is similar to usual formula for the dynamic amplification 
factor in one-degree-of-freedom system ( 1 1 1/ pω ω=  is rather close to 1), with 
replacement of a damping coefficient by the “effective damping factor“ 

2
1µω β+    embracing internal and external damping. 
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10.4.4. Qualitative comparison of undamped and damped beams 

For forced oscillations of undamped elastic beam ( 0µ β= = , 1 1ω = ) all 

ktgθ  in formula (10.39) vanish, and 0kθ =  or kθ π= , respectively if kωΩ < or 

kωΩ > (this is seen from 5(37)). Correspondingly kie θ  equals to 1 or 1− . 
Formulas (10.40) reduce to 

1
( , ) ( ) ( )i

k k
k

Y e a Ytx t x
∞

Ω

=

= ±∑
1

( , ) ( ) ( )i
k k

k
e atx t x

∞
Ω

=

Ψ = ± Ψ∑
(10.52) 

This means that in the shape of forced oscillations all constituent modes for 
which kωΩ >  oscillate in phase with the load, and all constituent modes with 
lower frequencies ( kωΩ < ) oscillate in anti-phase with the load. In cases of 
excitation force with time functions, e.g., cos tΩ , solution (10.52) takes the 
form 

1
( , ) cos ( ) ( )k k

k
Y a Yx t t x

∞

=

= Ω ±∑
1

( , ) cos ( ) ( )k k
k

ax t t x
∞

=

Ψ = Ω ± Ψ∑
(10.53) 

Here the variables are separated in real form, so this is a standing wave. 

At forced oscillations of damped beams (with internal and/or external 
friction), as is seen from the above solution (10.38)-(10.41), each constituent 
mode has certain phase shift kθ  with respect to the external harmonic load 
(which depends not only on the effective damping factor 2

kµ ω β∗ ∗+ , but also on 

kω ). In real form, for excitation time function cos tΩ  solution (10.40) is 

( )
1

( , ) ( )cosk k k
k

Y a Yx t x t θ
∞

=

= Ω +∑ ( )
1

( , ) ( )cosk k k
k

ax t x t θ
∞

=

Ψ = Ψ Ω +∑

Here the variables are not separable in view of different phase shifts kθ , 
except of case of the single-mode approximation (note that in complex form 
(10.30) the variables are separated). This means that in general case the mode 
shapes of beam are not similar in various time moments, so they are not standing 
waves. In a damped beam the oscillating bent axis includes a certain running 
wave. This holds for any model of beam (E-B, Rayleigh, TB). 

It is obvious that the running component will be intensified with the rise of 
the numbers of significant modes and magnitudes of phase shifts kθ . 
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10.5. Viscoelastic Timoshenko beam with a damper,  
point mass and dynamical vibration absorber 

10.5.1. Viscoelastic TB with a damper 

Let the TB is equipped with a damper of viscous friction at point fx . Then 

the concentrated force fP , applied at this point, is proportional to its velocity: 

/f fP g y t= − ∂ ∂  ( fg  is the viscous friction coefficient). In dimensionless 
parameters (10.5) at harmonic oscillation (10.30) one has  

 ( )f f fP i g Y x∗= − Ω


     ( 0
f f

r cg g
E A

∗ = ) (10.54) 

This force can be accounted for in the above solution (10.37)-(10.40) by 
adding it to the external load, i.e. presenting the load as a sum of the given load 

( , )eq x t  and a force from the damper. Then the amplitude load function 
(normalized) with account of expansion (10.33) is equal to 

1
( ) ( ) ( ) ( ) ( ) ( ) ( )e f f f e f j j f

j
q q i g Y q i g Yx x x δ x x x ζ x δ x x

∞
∗ ∗

=

= − Ω − = − Ω −∑
   (10.55) 

Substitution of (10.55) into integral in r. h. side of (10.37) (with 0m = ) 
gives 

 

0 0/ /

10 0

( ) ( ) ( ) ( ) ( ) ( )
l r l r

k e k f k f j j f
j

q Y d q Y d i g Y Yx x x x x x x ζ x
∞

∗

=

= − Ω ∑∫ ∫
 (10.56) 

After rewriting the last term as 

 
1 1

( ) ( )f k f j j f k j j
j j

i g Y Y ex ζ x ζ
∞ ∞

∗

= =

Ω =∑ ∑  (10.57) 

where 

 ( ) ( )k j f k f j fe i g Y Yx x∗= Ω  (10.58) 

the set of Eqs. (10.36) in view of normalization (10.25) reads 

( ) ( )
0/

2 2 2

1 0

( ) ( )
l r

k k k k j j e k
j

i e q Y dζ ω µ ω β ζ x x x
∞

∗ ∗

=

 −Ω + Ω + + =  ∑ ∫
, 1,2,...k =  (10.59) 
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We come to infinite set of linear algebraic equations with matrix 

( ) ( )
( ) ( )

( ) ( )

2
1 11 12 13

2
21 2 22 23

2
31 32 3 33

1 ...

1 ...

1 ..

... ... ... ...

i i e e e

e i i e e

e e i i e

ω µ β

ω µ β

ω µ β

∗ ∗

∗ ∗

∗ ∗

 + Ω −Ω Ω − +
 
 + Ω −Ω Ω − +
 
 + Ω −Ω Ω − +
 
 
 

 

(10.60) 

determining coefficients kζ  in (10.32) and then  solution (10.30). In case when 
the external load is a concentrated force, applied at point Px , r. h. sides in (10.59) 
in accordance with (10.45) are replaced with ( )k PPY x


. Then set (10.59) reads 

2 2 2

1
( ) ( )k k k k j j k P

j
i e PYζ ω µ ω β ζ x

∞
∗ ∗

=

 −Ω + Ω + + =  ∑


 1, 2,...k =  (10.61) 

The forced oscillation mode in the complex form is determined by 
expressions (10.32), and the general solution for stationary oscillations is given 
by (10.30). 

In the single-mode approximation (with 1k = ) for arbitrary load one has 

( )
( ) ( )

0/

1 1
0

1 2 2 2 2
1 1 1

( ) ( )

( )

l r

f f

q Y m d

i g Y

x x x
ζ

ω µ ω β x∗ ∗ ∗

+ Ψ
=

−Ω + Ω + +

∫

(10.62a) 

and for a concentrated force 

( ) ( )
1

1 2 2 2 2
1 1 1

( )
( )

P

f f

PY
i g Y

xζ
ω µ ω β x∗ ∗ ∗

=
−Ω + Ω + +


(10.62b) 

or, in the polar form 1
1 1

ia e θζ = , 

( )

( )

0/

1 1
0

1 22 2 2 2 2 2
1 1 1

( ) ( )

( ) ( )

l r

f f

q Y m d
a

g Y

x x x

ω µ ω β x∗ ∗ ∗

+ Ψ
=

−Ω +Ω + +

∫
(10.63) 

( )2 2
1 1

1 2 2
1

( )f fg Y
tg

µ ω β x
θ

ω

∗ ∗ ∗Ω + +
= −

−Ω
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10.5.2. Viscoelastic TB with a dynamic vibration absorber 

Let a Timoshenko beam is equipped with a dynamic vibration absorber of 
mass am  at point dx , Denote ( )ay t  the absorber mass displacement, 

( ) ( , )d dy t y x t=  - the displacement of point of the absorber attachment to the 
beam. Force dP ,  acting from the absorber to the beam and applied at point dx , 
equals to the inertial force of the absorber 

2

2
i a

d a a
d yP F m
d t

= = − (10.64) 

Deflection ( )ay t  is connected with the displacement of point of the absorber 
attachment to the beam ( )dy t  by the differential equation of absorber 

( )
2

2
a a d

a a a d a
d y dy dym k y y

dt dtdt
β  = − − − − 

 
 (10.65) 

Here ak  and aβ  are stiffness and viscosity coefficients for the absorber (the 
viscous friction is assumed to be proportional to displacement of the mass am
with respect to the attachment point). From this equation the displacement ( )ay t
can be expressed through ( )dy t  in the form 

a a dy h y= (10.66) 

where ah  is a linear operator (in particular case of single-frequency 
oscillation ah  is reduced to a complex number, which has meaning of the 
absorber’s dynamic amplification factor and  is presented below). Then the 
inertial force for the absorber equals to 

2

2
d

d a a
d yP m h
d t

= − (10.67) 

In dimensionless variables (10.5) equation of absorber oscillations (10.65) 
takes the form  

( )
2

2 0
2 0a a a d

a a d
a

d Y r d Y d YY Y
m d dd c
β

ω
t tt

∗  
+ − + − =  

 
(10.68) 
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where 0/Y y r= , 0/c t rt = , 0
a a

r
c

ω ω∗ = , /a a ak mω =  is the partial

frequency of the absorber. 

For steady-state harmonic oscillations, substituting ( ) i
d dY Y e tt Ω=

(where ( )d dY Y x≡ ) and ( ) i
a aY Y et = Ωt  into  (10.68)  we  obtain  the relationship 

between amplitudes aY  and dY  in the form 

a a dY h Y=  2
1

1
a

a
a

ih
i

β
β

∗

∗

+ Ω
=

−Ω + Ω


  (10.69) 

where the tuning parameter Ω


 and the normalized damping parameter aβ
∗  are

aω
Ω

Ω =


 a
a

a am
β

β
ω

∗ = (10.70) 

For harmonic oscillations in the dimensionless variables and parameters 
we now have from (10.67) 

2 ( )d a a dP m h Y x= Ω
    ( d

d
PP
EA

=


, 
0

a
a

mm
Arρ

= ) (10.71) 

Then the amplitude function of the total load (including inertial force from 
the absorber) with account of expansion (10.32) equals to  

2

1
( ) ( ) ( ) ( )e a a j j d d

j
q q m h Yx x ζ x δ x x

∞

=

= + Ω −∑ (10.72) 

Integral in (10.37) is equal to 
0 0/ /

2

10 0

( ) ( ) ( ) ( ) ( ) ( )
l r l r s

k e k a a k d j j d
j

q Y d q Y d m h Y Yx x x x x x x ζ x
=

= + Ω ∑∫ ∫


 (10.73) 

With denotation 
2 ( ) ( )k j a a k d j df m h Y Yx x= Ω

 (10.74) 

set of equations (10.37) in view of (10.25) takes the form 

( ) ( ) ( )
0/

2

1 0

1 ( )
l r

k k k j j e k
j

i i f q Y dζ ω µ β ζ x x x
∞

∗ ∗

=

 + Ω −Ω Ω − − =  ∑ ∫
 k =1,2,.. (10.75) 



Forced oscillations of a viscoelastic Timoshenko beam… 

251 

The set (10.75) is similar to set (10.59) - its matrix yields from matrix 
(10.60) after replacing k je  (10.58) by k jf− . In case when the external load is a 
concentrated force, applied at point Px , r.h. sides in (10.75) are replaced with 

( )k PPY x


. 

10.5.3. Viscoelastic TB with point mass, damper and dynamic 
vibration absorber 

The case of a concentrated mass M  attached to the beam at point Mx  is a 
particular case of the above considered beam with a DVA. The inertial force MP , 
acting at this point, is 2 2/M MP M y t= − ∂ ∂  ( ( )M My y x= ); this corresponds to 
(10.67) with ha =1. So it is sufficient to replace k jf in set (10.75) with 

2 ( ) ( )k j k M j Mg M Y Yx x= Ω


     
0

MM
Arρ

=


(10.76) 

In general case of TB with various attached bodies and devices - mass, 
damper and DVA - one should to add all forces induced by them to the external 
load. Then we come to the set of linear algebraic equations similar to (10.59) 

( ) ( ) ( )
0/

2 2 2

1 0

( ) ( )
l r

k k k k j k j k j j e k
j

i e g f q Y dζ ω µ ω β ζ x x x
∞

∗ ∗

=

 −Ω + Ω + + − − =  ∑ ∫
 (10.77) 

where ,k j k je f  and k jg are specified by expressions (10.58), (10.74) and 
(10.76). 

If there are multiple concentrated loads (e. g., several point masses), the 
corresponding term in (10.77) is replaced with the sum of all these forces. 

In any case, the action of concentrated loads, depended on motion of the 
system, results in coupling different natural modes (coupling set of equations). 

10.6. Results of numerical analysis for a cantilever TB 

Dynamics of TB is determined by a large number of parameters of the beam, 
damper, DVA and external excitation. Here we briefly consider the effect of 
some parameters on forced oscillation of cantilever beams under action of a 
concentrated force. 
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10.6.1. Eigenmodes and eigenfrequencies 

As a basic variant for the analysis we took a cantilever beam with parameters 
0/ 10L r = , 3χ = . In Table 10.1 the first three normalized natural frequencies jω  

for this beam are presented, and for comparison there are also given 
corresponding frequencies at 0χ = , i.e. for Rayleigh model (results for E-B and 
Rayleigh models here practically coincide; noticeable discrepancies appear only 
for higher modes). 

Table 10.1. Normalized eigenfrequencies jω  for elastic cantilever beam ( 0/ 10L r = ) 

1ω 2ω 3ω
3χ = 0.0323 0.1459 0.3183 

0χ = 0.0344 0.1913 0.4649 

(ω  is the frequency in time t  (10.5); frequency 0ω  in real time t  equals to 

0 0( / )c rω ω= ). The eigenfrequencies for TB are noticeably lower than in E-B 
model, beginning already from the second one. 

Corresponding three natural modes (total deflection ( )Y x  and angle ( )xΨ ) 
are shown in Fig. 10.2 for TB (a, b, c), and for comparison the third natural mode 
is shown for E-B model on Fig. 10.2 d (the 1st and 2nd modes in E-B model 
almost coincide with those of TB and are not shown here). 
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Fig. 10.2. Natural nodes of oscillation of elastic cantilever beam with parameters: 

0/ 10L r = ; (a), (b), (c) - the 1st, 2nd and 3rd eigenmodes ( )Y x , ( )xΨ  
 of TB ( 3χ = ); (d) - the 3rd eigenmode for classical beam model 

In distinction on the natural frequencies, the presented natural modes are 
rather close for the both models; significant differences are observed only near 
the clamped end, where in TB model the total slope of the bent axis does not 
vanish, in distinction on E-B model (only condition (0) 0Ψ =  is satisfied).   

10.6.2. Shapes of forced oscillations of an elastic TB (without 
dampers and DVAs) 

Consider now modes of forced oscillations at different frequencies of the 
external force, first for the elastic beam ( 0µ = , 0β = ) without dampers, DVAs 
and additional point masses. The concentrated force with normalized magnitude 

2
1P p=


 was applied at different points of the beam 0P Px rx= . Various values 

of the force frequency were assumed, less and larger than the first eigenfrequency 
1 0.0323ω =  (at 0/ 10L r = , 3χ = ). 

For the considered beam coefficients jζ  in expansion of the dynamical 
deflection in eigenmodes of elastic TB (real in case of elastic beams) are 
presented in Table 10.2. 

In the pre-resonance range ( 1/ 1ωΩ < ) the first mode predominates in the 
forced oscillation shape, contribution of other modes can be ignored, regardless 
of location of the force application point. In case of 1/ 1ωΩ >  (but 2ωΩ < ) the 



Selected Problems of Solid Mechanics 

254 

second mode component increases and gradually becomes predominant, but the 
third mode does not become noticeable even at normalized frequency 

1 25 0.1616ω ωΩ = = > . Simultaneously with increasing Ω  difference between 
TB and E-B beam increases. 

Table 10.2. Coefficients jζ  in expansion (10.32) for elastic TB at various excitation 

frequencies Ω  and different location of the force Px
( 0/ 10L r = , 2

1P p=


, 3χ = ) 

1/ωΩ 0.1 Px 1ζ 2ζ 3ζ

0.9 
1 

0.7 
0.5 

8.0781 
4.9711 
2.9786 

-0.0287 
0.0092 
0.0237 

0.0051 
-0.0041 
-0.0007 

2.5 
1 

0.7 
0.5 

-0.1125 
-0.0692 
-0.0415 

-0.0419 
0.0135 
0.0346 

0.0054 
-0.0043 
-0.0007 

5.0 
1 

0.7 
0.5 

-0.0250 
-0.0154 
-0.0092 

0.0708 
-0.0228 
-0.0585 

0.0071 
-0.0057 
-0.0009 

Thus, in the pre-resonance range only the first term in series (10.32) may be 
taken into account (the single-mode solution). Here the shear deformability does 
not affect noticeably the forced oscillation mode. In the post-resonance range the 
single-mode approximation, as a rule, is insufficient, but  two- or three- modes 
approaches are rather correct. In post-resonance range the effect of shear 
becomes more significant, and E-B and Rayleigh models, as a rule, are 
inapplicable. 

In Fig. 10.3 the forced oscillations shapes ( )Y x  are presented for considered 
elastic TB ( 2

1P p=


) at various excitation frequencies Ω ; the force acts at the 
middle cross-section of the beam. The curves are obtained in the first, second and 
third approximations (curves 1, 2, 3, respectively). The first plot (a) relates to 
pre-resonance excitation frequency 10.0291 0.9ωΩ = = ; here the curve 
practically coincides with the first eigenmode. The second plot (b) - for 

10.097 3.0ωΩ = = ; here the shape in the single-mode approximation (with the 
first mode) is rather far from the curve, obtained in two- and  three-mode 
solutions (the second mode predominates, and two last curves coincide). The 
third plot (c) - for frequency 10.1616 5.0ωΩ = = , exceeding 2ω ; here also the 2nd 
and 3rd eigenmodes are sufficient for good presentation of the forced oscillation 
shape. 
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Fig. 10.3. Forced oscillations shapes ( )Y x  in elastic TB ( 0/ 10L r = , 3χ = , 2
1P p=


) 

at various excitation frequencies Ω ; the force acts at the middle of the beam; 1, 2, 3 - 
curves in the single-, two- and three modes approximations; (a) excitation frequency 

0.0291Ω = ; three shapes coincide; (b) 0.097Ω =  and (c) 0.1616Ω =  (curves in the 
two- and three modes approximations coincide) 

Thus the forced oscillation shape depends mainly on the excitation 
frequency. The location of the force can also affect the shape (if the point of the 
force application is close to a node of some mode, then the corresponding 
component does not contribute to this shape). 

10.6.3. Forced oscillations of a viscoelastic TB (without dampers 
and DVAs) 

To analyze the influence of the internal and external viscous friction on 
forced oscillation shapes of TB we take the beam 0/ 10L r = , 3χ =  with 

following values of the friction dimensionless parameters (10.50) 0.1β = , 
0.1µ = . The external force with magnitude 2

1P p=


 and various frequencies 

1/ pΩ ≡ Ω  was applied at points 0( / ) 0.5P r Lx =  (middle of the beam) or 

0( / ) 0.7P r Lx = . Values of the computed coefficients kζ  in expansions (10.32) 
are presented in Table 10.3. 

The main peculiarity of the damped beam is that the coefficients of 
expansion of the forced oscillations shape in the eigenmodes are complex. 
Complexity of the coefficients kζ  means the appearance of a phase shift between 
the force and the oscillation mode, and different phase shifts kθ  for various 
eigenmodes destroy standing wave and generate a running wave component. As 
is seen from Table 3, for the assumed parameters of the external and internal 
friction (rather moderate) the imaginary parts of kζ  are sufficiently small with 
respect to the real parts, so one might expect that the running wave component 
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will be small with respect to the standing wave component. Strictly speaking, in 
case of damped beam the profile of forced oscillation mode loses its definiteness, 
the nodes are not fixed, and similarity at various time moments is violated. 

Table 10.3. Coefficients kζ  in expansions (10.32) for viscoelastic TB at different 

frequencies and locations of the force ( 0/ 10L r = , 3χ = , 2
1P p=


, 

0.1β = , 0.1µ = )

1/ωΩ  0.1 Px 1ζ  2ζ  3ζ

0.9 

1 
0.7 
0.5 

1.3124 – 2.9798 i 
0.8076 – 1.8337 i 
0.4839 – 1.0987 i 

-0.0284 + 0.0028 i 
0.0091 - 0.0009 i 
0.0234 – 0.0023 i 

0.0051 – 0.0005 i 
-0.0040 + 0.0004 i 
-0.0007+0.0001 i 

2.5 
1 

0.7 
0.5 

-0.1116 - 0.0098 i 
-0.0687 - 0.0060 i 
-0.0412 – 0.0036 i 

-0.0361 + 0.0146 i 
0.0116 – 0.0047 i 
0.0298 – 0.0120 i 

0.0051 – 0.0014 i 
-0.0040 + 0.0011 i 
-0.0007 + 0.0002 i 

5.0 
1 

0.7 
0.5 

-0.0250 - 0.0010 i 
-0.0154 – 0.0006 i 
-0.0092 – 0.0004 i 

0.0248 + 0.0338 i 
-0.0080 – 0.0109 i 
-0.0204 – 0.0279 i 

0.0047 – 0.0034 i 
-0.0038 + 0.0027 i 
-0.0006 + 0.0004 i 

Fig. 10.4. Bent axis of the TB in various times at excitation frequency 1/ 2.5pΩ =  
for two locations of the force: (a) 0( / ) 0.7P r Lx = ; (b) 0( / ) 0.5P r Lx =  ( 0.1µ = , 

0.1β = ).  Curves 1- tΩ =0,  2- tΩ = / 4π , 3- tΩ = / 2π ,
4- tΩ =π , 5- tΩ = 5 / 4π ,  6- tΩ = 3 / 2π ,  7- tΩ = 7 / 4π , 8- tΩ = 2π  

In Fig. 10.4 the bent axes of the considered beam ( 0.1β = , 0.1µ = ) in
various time moments are shown at excitation frequency 1/ 2.5pΩ =  for two 
locations of the force: 0( / ) 0.7P r Lx =  (a) and 0( / ) 0.5P r Lx =  (b). 
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When the force is applied in a vicinity of  the free end of the cantilever beam 
( 0( / ) 0.7P r Lx = ), the bent axes are almost similar, i. e. the running component is 
rather small. But at 0( / ) 0.5P r Lx =  the node of axis moves in a wide interval, and 
the running component is noticeable. 

10.6.4. TB with a concentrated mass 

Consider some results of the solution in the single-mode approximation 
(which applicable at excitation frequencies not exceeding considerably the first 
eigenfrequency) for TB with parameters 0/ 10L r = , 3χ = , 2

1P p=


, 

0β = , 0.1µ = , with a point mass and a force on free end ( 0/M L rx = ). In Fig. 
10.5 the frequency response curves (FRC), i.e. dynamical amplification factors 

dynk  (50) via the frequency parameter 1/ pΩ = Ω ,  are shown for various values 

of the normalized mass M


. 

 
Fig. 10.5. Frequency response curves for various values of normalized mass  

M


 on free edge of the beam  ( 0/ 10L r = , 3χ = , 0β = , 0.1µ = , 
2
1P p=


, 0/P L rx = ) 

The concentrated mass increases the maximum on the FRC and displaces it 
to lower value of Ω  (due to increasing inertia force and decreasing natural 
frequency).  
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10.6.5. Viscoelastic TB with dynamical vibration absorber 

In the numerical analysis there are studied: 

− influence of the beam and the absorber parameters on amplitude-
frequency characteristics (within framework of the single-mode 
approximation); 

− influence of the excitation frequency and location of the absorber and 
the force on the qualitative picture of forced oscillations. 

The influence of absorber parameters on frequency-response curves (single 
mode approximation) 

A dynamic vibration absorber is characterized with three dimensionless 
parameters: normalized mass am  (10.71), the viscous friction parameter aβ

∗  
(10.70) and the tuning parameter 1/a pω  (ratio of the DVA partial frequency to 
the 1st eigenfrequency of the elastic TB).  In the following analysis we took beam 
with the same parameters 0/ 10L r = , 3χ = , 0.1µ = ; 0β = , 2

1P p=


; for the 
absorber following basic parameters were taken: 0.1am = , 1/ 0.9a pω = . 

Figs. 10.6, a-f, illustrate the influence of the absorber friction parameter aβ
∗  

on FRCs at given tuning (in the single-mode approximation). Plot a  relates to the 
beam without absorber, other plots (b-f) to the beam with absorber having 
different aβ

∗  values, from * 0.06aβ =  till * 0.6aβ = . At small friction (plots b, с, 

0...0.15aβ
∗ = ) the FRCs have two distinct maxima, but with rising aβ

∗   they 
merge into a single maximum (plots e, f). So the viscous friction in DVA (as well 
as internal friction in beam) can lead to fusion of two maxima on FRC into a 
single one. Maxima on FRC reach the minimal value in range aβ

∗ =0.2 - 0.3 (for 

given beam parameters). After the fusion at further increasing aβ
∗  the maximal 

amplitude rises monotonously. Such dependence of maximal dynamic 
amplification factor from viscous friction parameter is similar to well known 
dependence of dynamic amplification factor on viscous friction in one-degree-of-
freedom systems. The optimal aβ

∗  values are of special interest, as well as the 
quantitative effect of the DVA on the beam oscillation (decrease of amplitude 
about two times for mass ratio 0.1am =  (compare plots (а) and (d)). 

The next plots (Fig. 10.7) illustrate the impact of absorber tuning parameter 
1/a pω  on the maximum of dynk  for given friction value * 0.15aβ = ( 0.1am = ). 

The tuning parameter varied in range (0.6 …1.2). 
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Here again the optimum value of parameter 1/a pω  corresponds to equality 

of two local maxima on the FRC. At small 1/a pω  value the global maximum is 
determined by the right peak (the left peak at plot (a) is almost invisible); with 
rising 1/a pω  these peaks converge and become equal at 1/ 0.9a pω ≈ . At 

further increasing 1/a pω the left peak becomes global. So value 1/ 0.9a pω ≈  
ensures the minimax value of dynk  for the assumed parameters 0/L r , 

χ , µ ; β , am , *
aβ . 
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Fig. 10.6. Influence of the absorber viscous friction parameter aβ
∗  on FRC’s 

for viscoelastic Timoshenko beam ( 0/ 10L r = , 3χ = , 0.1µ = ; 0β = , 2
1P p=


); 

a) beam without DVA, b) * 0.06aβ = , c) * 0.15aβ = , 

 d) * 0.25aβ = , e) * 0.35aβ = , (f) * 0.6aβ = . 

a)        b)  c) 

Fig. 10.7. Influence of tuning parameter 1/a pω  on the FRCs for the  viscoelastic TB; 

(a) 1/ 0.8a pω = ; (b) 1/ 0.9a pω = ; (c) 1/ 1.0a pω = ;.( 0/ 10L r = , 

3χ = , 0.1µ = ; 0β = , 2
1P p=


; 0.1am = , * 0.15aβ = ). 

Multi-mode solution. Running waves 

In order to study qualitative effects due to distinctions between forced 
oscillations shapes of the viscoelastic TB with DVAs and natural modes of the 
elastic TB we took into account three terms of the expansion (10.32) (such 
solution is applicable for excitation frequency up to the third eigenfrequency). 
There were assumed the former parameters of TB ( 0/ 10L r = , 

3χ = , 0.1µ = ; 0β = ) , DVA ( 0.1am = , * 0.35aβ = , 1/ 0.9a pω = ); and various 
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excitation frequencies 1/ 0.9pΩ = , 2.5, 5.0 were put. The absorber was located 
on the free end, and the force was applied either at the end or in the middle cross-
section (Fig. 10.8, schemes I and II respectively).  

In Fig. 10.9 the force oscillation shapes are presented for these two schemes 
at various excitation frequencies.  

 
Fig. 10.8.  Two variants of location of DVA and external force 

 
a)                                               b)                                            c) 

 
d)                                           e)                                        f) 

Fig. 10.9. Dynamic deflection of the beam ( , )Y x t with DVA at various time moments; 

plots  а,b, c -  scheme I, 1/ 0.9a pω = , 2.5 and 5, respectively; plots d, e, f  - scheme II, 

1/ 0.9a pω = , 2.5 and 5, respectively ( 0/ 10L r = , 3χ = , 0.1µ = ; 0β = , 

0.1am = , * 0.35aβ = ) 
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It is seen from Fig. 10.9 that the excitation frequency is a decisive factor 
determining the dynamic response of the beam. For frequency parameter 

1/ 0.9pΩ =  (pre-resonance range) in both the cases I and II the shapes of the 
bent axis are similar, and the dynamic deflection can be considered as a standing 
wave. In post-resonance ranges (frequency parameter 1/ 2.5; 5.0a pω =  lies in 
the interval between the first and second eigenfrequencies) the traveling wave 
component is significant and increases with increasing excitation frequency. At 
location of the force and DVA in different cross-sections (case II) this tendency 
becomes stronger. 

Note that these results related to cantilever beams well correspond 
qualitatively with the analysis of simply supported beams presented in [10.10], 
but there are quantitative differences, in particular, due to absence of symmetry 
in case of cantilever beams. The running component of the dynamic deflection 
can result in significant changes in the bent axis curvature and bending stresses. 
So account of running waves can be necessary at design of beams and choice of 
DVAs parameters. 

10.7. Conclusion 

The general solution for the steady-state forced oscillations of viscoelastic 
Timoshenko beams with dampers, dynamical vibration absorbers and point 
masses under harmonic (in time) external loads is obtained. The solution is based 
on expanding the dynamic deflection and the angle of cross-section rotation in 
the natural modes of elastic TB (without dampers, absorbers and point masses) 
and employing the appropriate orthogonality conditions. The dampers, DVAs 
and point masses are included in the general solution within the uniform scheme 
as concentrated influences which themselves depend on the beam motion.  

At presence of internal and external viscous friction the dynamical deflection 
of the beam undergoes qualitative changes - there appears a running wave 
component which is superimposed on a standing wave. The trend to appearance 
of the running wave can be amplified by the local forces due to the dampers, 
absorbers or point masses. 

In the numerical analysis there are studied subsequently effects of 
parameters of the beam, mass  and of dynamical absorbers on forced oscillations 
of cantilever beams. In particular, optimal ranges of the tuning and viscous 
friction parameters of DVAs are assessed. 
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11. 

The modifications proposed to the buckling 
design recommendations of cold-formed column 
members of lipped channel section with 
perforations 

This chapter describes the results obtained from numerical, experimental and 
theoretical investigations into the load capacity of column members of lipped 
channel cross-section with perforations of different arrangements subjected to 
compression loading. 

Most structural cold-formed steel members are manufactured with pre-
punched perforations to accommodate, for example, electrical, plumbing and 
heating services. Due to the position, orientation and the shape of perforations, 
the elastic stiffness and ultimate strength of a structural member can vary. 

The buckling behaviour of cold-formed steel structural column members 
with lipped channel cross-section, with perforations of different shapes were 
studied and comparisons of the finite element results and the test results are also 
made with existing design specifications and conclusions are drawn on the basis 
of the comparisons. 

11.1. Introduction 

Cold-formed steel sections are widely used in storage racks, building 
structures, transportation machineries, domestic equipment, and other 
applications. The uses of cold-formed steel products are many and varied due to 
various characteristics such as their high strength-to-weight ratio, reliability and 
accuracy of profile, and ease of manufacture [11.3, 11.10, 11.12, 11.19]. The 
behaviour of a structural member with perforations can vary with perforation 
size, position, shape and number of perforations and can limit the advantages of 
these structures [11.2, 11.7, 11.15]. Hence, these can make the design and 
analysis of these members more complex.  

In evaluation of the section properties of cold-formed members in 
compression or bending, perforations made specifically for fasteners such as 
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bolts, screws, etc. may be neglected as perforations are filled with material. 
However, for any other perforations, the reduction in cross sectional area caused 
by these perforations should be taken into account. Shown in Figure 11.1 are 
some common section geometries of cold-formed structures [11.16]. 

Fig. 11.1. a) Examples of cold-formed members & b) Colum members 
with different shape perforations 

The thickness of light gauge steel sheets or strips that can be cold-formed 
into structural shapes normally ranges from 0.3 mm to about 6 mm. Cold-formed 
steel structures have many advantages over conventional hot-rolled sections. In 
general, the following advantages of cold-formed steel structural members are 
identified in building construction: versatility of profile shape, reliability and 
accuracy of profile, pre-galvanised or pre-coated materials can be formed, variety 
of materials which can be formed, variety of connection methods, increase in 
yield strength, high strength-to-weight ratio and etc [11.5, 11.13, 11.19]. 

Cold-formed thin-walled sections tend to buckle locally at stress levels lower 
than the yield strength of the material when they are subjected to compression 
loading conditions. However, failure modes are not commonly encountered in 

a) 

b) 

Column 

Perforation 
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normal structural steel design specifications, and therefore, extensive testing is 
required to provide a guideline for the design of cold-formed thin-walled 
structural members. As illustrated in Fig. 11.2, compared with conventional 
structural column members, cold-formed thin-walled steel open cross-section 
column members have at least three competing buckling modes namely, local, 
distortional, and Euler (flexural or torsional-flexural) buckling [11.8, 11.14, 
11.17, 11.18,]. 

AA

AA

Section ASection A- -A A

(a) Locally buckled plain channel 

(b) Distortional buckling behaviour of 
a compressed structural member

(c) Torsional-Flexural buckling of a 
hat section

NN

zz

yy

yy

SCSC

C GC G

zz

N – Force 

CG – Centre of gravity 

SC – Shear centre 

Translation Translation 

(i)  Compression (ii) Flexure

RotationRotation 

Fig. 11.2. a) Locally buckled plain channel in compression, b) Distortional 
buckling modes and c) Torsional-Flexural buckling of a hat section,  when 

the section is weak in tension column leads to the rotation  
about the force axis 
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The load capacity of cold-formed column members of lipped channel cross-
section subjected to compression loading mainly depends on overall buckling. 
In general, buckling modes interact with each other. The relevant literature 
reveals that the proper incorporation of various buckling modes is imperative 
for accurate and reliable buckling strength predictions of cold-formed steel 
members [11.9]. 

11.2. Numerical investigation 

A general finite element procedure with a particular emphasis on analysing 
thin-walled members using ANSYS finite element software package is presented 
here. Finite element analysis is now commonly used early in the design process 
to try out new concepts and optimise before any physical prototypes are made 
and tested. The numerical results presented have been determined through the 
non-linear buckling analysis of column members of lipped channel cross-section 
with perforations using ANSYS shell element SHELL181 [11.1]. Figure 11.3 
illustrates SHELL181 geometry. SHELL181 is one of the shell elements in the 
ANSYS element library along with many other shell elements such as SHELL43, 
SHELL93, etc. 
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Fig. 11.3. SHELL181 geometry 

Finite element models were developed using exact dimensions of the web, 
flange, and lip of the member and perforations. They were then modified by 
including the material properties obtained from tensile tests. In this study, only 
one-half of the section was modelled using symmetry of the sections, loading, 
and support reactions about the vertical plane [11.6]. 

The loading was applied through a load bearing plate, suitable to represent 
the true compression load used in the experiments. Displacement control method 
was used, and contact elements were created by defining a pair of contact 
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surfaces at the bottom of the load bearing plate and the top cross-section of the 
column. This scenario simulates the actual contact situation existing during the 
tests. At the location where the top end fixture exists, nodes were constrained in 
UX, UY, ROTX, ROTY and ROTZ. The nodes located at the bottom end fixture 
were constrained in UX, UY, UZ, ROTX, ROTY and ROTZ as shown in Figure 
11.4, to represent the actual test conditions in the experimental investigations 
[11.11]. 

Load

Top load 
bearing plate

Test specimen 

Bottom load 
bearing plate

Line of 
symmetry

(a) Front view (b) Side view X
Y

ZUY

UZ

UX

UY UX

UY

ROTZ

ROTX 1 – UX
2 – UY
3 – UZ
4 – ROTX
5 – ROTY
6 – ROTZ

Plane of symmetry

ROTZ

ROTY

ROTY
ROTX

ROTX

ROTZ

Nodes located up to 
top fixed-fixed fixture  
constrained in 1, 2 and 

4 to 6 

Nodes located up to 
bottom fixed-fixed 

fixture  constrained in 
1 to 6 

Fig. 11.4. Boundary conditions for fixed-fixed condition 

Finite element analysis (FEA) is an accurate and flexible technique, which 
can be used to predict the performance of a structure, mechanism or process 
under different loading conditions. The accuracy of results obtained from a finite 
element analysis is greatly dependent on material properties. A number of 
material-related factors can cause a structure's stiffness to change during the 
course of an analysis. Three tensile tests were conducted for each different steel 
sheet and average yield stress was determined with the 0.2% strain offset method 
and engineering stress vs. engineering strain graphs were computed using load-
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displacement curves obtained from the tensile tests. Figure 11.5 shows symmetry 
boundary and fixed-fixed support conditions. 

The finite element modelling was undertaken using ANSYS general post-
processor /POST1 and time history post-processor /POST26. The static non-
linear solution technique was employed. Ultimate loads and load vs. 
displacement graphs were reported using time-history post-processor POST26. In 
this investigation, half models were validated with results obtained from 
experimental studies.  

Nodes located 
up to top fixed-

fixed fixture  
constrained in 1, 

2 and 4 to 6 

Nodes located up to bottom fixed-
fixed fixture  constrained in 1 to 6 

1 – UX
2 – UY
3 – UZ
4 – ROTX
5 – ROTY
6 – ROTZ

X
Y

Z

Symmetry 
boundary 
condition

 
Fig. 11.5. Symmetry boundary and fixed-fixed support conditions 

11.3. Experimental investigation  

11.3.1. Different types of columns specimens tested  

In this study, a set of specimens of the same cross-section but with different 
perforation positions were tested as shown in Figure 11.6. Column lengths were 
kept constant at 1000mm, with perforations located at the mid-height of the 
column. Five cold-formed steel columns were tested to failure with fixed-fixed 
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end conditions. For the specimens tested with fixed-fixed end conditions, two 
sets of identical clamping attachments were manufactured as shown in Figure 
11.7. Each set mainly consists of two parts namely inside end attachment and 
outside end attachment. In this investigation, inside and outside end attachments 
prevented a change in shape of the cross-section. The design of the end 
attachments was made for ease of manufacture and effective grip on the 
specimens. The inner surfaces of the load bearing plates were milled to provide 
extra frictional gripping on the specimens. The column testing parameters are 
shown in Table 11.1. 

Fig. 11.6. Perforation shapes and positions 

Table 11.1. Nominal section dimensions 

Specimen Length  
of the specimen h1

perforation l1
perforation W1 

1 SIII/S1/P/F-F L 1 b 2 b 4 c 

2 SIII/S2/P/F-F L 1 b 2 b 5 c 

3 SIII/S3/P/F-F L 1 b 2 b 6 c 

4 SIII/S4/P/F-F L 1 b 2 b 7 c 

5 SIII/S5/P/F-F L 1 b 2 b 8 c 

L = 1000 mm, b = 30 mm, c = 5 mm 

L 

L/2 

l1
 perforation 

h1 
perforation 

r perforation 

W1 

1 2 3 4 5 
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Column member

Outside end 
attachment

Load bearing 
plate

Inside end 
attachment

 

Fig. 11.7. Fixed-end fixture and test setup 

11.3.2. Fixed-fixed end fixture 

Figure 11.8 shows the details of the inside fixed-fixed end attachment. 
Blocks (a, b, c, and d) in Y-direction could be controlled using two screws (g, h). 
The movement of blocks (a, b, c, and d) in X-direction could be controlled using 
the nut, i. This attachment was designed to facilitate quick adjustment for 
accurate positioning and to avoid the deformation of the cross-section during the 
loading process. The inside end attachment was also designed such that it would 
fit into all cross-sections.  

[a]

[c]

[f]

[i]

[b]

[d]

[h]

[e]

[g]

c

c

X

X

Y

Y

 
Fig. 11.8. Fixed-fixed inside end attachment 
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The details of the fixed-fixed outside end attachment are shown in Figure 
11.9. The outside end attachment was designed such that it would fit into all 
cross-sections. The holding blocks (g) could be moved in X-direction, inward 
and outward to suit with the size of the outside dimension of the cross-section. 
Parts (h) can be moved in Y-direction, providing support to avoid the 
deformation of the lips of the cross-section during the loading process.  

[a]
[b]

[c]
[d]

[e]
[f]

[g]

[i]
[h]

X

X Y

Y

Fig. 11.9. Fixed-fixed outside end attachment 

In this study column specimens were tested on a Tinius-Olsen material and 
structural testing machine. All column specimens were loaded with displacement 
control at a constant rate, and a high level of accuracy of the Tinius-Olsen testing 
machine crosshead displacement was achieved using a linear variable 
displacement transducer (LVDT). 

11.3.3. Geometric imperfections 

The effect of geometric imperfections on the ultimate strength of cold-
formed steel members has been studied by numerous researchers [11.7]. In 
general, the larger the initial imperfections, the smaller the ultimate failure load, 
and thus the effect of initial imperfections on the buckling behaviour should be 
taken into consideration. In this study, measurements were recorded along three 
lines in the longitudinal direction in both web and flanges at 20 mm intervals as 
shown in Figure 11.10. 

The geometric imperfections were measured using a coordinate measuring 
machine to a precision of 0.01 mm. The specimen was supported horizontally 
using clamps. 
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Fig. 11.10. Locations on the web and flanges to measure geometric imperfections 

11.3.4. Material properties testing  

Tensile coupon tests were performed to obtain the steel stress-strain curve 
and yield stress of steel sheets which were used for the manufacture of test 
specimens in this study. The tests were conducted in accordance with British 
Standard BS EN 10002-1:2001 “Metallic materials – Tensile testing – Part 1: 
Method of test at ambient temperature” (BSI 2001). BS EN 10002-1:2001 
specifies the method for tensile testing of metallic materials and defines the 
mechanical properties which can be determined at ambient temperature. The 
average yield stress, σy was determined with the 0.2 % strain offset method and 
the results are summarized in Table 11.2.  

Table 11.2. Measured material properties  

Average Yield Stress, σy [N/mm2] Modulus of Elasticity, E [N/mm2] 
195 210,500 

11.4. Theoretical investigation  

For the specimens tested with fixed-fixed end conditions, the European 
Standard EN 1993-1-3, Eurocode 3: Design of Steel Structures: Part 1-3 General 
rules - Supplementary rules for cold-formed members and sheeting, provides 
design recommendations for cold-formed members and sheeting. In this standard, 
design equations and conditions are given for cold-formed steel products that 
have been cold-formed by forming processes such as forming or press-braking. 
Eq. (11.1) highlights the design equation for calculating the buckling resistance, 
Nb,Rd of a compression member. 

 Nb,Rd = xAefffy
γM1

 (11.1) 
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where x is the reduction factor for the relevant buckling mode, Aeff is the 
effective area, fy is the yield strength and γM1  is the general partial factor [11.4]. 

11.5. Comparisons between numerical, experimental 
and theoretical investigations 

11.5.1. Deformation behaviour of the specimens 

The outcome of this investigation has shown that the ultimate load varied 
with the position of the perforations. The buckled shape is three half-waves in the 
longitudinal direction with a half-wave length approximately equal to the one 
third of the height of the specimen. It was noticed that the deformation around 
perforations was found to be higher than that of the areas without web openings.  

Interaction of local and distortional buckling modes was observed adjacent 
to the perforations. The load capacity of the perforated cross-sections showed a 
reduction of 33.52% with the increase of the distance of two perforations. This 
observation was accomplished to prove the strength increase around bends due to 
the cold forming process. 

a)

Interaction of local and distortional buckling modes 
occurs around the perforations  

Maximum Von Mises stress 
plot – around the 
perforation 

b)

Fig. 11.11. Comparison of experimental and finite element analysis deformed shape: 
a) experimental deformed shape around the perforation and, b) ANSYS deformed shape

around the perforation, equivalent half section 
for the section SIII/S2/P/F-F 
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11.5.2. Numerical, experimental and theoretical results  

The results obtained from numerical, experimental, and theoretical 
investigations are presented here. The allowable and ultimate strength values of 
compression members obtained from experimental and numerical tests are 
shown. . Comparison of experimental and finite element analysis deformed shape 
is shown in Figure 11.11. 

Table 11.3. Comparisons of numerical and experimental results 

Specimen 

Experimental Buckling 
Strength [kN] 

Numerical Buckling 
Strength [kN] 

PFEA, 

A 
/Pexp, 

A 

PFEA,U 
/Pexp, 

U Allowable, 
Pexp, A 

Ultimate, 
Pexp, U 

Allowable, 
PFEA, A 

Ultimate, 
PFEA, U 

        1 SIII/S1/P/F-F 27.62 31.74 23.43 31.42 0.85 0.99 
2 SIII/S2/P/F-F 24.13 27.19 24.85 29.01 1.03 1.07 
3 SIII/S3/P/F-F 23.72 30.06 27.28 31.27 1.15 1.04 
4 SIII/S4/P/F-F 22.75 27.87 19.15 27.02 0.84 0.97 
5 SIII/S5/P/F-F 17.56 21.10 16.68 22.52 0.95 1.07 

 Mean, X� 0.96 1.03 
 Standard Deviation, S 0.13 0.04 
 Coefficient of Variation, COV 0.13 0.04 

Table 11.4. Comparisons of design code predictions with experimental results 

Specimen 

Ultimate Buckling 
Strength [kN] 

Ultimate Load 
Ratio 

Test,  
Pexp, U   Eurocode

, Nb,Rd 
  Nb,Rd / 

Pexp, U 
         1 SIII/S1/P/F-F 31.74   38.33   1.21 

2 SIII/S2/P/F-F 27.19   38.60   1.42 
3 SIII/S3/P/F-F 30.06   38.26   1.27 
4 SIII/S4/P/F-F 27.87   38.69   1.39 
5 SIII/S5/P/F-F 21.10   38.04   1.80 
 Mean, X�   1.42 
 Standard Deviation, S   0.23 
 Coefficient of Variation, COV   0.16 

Design code approach: Eurocode 3 - ENV 1993-1-3:2009 was used to obtain 
the nominal buckling strength of cold-formed lipped channel sections with 
perforations. Load vs. specimen graphs obtained from the finite element analysis, 
the experimental investigation and the theoretical investigation, and also full 
details of results including comparisons of the buckling strength between 
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numerical and experimental investigations are presented in Table 11.3. Further, 
design code results compared with experimental results are given in Table 11.4. 

Table 11.5. Comparisons of numerical results and design code predictions with 
experimental results 

Specimen 

Ultimate Load Ratio 
Numerical Design Code Predictions 

PFEA,U/ 
Pexp,U 

Nb,Rd / 
Pexp, U 

1 SIII/S1/P/F-F 0.99 1.21 
2 SIII/S2/P/F-F 1.07 1.42 
3 SIII/S3/P/F-F 1.04 1.27 
4 SIII/S4/P/F-F 0.97 1.39 
5 SIII/S5/P/F-F 1.07 1.80 

Mean, X� 1.03 1.42 
Standard Deviation, S 0.04 0.23 

Coefficient of Variation, 
COV 0.04 0.16 

Fig. 11.12. Comparison of numerical, experimental, and theoretical 
ultimate buckling strength results  

Comparisons of numerical results and design code predictions with 
experimental results are shown in Table 11.5 and Comparisons of experimental, 
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numerical, and theoretical ultimate buckling strength results are given in Figure 
11.12 respectively. 

11.6. Proposals for the Eurocode specification 

The Eurocode specification provides equations to calculate the ultimate 
buckling strength of cold-formed lipped channel sections with perforations. 
These design rules show highly unreliable results for the sections with larger 
perforations and hence, design modifications are proposed as listed below. The 
alternative design rule proposed in this section is valid only for channel sections 
with perforations located as shown in Figure 11.13. 

W1
h1

perforation(dh) 

l1
perforation

dh/2

L

L/2

 
Fig. 11.13. Illustration showing perforation parameters   

The effective width is given tin Eq. (11.2). 

− Calculate effective width, b 

 b = ρ * (w - dh - W1) (11.2) 

where ρ is the local reduction factor, w is the flat width of the section, dh is the 
width of the perforation, and W1 is the perforation position on web measured 
from the centre (transverse direction). 

− Calculating reduction factor, ρ 

Reduction factor, ρ can be computed with the modified λ�p as indicated in Eq. 
(11.3) and (11.4).  

  λ�p = 
b�/t

28.4ε�kσ
  (11.3) 
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where b� = w - 2d
h
 + �2W1 + 

h
d

h

� (11.4) 

where w is the flat width of the section, dh is the width of the perforation, W1 is 
the perforation position on web measured from the centre (transverse direction), 
and h is the overall web depth.  

The comparisons of current and proposed Eurocode ultimate buckling 
strength predictions with experimental results for a sample set are shown in 
Figure 11.14.  

Fig. 11.14. Comparisons of current and proposed Eurocode ultimate 
buckling strength predictions with experimental results 

11.7. Conclusion 

The literature and the comprehensive description of cold-formed steel 
members, including buckling behaviour have shown that the use of cold-formed 
steel structures has increased over the past sixty years. However, investigations 
have shown that the use of cold-formed steel as a structural building material has 
limitations due to the lack of knowledge of structural behaviour of these 
members. The complicated structural behaviour and the limitations regarding 
experimental investigations result in a lack of a full understanding of cold-
formed steel and applications. 

Both local and elastic buckling failure modes were noticed in the tests. It 
was also observed that the all column members are susceptible to local buckling 
at relatively low compressive stress, approximately 45% of the ultimate load. 
Further, the presence of perforations has a great impact on the buckling load and 
deformed shape. The presence of perforations leads to complex structural failure, 
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and hence, complicates the expected distortional buckling mode. Unlike local 
buckling, distortional buckling is influenced by end boundary conditions. The 
failure load of the column member, the interaction of the local and distortional 
buckling modes was observed in many cases. 

The accuracy of finite element analysis is influenced greatly by the selection 
of finite element type and mesh density, particularly controlling the element 
mesh. Therefore, selecting the element mesh may be a more complicated process 
and thereby depends strongly on the experience and the knowledge of the user. 
However, this was overcome through identifying the high and low stress areas, 
and modelled with fine and coarse mesh respectively. 

Eurocode recommendations provide many more possibilities for analysis of 
buckling strength of thin-walled sections, but these codes used today are limited 
for the use of structural members with perforations. Eurocode recommendations 
present design provisions to accommodate the influence of perforations on the 
buckling strength of lipped channel sections which are, in general, conservative 
and provide a more general description regarding the perforation parameters such 
as shape, position, orientation, etc. 

The finite element analysis results into the load capacity of column members 
of lipped channel cross-section, subjected to compression loading, were 
compared against the experimental investigations results, and the comparison 
was used to validate the FE models. Tensile tests of the lipped channel column 
materials were carried out to determine the material properties which were 
incorporated into the FE model. It was shown that experimental and numerical 
investigations can be used to obtain a better understanding of failure mechanisms 
of buckling with a reasonable degree of confidence. Further, the study indicated 
that the ultimate load of the structure under compression load varied greatly with 
the perforation shape, size, orientation, and etc. 

As noticed in in the investigation the presence of slotted holes on the web 
reduces the axial stiffness and also it can be clearly seen that a higher reduction 
in axial stiffness can be observed when the perforations are located near to the 
corners. The buckling investigation conducted has proven that the cold worked 
flat portions of the cross-section have lower yield strength compared to the 
corners.  

Modifications were proposed to the current buckling design predictions 
studied in this study. Additionally, alternative design rules were suggested based 
on the results of the experimental investigation. The recommended design rules 
were indicated to closely predict the ultimate buckling strength of the lipped 
channel section. Furthermore, buckling strength values remained well within  
± 5% limits of the experimental buckling strength values for the fixed-fixed end 
conditions.  
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The buckling investigation conducted has proven that the cold worked flat 
portions of the cross-section do have lower yield strength compared to the more 
highly worked corners and this affected the buckling behaviour. The FEA model, 
in conjunction with the modifications proposed to the buckling design 
recommendations studied in this research work and based on the parametric 
study findings, enables engineering judgements to be made about cold formed 
structural members before manufacturing the final product. 

11.8. Future work 

There are still some areas of the buckling behaviour of cold-formed lipped 
channel sections which need further extensive investigation and development in 
terms of the factors such as cross-section, column length, thickness, corner 
radius, forming method, and perforation parameters: size, shape, position, and 
orientation. For better classification of buckling results, a comprehensive and 
detailed study to determine under what conditions perforations influence the 
buckling modes is needed.  
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12. 

Tolerance modelling of stability of thin composite 
plates with dense system of beams 

12.1. Introduction 

The subject of the contribution are thin functionally graded skeletal plates 
with dense system of beams. The considered skeletal plate is made of two 
families of thin homogeneous beams with axes intersecting under the right angle. 
The regions situated between the beams fills a homogeneous matrix material 
(Fig. 12.1). It is assumed that the width of the beams can vary slowly in the 
midplane of the plate. Thus, we deal with composite plate that has space-varying 
microstructure. Since, the apparent properties of the plate are graded in space, we 
deal with a special case of a functionally graded material. The generalized period 

21lll =  of heterogeneity is assumed to be sufficiently small comparing to the 
measure of the midplane of the plate. The fundamental feature of proposed model 
is that the microstructure length parameter l  is similar compared to thickness h  
of the plate. From a formal point of view, the plate with microstructure of this 
kind can be described in the framework of the well-known theories for thin 
elastic plates. However, due to the inhomogeneous microstructure of the plate, 
this direct description of the structure leads to plate equations with discontinuous 
and highly oscillating coefficients. These equations are not a good tool to be 
applied to numerical solutions of specific engineering problems. 

The aim of the presented analysis is to derive and apply the macroscopic 
mathematical model describing stability of the composite plate under consideration. 
The macroscopic model for the plate dynamic analysis of this kind we can find in 
[12.5]. The formulation of the macroscopic mathematical model for the analysis of 
stability of these plates will to be based on the tolerance averaging approach. The 
general modelling procedures of this technique are given by Woźniak et al. in books 
[12.8], [12.9]. The applications of this technique for the modelling of stability of 
various periodic composites are given in a series of papers. Baron [12.1] analyzed 
dynamic stability of an uniperiodic medium thickness plate. In the paper of Michalak 
[12.3] the stability of elastic slightly wrinkled plates is analyzed. The stability of thin 
periodically stiffened cylindrical shells was analyzed by Tomczyk [12.6]. In the 
paper of Wierzbicki et al. [12.7], stability of micro-periodic materials under finite 
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deformations is discussed. The approach, based on the tolerance averaging technique, 
formulating macroscopic model of stability of functionally graded plates was 
presented by Jędrysiak and Michalak [12.2]. In the paper of Perliński et al. [12.4] 
stability of functionally graded annular plate interacting with elastic micro-
heterogeneous subsoil is presented. 

 
Fig. 12.1. Rectangular plate with varying width of the beams 

In the above mentioned papers the thickness h  of the considered plates is 
supposed to be much smaller comparing to the microstructure length parameter  
l . In the presented contribution we deal with the plates which are reinforced by 
two dimensional system of beams, where the microstructure length parameter 

21 lll =  ( 21, ll - dimensions of cell in Fig. 12.1) is similar compared to the plate 
thickness h . 

Throughout the contribution, indices lki ,, … run over 3,2,1 , indices 
,...,, γβα run over 2,1  and ,...,, CBA  run over 2,1 . The summation convention 

holds all aforementioned sub-and superscripts. 

12.2. Direct description 

The subject of presented considerations are rectangular plates shown in  
Fig. 12.1. Let us introduce the orthogonal Cartesian coordinate system 321 xxOx . 
Setting ),( 21 xx≡x  and 3xz =  we assume that the undeformed plate occupies the 
region },2/2/:),{( Π∈≤≤−≡Ω xx hzhz , where Π  is the plate midplane and h 
is the plate thickness. The starting point of this contribution is the direct 
description of the composite plate in the framework of the well-known second 
order non-linear theory of thin plates. The displacement field of the arbitrary 
point of the plate we write in form: 
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)()(),(),(),( 3
0

33 xxxxx wzwzwwzw ααα ∂⋅−== (12.1) 

Denoting by )( αxp  the external forces, setting kk x∂∂=∂ /  we also introduce 
gradient operators ),( 21 ∂∂≡∇ , in the framework of the linear approximated 
theory for thin plates, we obtain the following system of equations: 

(i) strain-displacement relations 

3332
10

)()(),(

wwww

zze

αβαββααβαβ

αβαβαβ

κe

κe

−∇=∂∂+∇=

⋅+= xxx
(12.2) 

(ii) strain energy averaged over the plate thickness 

γδαβ
αβγδ

γδαβ
αβγδ eeκκ DBE 2

1
2
1)( +=x (12.3) 

where αβγηαβγη

ν
HhED

)1( 2−
=  is the tensile stiffness and αβγηαβγη

ν
HhEB

)1(12 2

3

−
=

with )((5.0 βγαηβηαγβηαγβγαηαβγη ν ∈∈+∈∈++= ggggH  is the bending stiffness. 

(iii) work of external forces 

3
30 wpwpF += α

α (12.4) 

In order to derive governing equations of considered plate we shall define 
the stationary action functional: 

( )( ) ∫
Π

∇∇=⋅ xwwww dL ),,(A 2 (12.5) 

where Lagrangian EFL −= . 

From stationary action principle ( 0A =δ ) we obtain 
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where generalized forces 
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==

==

∫
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−

2/

2/

2/

2/ (12.7) 

This direct description leads to plate equations with discontinuous and 
highly oscillating coefficients, which are too complicated to be used in the 
engineering analysis. The above equations will be used as a starting point 
of the modelling procedure. 
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12.3. Modelling concept 

Let the midplane of the considered plate (Fig. 12.1) occupy the region 
],0[],0[ 21 LL ×≡Π . We assume in considered composite plate that the number of 

beams in 1x  and 2x  direction is n  and m , respectively ( )1/1,1/1 <<<< mn . 
Hence nLl /11 =  and mLl /22 =  are dimensions of the cell 

)2/,2/()2/,2/( 2211 llll −×−≡∆ , cf. Fig. 12.2. For the arbitrary cell xx +∆≡∆ )(  
with centre situated at point ),( 21 xx=x  we introduce the orthogonal local 
coordinate system 21 yOy  which is local with its origin at ∆Π∈x , where

Π⊂−×−≡Π∆ )2/,2/()2/,2/( 222111 lLllLl . The beams width is functional 
2,1),( == ααα xaa  but constant for every fixed ∆Π∈x . 

 
Fig. 12.2. A unit cell ∆  geometry 

In order to derive averaged equations for the plate under consideration we 
apply tolerance averaging approach [12.8, 12.9]. We mention here some basic 
concepts of this technique, as a tolerance periodic function, a slowly varying 
function, a highly oscillating function and an averaging operator. 

The first concept of the modelling technique is the averaging operation: 

 Π∈
∆

=>< ∫
∆

xyxyx
x

,),(1)(
)(

dff  (12.8) 

We shall refer (12.8) to as averaging of arbitrary integrable function )(⋅f  for 
every Π∈x . 
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Periodic approximation. Let rH  be the Sobolev space for fixed 0≥r . Function 
)(),(~ 0)( Π∈⋅ Hf k x , Π∈x , rk ,...,2,1=  will be referred to as the periodic 

approximation of )(⋅∂ fk  in )(x∆  (where k∂ - k-th gradient in Π ). For 0=k  we 
define ff ≡∂0 , ff ~~ )0( ≡ .

Tolerance periodic function. Function )(Π∈ rHf  will be called the tolerance 
periodic function (with respect to cell )(x∆  and tolerance parameter ε), 

),( ∆Π∈ rTPf e , if for ,,...,1,0 rk =  the following conditions hold: 

( )
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(12.9) 

In the above definition we introduced the so called cluster of cells: 

∆
∆∈

Π∈∆=Π xz
xz

,)(:
)(
∩x (12.10) 

Slowly varying function. Function )(Π∈ rHF  will be called the slowly varying 
function (with respect to the cell )(x∆  and tolerance parameter ε), and denoted by 

),( ∆Π∈ rSVeF , if for ,,...,1,0 rk =  the following conditions hold: 

),( ∆Π∈ rTPeF  and )](|),(~[)( )(
)( xxx x FF kk ∂=⋅Π∈∀ ∆ (12.11) 

It can be observed that periodic approximation ),(~ )( ⋅xkF  of )(xFk∂  in )(x∆
is a constant function for every Π∈x . In other words, if ( )∆Π∈ ,rSVF e  then: 

( ) ( ) ( )
( )( )

( )rkFF
H

kk ,...,1,0  ,0 =≤∂−⋅∂Π∈∀
∆

e
x

xx (12.12) 

Highly oscillating function. Function )(Π∈ rHφ  is called the highly oscillating 
function (with respect to the cell )(x∆  and tolerance parameter ε), and denoted 
by ),( ∆Π∈ rHOeφ , if for ,,...,1,0 rk =  the following conditions hold: 

),( ∆Π∈ rTPeφ

)],(~|),(~[)( )(
)( ⋅∂=⋅Π∈∀ ∆ xxx φφ k

x
k  (12.13) 

)()(
|)(~)(|),(~)),()(,( )(

xx
xxx

∆∆
∂=⋅∧∆Π∈≡∆Π∈∀ φφ ee

kkrr FfTPFfSVF

Let by )(⋅ϕ  denote a highly oscillating function, ),(2 ∆Π∈ eϕ HO , defined on Π , 
continuous together with gradient ϕ1∂ . Its second derivative ϕ2∂  is a piecewise 
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continuous and bounded. Function )(⋅ϕ  is called the fluctuation shape function 
of the 2-nd kind, if it depends on l  as a parameter and satisfies conditions: 
1º  )( kk lO −∈∂ αϕ   for 2,,...,1 == ααk , 
2º  0)( ≈>< xϕ    for every ∆Π∈x . 
Set of all fluctuation shape functions of the 2-nd kind is denoted by ),(2 ∆ΠeFS . 

12.4. Averaged model equations 

The modelling technique will be based on the tolerance averaging 
approximation and on the restriction of the displacement field under 
consideration given by: 

 
zugVVgVzw

Vzw
AAAA ⋅+−∂++=

=

))(),()(()(),()(),(
)(),(

3

33

xxyxxxyxx
xx

ααααα

 (12.14) 

for Π∈x , )2/,2/( hhz −∈ and 2,1=A . 

The basic tolerance modelling assumption states that macro-displacements
)(3 ⋅V , )(⋅αV  and fluctuation amplitudes of displacements )(⋅AVα , )(⋅Auα  are slowly 

varying functions together with all partial derivatives. Functions 
),()( 2

3 ∆Π∈⋅ eSVV , ),()( 1 ∆Π∈⋅ eα SVV , ),()( 1 ∆Π∈⋅ eα SVu A , ),()( 1 ∆Π∈⋅ eα SVV A  
are the basic unknowns of the modelling problem. Functions )(⋅Ag  are known, 

dependent on the microstructure length parameter 21lll =  ( 21, ll  - dimensions 
of the cell ∆ ), fluctuation shape functions. 

Let ),(~ ⋅xAg , ),(~ ⋅∂ xAgα  stand for periodic approximation of )(⋅Ag , )(⋅∂ Agα  
in cell )(x∆ , respectively. Due to the fact that )(3 ⋅w , )(⋅αw  are tolerance periodic 
functions, it can be observed that the periodic approximation of  

),(3 x⋅gw , ),( x⋅gwα  and their derivatives in )(x∆ , Π∈x  have the form: 
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Setting gww 33 =  and gww αα =  into Lagrangian ),,( 2www ∇∇L  we can assume 

that ),(),,( 02 ∆Π∈∇∇ eHOL gggg www . Hence the periodic approximation of 



Selected Problems of Continuum Mechanics 

288 

)(⋅gL  in every )(x∆  we denote by ),,,,,(~
33 ggggg wwwwL βααα ∂∂yx . In order to 

derive the governing equations we shall define tolerance averaged Lagrangian
><−>>=<< ggg EFL : 
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Substituting the right-hand sides of equations (12.15) into (12.8), on the basis of 
tolerance averaging approximation, we arrive the strain energy averaged over the 
cell )(x∆ : 
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External load energy averaged over the cell )(x∆  

AA
g VgpVpVpF α

α
α

α ><+><+>>=<< 3
3 (12.18) 

From principle of stationary action of the averaged Lagrangian >< gL  we 
obtain equations responsible for: 

a) plane stress state

0

0

>=<−>∇<

>=<+∇
AA gpgn

pN
α

β
αβ

ααβ
β

(12.19) 

where normal forces 

332
1 VVDVgDVDnN AA

δγ
αβγδ

γδ
αβγδ

γδ
αβγδαβαβ ∇∇><+>∇<+∇>>=<=< (12.20) 

b) bending state

( ) ( )
0~~

0~~

3

3
33

=−∇

=−∇∇−−∇∇
BBAA

AA

uBVB

pVNuBVB

γ
γα

γδ
γδα

β
αβ

αγ
αβγ

γδ
αβγδ

αβ
(12.21) 

where we have denoted: 
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 >∇∇=<>∇=<>=< BABAAA ggBBgBBBB δβ
αβγδγα

β
αβγδγδααβγδαβγδ ~,~,~   

  (12.22) 

From (12.21) we can obtain direct representation of oscillation amplitudes Buγ . 

Let ABKαβ  stands for linear transformation operator such that BCBAAC BK δδτγ
γα

ατ =
~

. 
Thus 

 3
~ VBKu ABAB

γδ
γδα

µαµ ∇=  (12.23) 

Denoting 

 γδττµαβµαβγδαβγδ AABB
eff BKBBB ~~~

−=  (12.24) 

stability equation takes a form 

 0)()( 33 =∇∇−∇∇ VNVBeff β
αβ

αγδ
αβγδ

αβ  (12.25) 

The above equation has an identical form as stability equation for thin plate with 
functional coefficients. Coefficients in the above equation are functional but 
smooth in contrast to equation in direct description. 

 
Fig. 12.3. Simply supported plate under pressure 

12.5. Applications 

Let us consider a rectangular plate simply supported on all edges and 
suppressed in one direction only, cf. Fig. 12.3. The stability equation (12.25) 
transforms then into: 

 
( ) ( )
( ) 0

4

311
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322
2222

311
1122

22

312
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12322
1122

311
1111

11

=∂−∂+∂∂+

∂∂+∂+∂∂

VNVBVB

VBVBVB

effeff

effeffeff
 (12.26) 

where PN −=11 . The above equation in all subsequent examples will be solved 
with Galerkin method using the following assumed form of solution: 
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( ) ( ) ( )2
1 1

13 sinsin xxVV n
m n

mmn βα ⋅⋅= ∑∑
∞

=

∞

=
x (12.27) 

where 1/ Lmm πα = , 2/ Lnn πβ = . 

Since coefficients in (12.26) explicitly depend on assumed fluctuation shape 
functions, we must first define them, what is done next. 

12.5.1. Fluctuation shape function 

During tolerance modelling few assumptions had to be state. One of them is 
the form of given fluctuation shape functions. They should satisfy conditions 
mentioned in former sections and they are in number of two. Both of them are 
assumed as a product of linear and quadratic function 

),(),(),( )(
2

)(
1 xyxyxy AAAg ϕϕ ⋅= (12.28) 

where 2,1=A . Graphs of these functions are shown below (Fig.12.4a,12.4b). 

Fig. 12.4a. Fluctuation shape function 1g  

Fluctuation shape functions depend on microstructure parameter l as well as 
on the distribution of heterogeneity: 

( )( )( ))()()()()()(1)( 21122122112 xxxxxxx aaalalalal
l

v −+−−= (12.29) 

Such properties and characteristics assure continuity of displacement field overall 
and stress field continuity along the beams. 
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Fig. 12.4b. Fluctuation shape function 2g  

The exact formulas of these functions: 
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12.5.2. Validation of proposed model 

In order to find out the correctness of the proposed mathematical model and 
its applicability, some benchmark analysis should be first made. Suppose the 
beams (Fig. 12.2)  are made of steel, i.e. for Young’s modulus E′′ = 210 GPa  and 
Poisson’s ratio 3.0=′′ν , meanwhile the matrix is made of concrete for which has 

GPaE 20=′  and 3.0=ν′ . Consider a biperiodic square plate with mLL 421 ==  
and 21 ll =  of thickness mh 1.0= , which consists of beams (20 in each direction) 
of the same thickness: 21 aa = . Due to such a microstructure, all averaged 
coefficients in stability equation are constant and (12.26) reduces to: 

( ) 022 31132222
2222

31122
12121122

31111
1111 =∂+∂+∂++∂ VPVBVBBVB effeffeffeff  (12.34) 

Now, substituting (12.27) we obtain: 
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where 

( )
1111

12121122 22

eff

effeff

B
BB +

=η (12.36) 

Hence the critical force for the m-th and n-th buckling mode: 

2

4224

2
1

11112

m
nnmm

L
B

P eff
cr

+⋅+
⋅=

ηπ
(12.37) 

If m = n = 1 then we deal with the first mode of buckling. 

Let us introduce a parameter 11 / la=β , ]1,0[∈β  as a volume fraction of 
beams material but in this example only. Case of 0=β  stands for an uniform 
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plate made of matrix material (concrete) for which mkNP ccr /10519.4 3
_ ⋅= , and 

case of 1=β  stands for uniform plate made of beams material (steel) for which 
mkNP scr /10745.4 4

_ ⋅= . These values for critical forces are obtained from the 
exact solution. 

 
Fig. 12.5. Critical forces in square biperiodic plate as a function of parameter β 

As we can see in Fig. 12.5, the graph is situated precisely between two 
values for uniform plate. Therefore, there exists a smooth passage from 
biperiodic to uniform plate which proofs the correctness of the proposed model. 

12.5.3. Influence of geometrical and material properties  
on stability of plates 

This section is devoted to some model applications presented in few 
numerical examples. Suppose the material properties of plate components are 
invariant in all following examples, i.e. we deal with concrete matrix and steel 
beams. Square plates ( mLL 421 == ) are only investigated. 

Example 1. Suppose the width of the “vertical” beams 4/11 la = , and width 
of the “horizontal” beams 
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for [ ]2/,2/ 2222 lLlx −∈ , where ( ) 4/2/ 222 lla =  and ( ) ( )2//2/ 22222 laLa=≡ ββ  is
a tested in this example parameter. Such width function implies uniperiodic plate 
with functionally graded effective properties in one of directions, cf. Fig. 12.6. 

Fig. 12.6. Distribution of effective material properties in uniperiodic plate 

Case of 1=β  stands here for biperiodic plate. If 1<β  then we deal with a 
situation where “horizontal” beams are getting wider moving away from the 
centre of the plate. Case of 41 ≤< β  is the opposite one. 

Fig. 12.7. Diagram of critical force in uniperiodic plate 
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The critical force as a function of parameter β  is a strictly monotone 
(strictly increasing) function (Fig. 12.7). It means that concentration of beams 
material in the centre of the plate essentially enlarges the value of critical force. 

Example 2. Suppose now that the width of vertical beams is not constant 
but expressed by similar form to (12.38): 

( )



















−
−

⋅⋅−+⋅





=

11

11
1

1
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2
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sin11
2

)(
lL
lxlaa πβx (12.39) 

for [ ]2/,2/ 1111 lLlx −∈ , where ( ) 4/2/ 111 lla = and ( ) ( )2//2/ 11111 laLa=β . The 
width of the “horizontal” beams is as in Example 1. Moreover, the same 
parameter β  is investigated. Physical interpretation of 1β  is quite similar to β . 

Fig. 12.8. Diagram of critical force in functionally graded plate 

As we can see in Fig. 12.8, two graphs of critical force dependence for two 
different values of 1β  are displayed. Critical force is also strictly increasing with 
respect to parameter 1β . Thus, it suffices to have more beams material in the 
centre of the plate to obtain a greater value of critical force. 

Example 3. The final example is most interesting in our opinion. Suppose 
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for every [ ]2/,2/ αααα lLlx −∈ , 2,1=α , where ]1,0[∈β . In Example 1 for 
12 =β  we have dealt with biperiodic structure from which we can get the value 

of critical force mkNP percr /10552.1 4
_ ⋅=  for some special case. In this particular 

case the volume fraction of the beam material was 0.25 (because of 25.0=β  
from that example). 

Fig. 12.9. Diagram of critical force in functionally graded plate 
in comparison to biperiodic plate 

It occurs, Fig. 12.9, that the same value of critical force, but for the plate 
with variable beams width in both of directions, we obtained for 293.0=β . The 
beams material usage is 0.186 and its smaller then in biperiodic plate where it 
was 0.25. It means also that having variable beams width in our composite, by 
the same material usage in comparison to biperiodic structure, we get the greater 
values of critical force. 

12.6. Summary 

The problem of stability in two-component thin plates is described by the 
PDE with highly oscillating and discontinuous coefficients. Therefore, the 
tolerance technique was applied in order to obtain averaged PDEs with functional 
but smooth coefficients. Hence, the solution of specific boundary problems of 
stability of considered plates can be obtained using typical numerical method. 
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The validation process of the averaged model equations passed satisfactory. 
There is observed a smooth passage from non-uniform to uniform structure from 
the point of view of critical force value. It is obvious that reinforcement of the 
plate enlarge the value of this critical value but what is most important, the layout 
of these reinforcements (beams) plays crucial work in this analysis. It occurs that 
with non-uniform structure we can achieve up to 65% greater values of critical 
force the with biperiodic one. That information could be a crucial one in optimal 
control problems. 
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13. 

On constitutive relations in the resultant 
non-linear theory of shells 

13.1. Introduction 

The resultant non-linear theory of elastic shells was proposed by Reissner 
[13.1], developed in a number of papers and summarised in monographs written 
by Libai and Simmonds [13.2] and Chróścielewski et al. [13.3]. In this 
formulation, the two dimensional (2D) non-linear shell equilibrium conditions 
are derived by the exact through-the-thickness integration of three dimensional 
(3D) equilibrium conditions of non-linear continuum mechanics. Then, the 2D 
virtual work identity allows one to construct uniquely the 2D shell kinematics 
consisting of the translation vector u and rotation tensor Q fields (six independent 
scalar variables) defined on the shell base surface. Because of this property the 
resultant shell model is also called the six-field or 6-parameter (6p) shell model. 
In this shell model the drilling rotation (about normal to the shell base surface) in 
this shell model remains as an independent kinematic variable, as well as two 
drilling couples and two work-conjugate drilling bending measures appear in the 
description of 2D stress and strain state. These features contradict all classical 
shell formulations of the Kirchhoff-Love and Timoshenko-Reissner type 
following from other 3D-to-2D reduction techniques. 

The 2D stress resultants and couples ,α αn m  as well as the resultant surface 
loads ,f c  are exact resultant implications of corresponding 3D stress and load 
distributions in the shell space. The kinematic fields ,u Q  defined only on the 
shell reference surface M  describe an energetic through-the-thickness averaged 
gross displacement of the shell cross section. Also the 2D surface strain measures 

,α αε κ  are defined only on M  as unique surface fields work-conjugate to the 
stress resultants and stress couples ,α αn m , but without any relation to 3D strains 
of continuum mechanics. Hence, the resultant non-linear theory of shells is 
briefly called dynamically exact and kinematically unique. The only 
approximations enter into this shell model through the constitutive equations 
relating 2D stress components with 2D strain components. But these are material 
laws based finally on experiments which are approximate anyway. As noted by 
Reissner [13.1] himself, cit.: “this problem may be considered in at least two 
distinct ways. One of these deals with the problem of devising suitable systems 
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of physical experiments for elements of the two-dimensional continuum in order 
that a system of two-dimensional constitutive equations be established directly. 
The other deals with the problem of devising suitable mathematical methods to 
deduce constitutive equations for the shell as a two-dimensional continuum, as 
exact or asymptotic, or otherwise rationally approximate consequences of a given 
system of constitutive equations for the shell considered as a three-dimensional 
continuum.” 

In this chapter we discuss some rational procedures allowing one to deduce 
the 2D constitutive equations of the resultant shell theory from known systems of 
constitutive equations of the corresponding 3D solids. Three different material 
behaviours are analysed: 

1 isotropic elastic shells undergoing small strains; 
2 layered shells with different play sequences; 
3 elasto-plastic FGM shells within small strains. 

For each particular material behaviours some 3D-to-2D dimensional 
reduction procedures are discussed and the corresponding 2D constitutive 
equations are proposed. 

13.2. Some exact shell relations 

Let us recall some exact resultant relations of the non-linear theory of shells, 
see for example Libai and Simmonds [13.2], Chróścielewski et al. [13.3], 
Eremeyev and Pietraszkiewicz [13.4], or Pietraszkiewicz and Konopińska [13.5]. 

A shell is a 3D solid body identified in a reference (undeformed) placement 
with a region B  of the physical space  , having the translation vector space E . 
The shell boundary B∂  consists of three separable parts: the upper M +  and 
lower M −  shell faces, and the lateral shell boundary surface *B∂ . The position 
vectors x  and ( )= χy x  of any material particle in the reference and deformed 
placements, respectively, can conveniently be represented by 

, ( ) ( , ) , ( ,0) .ξ ξ= + = + =x y 0x n y x x xζ ζ  (13.1) 

Here x  and y  are the position vectors of some shell base surface M  and 
( )N Mχ=  in the reference and deformed placements, respectively, ξ  is the 

distance from M  along the unit normal vector n  orienting M  such that 
[ , ] ,h h h h hξ − + − +∈ − = +  is the shell thickness, ζ  is a deviation vector of y  

from N , while χ  and χ  mean the 3D and 2D deformation functions, 
respectively. 
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Within the resultant non-linear theory of shells formulated in the referential 
description, the respective 2D internal contact stress resultant νn and stress 
couple νm  vectors defined at the edge R∂  of an arbitrary part of the deformed 
base surface ( ), ,R P P Mχ= ⊂  but measured per unit length of the undeformed 
edge P∂  having the outward unit normal vector ν , are defined by 

*

*

d , d , ,

d , d .

h

h
α α α

ν α

α α α
ν α

ξ ν ξ

ξ ν ξ

+

−

+ + + +

− − − −

+ +

− −

= µ = = µ ≡

= × µ = = × µ

∫ ∫ ∫ ∫

∫ ∫

Pn p

Pn p

n n n

m m mζ ζ
(13.2) 

Here 3
3

ϕ
ϕ= ⊗ + ⊗P p g p g  is the Piola stress tensor in the shell space, 

/ i
i θ= ∂ ∂g x , 1,2,3,i =  are the base vectors in B , * α

αν=n g , 1,2,α =  is the 
external normal to the reference shell orthogonal cross section *P∂ , α α ϕ

ϕ= δp p , 

α αν = ⋅aν , α
α θ= ∂ ∂a x /  are the base vectors of M , and bα α α

ϕ ϕ ϕδ ξµ = −  are 

geometric shifters in the undeformed shell space with bαϕ  the curvature tensor of 

M  and ( )det α
ϕµ = µ , see Naghdi [13.6] or Pietraszkiewicz [13.7]. 

The resultant 2D equilibrium equations satisfied for any part P M⊂  are 

| | , ,α α α
α α α+ = , + × + =0 0n f m y n c  (13.3) 

where ( )|α⋅  is the covariant derivative in the metric of M , while f  and c  are 
the external resultant surface force and couple vectors applied at N , but 
measured per unit area of M . 

In order the conditions (13.3) to be satisfied, the resultant fields αn  and αm  
require a unique 2D shell kinematics associated with the shell base surface M . 
Applying the virtual work identity Libai and Simmonds [13.2], Chróścielewski et 
al. [13.3], and Eremeyev and Pietraszkiewicz [13.4] proved that such 2D 
kinematics consists of the translation vector u  and the proper orthogonal 
(rotation) tensor Q , both describing the gross deformation (work-averaged 
through the shell thickness) of the shell cross section, such that 

, , ,α α= + =y x u t = Qa t Qn  (13.4) 

where ,αt t  are three directors attached to any point of ( )N Mχ= . In numerical 
FEM analyses [13.3] the undeformed base vectors ,αa n  are usually taken to 
coincide with an orthonormal basis 0 0,αt t  of the arc-length orthogonal lines of 
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principal curvatures of M . Then the rotated basis ,αt t  becomes the orthonormal 
one as well. 

The vectors αn , αm  and ,f c  can naturally be expressed in components 
relative to the rotated basis ,βt t  by 

, ,

, ,

N Q M M M M

f f c c

α αβ α α αβ α αλ β α
β β λβ

β β λ β
β β λβ

ε

ε

= + = × + = +

= = × =

n t t m t t t t t

f t + t c t t + ct t + ct
(13.5) 

where αβε  are components of the skew surface permutation tensor. The 2D 

components M α  are usually called the drilling couples. 

The shell stretch αε  and bending ακ  vectors associated with the 2D shell 
kinematics (13.4), which are work-conjugate to the respective stress resultant αn  
and stress couple αm  vectors, are defined by 

( )
, , ( ) ,

ax , ,T

E E

K K K K

β
α α α α α αβ α

β λ β
α α αβ α λβ α αε ⋅

= − + − = +

= = × + = +

1y t = u Q a t t

Q Q t t t t t

ε

κ
(13.6) 

where 1  is the metric tensor of 3D space and ax( )⋅  is the axial vector of skew 
tensor ( )⋅ . The 2D components Kα  are usually called the drilling bending 
measures. 

13.3. Isotropic elastic shells undergoing small strains 

Let 1 Sij T
i j

−= = ⊗ =S F P g g S , , 1,2,3i j = , be the 2nd Piola-Kirchhoff stress 

tensor, and Grad i
i= χ = ⊗F g g  be the 3D deformation gradient tensor in the 

shell space, where ig  is the spatial base vectors of convected coordinates in the 
deformed placement. Then Sij

i j= = ⊗P FS g g  and from Eq. (13.2) it follows 
that 

S d , S d .j j
j j

α α α αξ ξ
+ +

− −
= µ = × µ∫ ∫Fg Fgn m ζ  (13.7) 

In the resultant shell model ,α αn m  are the primary fields. Hence, for 
establishing 2D constitutive equations from their 3D form it is necessary to use 
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the 3D complementary energy density Wc . When strains are small everywhere in 
the shell space, Wc  is the quadratic function of components Sij , 

1W K S S ,
2

ij kl
c ijkl= (13.8) 

where Kijkl  are the elastic compliances which for an isotropic material are 

( )1K (1 ) g g +g g 2 g g ,
2ijkl ik jl il jk ij klE

ν ν = + −    (13.9) 

with E  the Young modulus and ν  the Poisson ratio of the linear elastic material. 

The resultants Eq. (13.7) are defined only through the stress components 
3S , Sαψ α  alone, because only these stresses act on the shell cross section. The 

stress components 33S  act only on the shell surfaces constξ =  parallel to the 
base surface M . They do not contribute to the effective part Weff

c  of the 3D 
complementary energy density associated with the resultants, which is defined by 

( ) ( ) ( ) ( )3 3
3 3

1W μS μ μS μ 4 μS μS ,
2

eff
c A Aα ϕψ β λ θσ µ α ϕ λ θ

αβλµ ϕ ψ θ σ α λ ϕ θ2
 = µ µ + µ µ µ

(13.10) 

where the following geometric relations have been used 

3 3 3 3K KA , A ,α β λ µ α λ
ϕψθσ αβλµ ϕ ψ θ σ ϕ θ α λ ϕ θ= µ µ µ µ = µ µ  (13.11) 

( ) 3 3
1 1(1 ) + 2 , .

2
A a a a a a a A a

E Eαβλµ αλ βµ αµ βλ αβ λµ α λ αλ
νν ν + = + − =  2

 (13.12) 

The effective part of 2D complementary energy density may be obtained by 
direct through-the-thickness integration of Eq. (13.10). This results in the infinite 
series of terms of decreasing order. Pietraszkiewicz and Konopińska [13.5] 
estimated orders of all terms of this infinite series applying the concrete 
qualitative error estimates for stresses and their derivatives obtained by John 
[13.8] and Koiter [13.9] as well as consistently refined 3D kinematically 
admissible displacement fields and statically admissible stress fields obtained by 
Rychter [13.10]. The outcome of this complex procedure allowed them to 
distinguish in the series two principal terms and four secondary terms leading to 
(see [13.5], Eq. (47)) 
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(13.13) 

where 5 / 6sα =  is the shear correcting factor. 

The Eq. (13.13) can be called the consistent second approximation to the 
complementary energy density of the geometrically non-linear isotropic elastic 
shells. The constitutive equations for ,  ,  E K Eαβ αβ α  can now be calculated from 
(13.13) leading to 
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For any particular choice of surface coordinates the Eqs. (13.14) can be 
inverted for ,N Mαβ αβ  provided that determinant of 8 8×  matrix coefficients in 
Eqs. (13.14) does not vanish. For the arc-length orthogonal lines of principal 
curvatures of M  such inversion was explicitly performed in [13.5]. This resulted 
in the following constitutive equations for the physical components of 2D shell 
stress and couple resultants 
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( )
3
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− −

 (13.18) 

where 1R  and 2R  are the  principal radii of curvatures of M . 

For the shear stress resultants by inverting Eq. (13.15) we obtain 

1 1 2 22(1+ ) 2(1+ )s s
Eh EhQ E , Q E .α α
ν ν

= =  (13.19) 

The constitutive equations for the drilling couples take the form 

1 1 2 2
4(1 ) , (1 ) , .

15d d dM D K M D Kα ν α ν α= − = − =  (13.20) 

It has been proved in [13.5] that within the error of small strain shell theory 
the drilling bendings Kα  are entirely expressible through , 1 /K Rαβ α and 

11 22( ),E E α+ . Additionally, the Mα  themselves have been estimated in [13.5] to 
be of negligible order in analyses of regular shells. But in solving non-linear 
problems of irregular shells with branching, intersections or junctions with beams 
for example, these small fields should be taken into account in order to preserve 
the structure of the resultant six-field non-linear shell theory. 

13.4. Layered elastic shells with different play sequences 

Composite shells, initially used in aeronautics, became popular recently in 
other fields of engineering and technology like aviation and marine industry, 
production of sport or home equipment and in civil engineering. Their safe and 
proper design is therefore a very important and responsible task, and the key 
current issue to consider is the failure analysis of laminates. 
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There are two main approaches allowing for load capacity estimation of 
laminates, namely First Ply Failure (FPF) and Last Ply Failure (LPF) methods, 
e.g. [13.11]. In the FPF concept the composite laminate loses its load resisting 
abilities at the moment of failure initiation (defined by some criteria), which can 
occur in an arbitrary point of the structure. In fact, the failure process is more 
complex. Although the initial failure occurs and material stiffness properties start 
to degrade, the structure is still able to carry some loads until its final destruction, 
which is the essence of the LPF approach. The choice whether to perform FPF or 
LPF calculations depends on the considered situation. For example, uncontrolled 
and progressive failure is not acceptable in design of civil engineering structures. 
On the other hand, new failure theories or practical design procedures can 
properly be formulated only on the basis of thorough experimental investigations 
and complex progressive failure simulations. Hence, introduction of new 
advanced theories, regarding load capacity estimation, provides the opportunity 
to improve properties of manufactured products that are commonly used in many 
fields of human activity. 

Regardless whether the FPF or LPF approach is employed, the crucial role 
plays the choice of appropriate failure hypothesis. There exists a range of failure 
criteria established for laminates, but the universal failure theory has not been 
formulated until now, see e.g. [13.12]. Some of the criteria are relatively simple 
like maximum stress or strain hypotheses, whereas Tsai-Wu, Hashin or Puck 
theories represent more sophisticated descriptions of failure phenomenon [13.12]. 
All of these theories are developed under the assumption of stress tensor 
symmetry. Results of some FPF analyses using this approach are presented e.g. 
in [13.13÷13.15], whereas LPF method with symmetrical stress measures is 
studied in [13.16÷13.20]. 

The discussed resultant 6p shell theory can be successfully utilised in the 
analysis of modern shell structures with arbitrary geometry, [13.21-13.22]. As a 
consequence of presence of the sixth parameter (drilling rotation), the 2D strain 
and stress measures are not symmetric within this shell model. Therefore,  
the straightforward implementation of already developed 3D failure criteria into 
the 6p shell theory is not possible. 

The proposed 6p shell model for thin laminated structures, utilizes the 
Equivalent Single Layer concept (see for instance [13.23]) as the 2D 
representation of 3D multilayered continuum. Consequently, the 2D constitutive 
law must give the relation between the 2D strain and stress measures 

 11 22 12 21 1 2 11 22 12 21 1 2{ | || | } { | || | }T T
m s b dε ε ε ε ε ε κ κ κ κ κ κ= =ε ε ε ε ε   (13.21) 

11 22 12 21 1 2 11 22 12 21 1 2{ | || | } { | || | }T T
m s b dN N N N Q Q M M M M M M= =s s s s s  (13.22) 
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The classical approach known for the nonpolar orthotropic linearly elastic 
continuum is used here for the 6p shell formulation. The 3D constitutive law is 
proposed in terms of five classical material engineering constants with one 
additional parameter describing the drilling stiffness [13.23]. Thus, the 
constitutive equation in an arbitrary point of the shell is formulated as follows 
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 − −                   − −    =                       
  

 (13.23) 

where aE , bE  are the Young moduli in material axes, abG is the in-plane shear 
modulus in material axes, abv , bav  are the Poisson ratios, and acG , bcG  are the 
transverse shear moduli. 

The final form of the constitutive equation for shells is obtained by taking 
into account the assumptions of first order shear deformation (FOSD) kinematics 
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(13.24) 

where mC  and sC  are the sub-matrices of the local material matrix (13.23), 
transformed into the global shell axes [13.23] related to plane stress and 
transverse shear, respectively. The coefficients sα  and tα  are, correspondingly, 
the shear correction factor and the drilling stiffness parameter. In the matrix 
notation the obtained constitutive law has the following form 
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The adopted assumptions of the FOSD kinematics allow one to 
approximately recalculate the unknown stress state in each layer from the 
obtained 2D stress measures at the reference surface. The recalculated stresses 
are transformed into the local material axes of the layer and are introduced into 
the failure criteria equations. Two of the existing 3D hypotheses have been 
adopted here in the framework of the described 6p shell theory, namely the Tsai-
Wu criterion and the Hashin criterion. 

Since in the applied 6p shell theory the stress tensor of the layer’s material is 
not symmetric, it is not possible to apply a standard failure initiation criterion. 
Hence, the following form of the modified Tsai-Wu criterion is proposed 

( )

2
1 2 1
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t c t c t c

X X Y Y X X
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(13.26) 

where σ1, σ2, τ12, τ21 (τ12≠τ21) indicate the stress tensor components in the material 
coordinate system, Xt, Yt, Xc, Yc, S are the absolute values of tensile strengths in 
the 1st and 2nd material direction, compressive strengths in the 1st and 2nd material 
direction and shear strength in the 1-2 plane, respectively. 

The difference between the proposed failure criterion and the classical one 
(see for instance [13.11]) concerns the in-plane shear contribution. Because the 
shear components are not symmetric in the proposed theory, the extreme value of 
shear stress affects the equation (13.26). Such an approach enables one a more 
precise description of the failure initiation. The effectiveness of this criterion was 
studied in [13.22]. 

Unlike to the Tsai-Wu criterion, the Hashin criterion predicts the 
mechanisms of damage. It consists of four expressions, corresponding to: fibre 
tension ( t

fF ), fibre compression ( c
fF ), matrix tension ( t

mF ) and matrix 

compression ( c
mF ). Four failure mode expressions incorporate normal and shear 

components of the stress tensor acting on particular failure planes. In accordance 
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with the original work of Hashin [13.24], the fibre failure takes place in the plane 
with normal parallel to the 1st material axis, whereas matrix failure occurs in the 
plane with normal parallel to the 2nd material axis. This imposes the correct 
interpretation of shear components ( ab baσ σ≠ ) associated with particular failure 
modes. For this reason abσ  is correlated with the fibre failure and baσ  with the 
matrix failure mechanism. Therefore, the modified Hashin criterion (analysed 
also in [13.21]), which we believe to be more suitable than the classical one, 
becomes 

2 2
t a ab
f

t l
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X S
σ σ   

= +   
   

 for > 0 ,aσ (13.27) 
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 =      
       

 for 0 ,bσ < (13.30) 

where St denotes the transverse shear strength. If one of the failure indices 
becomes equal to 1 the failure is detected. The expression for which the failure 
index is equal to 1 determines the failure mode. 

Some results where the modified Tsai-Wu and Hashin criteria were used 
are published in [13.21, 13.22]. Some numerical examples considered by the 
authors in these works are described below. 

Fig. 13.1. Geometry, loads, BCs, of the elastic cylindrical panel 
subjected to pressure load 
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The finite element analyses are carried out with the use of CAM and 
Abaqus codes. We describe here, estimation of FPF loads of the cylindrical panel 
subjected to pressure load and the flat compressed plate, in order to assess the 
correctness of the proposed criteria modifications. The obtained numerical results 
are compared with solutions available in the literature. 

The analysis of pressure loaded cylindrical panel is performed similarly as 
in [13.25]. Geometry, loads and boundary conditions (BCs) are depicted in 
Fig. 13.1. The Tsai-Wu criterion is used in order to predict FPF pressures. 

The following elastic and strength properties of the considered lamina are 
applied into calculations: Ea = 132.4GPa, Eb = 10.7GPa, Gab = Gac = 5.6GPa, 
Gbc = 3.4GPa, vab = 0.24, Xt = 1514MPa, Xc = 1696.7MPa, Yt = 43.8MPa, 
Yc = 43.8MPa, Sl = 87MPa. Three values of R/b ratio are considered: R/b=106, 
R/b = 100 and R/b = 10. The panel has [0/90]s layers sequence, with 0 matching 
the circumferential direction. The thickness of single lamina is equal to 
0.127mm. The full panel is studied with 8x8 finite element mesh in both programs, 
as this is the discretization used in [13.25]. In Abaqus the S8R element is utilised, 
whereas in CAM the CAMe9FI element (9-node, fully integrated shell element), 
in which the locking effect is negligible. FPF loads corresponding to the classical 
Tsai-Wu criterion ([13.25] and Abaqus) and the modified Tsai-Wu criterion 
(CAM) are shown in Table 13.1. The failure indices are checked in the location 
of surface integration points and in the middle of each lamina, similarly to [13.25]. 

Table 13.1. FPF pressures according to Tsai-Wu criteria 

R/b [13.25] Present Abaqus Present CAM Units 
10 16.93 16.93 16.55 kPa 

100 4.31 4.47 4.49 kPa 
106 4.08 (1030) 4.23 4.21 kPa 

Results presented in Table 13.1 are in a good agreement with the reference 
solution reported in [13.25]. The FPF pressures for R/b = 100 and 106 obtained 
with the CAM code are very close to the results following from Abaqus, because 
of negligible shear components asymmetry (the failure starts in the middle of the 
panel). On the other hand there is a slight difference between the present results 
if R/b = 10 (the failure initiates in the supporting area in the panel corner). It may 
be attributed to small asymmetry of the shear stress components and to the fact 
that the surface integration point of fully integrated element lies closer to the 
panel corner than the reduced integration one. 

In the next example, analysis of the flat compressed plate as studied 
in [13.26] is described. Geometry, loads and BCs of the plate are depicted in 
Fig. 13.2. Hashin criterion is used in order to predict FPF Pmag loads. 



Selected Problems of Continuum Mechanics 

310 

Fig. 13.2. Geometry, loads, BCs, elastic and strength properties 
of the flat compressed plate 

The following elastic and strength properties of a single lamina are used 
during  the  analysis: Ea = 37.24GPa,  Eb = 10.04GPa, Gab = Gac= 4.92GPa, Gbc = 2.83GPa, 
vab = 0.24, Xt = 788.1MPa, Xc = 243.5MPa, Yt = 43.45MPa, Yc =  109.9MPa, Sl = 31.32MPa, 
St = 9.7MPa. The plate has [±45]s sequence (0 is parallel to the "b" edge). The 
thickness of single lamina is equal to 0.25 mm. Geometrically non-linear 
calculations are performed. S4 and CAMe16FI (16-node, fully integrated shell 
element, in which locking effect is negligible) finite elements are used, 
respectively, in Abaqus 6.14-2 and in CAM. The structural mesh comprised of 
the same number of nodes (925) is used in both programs. Since the buckling 
effect is supposed to occur during the analysis, the negligibly small force 
imperfection is applied in order to enforce the panel deformation corresponding 
to the 1st buckling mode shape (the panel buckles into one half-wave along the 
shorter edge). The failure indices are checked in the integration points in 3 
locations of each layer (in the middle and external fibres). The results obtained 
from the both codes revealed that the failure initiates due to the matrix tension 
(Fmt), in the external ply (+45), close to the free edge, just after buckling. The 
FPF load (Pmag, as defined in Fig. 13.2) obtained in Abaqus (classical Hashin 
criterion) is approximately 181.4N, while in CAM (modified Hashin criterion) it 
is close to 181.8N. The failure initiation indices are also similar. However, they 
are produced by different states of stress, i.e. namely σb = 17.14MPa,  
σab = σba = -28.71MPa in Abaqus and σb = 15.45MPa, σba = -29.26MPa in CAM. 
Contours of matrix tension failure indices at the moment of failure initiation in 
the external +45 ply are shown in Fig. 13.3. 

The FPF experimental load [13.26] is close to the buckling load, which is 
195±12.3N, while the failure develops from the panel edges, according to 
[13.26]. The numerical FPF load calculated with the classical Hashin criterion is 
307.34N [13.26]. Hence, the values and failure locations produced by the author 
calculations are in a good correspondence with the experimental data and are 
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noticeably better than the numerical one given in [13.26], which seems to be 
overestimated. 

Fig. 13.3. Matrix tension failure indices obtained in Abaqus (left) 
and CAM (right), failure initiation in +45 ply 

13.5. Elasto-plastic FGM shells 

The composite shells, initially used in aeronautics, became in recent years 
more popular in other engineering fields. Shells with continuous change in 
microstructure, porosity and composition of constituent materials are known as 
shells made of the “functionally graded material” (FGM), which name was 
proposed by group of Japan investigators in 1984, [13.27]. Functionally graded 
materials are an innovative alternative for laminates suffering from intrinsic 
discontinuity of thermo-mechanical properties which may cause delamination. 
Combination of the high mechanical strength of metal constituent with the high 
heat-resistance of ceramic gives a desirable heat-shielding structural material 
with potential applications in various branches of engineering. The possibility to 
design material architecture at the microscopic level allows one for optimising 
some properties of FGM shells and improving its structural performance. 
Nowadays, the FGM shells are used in parts of machines, engines, high 
temperature thermal barrier coatings, spacecraft structural components, special 
nuclear components, etc. The FGM are also applied in biomechanical industry 
(e.g. in implants), in production of sensors, activators or optical fibres. The 
possible applications of FGM is nowadays less limited and its wide usage in the 
existing structures determines their innovative character. Therefore, there 
emerges the need to formulate suitable computational models of shells made of 
these materials. 

Geometrically nonlinear analysis of simply supported square FGM plate 
under transverse mechanical load was performed for instance in [13.28]. Typical 
shell benchmark problems of FGM regular shells were solved using higher-order 
elements in [13.29]. The analysis of FGM regular and irregular shells in 
6-parameter shell theory has been presented in [13.30]. Majority of recent papers 
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in this field were dedicated to linear and geometrically nonlinear problems, 
vibration or buckling analyses of FGM shells and plates. Only in a few papers the 
problem of physically nonlinear analysis of functionally graded shells was 
discussed. The method of determination of material parameters for elasto-plastic 
model of functionally graded materials was presented in e.g. [13.31]. The 2D 
materially nonlinear analysis of FGM structures was first performed in [13.32]. 
Recently the elasto-plastic buckling analysis of functionally graded cylindrical 
shells has been presented in [13.33]. In papers [13.31÷13.33] the modified rule of 
mixture (Tamura-Tomota-Ozawa (TTO) model, see [13.34]) was used in 
contrary to papers [13.26÷13.28]. Since 3D analytical methods are very complex 
[13.35], and 3D analytical solutions of the considered FGM shells are still not 
available [13.36], the Finite Element Method (FEM) was chosen as the tool to 
analyse the complex FGM shell structures. The formulation of accurate elasto-
plastic equations and determination of the plastic load capacity of FGM shells 
allow for applications of the functionally graded structures in many new fields. 

The formulation of elasto-plastic constitutive equations with account of the 
FGM in shell structures belongs to still open problems of formulating the 
constitutive relations for Cosserat continua [13.37÷13.39]. Starting from 
asymmetric state of stress at the shell reference surface, natural conformity with 
the resultant asymmetric forces and the resultant asymmetric moments is 
obtained. In addition, it is possible to directly introduce the characteristic length 
which plays the regularizing role when damage/plastic localizations appear in 
numerical simulations. 

Here an analysis of shells with power law variation of material constituents 
through the thickness is performed. In the formulas given below, subscripts m, c 
are describing metal and ceramic constituent, respectively. Vm and Vc denote the 
volume fraction of constituents, which vary along the thickness (coordinate ζ ) 
according to 

( )00.5 k
cV + ζ h= ,   1m cV V= − (13.31) 

Variation of material properties through the thickness is described with TTO 
model for elastic parameters 
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( ) ,m m c cv V v V vζ = + (13.33) 

and for plastic parameters [13.31] 
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The formula (13.34) for the yield stress Yσ  may be questionable, because in 
known solutions (e.g. [13.31]) the pure ceramic layer ( 1cV = ) is assumed as the 
elastic one. To solve this issue we propose to use the relation 

 ( ) ( )1
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Y Y Ym m c Y

c m c

q E Ek V V k
q E E V

σσ ζ σ
 +

= − + + + − 
 (13.36) 

where 1 0Yk≥ >  denotes an additional non-dimensional parameter. When 
1cV → , then ( )Yσ ζ →∞ , which fulfils the  mentioned assumption. 

Some preliminary analysis of the cylindrical shell under the shear load (Fig. 6) 
has been performed. Material parameters are: =cE 6300, =cν 0.3, =cl 0.005, 

=mE 21000, =mν 0.3, =ml 0.005, =TmE 0.0, =Ymσ 24, =q 2100, =Yk 0.01 and 
=Gn 1.0. Upper clamped edge is moved towards z direction and the total reaction 

in this direction is measured. Due to symmetry, only half of the cylinder is taken 
into account. 

Additional results, apart from the perfect solution, are solutions obtained 
with a small concentrated force as an assumed imperfection. The force is placed 
in the point (B) (Fig. 13.4) and is directed outward or inward, to impose different 
shell deformation scheme. 

 
Fig. 13.4. Cylindrical shell under shear load 
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As a result of elasto-plastic analysis, equilibrium paths for different values of 
k parameter are given (Fig. 13.5). Results exhibit an interesting behaviour of 
sheared shell, with bifurcation points at the load level 5500RF =  for perfectly 
elastic behaviour (k = 0) and similar, suspected points for elastoplastic material 
(k = 0.1, 1.0). Secondary paths are suspected to exist, at a basis of imperfect 
solutions which tends to the perfect solution. Depending on k, displacement of 
the point (B) obtained directly in perfect solution is inward or outward. Fig. 8 
preview shell deformations at same level of edge displacement, for different k 
value. 

Fig. 13.5. Sheared cylinder - equilibrium paths for different k: a) reaction on upper edge 
versus displacement on this edge, and b) reaction on upper edge  

versus radial displacement of point B 

Fig. 13.6. Shell deformation at w(D) = 4.0: a) k = 0, b) k = 0.1, c) k = 1.0 
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Since ceramics are constituents of many FGMs and non-ductile damage lies 
in their nature, it is crucial to implement such effects into the material law. When 
the homogeneous structure is analyzed, use of the damage-plastic model for 
brittle materials is reasonable (e.g. [13.39]). In further research the combination 
of elasto-plastic metal behaviour and elasto-plastic damage model for ceramics 
into one material law is planned. Description of non-elastic effects in non-
homogeneous shell layers, with partially ductile and brittle constituent is a 
demanding task. 

13.6. Conclusions 

We have discussed rational procedures allowing one to deduce the 2D 
constitutive relations of the resultant 6-parameter non-linear theory of shells from 
known constitutive relations of the corresponding 3D solids. Three different 
material behaviours have been analysed: 1) isotropic elastic shells undergoing 
small strains, 2) layered elastic shells with different play sequences, and 3) 
elasto-plastic shells composed of the functionally graded materials. For each 
material behaviour special 3D-to-2D reduction procedures have been worked out 
and the corresponding constitutive relations have been constructed. Accuracy of 
the constitutive relations for layered and FGM shells have been illustrated on 
examples of plates and shells analysed numerically by FEM. 

The proposed constitutive relations complete the BVP of the resultant 6p 
shell model. It is hoped that they will make it possible to solve many complex 
problems of shell structures with the help of this most accurate 2D resultant shell 
model. 
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14. 

Stability and vibration of imperfect structures 

14.1. Introduction 

Taking into account the stiffness and inertia forces, dynamic behaviour of 
structures can be investigated. Dynamic investigation usually starts with an 
example of free vibration. It means to evaluate the natural frequency. The 
simplest stability problem of structures is buckling of a column. This problem 
can be arranged preparing the equilibrium conditions on a deformed structure. In 
general, however, for the evaluation of the stability problems strains should be 
evaluated for a deformed differential element what means to apply geometric 
non-linear theory. 

Combination of dynamics and stability yields in a lot of problems: dynamic 
buckling, dynamic post buckling behaviour, parametric resonance, etc. 
Introduction example - vibration of a column loaded in compression is simple but 
its investigation still represents a lot of problems. 

The natural frequency can be measured by using rather simple equipment. 
The comparison of frequencies measured experimentally and evaluated 
numerically is the basis of non-destructive methods for investigation of structure 
properties. Generally, it can be said that in structural design stability effects have 
to be taken into consideration. These two ideas are the reason for our 
investigation of the combination of vibration and stability. 

Euler was probably the first scientist who had analyzed stability problems. 
The former solutions are supposed to be the linear stability. It means that we 
suppose an ideal structure. The differences between theory and reality inspired 
researchers to search for more accurate models. Especially the slender web as the 
main part of thin-walled structure has significant post-buckling reserves and it is 
necessary to accept a geometric non-linear theory for their description. The 
problem of the vibration of the non-linear system was formulated by Bolotin 
[14.2]. Burgreen [14.3] analysed the problem of the vibration of an imperfect 
column in early 50's. Some valuable results have been achieved by Volmir 
[14.8]. Combination of dynamics and stability is still a subject of research all 
over the world [14.1, 14.3, 14.4]. 
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14.2. Dynamic Post-Bucklin Behaviour of Slender Web 

14.2.1. Post-buckling behaviour of slender web 
                - displacement model 

As it was already mentioned, a slender web is the main constructional 
element of thin-walled structure. If we assume an “ideal” slender web and a 
distribution of the in-plane stresses are not the function of the out-of plane (the 
plate) displacements, the problem leads to eigenvalues and eigenvectors. From 
the obtained eigenvalues elastic critical load can be evaluated and eigenvector 
characterizes the mode of buckling. 

Post-buckling behaviour can be assumed as follows (Fig.14.1). 

Displacements of the point of the middle surface are 

[ ]Twvu ,,=q (14.1) 
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Fig. 14.1. Notation of quantities of slender web 

In the post-buckling behaviour of the slender web the plate displacements 
are much larger than in-plane (web) displacements (w >> u, v) and so the strains 
are 
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where “z“ is the coordinate of the thickness. The indexes “x, y” denote partial 
derivations. 

For the next investigation, slender web with initial deformations is assumed. 
Initial deformations are the plate types only. 

[ ]Tw0,0,0=0q (14.3) 
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Due to that the initial strains are 
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The “w” represents the global displacements and “w0“ is a part related to the 
initial displacement. 

The linear elastic material has been assumed 
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and E, ν are the Young's modulus and Poisson's ratio, [ ]T
wywxww τσσ ,,=σ are the 

residual stresses. 

The global potential energy of the slender web is 

 ei UUU +=  (14.6) 

where: ( ) dVU T

V
i σεε∫ −= 02

1  is the potential energy of the internal forces, 

 ( )∫
Γ

Γ−−= dU T
e pqq 0  - the potential energy of the external forces, 

where V is the volume of the slender web, Γ is the in-plane surface. 

The displacements are assumed as the product of the variational functions 
and the displacements parameters 

 αBq .=  (14.7) 

The minimum of the global potential energy gives the system of conditional 
equations 

 fααK =)(G  (14.8) 

where GK is the stiffness matrix as the function of the displacement parameters - 
non-linear stiffness matrix, f is the vector of the external load. 



Selected Problems of Continuum Mechanics 

322 

14.2.2. Post-buckling behaviour of slender web loaded 
                in compression - illustrative example 

For the simplification we suppose the square rectangular slender web loaded 
in compression simply supported all around. We do not need to suppose the 
external load as the constant along the edge. But the external force must be 

defined as ∫=
b

dytF
0

σ . Consequently, the average stress can be defined as 

tbF ⋅=σ . For the approximate solution, we take a displacement functions as 

11 yx SSw α= , 1100 yx SSw α= , 232221
21 xyx SCS
b
xu bbb ++





 −= , 

232221
21 yyx SSC
b
yv γγγ ++





 −= , where 

b
yiC

b
xiS yixi

ππ cos...,sin == . 

We have divided the variational parameters into: - plate αD = α , - in-plane 
[ ]TS 321321 ,,,,, γγγbbb=α . The in-plane displacements parameters are 

( )[ ]TS b
νπνπααπ

+−+−−= 1,1,,1,1,
16

2
0

2a

Introducing: ( ) 22

22

112 b
Et

E ν
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=  (Euler's elastic critical stress), 

the dimensionless load as 
crE σ
σ

σ
σσ

′
=

′
=

4
, ( Ecr σσ 4= ) and 

the dimensionless parameters of the displacements function 
tt

0
0, αααα == , 

the result can be arranged into the final equation 

( ) σ
α
ααα =−+− 02

0
2 134125.0  (14.9) 

The parameters α  and 0α  represent the amplitudes of the out of plate 
displacements of the slender web. Eq. (14.9) is arranged in Fig. 14.2. 
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Fig. 14.2. Post-buckling behaviour of slender web loaded in compression 

It is evident that the slender web could be loaded above the level of the 
elastic critical load. Due to that “the post-buckling behaviour” can be introduced. 
It has to be noted that the presented example represents an approximate 
solution. 

14.2.3. System of non-linear algebraic equations 

First, we present a note related to the solution of geometric non-linear 
problems. We use (for example) the Ritz variational method. The functions of the 
displacements are sums of the products of the basic functions and the variational 
coefficients. 

 α.Bq =  (14.10) 

These equations could be written in the mode as 

 1, ↑⇒αwu  (14.11) 

The sign „↑“ is used as an exponent. 

The elongations taking into account non-linear parts have the variational 
coefficients in quadrates and can be recorded as 

 2.
2
1 2

,, ↑⇒−+= αε xxxx wzwu  (14.12) 

Assuming the linear elastic material, the stresses are in quadrates as well. 
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( )⇒−= 0εεσ E 2↑α (14.13) 

The potential energy of the internal forces is a product of the elongations and 
the stresses, then, finally, the variational coefficients are of the fourth power 

== σε .
2
1 T

iU 4)2).(2( ↑=↑↑ ααα (14.14) 

The system of conditional equations may be arranged as a partial derivation 
according to the variational coefficients 

3... ↑==
∂
∂ α
α i

U
 (14.15) 

Finally, we obtain the system of cubic algebraic equations. 

A partial approval of our explanation can be seen in the example of the post 
bucking behaviour of the slender web. (Part 14.2.2, Eq.(14.9), where we have got 
the cubic algebraic equation.) 

Note. In the example of the buckling of the column, the cubic terms have 
been eliminated. This “special case” is the consequence of the constant normal 
force along the column. 

Let us continue with our former considerations. 

The system of linear algebraic equations can be arranged as a matrix (two 
dimensional area). The system of quadratic algebraic equations could be arranged 
as a three dimensional matrix. The cubic algebraic equations are a four 
dimensional matrix. We are not able to imagine the four dimensional matrix, but 
modern computers are able to compile it. 

One typical property of the finite element method is a large number of 
parameters (many thousands). To arrange 1000 cubic algebraic equations 
represents in computer memory 10004=1×1012 real numbers and this is beyond 
possibilities. 

The way how to solve these non-linear systems has been found. The idea is 
to use the Newton-Raphson iteration without compilation of the system of non-
linear (cubic) algebraic equations. It will be explained in the following parts. 

14.2.4. Incremental formulation 

As it has been already explained in the previous part, we are forced to 
arrange the iterative method. It can be prepared from the incremental formulation 
and so we must prepare all the regulars in increments. 
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Note. All the rules for one dimensional problem (beams, columns) are 
prepared. For the solution of the two dimensional problems (webs, plates) the 
steps are similar [14.5, 14.7]. 

As the first step, the increments and variations for the elongations must be 
prepared. 

If we have the linear function as 

 xu
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  (14.16) 

For the increments uu ∆+ , we get the increments of the function 
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We do the same steps for the non-linear function 
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Then we have for the increment of this function 
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According to these rules the increment of the strain can be arranged as follows 

 xxxxxxx wzwwwu ∆−∆+∆+∆=∆ .
2
1. 2

,,,,,ε  (14.20) 

Then the variation of the increment of the elongation is prepared 

 xxxxxxxx wzwwwwu ∆−∆∆+∆+∆=∆ δδδδεδ ... ,,,,,,  (14.21) 
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14.2.5. The Hamilton's principle 

In this step, we prepare the rules for the dynamic process. In order to neglect 
the inertial forces, we get the static problems. 

The Hamilton's principle means: in each time interval, the variation of the 
kinetic and potential energy and the variation of the work of the external forces is 
equal to zero. This rule is valid for the increments as well 

( ) 0
1

0

1

0

=∆+∆−∆ ∫∫
t

t

t

t

WdtdtUT δδ  (14.22) 

where dVT
V
∫ ∆∆=∆ qqT ρ

2
1 is the increment of the kinetic energy, 

∫ 





 ∆+∆∆=∆

V

dVU σεσε ..
2
1 - the increment of the potential energy of the 

internal forces, ( )∫ ∆+∆=∆
V

dVW ppqT .  - the increment of the work of the 

external forces, 10 , tt  - the time intervals, ρ - the mass density, V  - the volume (in 
our case it is the volume of the beam - column), pp ∆,  - the external load, the 
increment of the external load. The dots mean the time derivation. 

We assume the linear elastic material (Eq. (14.5)). For the increments, we 
have εσ ∆=∆ D . 

In the case of the beam type of structures, the volume integration can be 
changed into the integration over the cross section and the integration over the 
length: A, I - the cross section area, the moment of inertia. The longitudinal axis 
is situated into centre of the gravity of the cross section. 

We use the Ritz variational method 

DDwu αBαB SS .,. == , (14.23) 

We have the incremental model and the variational coefficients Sα  and Dα are 
timeless functions. 

For the increments of the displacements functions, the independent basic 
variational functions can be used. The increments of the variational coefficients 
are the function of the time 

( ) ( )twtu DD αBαB SS ∆=∆∆=∆ .,. 11 (14.24) 

Note. In some dynamic processes where there can be different boundary 
condition for the static behaviour and for the vibration, it is useful to have 
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different basic variational functions for the displacements and for the increment 
of the displacements. 

Finally, Eq. (14.22) leads to the system of conditional equation. This system 
could be arranged into the mode 

0fffKKK
0fffKKK

INTM

DDDINTDM

=∆−−+∆+∆+∆
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−−−−−−
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SEXTSEXTSDSDINCSSINCSS

EXTEXTSDSINCDDINCD
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 (14.25) 

where: ∫=−

a

dxA
0

D1
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D1DM BBK ρ  is the mass matrix of the “bendig” displacements, 

DGINCDLINCDINC −−− += KKK - the incremental stiffness matrix of the bending, 
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D1 BBK  - the non-linear part of the 

incremental stiffness matrix of the bending stiffness, 
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D1 BBK - the incremental “bending - axial” 

stiffness matrix, 
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,0,,, −+  - the vector of the bending internal forces, 
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dx
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D
T
D1DEXT pBf  - the increment of the vector of the bending external 

forces, 
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a

SSS dxA
0

1
T

1M BBK ρ  - the mass matrix of the “axial” displacements, 

∫=−

a

SXSXSINC dxEA
0

1
T

1 BBK  - the incremental stiffness matrix of the axial 

stiffness. 

It can be proved that T
DSINCSDINC −− = KK  - the incremental “axial - bending” 

stiffness matrix, 
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∫ 
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1XINT Bf  - the vector of the axial internal 

forces, 
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1EXT  - the vector of the axial external forces, 
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1EXT  - the increment of the vector of the axial external 

forces. 

It is evident that Eq.(14.25) represents the system of the differential 
equations of the second degree. 

The axial and the bending displacement can be joined as 
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The system of conditional equations (Eq. (14.25)) could be written as 

0fffKK M =∆−−+∆+∆ EXTEXTINTINC αα  (14.26) 
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14.2.6. Static behaviour 

The inertial forces can be neglected for the solution of the static behaviour of 
the structure 

0K M ≅∆α. (14.27) 

Note. In the case of the static behaviour, except the Hamilton's principle, 
(Eq. (14.22)) the principle of the minimum of the increment of the global 
potential energy can be applied. 
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The system of the differential equations (Eq. (14.25)) will be changed into 
the system of the linear algebraic equation related to the increments of the 
displacements 

0fffK INT =∆−−+∆ EXTEXTINC α  (14.28) 

If the problem is not established in the increments, but in the displacement 
parameters, we get the system of the cubic algebraic equations in the mode 

0ffINT =− EXT (14.29) 

As previously explained in the introduction Part 14.2.3, this system of cubic 
algebraic equations cannot be compiled. (Note. This system can be arranged in 
some simple examples only.) 

Eq. (14.28) is the basis for the incremental solution and for the Newton-
Raphson iteration as well. 

14.2.7. Incremental solution 

We assume the system in equilibrium represented by the parameters of the 
displacements “α ”. Then it is valid that 

0ff =− EXTINT (14.30) 

The increment of the external load is obtained. The increments of the 
parameters of the displacements can be obtained from Eq. (14.28) 

EXTINC fKα ∆=∆
−1

(14.31) 

The displacement parameters of the new level are 

DD
i

D ααα ∆+= (14.32) 

14.2.8. Newton-Raphson iteration 

We do not assume any system in equilibrium represented by the parameters 
of the displacements “ iα ”. Then we have the vector of residuum 

EXTINT
i ffr −= (14.33) 

For the correction of the roots (displacement parameters), we assume the 
constant level of the external load )0( =∆ EXTf . Then it can be evaluated from 
Eq. (14.28) 
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i
INC

i rKα .1−
−=∆ (14.34) 

The new approximation of the displacement parameters is 
iii ααα ∆+=+1 (14.35) 

Eqs. (14.33÷14.35) represent the Newton-Raphson iteration. 

We have a large amount of parameters. For the completing the iterative 
process, it is necessary to use suitable norms. One of them could be 

)0001.0(,001.0
.)(

.)(.)(
1

11

≤
−

= +

++

iTi

iTiiTi

n
αα

αααα
(14.36) 

Using the terminology of the Newton-Raphson iteration, we have 

JK =INC (14.37) 

The incremental stiffness matrix is the same as the Jacoby matrix of the 
Newton-Raphson iteration. The Jacoby matrix characterizes the tangent plane to 
the non-linear surface and is defined as 

*
ijGnel

i
ij −∂

∂
≡ KJ

α
(14.38) 

where *
GnelK  is the system of non-linear (in our case cubic) algebraic equations. 

14.2.9. Bifurcation point 

In the case of the non-linear problems, many results can be obtained 
represented by many paths (curves) illustrating relation of load versus the 
displacement parameters. Especially in the case of the stability problems, stable 
and unstable paths should be distinguished. 

The global potential energy represents the surface. The local minimum of 
this surface is the point of stable path of the non-linear solution. From the theory 
of the quadratic surfaces for the local minimum, the Jacoby matrix (in our case, 
the incremental stiffness matrix) must be positively defined and all the principle 
minors must be positive as well 

0,0
det

>>= kINC DD K  (14.39) 
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If any condition of Eq. (14.39) is not satisfied, the path is unstable. The point 
between the stable and unstable paths is called the bifurcation point. In the 
bifurcation point, we have 

0
det
== INCD K (14.40) 

14.2.10. Vibration of the structure 

The conditional equations have been arranged as a dynamic process. The 
static behaviour is taken as a partial problem. From the viewpoint of the 
dynamic, we consider only the problem of the vibration. We are able to evaluate 
the vibration of the structure in different load levels including the effects of 
initial imperfections. 

We assume the structure in equilibrium and zero increment of the load 

0f =∆ EXT (14.41) 

The system of conditional equations (Eq. 14.25) will be reduced 

0αKK M =∆+∆ INCα (14.42) 

Related to the increments of the displacements parameters, this system 
represents a homogeneous differential equation with constant coefficient. The 
solution has the mode 

)sin( tωαα ∆=∆ (14.43) 

where ω is the circular frequency. Putting this into Eq. (14.42), we get 

0αKαK M =∆+∆− )sin()sin(2 tt INC ωωω (14.44) 

The non-trivial solution leads to the problem of eigenvalues and 
eigenvectors 

0
det

2 =− MKK ωINC  (14.45) 

The eigenvalues represent the squares of circular frequencies, and 
eigenvectors are the parameters of the modes of the vibration. 

Note. Incremental stiffness matrix includes level of the load, deformation of 
structure and initial imperfections as well. 
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14.3. Stability and vibration 

14.3.1. Vibration of simply supported column loaded 
    in compression 

In Part 14.2.5, the derivation has been started by using the Hamilton's 
principle and generally prepared the conditional equation for the dynamic 
process. In Part 14.2.10., we have arranged the equations for the evaluation of the 
vibration. 

Simple and interesting example is the vibration of the imperfect column. For 
the application of the action of the force, we must suppose one support as the 
hinge and the other support as the roller (the sliding support (Fig 14.3.)). (Note: 
The column is displayed in horizontal position.) 

l 
z,w

x F

E,A,I,ρ

w0

w

Fig. 14.3. Simply supported column with initial displacement 

The axial inertial forces are neglected and the displacement functions are 

l
xw

l
xw παπα sin,sin 001 == ,   
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The parameters of axial displacements are 
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The equation of the static behaviour can be arranged in the form 
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π
==  is Euler's elastic critical force. 

The incremental stiffness matrix is Fl
l

lEI
22 2

2

4

4 ππ
−=INCK . 

l 

Putting this into Eq. (14.45), obtained result is 

( )F−= 1.2
0

2 ωω (14.46) 
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where 4

4
2
0 Al

EI
ρ
πω = is the square of the circular frequency of the simply 

supported column. 

We have obtained a trivial result of the linear relation of the square of the 
circular frequency and the internal force. It can be seen that during the free 
vibration the initial displacements do not affect the free vibration. 

14.3.2. Vibration of simply supported column loaded fixed 
                supports 

The result represented by Eq. (14.46) in the case of the level of the load as 
the elastic critical load gives the zero frequency. This is out of reality. For 
example, the miner foreman knocks on the columns. The low tone (the low 
frequency) means the small force inside the column and the column must be 
wedged. The high tone (the high frequency) means the high level of the load and 
the additional columns must be used. 

To improve the obtained result the following arrangement must be done 
(Fig. 14.4) 

l 
z,w

x 

N=-F E,A,I,ρ

w0

w

Fig. 14.4. Simply supported column with initial displacement - fixed support 

For the displacements and the initial displacements, we take 

)/sin(1 lxw πα= , )/sin(00 lxw πα= ,   [ ][ ] Tlxxu 32 ,.)/2sin(, ααπ=

But for the increment of the displacement, we assume 

)/sin(1 lxw πα∆=∆ ,   )/2sin(.3 lxu πα∆=∆

Now, different basic variational functions are used for the displacements and 
for the initial displacements. 

Finally, the incremental stiffness matrix is 
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2
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Then we get the expression for the square of the circular frequency 









+−= 2

2
12

0
2

2
11.

r
F αωω (14.47) 

where  
A
Ir =  is the radius of inertia.

Thus, the result close to reality has been obtained (Fig. 14.5). The displacement 
parameter „α1“ is the function of the initial displacement and the level of the 
load. It means that the initial displacement enters the problem. If the load limits 
the level of the elastic critical load, the displacement and the frequency limits the 
infinity.  
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Fig. 14.5. Stability and vibration of imperfect column 

This example represents an advantage of the separation of the basic 
variational functions for the displacements and for the increments of the 
displacements. 

14.3.3. Initial displacement as the second mode of buckling 

A particularly interesting problem is the influence of the mode of the initial 
displacement. In the previous part, we have supposed the initial displacement in 
the same mode as the first buckling mode (the mode of buckling related to the 
lowest elastic critical load). Due to that to obtain the solution by the analytical 
way was rather easy. The FEM has been used for the solution of more 
complicated examples. 
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Fig 14.6 presents the solution of the buckling and the vibration of the 
column when the initial displacement has the mode related to the second mode of 
buckling. 
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Fig. 14.6. Stability and vibration of imperfect column with  

the initial displacement as the second mode of buckling 

Note. A lot of examples have been solved using the FEM. The obtained 
results can be presented in the dimensionless mode.  

These results enable us to note some peculiarities. Even the initial 
displacement has the same mode as the second mode of the buckling (“the mode 
2”), the collapse mode of the column is “the mode 1”. The lowest elastic critical 
load is the maximum load. The mode of the vibration is “the mode 1” in all cases. 

 Side view 

Tested beam 

Groundplan 
 

Screw  Bearing 

Manometer 
Middle support 

Accelerometer 

 
Fig. 14.7. Scheme of the test set-up 
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14.3.4. Experimental verification 

The presented theoretical solutions are pointing to a substantial difference in 
the vibration of the beam at the moment when the critical load is reached. 
Considering sliding supports, the frequency should be zero. When supports are 
fixed, the frequency limits in infinity. This curiosity has been verified by an 
experiment. 

The equipment for experimental verification of stability and vibration of 
beams loaded by pressure is shown in Fig. 14.7 and 14.8. 

Fig. 14.8. General view of the test 

The force (the load) is produced through the screw with a slight gradient 
(gradient 1.5 mm, average 30 mm), it means the load with the controlled 
deformation. The hinges are created by ball bearings in the jaw. The force is 
measured by manometer. The deflections are measured by mechanical 
displacement transducers fixed to the supporting steel structure. During 
measuring the frequency, the mechanical transducers are taken out and the 
accelerometer is attached. 

Before the presentation of results, it is appropriate to make a note for 
specification of the mass matrixes due to end bearing (Fig. 14.9). 
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Fig. 14.9. Effects of end-bearing of beam to the mass matrix 

The mass matrix taking into account the effect of the end bearing will be 

l
lAM

015.0*sin*06.0*2
2

πρ +=K  

where the length of the beam is given in meters. 

This effect of the end-bearing is dependent on the mass of the beam and is 
small (less than 1.5 %). To verify the dependence between the pressure force and 
frequency, the beams made of various types of materials have been analysed. 

Steel hollow section profile Jäckl 30/15/1.5 mm 

In the case of steel, the value of modulus of elasticity and the mass density 
are constant. When the exact dimensions of closed sections were measured, small 
problem occurred in measuring wall thickness. 

The dimensions have been specified by measuring the weight of the profile. 
The rounded corners were considered in specification of cross-sectional 
characteristics. For further evaluation the following values were used: 

1
0cr

3

42

s144.2ωN,4225.1F,kg/m7850μMPa,210000E
mm1450lmm,5.94r,mm4286.0I,mm121.4A1.53,29.9/14.8/Jäckl

−====

====
 

Timber beams 

The modulus of elasticity of wood is an open question in the analyses of 
timber beams. In the presented measurements the critical load is identified at the 
moment of the increasing of the deformation without the increase of the force. 
Since the cross-sectional characteristics (the cross section, the moment of inertia) 
as well as the length of the beam have been known, using the Euler's elastic 
critical force, the modulus of elasticity can be evaluated. By measuring the 
weight of the profile, the mass density of wood has been easily and accurately 
evaluated. Subsequently, the natural circular frequency has been evaluated and 
two timber beams investigated. 
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Fig. 14.10. Results from measurements of the steel hollow thin-walled section - Jäckl 
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Fig. 14.11. Results from the measurements of the timber beams 

The presented results confirmed undoubtedly a phenomenon that the 
frequency of the beam increases when the pressure force is near the critical level. 
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Continues beam 

Fig. 14.12 presents the dimensions of investigated continues beam. Loading 
was implemented by steps (Fig. 14.13). 

 

1
4

4

0 s2.100
Al
EI −==

ρ
πω  N8.1661

l
EIF 2

2

cr ==
π  

43 mm 
22.5 E=13700 MPa 

ρ=454.2 kg/m3  

mm49.6
A
Ir ==  

F 
w0 

wg=40 mm 

l=1885 mm 

d 
e 

c 
Timber 

 
Fig. 14.12. Dimension of continues timber beam 
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Fig. 14.13. Two states of continues beam behaviour 

Figs. 14.14 and 14.15 present obtained results arranged in dimensionless 
form. Computers program had to be special improved for numerical evaluation of 
this example. 
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Fig. 14.14. Static behaviour of continues beam 
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Fig. 14.15. Load versus square of circular frequency 

14.4. Vibration and residual stresses 

14.4.1. Vibration of simply supported column loaded 
in compression 

Residual stresses (σw - Eq. (14.5)) are typical in the welded steel structures. 
Taking these stresses into increment of global potential energy and after doing 
variation we get term as product of increment of variation of derivation of 
displacement functions and residual stresses 

( ) dVwzwwwwuuu
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V
w

∫

∫

∆−∆∆+∆+∆+∆
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 (14.48) 

In the case of the beam type of structures, the volume integration can be 
changed into the integration over the cross section and the integration over the 
length. 

( ) =





 ∆−∆∆+∆+∆+∆∫ ∫∫ dxdAzwdAwwwwuuu

a

A
wxx

A
wxxxxxxx

0
,,,,,,, ....... σδσδδδδ

The residual stresses must be in equilibrium in the given cross section 
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It is evident that the residual stresses in the case of the beam structures have 
no influence on the circular frequency. 

Note. In the case of the statically indeterminate structure, Eq. (14.48) is not 
valid and the residual stresses could have the influence on the vibration. 

There is much different situation in the case of the plate structures. In this 
case, the volume integration is divided into the integration over the thickness and 
the integration over the neutral surface. The integration of the residual stresses 
over the thickness is not zero and thus 
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Finally, in the case of the plate structures, the residual stresses have an 
influence on the circular frequency. 

Effect of residual stresses on circular frequency has been proved by 
experiment [14.5] (Fig. 14.16). Some results are presented in Figs. 14.17 and 
14.18.  

 
Fig. 14.16. General view of experimental arrangement for  

the test of thin-walled panel 

14.5. Conclusion 

The presented theory and results prove the influence of the natural frequency 
on the level of the load, on the geometrical imperfections and the residual 
stresses, too. This knowledge can be used as an inverse idea. Measuring of the 
natural frequencies provides a picture of the stresses and imperfections in a thin-
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walled structure. One idea how we can investigate the structure is presented in 
Fig. 14.19. Many times we are not able to measure the whole structure (global 
vibration) but even measuring local parts of structure (local vibration) can give us 
valuable results. 
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Fig. 14.17. Comparison of theoretical and experimental results 
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It is true that the relation of frequencies versus stresses and imperfections 
represents a sophisticated theory, but it is unlikely an obstacle for further 
investigation. 

Local vibration 

Local 
vibration 

Global vibration ? (≈0) 

Multi-storey frame 

Steel plate girder 
Global vibration ? (≈0) 

Fig. 14.19. Scheme for non-destructive investigation of structure properties 
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15.  

Patch loading on steel girders 

When an I-shaped or a box steel girder is subjected to a loading (or a reaction) 
which is acting over very small range on a web plate, generally, a transverse stiffener 
is to be installed at the location of the loading. However, in some cases, it is 
difficult to install a stiffener at the location of the loading. In such case, the girder 
falls into a very severe loading situation, and the strength of the girder under the 
severe situation becomes very important problem. 

Such a problem is known as “the problem of a patch-loaded web plate”. In 
this chapter, at first, the outline of the patch-loading problem on the steel girders 
is introduced, and then three procedures to estimate the strength of a patch-
loaded web panel are described. 

15.1. Outline of a patch loaded web panel 

15.1.1. General view on a patch loaded plate 

A patch-load on a steel girder is often found in the following two situations. 

One of the examples of the patch-loaded web plate is a girder used as a crane 
rail. Fig. 15.1 shows a girder as a crane rail installed in a manufactory building. 
In this photo, we can find a crane beam is supported by rail girders, and it is 
running on the girder. The rail girder has, of course, transverse stiffeners. 
However, when the crane beam is running on the rail girders, the wheel of the 
crane beam shall be passing the location where no stiffener is installed. Thus, it 
becomes a typical “patch-loading” problem. 

The second example is a steel girder erected with the launching method (or 
push-out method). With this erection method, a steel girder, which is assembled 
on the landside, is supported by a temporary launching shoe, and it will be sliding 
(or pushed) towards the opposite bank as shown in Fig. 15.2. This erection 
method is classified into some types. The typical types of the launching method 
are illustrated in Fig. 15.3. In Fig. 15.3(a) or Fig. 15.3(b), girder is on a roller or a 
sliding shoe, and is pushed by a jack. The method in Fig. 15.3(c) is somewhat 
complex. In this method, at first, the girder is supported by a temporary shoe on a 
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sliding bed, and the horizontal jack pushes the shoe, and in the result the girder 
moves rightward in the figure. After pushing, the girder is jacked up by another 
jack for the vertical direction, and the horizontal jack and the shoe go back to 
their original locations. This method requires the complex equipment for pushing 
out, however, the equipment can keep on the same location throughout the 
erection process. 

Fig. 15.1. Crane rail 

Fig. 15.2. Box girder erected with launching method 

The launching method, as the girder erection method, does not require a 
temporary support in the main span, because all equipment can be set on the 
landside. Therefore, this method is often adopted at the location where no 
scaffolding is available such as erection of an overbridge across a railway. 
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Fig. 15.3. Girder on launching shoe : a) sliding shoe, 
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To solve a patch-loading problem of a girder as a crane rail or a girder 
erected by the launching method, the stress in the web panel of the girder is to be 
known. Here, a difference is detected between above two examples when 
estimating stress in the web panel. 

As it is found in the Fig. 15.1, a girder used as a crane rail is generally 
supported at many points with the short interval, and therefore, the web panel is 
subjected to very small bending moment. Thus, in a web panel in a crane rail, the 
normal stress for the vertical direction caused by the crane weight shall be 
dominant together with shear stress (upper part of Fig. 15.4). In the latter 
example, the girder is supported with longer span, and the web plate is subjected 
not only to the patch-load and shear but also to the relatively larger bending 
moment as illustrated in the lower part of Fig. 15.4. Therefore, in this case, 
behavior of the web panel may be influenced by the bending moment, and effect 
of the moment shall be an important problem. 

15.1.2. Studies on patch loaded plate 

In the earlier stage, the study on the patch-loading problem was made with a 
lone plate as illustrated in Fig. 15.5, i.e. a lone plate subjected to only a set of 
concentrated compression loadings or a set of concentrated load with shear. 
Studies of this stage are made by, for example, Wilkesmann [15.1] or Khan [15.2, 
15.3]. 

Fig. 15.5. Edge-loaded plate 

After the above stage, studies on a patch-loaded girder, not a lone plate, with 
flanges and stiffeners can be found. 

Herzog made studies on the patch loaded web plate with flanges [15.4, 15.5], 
and the patch loaded web plate in which stiffeners are installed is studied by 
Kutzelnigg [15.6]. Studies on a plate subjected to the patch load together with 
bending in the earlier stage are made by, for example, Rockey [15.7] or 
Warkenthin [15.8]. Roberts et al. presented a series of studies in which a simple 
procedure to estimate the strength of a patch loaded plate by using the 
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mechanism solution [15.9, 15.10]. The mechanism solution on this problem is 
described in the next section of this chapter. Recently, Graciano et al. made a 
series of studies on the patch loaded web plate [15.11, 15.12, 15.13, 15.14], and 
Chacón presents a study on the stiffened girder [15.15]. In this chapter, first, the 
mechanism solution on the patch loaded plate is briefly introduced, and then 
design procedure on girders on launching shoe is described. 

15.2. Collapse behaviour 

15.2.1. Mechanism solution 

In a guide book on the steel structures, the collapse pattern of a patch-loaded 
web panel is classified into two types; (1) web crippling, with which the web 
panel shall deform very locally near the loading, (2) web buckling over the full 
depth of the girder [15.16]. 

In 1964, Roberts and Rockey proposed a collapse mechanism of a patch-
loaded web plate with considering the test results [15.9]. According to [15.9], 
a web plate collapses with the deformation pattern of crippling in the upper zone 
of the web panel, as illustrated in Fig. 15.6, and the plastic hinges arise in the 
upper flange. In this deformation pattern, out-of-plane deformation scarcely 
arises in the central part of the web panel. Therefore, Roberts et al. modelized the 
web deformation as shown in Fig. 15.7(a), and proposed the idealized collapse 
mechanism with three yield lines in Fig. 15.7(b). 

On the other hand, a difference of the patch length, i.e. length of the patch-
loading defined in Fig. 15.8, is found between two examples mentioned in the 
section 1 of this chapter. The patch length caused by a crane wheel is generally 
small. Therefore, many studies on the patch-loading adopt the ratio of the patch 
length against the web panel width as around 0.1. 

Plastic hinges

Yield lines

Plastic hinges

Yield lines

Fig. 15.6. Collapse mode by Rockey et al. [15.9] 
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a)a)

b)b)
 

Fig. 15.7. Proposed collapse mode by Rockey et al. [15.9]:  
a) collapse behaviour, b) idealized collapse mechanism 

patch lengthpatch length

 
Fig. 15.8. Definition of Patch length 

However, a launching shoe gives relatively larger patch length because 
a launching shoe generally has a certain dimension. This difference of the patch 
length often brings a difference of the collapse behaviour of the web panel. 
According to studies on the patch-loading problem by some researches including 
the author of this chapter, web crippling occurs mainly with the smaller patch 
length such as a crane wheel, and web buckling arises under the relatively large 
patch length. 

Shimizu et al. carried out a series of experimental tests on the I-shaped steel 
girders on the launching shoe [15.17, 15.18]. The photo in Fig. 15.9 shows an 
example of the test setup by Shimizu and in Fig. 15.10 the layout of the test 
model is illustrated. In the test, the model girder is placed in the upside-down 
position and the patch-load as the reaction on the launching shoe is replaced with 
a loading by a jack on the bottom flange (placed on the upper side during the test) 
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through a loading pad corresponding with the shoe. The patch length of the test is 
decided through the dimension of the launching shoe, and the ratio of the patch 
length against the web panel width is set as 0.3 or 0.5. 

Fig. 15.9. Test setup of girder on launching shoe by Shimizu [15.17, 15.18] 

.

Fig. 15.10. Test layout of patch loaded girder [15.17, 15.18] 

In Fig. 15.11, a typical web deformation pattern obtained through the test is 
shown. In this photo, the out-of-plane deformation is observed in the upper part 
of the web plate, and yield lines are found. However, unlike the deformation 
pattern in Fig. 15.6 or Fig. 15.7, the out-of-plane deformation of the web panel 
still arises just under the folded zone, and only two yield lines are found. Thus, 
this deformation pattern is modelized as in Fig. 15.12 with two yield lines [15.25, 
15.26]. 

Using these collapse mechanisms, the ultimate load is obtained easily with 
the concept of the plastic design. That is, equating the external virtual work due 
to the vertical deformation of the flange multiplied by the patch-loading and the 
internal virtual work caused by rotation of the plastic hinges and the yield lines, 
the ultimate magnitude of the patch-loading can be estimated. In this method, 
effect of bending moment of the girder cannot be taken into account. Therefore, 



Patch loading on steel girders 

351 

this method is applicable to the crane rail which may be subjected to small 
bending moment, however, for the girder erected with the launching method, it is 
not suitable to use the mechanism solution because a girder on a launching shoe 
generally is subjected to bending moment in addition to the patch-load. 

Fig. 15.11. Typical failure mode of patch loaded girder [15.17, 15.18] 

a)

b)

a)

b)

Fig. 15.12. Collapse model having two yield lines: a) collapse pattern, 
b) idealized collapse mechanism

15.2.2. Girders on launching shoe 

A simple steel girder shall be subjected to the positive bending moment after 
the erection is completed. Therefore, when a longitudinal stiffener is installed on 
the web plate, the stiffener is arranged at the top part of the web, and on the 
bottom part of the web, longitudinal stiffener is not required. However, when 
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a girder is erected with the launching method, the girder shall be subjected to 
negative bending moment temporary, and the compression stress for longitudinal 
direction arises in addition to the vertical compression caused by the reaction at 
the launching shoe. Therefore, the web plate on a launching shoe should be 
sometimes stiffened not only at its top part but also at its bottom part. 

The “normal” longitudinal stiffener installed for the “normal” positive 
moment of the girder is generally the location at around 1/5 of the web depth 
from its top. However, on the “additional” stiffener at the bottom part of the web 
of the launching shoe, the location of 1/5 of the web depth from the bottom is not 
always optimum. 

The collapse pattern on a launching shoe may be different with the existence 
and location of the longitudinal stiffener and the magnitude of the bending 
moment of the girder. 

Fig. 15.13 shows the collapse pattern classification of a web plate on a 
launching shoe with the patch relatively large length (0.3 times of the panel 
width) [15.21]. This figure indicates that the collapse pattern can be classified 
into 4 types as “i”, “I”, “II” and “III”. 

In the every case in Fig. 15.13, at the earlier stage, yielding caused by in-
plane compression near the launching shoe arises. After the first stage, in the 
collapse pattern “i” and “I”, the web plate begins to deform for the out-of-plane 
direction, and the two yielded zones arise at the bottom part of the web near the 
launching shoe, and reaches to the final stage. These yielded zones are formed by 
out-of-plane bending of the plate for the alternate directions, and the in-plane 
yielding observed at the earlier stage vanishes after the first stage. In the collapse 
patterns “II” and “III”, the in-plane yielded zone develops, and in the pattern “II”, 
out-of-plane deformation begins to develop in the next stage. Finally, this pattern 
has three yielded zones; one is the in-plane yielding, and two are caused by out-
of-plane bending as similar to the patterns “i” and “I”. In these patterns of “i”, “I” 
and “II” , two yield lines are formed at the final stage. In the pattern “III”, the 
out-of-plane deformation of the web plate scarcely arises, and reaches to the final 
stage with only the in-plane yielding at the bottom of the web panel. 

The collapse pattern “i” is found only in the web plate with no additional 
stiffener. 

When an additional longitudinal stiffener is installed in the web panel, 
collapse pattern “I”, “II” or “III” shall arise, according to the web thickness and 
the location of the additional stiffener. With the relatively large thickness, the 
collapse pattern III shall arise. When the web plate is having a little smaller 
thickness, collapse pattern II arises with the additional stiffener installed at the 
location of 1/10 of the web depth, and with the stiffener location of 1/5, pattern 



Patch loading on steel girders 

353 

III again appears. With much smaller thickness, pattern I with the stiffener 
location of 1/10 and pattern II with the location of 1/5 arise. 

i

I

II

IIIcompression

bending

i

I

II

IIIcompression

bending

Fig. 15.13. Collapse mode classifications 

Within these collapse patterns, for the pattern III, the plastic design concept 
cannot be applicable because no yield line arises and the collapse mechanism is 
not defined. 

According to the results in [15.21], existence of the bending moment of the 
girder does not influence the collapse behaviour, and the web panel subjected to 
not only the reaction but also the bending moment shows the same collapse 
patterns to those with no moment. However, the strength of the web plate 
subjected the moment is smaller by around 10-20% than the strength with no 
bending. 
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15.2.3. Solution with the co-relation formula 

For the web plate on the launching shoe which shall be subjected to not only 
the reaction force but also bending, the correlation formula is often used to verify 
the strength. This correlation formula is derived from von Mises’s yield criterion 
which defines the equivalent stress. This method is generally used to verify the 
safety of the “normal” girder being subjected to bending and shear as illustrated 
in Fig. 15.14. 

In the “normal” girder subjected to bending and shear, the normal stress σx

for the x-axis (axis for the bridge) and the shear stress τxy arises, and the stress σy

for the y-axis σy = 0. The well known Mises’s formula of the equivalent stress 
for the 2-dimensions is Eq. (15.1). 

222 3 xyyyxxe τσσσσσ ++−= (15.1) 

yPut σ = 0 in Eq. (15.1), it becomes Eq. (15.2). 
22 3 xyxe τσσ += (15.2) 

rThis must be less than the ultimate stress σ , and Eq. (15.3a) or (15.3b) can 
be obtained. 

rxyxe στσσ ≤+= 22 3 (15.3a) 

2222 3 rxyxe
στσσ ≤+= (15.3b) 

With this formula and the relation of the ultimate values of the normal stress 
and the shear stress 3τr  = σr, Eq. (15.3) becomes to Eq. (15.4). 
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Replacing τ
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x , , Eq. (15.4) can be rewritten as Eq. (15.5): 
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This formula is very intuitional and easily understandable. That is, when the 
combination of the normal stress σx and the shear stress τxy falls within the circle 
illustrated in Fig. 15.15, it does not still reach to the ultimate state. 
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σ
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1.0

1.0

σ

τ

1.0

1.0

Fig. 15.14. Co-relation of normal stress and shear stress 

Fig. 15.15. Stresses in a web panel on a launching shoe 

On the other hand, the web plate on the launching shoe in Fig. 15.15 is 
generally subjected to the normal stress for the vertical direction σy in addition to 

xthe normal stress caused by bending, σ , and the shear stress τxy. In this case, the 
formula corresponding with Eq. (15.3) becomes Eq. (15.6). 

rxyyyxxe στσσσσσ ≤++−= 222 3 (15.6) 

This formula can be rewritten as Eq. (15.7). 
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 (15.7) 

Thus on the web plate on the launching shoe, it does not become the “pure” 
correlation formula. 

The principal design guidelines on the patch-loaded web plat on 
the launching shoe adopt the design formula with modified Eq. (15.7). 

For example, DIN18800 Part 3 [15.22] specifies Eq. (15.8) to verify 
the strength of the web panel on the launching shoe. 
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Here σxpRC, σypRC, τpRC denote the ultimate stresses for the x, y directions and 

shear respectively, V denotes 
yx

yxV
σσ

σσ
= , and e1, e2, e3 are the reduction 

coefficients which defined with the table in the Code. It is found that this 
procedure is more complex than one with the “pure” correlation formula. 

In the Japanese Guidelines for erection, design and installation of steel 
structures issued by JSCE (Japanese Society of Civil Engineers), Eq. (15.7) is 
rewritten simply and defines the verification formula as Eq. (15.9). 
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Here Fs denotes the safety factor, σb, σp,τ are stresses caused by the girder 
bending, reaction of the launching shoe and shear, and σbcr, σpcr, τcr are the 
buckling stresses [15.23]. 

Recently, in Japan, a new formula to verify the safety of the web plate on 
the launching shoe is proposed as Eq. (15.10) [15.24]. 
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This formula is similar to the Eq. (15.9), however, the normal stress for the x 
direction is separated into two parts; the stress caused by the girder bending, σxb, 
and the stress by the axial force for the x direction compression σxc. Fs denotes 
the safety factor and γ is the increase factor for the non-uniform distribution of 
the stress on the launching shoe. 

While both Japanese formulae are simple, it seems to be lack in exactness 

because these procedures do not consider the term corresponding to 2
r

yx

σ
σσ

in the Eq. (15.7). 

Another problem in utilizing the formula based on Eq. (15.7) is how to deal 
the shear. The verification procedure based on the formula 15.7 supposes that the 
shear stress τ in the web panel distributes uniformly. This is generally true for the 
“usual” web panel subjected to bending and shear. This supposition can be 
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considered with the shear force on the both edges of the web panel as illustrated 
in Fig. 15.16(a), and assumes that the shear is independent with the reaction of 
the launching shoe. 

M
M

Q Q
R

M
M

Q Q
Ra)

MM

Q2 Q1
R

MM

Q2 Q1
R

e)

b)

Q1

Q2

Q1

Q2

c)

M

M

Q2

Q2 Q1

Q1
M

M

Q2

Q2 Q1

Q1
d)

Fig. 15.16. Shear on launching shoe: a) “usual” forces on web panel, b) loading  
on launching shoe, c) shear diagram on launching shoe, d) forces near launching shoe, 

e) forces acting on web panel

Generally, a girder on a launching shoe is subjected to the reaction together 
with the dead load as illustrated in Fig. 15.16(b). Therefore, the shear force of the 
girder becomes as in Fig. 15.16(c). Thus, on the launching shoe, the moment and 
the shear become as shown in Fig. 15.16(d), and in the result the web panel on 
the launching shoe is subjected to the forces in Fig. 15.16(e). It should be noted 
that the sign of the shear changes in the panel, and the magnitude of the shear 
forces on the both edge of the panel, Q1 and Q2 in Fig. 15.16(d) or (e), not 
always equal to each other. In addition, this shear force is not independent to the 
reaction R, and Q1 + Q2 must be equal to R. 

These facts suggest difficulty when Eq. (15.7) is utilized in this problem. 
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15.3. Buckling coefficient of web panel on launching shoe 

In this section, the alternate idea to verify safety of a web panel on the 
launching shoe with using neither the plastic design procedure nor the correlation 
formula is introduced [15.25]. This method predicts the buckling coefficient of a 
web panel on the launching shoe. 

It is supposed that a web panel on a launching shoe is being subjected to 
shear Q1, Q2 (corresponding to the reaction R of the shoe) and the bending 
moment M as mentioned in the previous section with Fig. 15.16(e). The reaction 
of the shoe R is R = Q1 + Q2. With these shear and moment, the web panel is 
receiving stresses σ1, σ2 and τ1, τ2 in Fig. 15.17(a), and the web width, web depth 
and the patch length are a, b and c respectively as in Fig. 15.17(b). Parameters 
used in this section are defined as follows: 

a aspect ratio of the panel, a = a/b; 
b patch length parameter (dimensionless patch length), b = c/a; 
φ moment-shear parameter, φ�= σ1/τ1; 
γ shear parameter, γ = τ1/τ2; 
Km buckling coefficient of the web panel subjected to no moment; 
KR buckling coefficient of the web panel subjected to moment; 
µ reduction factor of the buckling coefficients, KR = µKm 
ϕ neutral axis parameter, ϕ = σ2/σ1. 

σ2

σ1 τ1 τ2

σ2

σ1 τ1 τ2

a

b

a=a/b

c

b=c/a

a

b

a=a/b

c

b=c/a

φ=σ1/τ1

γ=τ1/τ2
a) b)

Fig. 15.17. Definitions used in this chapter: a) stresses, b) dimensions 

The stress just above the shoe is defined as )/( ws tcR ×=σ  
)/()( 21 wtcQQ ×+= , here c denotes the patch length, i.e. dimension of the 

launching shoe, and tw the web thickness. When this stress reaches to the 

buckling stress ( )
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Rcr ν
πσ , buckling of the web shall occur. KR is 
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the buckling coefficient of the web panel, and once KR is obtained, buckling 
stress can be estimated. 

In the study of [15.25], a series of numerical analyses are made on the web 
plate on a launching shoe with the various values of M, Q1 and Q2, aspect ratio of 
the web panel and the patch length (dimension of the launching shoe). In the 
analyses, the launching shoe is realized restraining the vertical displacement at 
the location of the shoe, and the reaction R is automatically introduced in the 
analyses. 
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Fig. 15.18. Buckling coefficients for aspect ratio 

In Figs. 15.18-15.19, demonstrative results on the buckling coefficients 
when the web panel is subjected to no moment, KR, are plotted. These results are 
for the case that the web plate has the b depth of b = 2200 mm, web thickness tw 
of tw = 11 mm, and E = 206 GPa,ν  = 0.3, as summarized in Table 15.1, and 
subjected to no moment, i.e. σ1 = σ2 = 0 and in result φ = 0. The web width a 
and the patch length c are variables, and the aspect ratio a = a/b and the 
dimensionless patch length b = c/a are varied within a = 0.625÷1.750 and 
b = 0.102÷1.000 respectively. The patch length b = c/a = 1.000 means that the 
launching shoe has the same dimension with the web width a. 
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Fig. 15.19. Buckling coefficients for patch length 

Table 15.1. Dimensions and material; properties of the demonstrative model [15.25] 

Demonstrative model Material parameters Dimensions 

E = 206000 MPa 
γ = 0.3 

a = variable 
b = 2200 mm 
c = variable 
tw = 11 mm 

When the web panel is subjected to the moment in addition to the shear (or 
the reaction), the strength of the panel shall become smaller. Fig. 15.20 shows 
the reduction factor µ for the moment-shear parameter φ. It is clearly found that 
the reduction factor µ decreases almost linearly for the magnitude of the moment. 
In Fig. 15.16 or Fig. 15.17, magnitude of shear on the both side Q1 and Q2, or τ1 
and τ2 are different to each other. However, according to the study [15.25], the 
effect of the difference is very small, and therefore τ = (τ1+ τ2)/2 can be used 
instead of τ1 to estimate the moment-shear parameter φ = σ1/τ1. 

With these figures, formula to estimate the buckling coefficient is obtained 
empirically. 

a 

b 

c 
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With referring Fig. 15.19, buckling coefficient of the web panel subjected 
no moment, KR, can be expressed with the patch length parameter b as Eq. (15.11). 

02
2

3
3

4
4 bbbbbKR ++++=

bbbb
(15.11) 

        The coefficients b0-b4 are estimated through Eq. (15.12) with the aspect ratio α.  

01
2

2
3

3 iiiii cCCCb +⋅+⋅+⋅= aaa (15.12) 

The coefficients Ci,j (i = 0-4, j = 0-3) are empirically defined as listed in 
Table 15.2 for the case that the web panel has been dimensioned as described 
above, by using the least square method. 

Table 15.2. Coefficients Ci,j 

bi Ci3 Ci2 Ci1 Ci0 
b4 
b3 
b2 
b1 
b0 

-0.013 
0.322 
2.844 
2.379 

-19.355 

0.0840 
-1.954 
15.539 

-18.734 
89.862 

-0.149 
3.354 

-25.751 
35.100 

-136.979 

0.086 
-1.928 
14.653 

-21.844 
76.399 

0

The buckling coefficient when the web is subjected to moment, Km, is 
calculated with multiplying the reduction factor µ to KR. As shown in Fig. 15.20, 
the reduction factor is almost linear to the moment-shear parameter φ. The initial 
reduction factor µ  can be expressed with φ as Eq. (15.13). 

φµ A−=10  (15.13) 

The factor A also can be defined empirically with the least square method 
as Eq. (15.14) for the aspect ratio a and the patch length parameter b. 

068.0128.0033.0040.0 ++−−= baabA  (15.14) 

When the stresses σ1 and σ2 in Fig. 15.16 are equal to each other, σ1 = σ2,i.e. 
the neutral axis parameter ϕ = 1, the reduction factor µ becomes µ0 itself, i.e. 
µ = µ0. If 21σ 0≠σ   , the initial reduction factor µ  is modified with Eq. (15.15). 

( ) 021 ηϕµ ee += ⋅  (15.15) 

Here, e1= -0.191b - 0.087 and e2= -0.191b +0.913. 

Now, using Eq. (15.11)÷Eq. (15.15), we can estimate the buckling coefficient 
of the web panel on a launching shoe. The values of the parameters and factors in 
these equations are obtained for the demonstrative model shown in Table 15.1. 
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In the paper [15.25], the numerical model which has its dimensions other 
than Table 15.1 is also studied, and it is indicated that the buckling coefficient 
can be obtained with the acceptable accuracy of the error of 8% in maximum. 

This method does not require the formula based on Eq. (15.7), and does not 
give the theoretical solution, but is completely empirically. Therefore many other 
examples should be examined to verify effectiveness of this method. 

15.4. Effect of flange plate 

Expert bridge engineers often experientially point out that a web panel on a 
launching shoe designed with various verification formulas seems to have much 
more strength than the estimation. 

This fact may be caused by stiffness of the flange plate, in particular 
torsional stiffness of the flange. 

The studies on the patch loaded steel plate in the earlier stage deal with lone 
plate, and do not consider the effect of the flanges. However, a flange plate may 
influence the strength of the plate with its torsional stiffness. One example is 
shown below on the effect of flange on strength of a patch-loaded web of a box 
girder [15.26, 15.27]. 

In the report [15.26, 15.27], buckling stresses of a steel box girder are 
demonstrated. The demonstrated box girder has the web depth of 1800 mm, box 
width of 2100 mm as illustrated in Fig. 15.20(a), and the web and the top flange 
thickness of 12 mm and the bottom flange of 26 mm. On this box girder, 4 cases 
are compared as shown in Fig. 15.20(b)÷(d):1 

a) full section box, i.e. the section with both top and the bottom flange;
b) top flange is removed, i.e. the section with only the bottom flange;
c) bottom flange is removed, i.e. the section with only the top flange;
d) lone web plate.

The buckling stresses for these four cases are summarized in Table 15.3. 

a)

1605  1605  2100  

18
00
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b)

c)

d)      e)

Fig. 15.20. Flange effect examples: a) section dimensions, b) full section, 
c) with top flange, d) with bottom flange, e) only web plate

As shown in this table, the web panel with no bottom flange (cases b) and d) 
in the table) has the buckling stress of the web equal to 178 MPa, and with the 
bottom flange, it is 350 or 352 MPa. Thus the buckling stress of the web with the 
bottom flange is almost twice as large as the web with no bottom flange. This is 
owing to the fact that the bottom flange of a girder restricts the out-of-plane 
deformation of the bottom part of the web, and in the result it brings larger 
strength. 

In [15.26], another example on an I-shaped steel girder is shown, and the 
larger buckling strength is also obtained for the I-shaped girder. 
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Table 15.3. Buckling strength with flange effect [15.27] 

Pattern Buckling strength [MPa] Ratio 
a) full section

350 1.97 

b) with top flange

178 1.00 

c) with bottom flange

352 1.98 

d) with no flange
178 - 

In the design procedure described in the sections 15.2 or 15.3, the effect 
of a flange is not taken into account. 

Further studies are required on this problem to establish the design procedure 
with considering the effect of the bottom flange. 
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16. 

Local buckling and initial post-buckling 

behaviour of channel member flange  

- analytical approach 

16.1. Introduction 

Cold formed thin-walled channel members are widely applied in different 

kind of engineering structures. If the members are subjected to bending or 

compression stability problems, global, distortional or local buckling may be 

decisive in its designing [16.1, 16.2]. Usually the designing of the members is 

carried out in an elastic range of the material. Recent developments in theoretical 

and numerical stability analysis [16.3, 16.4] enable formulation and solution of 

optimal design of the channel beams [16.5, 16.6]. The analytical approximate 

solution of the local buckling of the compressed beam flange is very useful in 

formulation of the optimization problem [16.7]. The analytical formulae applied 

in these problems for the critical local buckling stress are derived with 

approximate assumptions: only the first buckling mode is taken into account and 

it is computed without accounting for a cooperation of the compressed flange 

with beam web. 

The main purpose of the investigation is to give more rigorous analytical 

description of the local buckling and initial post-buckling behaviour of the 

member compressed flange within an elastic range of the material behaviour. The 

single and double sheet flanges are taken into consideration. The nonlinear 

governing differential equation of the stability problem is derived by means of 

the stationary total energy principle. In the total potential energy formulation a 

cooperation of the flange with web is taken into account. The perturbation 

approach applied to solve the equation leads to the buckling stresses related to 

the number of half-wave modes and the initial post-buckling equilibrium path. 

The critical buckling stress and corresponding mode are found as a minimum 

value of the buckling stresses obtained. Moreover the relation of the critical 

stress and the relative member length derived enables finding the number of half-

waves of the buckling mode. The initial post-buckling equilibrium paths allows 

classifying all bifurcation points as symmetric and stable. Some numerical 

examples dealing with simply supported beams and columns are presented. 
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16.2. Total potential energy of member flange 

Let us consider a channel beam undergoing pure bending or an axially 

compressed channel column as shown in Fig. 16.1. Local buckling of the 

compressed member flange and its initial post-buckling behaviour is investigated. 

It is assumed that the member material obeys the Hooke’s low. The Cartesian 

coordinate system x, y, z is located at the centre of flange rotation. Additionally 

the parallel coordinate system x0, y0, z0 is taken at the flange centre of gravity B. 

If the flange rotates about the line of connection with the web then the 

displacements v, u of an arbitrary point x of the flange may be written as 

  cos1,sin  xuxv (16.1) 

where the torsion angle is denoted as  . Thus the displacements of the flange 

centre of gravity B are determined as 

  cos1,sin  BBBB xuxv (16.2) 

where the coordinate xB of the point B is introduced. It should be noted that in 

formulas (16.2) the effect of the second coordinate yB of point B is neglected 

since usually BB xy  . 

Fig. 16.1. Displacements of member’s flanges and data of numerical examples 

The flange-web cooperation is expressed by springs uniformly distributed 

along the connection line. The elastic modulus of the springs 
k  is different for 

the beam and the column and may be written as 

hEIk w /   (16.3) 
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where EIw stands for the bending stiffness of the web, h denotes the web hight 

and the coefficient 4  for beams and 2  for columns. 

The total potential energy of the flange V in the initial post-buckling state is 

considered as a sum of the elastic strain energy of the flange Ve , the potential 

energy of the springs Vs and the potential energy Vl of the applied uniformly 

distributed normal stresses 
0

  

 
lse VVVV   (16.4) 

The elastic strain energy consists of effects of bending about axes x, y and 

free torsion and may following [16.8, 16.9] be expressed as 
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where E is the Young’s modulus, Id stands for the free torsion moment of inertia 

of the flange cross-section, Ix, Iy denote the flange cross-section moment of 

inertia about x and y axes respectively. Moreover, by AIII /2

00000
  the reduced 

fourth moment of inertia of the flange cross-section is introduced. Here A stands 

for the area of the flange cross-section. 

Using relations (16.2) and expanding the functions sin  and cos  into the 

Taylor’s series after some algebra, Eq. (16.5) may be rewritten as 
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where the powers of the rotation angle and its derivatives higher than fourth are 

omitted. 

The potential energy of the applied normal stresses 0 uniformly distributed 

along the flange due to its rotation is 

      








    
L b L b

l
dxdzutdxdzvtV

0 0 0 0

5.025.02

0
1111  (16.7) 

where b is the flange width. 
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Similarly as above the relations (16.1) are applied in Eq. (16.7) and then 

we arrive at 

  
L

yyyl
dzIIV

0

42

0 000
5.05.0   (16.8) 

where 
0y

I and 
00 yy

I  denote the second and fourth order moment of inertia of the 

flange cross-section about axis y0 located in the rotation centre of the flange (see 

Fig. 16.1). 

Last part of the total potential energy accounting for the uniformly 

distributed springs in accord with relation (16.3) may be written as 


L

w

s
dz

h

EI
V

0

25.0   (16.9) 

Having summed up all parts of the total potential energy (16.6), (16.7) and 

(16.9) the final form of V is a functional 

  
L

dzFV
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,,5.0   (16.10) 

where the under-integral function is defined as 
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16.3. Local buckling and initial post-buckling behaviour 

The nonlinear differential equation of equilibrium of the flange resulting 

from the Euler condition of stationary total potential energy (16.10) [16.10] can 

be written as 
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(16.12) 

where 
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The solution to Eq. (16.12) is determined by means of the perturbation 

approach [16.8, 16.11]. The torsion angle can be represented as the polynomial of 

the perturbation parameter s 

         ...
3

3

2

2

1
 zszszsz   (16.14) 

where  z
i

  stand for functions of z that should fulfil suitable boundary 

conditions. 

The stress 
0

  is also expressed in the same manner as 

 
    ...221

0
  ss

cr
 (16.15) 

where 
cr

  stands for the critical buckling stress and by  i  the i-th derivative of 

the stress   with respect to s is denoted. 

Moreover, it is assumed that the perturbation parameter is equal to the 

maximum torsion angle  
00

zs    located at z0 and hence using relation 

(16.14) some additional boundary conditions are established 

     1for0,1
001

 izz i  (16.16) 

Utilizing relations (16.14) and (16.15) in the nonlinear differential equation 

(16.12) and coefficients of the first power of s equal to zero one can obtain the 

following linear differential equation 

 02
1

2

11
 

IV
 (16.17) 

where 
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The solution to Eq. (16.17) can be written as 

 zkCzkCzkCzkC
242312111

cossincossin   (16.19) 

where  
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The constants C1, C2, C3 and C4 should be determined from suitable 

boundary conditions. Let us consider simply supported member as it is shown in 

Fig. 16.1. The boundary conditions defined as follows 
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        0,000
1111

 LzLzzz  (16.21) 

together with the additional condition (16.16) enables obtaining the buckling 

stress 

 
0

222 ///
ydwBx

IEGIhmImxIE   (16.22) 

and the buckling mode 

mzsin
1
  (16.23) 

where Lnm /  and n stands for number of the half waves of the buckling 

mode. The number n should be chosen to obtain minimum of the critical stress 

(16.22). Now it is possible to determine location of the maximum angle of 

torsion z0 = L/2n (16.16) in the middle of the half wave. 

It is useful to know a relation between the critical stress and the member 

length that makes possible to find a number of the half waves n. As mentioned 

above, the critical stress should be determined to obtain minimum of the buckling 

stress (16.22). The necessary condition of the minimum of the buckling stress 

(16.22) with respect to the m is 

0/22 32  hmIxmI
dm

d
wBx




 (16.24) 

hence 
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 (16.25) 

Equation (16.25) enables determining the member length corresponding to 

the stress minimum 
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 (16.26) 

It is useful to define a characteristic member length L0  as 
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 (16.27) 

Substitution of Eq. (16.25) into the Eq. (16.22) leads to the minimum value 

of the stress which occurs in each member with the length L=kL0 
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The relation of the critical buckling stress and a scaling coefficient k=L/L0 is 

shown in Fig. 16.2, where one can find not only the critical stress but also the 

number n of the half waves of the buckling mode. 

0 1 2 3 4

k

20

30


cr
[M

P
a]

 60.5 120.5

min

n = 1
n = 2

n = 3
n=4

Fig. 16.2. Critical buckling stress vs. scaling coefficient k 

The coefficient of the second power of s leads to the next differential 

equation 
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Utilizing the buckling mode (16.23) in (16.29) and noticing that left side of 

the equation (16.29) is the same as previous equation (16.17), it is easy to find 

  0 and0 1

2
   (16.30) 

It means that the bifurcation point is symmetrical [16.11]. 

The next third term of the power series in s leads to the third linear 

differential equation 
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Substituting the buckling mode (16.23) into Eq. (16.31) and using some 

trigonometric relations, Eq. (16.31) can be rewritten as 

mzlmzk
IV

3sinsin2
333

2

33
   (16.32) 

where 
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The solution to equation (16.32) is 

mzLmzKzkCzkCzkCzkC 3sinsincossincossin
33242312113

  

(16.34) 

where 
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The constants C1, C2, C3 and C4 should be established from boundary 

conditions (16.24) and the additional condition (16.16). Thus we arrive at 

 mzmzL 3sinsin
33

  and 0
3
K (16.36) 

The first relation (16.35) incorporated into the Eq. (16.14) and after 

substitution of the buckling mode (16.23) it leads to the initial post buckling 

shape of the torsional angle 

 mzmzLmz 3sinsinsin
3

3

00
  (16.37) 

The second equation (16.35) allows us to obtain )2( (see Eq.(16.15)) 

determining the initial curvature of the post-buckling equilibrium path 
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Finally, the initial post-buckling equilibrium path may be written in 

approximated form as 
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The positive value of )2( together with 0)1(   (see (16.25)) shows the 

symmetrical stable point of bifurcation that is insensitive on inevitable 

geometrical imperfection. Otherwise the negative value of )2(  shows that the 

symmetrical unstable point of bifurcation occurs and a decrease of the critical 

buckling stress arises. 

16.4. Numerical examples 

Let us consider an example of a simply supported beam undergoing pure 

bending and the axially compressed column as it is shown in Fig. 16.1. Two 

different shapes of flanges: single (A) and double bend (B) and two thicknesses 

t = 1 mm and t = 1.25 mm are taken into investigation. The critical buckling 

stresses and corresponding number of half waves are determined for all cases and 

shown in Table 16.1 and 16.2. In these tables the relative curvatures of the initial 

post-buckling paths (16.39) and the coefficients L3 (16.35) determining the initial 

post-buckling behaviour of the flange rotation angle are presented as well. 

Table 16.1. Critical local buckling stress of beam undergoing pure bending [MPa] 

Flange 
Number of 

half-waves n 

Thickness 

[mm] 
]MPa[cr

 

cr

 2

L3

A 
3 1 21.02 3995 190.2 

3 1.25 32.84 2555 121.7 

B 
2 1 26.37 1414 38.1 

2 1.25 41.21 904.4 24.2 

Table 16.2. Critical local buckling stress of axially compressed column [MPa] 

Flange 

Number 

of half-

waves n 

Thickness 

[mm] 
L3 

A 
2 1 18.05 2068 216.5 

2 1.25 28.20 1322 138.5 

B 
1 1 22.50 414.4 36.7 

1 1.25 35.15 265.1 23.3 

The graphical presentation of the post-critical stress vs. torsional angle 

amplitude is shown for beams in Figs. 16.3 and 16.4 and for columns in Fig. 16.5 

and 16.6. Comparison of these results for both flange thicknesses is also 

provided. 

]MPa[cr
 

cr

 2
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Fig. 16.3. Post-critical stresses  vs. torsion angle amplitude 

for simply supported beam with single flanges 

Fig. 16.4. Post-critical stresses  vs. torsion angle amplitude 

for simply supported beam with double bend flanges 
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Fig. 16.5. Post-critical stresses  vs. torsion angle amplitude  

for simply supported column with single flanges 

 

Fig. 16.6. Post-critical stresses  vs. torsion angle amplitude  

for simply supported column with double bend flanges 

Moreover the characteristic member lengths and the minimum critical 

buckling stresses for all cases of members and both thicknesses under 

investigation are determined and presented in Tables 16.3 and 16.4. 
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Table 16.3. Characteristic beam length and minimum critical stress 

Flange 
Thickness 

[mm] 

Characteristic 

length [mm] 

L0

Minimum 

critical stress 

[MPa] 

A 
1 149.44 20.76 

1.25 149.44 32.44 

B 
1 251.33 24.88 

1.25 251.33 38.88 

Table 16.4. Characteristic column length and minimum critical stress 

Flange 
Thickness 

[mm] 

Characteristic 

length [mm] 

L0

Minimum 

critical stress 

[MPa] 

A 
1 177.72 17.85 

1.25 177.72 27.89 

B 
1 298.88 20.76 

1.25 298.88 32.44 

The characteristic member length (16.27) may be determined directly by 

dimensions of the cross-section as 

4
0

4 b

h
bL


 (16.40) 

for single flange and 

4
0

2

b

h
bL


 (16.41) 

for double bend flanges. 

Similarly the minimum buckling stress (16.28) may be expressed as 

2

min 0.25
t b G

E
b h E
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for single flange and as 
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t b G
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b h E




  
          (16.43) 

for double bend flanges. 
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It should be noted that the initial curvatures of the post-buckling equilibrium 

path in all cases under consideration are positive. This property together with 

(16.25) determines the symmetrical and stable points of bifurcations [16.8, 

16.11], in which decrease of the buckling stresses is not possible. The critical 

stresses of beams undergoing pure bending are higher than the same stresses of 

axially compressed columns due to more effective flange-web cooperation. The 

greater thickness the higher critical stresses. Number of the mode half waves 

depends on the cross-section geometry and in beams is usually higher than in 

columns. 

The buckling modes and initial post-buckling distribution of the flange angle 

along the beams axes are presented in Figs. 16.7 and 16.8 along the columns axes 

in Figs. 16.9 and 16.10. The amplitude of the buckling mode is assumed to be  

0.05 [rad]. A strong increase of the post-buckling flange angle amplitude in 

accord with the half waves number should be noticed. The stiffer member flange 

the less amplitude of the post-buckling flange angle. 
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Fig. 16.7. Buckling mode and post-buckling shape of the flange angle  

of rotation vs. its amplitude for beam with single flange 
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Fig. 16.8. Buckling mode and post-buckling shape of the flange angle 

of rotation vs. its amplitude for beam with double bend flange 
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Fig. 16.9. Buckling mode and post-buckling shape of the flange angle 

of rotation vs. its amplitude for column with single flange 
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Fig. 16.10. Buckling mode and post-buckling shape of the flange angle  

of rotation vs. its amplitude for column with double bend flange 

16.5. Conclusions 

The local buckling of the compressed flanges of the cold formed channel 

beams undergoing pure bending and axially compressed columns are 

investigated. The total potential energy formulation allows one to derive the 

nonlinear differential equation governing the buckling and the initial post-

buckling behaviour of the flanges. The simple model of the flange as the beam 

stiff in its plane and elastically connected with the member web is assumed. The 

solution of the equation is determined by means of the perturbation approach. 

The critical buckling stress and corresponding number of half-waves are 

determined. Moreover the characteristic member length is introduced that makes 

possible to obtain directly the number of the half waves related to the member 

length. 

The theoretical and numerical investigation of the local buckling and initial 

post-buckling behaviour of the member flanges carried out enable us to draw 

some conclusions related to the problems under investigation: 

 The points of bifurcation of the local buckling of the flanges are 

symmetrical and stable in all considered cases. The term )2(  (16.38) 

denoting the curvature of the initial post buckling path is positive for 
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beams and columns. This means that decrease of the critical stresses 

due to inevitable geometrical imperfections of the torsion angle of 

flange does not occur. 

 The critical stresses of the beam flanges are higher than the same 

stresses of columns due to more effective the flange-web cooperation. 

The greater flange thickness leads to the higher critical buckling 

stresses. 

 The number of the mode half waves depends on the flange bending 

stiffness and it is different for beams and columns with respect to the 

effect of the flange-web cooperation. The greater flange stiffness the 

less the half waves number. The number of the beams half waves is 

usually higher than for columns except the one half waves. It should 

be noticed that in many approximate solutions of the similar problems 

[16.12, 16.13] only the first mode is taken into account and no 

cooperation flange-web is included. Such assumptions may lead to 

qualitative and numerical errors. The analytical formulas of the critical 

buckling stress derived may be useful in preliminary design and 

optimization of this type of structures. 

This paper is dedicated to the memory of Professor Katarzyna Kowal-

Michalska, to her life, scientific achievements, our friendship and scientific 

cooperation. 
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17. 

Stability of columns with respect to their loads 
and specific disorders of their structure 

17.1. Columns and disorders of their structures 

The columns are slender systems subjected to a compressive load. Two basic 
types of columns can be distinguished: 

− axially-symmetrical column built of a rod and concentric pipes. 
Buckling can take place in an optional plane if structure disorder does 
not force a specified buckling plane (cf. [17.38]), 

− flat frame built of an even or odd number of rods in such a way that 
bending does not occur in the plane perpendicular to the buckling 
plane (cf. [17.35, 17.34]). 

Supportive slender systems can be subjected to different kinds of structure 
disorders which influence the stability of the construction as well as the free 
vibrations of systems (changing frequencies and forms of free vibrations). These 
disorders can be divided into external and internal ones. Among external 
disorders the following can be distinguished: 

− support of the system, which can be elastic, viscoelastic or elasto-
plastic. Through the support of the system one can change the method 
of stability loss, for example instability of a divergence type into 
instability of a flutter type (cf. [17.37]); 

− base of the system. (a one or multi parameter Winkler’s base is the 
most common case. The system can have contact with the base along 
all its entire length (total base) or in a chosen fragment (local base) 
(cf. [17.22]); 

− temperature of the system. As a result of a change in the temperature 
in the system, a change in material properties and the formation of an 
additional load takes place. A minor change can lead to a loss of 
stability. This type of disorder can be caused by a fire, and its impact 
on construction can have serious consequences (cf. [17.5]).  

Internal disorders are connected to structure discontinuity inside the support 
element. Here the following can be distinguished: 
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− cracks (both open and open-closed ones). Occurrence of different 
kinds of cracks in the support structure weakens this structure - the 
ability to transfer compressive external loads decreases significantly. 
In the literature one can find works considering this type of disorder, 
and the results presented there have made a contribution to their 
detection. In such a case, the results connected to characteristic curves 
are especially suitable as they have substantial meaning in the 
diagnostics of support structures (cf. [17.20, 17.19]); 

− additional elements in the complex support systems in the form of 
elastic, elasto-plastic or viscoelastic layers. In this case, the 
application of an element having an effect on the reciprocal 
deformation of the chosen elements of the support construction can 
have a positive influence on its stability or its vibrations (cf. [17.38]). 

17.2. Loads of the columns 

On the basis of the most general division of the external load of slender 
systems into conservative and non-conservative, the external load can be 
assigned to one of the following groups: 

• conservative load

− Euler’s load (cf. [17.38] 
− generalized load (theoretical) (cf. [17.4]) 
− a load generated by a force directed towards the pole (cf. [17.29]) 
− specific load (cf. [17.23, 17.32, 17.24, 17.22])  

• non-conservative load

− Beck’s load and Beck’s generalised load (cf. [17.9, 17.35]) 
− Reut’s load and Reut’s generalised load (cf. [17.8]). 

Their characteristics are presented in brief below. 

Euler’s load is generated by an external force. The direction of this external 
force does not change during the deflection of the system from a rectilinear form 
of static equilibrium. The load capacity of a column subjected to this classic load 
is essentially dependent on the mounting methods (boundary conditions). 

A generalised load should be treated as theoretical as there are no solutions 
of structures realising it in the literature. A generalised load makes it possible to 
formulate real loads through adequate selection of its characteristic parameters. 
A generalised load is caused by the simultaneous action of the axial force, lateral 
force and bending moment. The lateral force and bending moment are dependent 
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on the axial force, the deflection and deflection angle of the loaded end of the 
column. The influence of the deflection and deflection angle on the lateral force 
and bending moment is realised by four coefficients, i.e. coefficients of the 
generalised load (two coefficients connected with lateral force and two 
coefficients connected with the bending moment). 

The load generated by a force directed towards the pole is generated by a 
force whose course is determined by two points. The loaded end of the system is 
the first point and the second is the constant point (pole) on the non-deformed 
axis of the column (the pole can be placed above or below the loaded end of the 
column). The distance between the end of the system and the constant point (pole 
placed on non-deformed axis of the column) is the parameter of this load. 

A specific load is the most recent conservative load of supported slender  
systems. This load was formulated and introduced into the literature by prof. 
Lech Tomski. It was created by different already existing loads. Several types of 
load can be distinguished, i.e. a generalised load with a force directed towards the 
pole and a load with a force directed towards the pole. The specific load is a real 
load and its realization is possible due to the application of adequately 
constructed loaded heads built of linear or curvilinear elements. 

A characteristic of a specific load is the fact that displacement of the end of 
the column is strictly dependent on the parameters of the heads leading this end. 
It gives new possibilities for considering stability problems (possibility of 
controlling critical load) and the free vibrations of the system (change in free 
vibration frequency). 

In the case of conservative loads, the stability of the systems can be 
determined on the basis of a static or kinetic stability criterion. 

In the case of a non-conservative load in conditions in which the column is 
not subjected to stability loss of divergence type, the usage of kinetic stability 
criterion is essential to determine the critical load. In such a case the column 
undergoes destruction due to oscillatory vibrations of ascending amplitude (non-
stability of a flutter type). A system subjected to a non-conservative load, where 
the type of stability loss (divergence or flutter) is dependent on structural 
parameters or parameters connected to the load, is called a hybrid system (cf. 
[17.10]). The rigidities of translational or rotational springs, constants of elasto-
plastic or viscoelastic dampers, asymmetry coefficient of flexural rigidity (in a 
case of complex systems), mass and the mass moment of inertia of bodies 
connected to a column, can be structural parameters. The mentioned discrete 
elements can be present in different places of the considered system. They can be 
elements of the supported column (modelling impact of construction on the 
column) as well as elements present in the constructional nodes of the system, 
e.g. in the nodes of loaded structures (in this case they have an influence on the 
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reciprocal translational or rotational displacement of cooperating elements). The 
parameters connected to a load are the coefficients which determine direction of 
non-conservative force action (e.g. in the case of Beck’s generalised load) or the 
point of application of the force (e.g. in the case of Reut’s generalised load). 

17.3. A conservative condition of the load resulting from the 
field theory 

A cantilever column subjected to a theoretical generalised load (cf. 
Fig. 17.1) is considered. The choice of this type of load was made due to the fact 
that all real cases of the load have to be expressed by an adequate selection of 
coefficients of generalised load (cf. [17.30]). The determined conservative 
condition of a generalised load can be compared with other cases. Lateral force H 
and bending moment M of the generalised load are dependent on axial force P, 
deflection y(l) and deflection angle yI(l) of the loaded end of the column in the 
following way (P = const) 
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Fig. 17.1. Column subjected to a generalized load 

The considered column is situated in a coordinate system {xi} with versors 
{ai}. Coordinates {xi} do not influence the external load, represented by vectors 
P, M and H, which are connected to the orthogonal coordinate system {qi} with 
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versors {ei}. Lateral force H and bending moment M are dependent on the 
method of imposing the compressive external force P applied to the end of the 
column. The potential energy of generalised load is given by the following 
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The longitudinal displacement of the loaded end of the column, after using 
the theorem of integral mean-value, can be written in the form 
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where: α∈ (0,1). 

The vector field of forces C is conservative if it is irrotational. Rotation of 
the considered vector field (force field) must be equal to zero 

0rot =C  (17.4) 

If the force field is conservative, the gradient of potential energy will be 
equal to the considered force field 

C=Vgrad . (17.5) 

Coordinates of orthogonal system {qi} after considering equation (17.3) are 
as follows 
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The rotation of vector field C is equal to 
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or after being rewritten 
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Taking into account relationship (17.8), the final form of the conservative 
condition of the load can be expressed by 
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After substituting the relationship for lateral force H (17.1a) and bending 
moment M (17.1b), the final form of the conservative condition of the 
generalised load is obtained 

 01=−+ µν  (17.10) 

Considering the derived conservative condition of the load (Eq. (17.10)) 
fulfilment of function (17.5) is obtained. 

17.4. The course of the curve in the plane load  
- natural frequency 

The equation describing the considered curve, that is dΩ 2/dl, should be 
derived to investigate the course of the characteristic curves in the plane: load  
l - natural frequency Ω 2 . This equation is derived on the basis of Leipholz’s 
integro-differential relationship [17.11] 

 ( ) ( ) ( )[ ] ( )∫ =Ω−+=ℑ
l

IIIV dxxyxyxyxy
0

2 0l  (17.11) 

The detailed derivation of the considered formula can be found in paper 
[17.11] considering a generalised active load and in [17.33] for an active and 
passive generalised load. 

Taking into account publication [17.11] the equation describing the course of 
the curve in the plane load - natural frequency is in the following form 
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In the case of a conservative load (that is considering condition (17.11)) the 
examined equation can be written as 
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Equation (17.13) is valid for all types of conservative load mentioned in 
point 17.1 of this work. The values corresponding to any adequate case of a 
conservative load (every kind of load is characterised by different values of 
specified coefficients) should be substituted into parameters ρ, ν and γ. 

If in the considerations, a non-conservative load is taken into account 
(condition (17.10) is not valid), the equations describing the considered curves 
are as follows (ρ, ν, µ, γ  for adequate non-conservative loads are recorded in 
brackets): 

− Beck’s generalised load (ρ = 0, ν = 0, µ = 1-η, γ = 0) 
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− Reut’s generalised load (ρ = 0, ν = η, µ = 1, γ = 0) 
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The terminology connected to the columns is given from the point of view of 
a curve course in the plane load - natural frequency. 

In Fig. 17.2 possible cases of characteristic curves of systems subjected to 
conservative and non-conservative loads are presented. 

 
Fig. 17.2. The characteristic curves in the plane: load - natural frequency 

For the presented courses the support systems can be divided into: 

− divergence system (Fig. 17.2a). A system of this type undergoes 
destruction due to buckling at the critical divergence force, after 
reaching which the column movement stopped being restrained. The 
critical force corresponds to zero value of the first natural frequency 
(cf. [17.11, 17.38]); 

− flutter system (Fig. 17.2b). A system of this type undergoes 
destruction due to oscillatory vibrations of ascending amplitude for the 
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critical flutter force. In this case one can distinguish two type of flutter 
instability: so-called quiet and violent flutter. The column is unlikely 
to undergo destruction for a quiet flutter of a short duration at the 
critical load (amplitude increases very slowly and the critical flutter 
force has a low value). It is the opposite in the case of violent flutter 
- the amplitude increases very quickly, so even a short load of the 
system by critical force can lead to its destruction (cf. [17.1, 17.8, 
17.27]); 

− divergence pseudo-flutter system (Fig.17.2c). This system undergoes 
destruction due to buckling. Stability loss is analogical to the 
divergence system. The difference between the divergence system and 
divergence pseudo-flutter consists of a change in buckling form. The 
divergence system is characterised by buckling form without nodal, 
while in a divergence pseudo-flutter system, nodal is present in the 
buckling form. In this case the slope of the characteristic curve can be 
positive, negative or zero, while a divergence system is characterised 
by a negative or zero slope of the considered curves (cf. [17.25, 17.26, 
17.32]); 

− hybrid system. A hybrid system can lose stability due to both buckling 
and oscillatory vibrations of growing amplitude. The type of stability 
loss is dependent on the values of the system parameters. The 
boundary course of curves in the plane load – natural frequency 
(Fig. 17.2d and 17.2e) is a characteristic feature of hybrid systems. In 
the boundary case (corresponding to adequately chosen parameters) 
there are simultaneously two critical forces: a buckling critical force 
and a flutter force. One can distinguish two types of hybrid systems. 
In the first one, the critical flutter force is higher than the critical 
buckling force considering the boundary course of the characteristic 
curves. In the second type, the relation between the critical forces is 
inverse (the critical divergence force is higher in comparison to the 
critical buckling force) (cf. [17.21, 17.28, 17.18]). 

17.5. Modelling and analysis of slender structures under 
piezoelectric actuation 

17.5.1.  Introduction 

Piezoelectric actuators, which utilize the inverse piezoelectric effect of 
piezoelectric materials to generate displacement and force, are characterised by a 
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compact structure, very precise movement, high force generation and quick 
response time with low energy consumption. 

Culshaw stated [17.2] that piezoactuators are able to perform 100-1000 times 
higher work per unit volume and to generate 10 times more energy per unit mass 
than conventional pneumatic, hydraulic or electromagnetic actuators. The 
maximal energy transfer from an actuator to the mechanical system occurs in the 
case when the rigidity of both components are comparable. These properties 
make them appropriate for micro positioning, structure shaping, vibration 
control, cancellation and generation as well as for fluid control functions as 
valves, dispensers and micro pumps. Many possible applications are given by the 
producers of actuators [17.40÷17.42], and they are also thoroughly discussed in 
review papers by Niezrecki et al. [17.12], Peng and Chen [17.13] and Wang and 
Wu [17.39]. Peng and Chen [17.13] presented recent achievements in the 
modelling and control of piezoelectric actuators (PEAs). They examined various 
methods for modelling the linear and nonlinear behaviours of PEAs, including 
hysteresis and creep. It should be added that contemporary material science and 
engineering produces piezoelectric materials which are characterized by a very 
low, and hence insignificant, hysteresis. These crystalic materials show 10-times 
higher linearity than classical materials (barium titanate, lead zirconate titanate - 
PZT) and can be applied for a very precise positioning without the necessity of 
open-loop control. Wang and Wu [17.39] described the role of piezoelectric 
materials on both the structural stability enhancement of engineering structures 
and the repair of delaminated structures under static and dynamic loadings. 

As piezoceramic materials exhibit small strains - the ratio of displacement to 
thickness for PZT is in the range of 0.1÷0.2% - different actuator configurations 
have been developed. Niezrecki et al. [17.12] reviewed the architectural trends in 
amplifying small piezoelectric strains and categorized architectures of actuators 
into internally, externally and frequency-leveraged schemes. For an external 
scheme a direct extension of the material is amplified by the external mechanism. 
That idea has been a strong motivation because piezoceramic materials have one 
distinguishing attribute with regard to other smart materials - a Young’s modulus 
of the value within the range of 6÷9∙1010 N/m2. Such a high modulus is 
comparable to that of other engineering materials like aluminium, brass or 
bronze. This makes possible to discretely mount piezoceramic elements of 
different shapes and dimensions to the host structure to enhance its static or 
dynamic performance. The flextensional actuator (flexure guided actuator) is a 
very representative system of the externally leveraged scheme. In this device the 
beams and stiff link elements create an amplification frame including thin metal 
webs called flexural hinges or flexures. During the operation an excitation of the 
piezoelectric element (a monolithic bar or a stack), due to the applied voltage, 
results in its extensional in-plane motion in the axial direction, which is 
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transformed into out-of-plane motion via the flexure of the surrounding frame - 
Fig. 17.3. 

Fig. 17.3. Working principle of a flextensional actuator 

Two piezoelectric effects related to piezoelectric coefficients d31 and d33 are 
utilised to generate the axial displacement of the active element, i.e. the 
transverse and longitudinal effects, which relate longitudinal and transverse 
deformations to the electric field applied along and perpendicular to the poling 
direction. 

According to the IEEE Standard on Piezoelectricity [17.8] the constitutive 
equations for piezoceramic materials, which are transversely isotropic in the 
12-plane and exhibits symmetry about the 3-axis, are given as 

iipq
E
pqp EdTsS   += (17.16) 

j
T
ijqiqi ETdD   ξ+= (17.17) 

where: i, j = 1, 2, 3 and p, q = 1, 2, ..., 6. 

In (Eq. 17.16, 17.17) S is the strain vector, T is the stress vector [N/m2], E is 
the electric field vector [C/m2], D is the electric displacement vector [V/m], 

 E
pqs is the elastic compliance matrix [m2/N],  ipd is the piezoelectric constant 

matrix [m/V], T
ijξ  is the permittivity coefficient matrix [F/m] and the superscripts 

E and T denote that the respective constants are evaluated at constant electric 
field and constant stress, respectively. 

When a piezoceramic element is modelled as a Euler-Bernoulli beam or 
within the Rayleigh beam theory, all components of the stress vector with the 
exclusion of T1 are treated as negligible 

T2 = T3 = T4 = T5 = T6 = 0 (17.18) 

and for a voltage along the 3-axis, Eq. 1 can be presented as follows 
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For piezoceramic stacks and the electric field vector parallel to the 3-axis, 
the constitutive equations are reduced to the form 
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(Eqs. 17.16,17.17,17.19 and 17.20) define electromechanical coupling in 
piezoceramic materials and establish the basis for a description of the static and 
dynamic behaviour of smart systems controlled by piezoelectric actuation. 

17.5.2.  Application of piezoceramic transducers for enhancing 
         stability and dynamic control of structure 

Piezoelectric control of slender structures with surface bonded piezo-patches 
or with piezoelectric rods discretely mounted to the host structure has been 
studied in the Institute of Mechanics and Machine Design Foundations of 
Czestochowa University of Technology for many years. These investigations 
have concerned among others the non-linear vibrations of a beam with a pair of 
piezoceramic patches [17.14], the stability of an articulated column with two 
collocated piezoelectric actuators [17.16], the static and dynamic analysis of a 
flextensional transducer with an axial piezoelectric actuation [17.17] and the 
shape control of an eccentrically loaded host column by means of a piezoceramic 
rod [17.15]. 

L1 L2 L3

W1(x1,t) W2(x2,t) W3(x3,t) 
x1 x2 x3 

1–st segment 2–nd 3–rd segment 

Fig. 17.4. Beam with piezoceramic patches [17.14] 
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2
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Fig. 17.5. Flextensional transducer with an axial piezoelectric actuation [17.17] 
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Fig. 17.6. Column with the piezoceramic rod [17.15] 

The results of numerical simulations of the static behaviour of a column with 
a piezoelectric rod (Fig. 17.6) are presented in figures 17.7÷17.10. In Fig. 17.7 
the transversal displacements of the host column midpoint are plotted for three 
values of d specifying the offset between the axis of the two members. Fig. 17.7a 
concerns the midpoint displacement due to the external load, while Fig. 17.7b 
shows its suppression as a result of piezoactuation. It can be concluded that an 
increase in distance d results in a greater initial displacement but simultaneously 
a smaller voltage is needed for the complete reduction of this displacement. 

Fig. 17.7. The change in transversal displacement of the midpoint as a function of the 
external load (a) and the piezoforce (b) at different offset distance [17.15] 

In Fig. 17.8 an increase in the transversal displacements of the midpoint with 
an external load are plotted. Independently from the value of the piezoelectric 
force, when the external load reaches its critical value, the displacement tends to 
infinity. Studying the change in the transversal displacement of the column 
(Fig. 17.9) it can be stated that the initial deflection, which is caused by the 
eccentrically applied load, can be gradually reduced by generating the 
piezoelectric force. For every configuration, a maximum reduction point can be 
found above which any further increase in the piezoelectric force results in over 
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actuation causing a reverse deflection. In relation to the reduction of the 
displacements, a decrease in the bending moments along the length of the column 
have been presented in Fig. 17.10. In summary, it can be stated that proper 
actuation allows one to reduce both the deflection and the bending moment in the 
column at the same time. 

Fig. 17.8. The change in displacement of the midpoint as a function of the tensile 
and compressive piezoforce (a) and the external load (b) [17.15] 

Fig. 17.9. Deflected axis of the column at different values of the piezoforce [17.15] 

In the theoretical studies presented in this subchapter, it was shown that the 
deflection of the structure caused by an eccentrically applied external load can be 
controlled by a properly applied voltage to the piezoceramic bar. In the real 
construction the breakdown voltage must also be taken into account to prevent 
the depolarization of the piezoelement. The proper ratio of the flexural rigidity 
between the host column and piezo bar should also be selected to provide 
maximal energy transfer from the actuator to the system. The problem of over 
actuation can be solved by the close loop control strategy according to which the 
supplied voltage depends on the column bending being measured continuously 
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by means of small piezo sensors or strain gauges. Instead of very long monolithic 
piezoceramic bars, production of which is rather expensive, one can apply 
segmented rods with/or piezo stack actuators. The stacks offer high energy 
density compared to other smart materials and can be effectively used for the 
purpose mentioned in this subchapter. 

Fig. 17.10. Distribution of the bending moment along the column length 
for different values of the piezoforce [17.15] 

17.6. Stability of a column resting locally on a Winkler type 
elastic base at specific load 

The stability of a column loaded by a follower force directed towards the 
positive pole which rests locally on a Winkler type elastic base is considered 
(KLW system - Fig. 17.11b). The load is realized by a head inducing and taking a 
load of circular contour (constant curvature). The column was loaded by force P 
whose course of action goes through constant point O. Additionally, the course of 
action of the external loaded force is tangential to the bending line of the free end 
(x = L) of the system rod. The total length of the column equals L (while:  
L = l1 + l2 + l3 ). 

The system was divided into three elements with flexural rigidity (EJ)1, 
(EJ)2, (EJ)3, (while: (EJ)1 = (EJ)2 = (EJ)3 = EJ ) to model an elastic base with 
coefficient of elasticity K (the base placed locally on a certain segment along the 
column length). 

At the free end the column is connected to the head taking the load through 
an infinite rigid element of l0 in length. Consideration of this element is essential 
due to the structural solution of the head realising the load. The flexural rigidity 
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of the mentioned element is multiply higher than the flexural rigidity of the 
slender system. Pole O was placed within (R - l0) of the free end of the column. 
The results obtained for the KLW system are compared to the KL system 
(Fig. 17.11a) - a comparative system without a base. 

Fig. 17.11. Physical model of the column: a) linear column (KL), b) linear 
column resting locally on the Winkler type elastic base 

The parameters describing the location and the size of the Winkler type 
elastic base in relation to the length of the column were introduced to describe 
this base (equations 17.21a,b). 
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17.6.1.  Potential energy of the system. Equations of displacement, 
         boundary conditions 

The components of potential energy are defined according to the Bernoulli-
Euler bending theory taking into account the physical model of the column. The 
total potential energy V of the KLW system is as follows 
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The stability problem of a geometrically linear column was solved using the 
principle of minimum potential energy which consists of searching for the load at 
which the potential energy stopped being positively definite δV = 0, where: δ - 
variation operator. 

Applying relationship (17.22), after computing the variation of potential 
energy and considering the dimensionless quantities in the form 

 

(17.23a-g) 

The equations of lateral displacements were received 
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the boundary conditions of the considered system KLW are 
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17.6.2.  The results of numerical computations 

Numerical computations were carried out on the basis of the stability of the 
considered system taking into account the solution to the boundary problem.   
The research results were presented giving consideration to the dimensionless 
parameters of the critical load of the system *

cl  and an elastic base K* 
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Fig. 17.12. Change in the dimensionless parameter of the critical load 
*
cl  in relation to: a) placement of an elastic base ld

* along
the column length, b) the length of an elastic base lc

* 

The influence of the length of elastic base ld
* on the dimensionless value of 

the critical load *
cl  is presented in Fig 17.12, equation (17.26a). Numerical 

analysis was carried out for the chosen parameters of the head realising the load 
(R* parameter - equation 17.27) and the elastic base (K* - equation 17.26b). 

L
lRR 0* −

= (17.27) 

The influence of the change in the value of R* head parameter inducing the 
load on the critical value of the load parameter *

cl  is presented in Fig. 17.12. The 
computations were carried out for the chosen parameters of rigidity of the elastic 
base K* for a constant length of column L and the rigid element of the head 
realizing the load, being l0 in length. All curves reach extreme values ( ( )meR* , 
where m = 1...6) in dependence on the parameters of rigidity of elastic base K*. 
Together with an increase in the parameter of elastic base, the critical load 
reaches extremum for the smaller values of the radius of the head realizing the 
load. In the case of the KL column, the maximal value of the load occurs for 

5.0* =eR . 
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Fig. 17.13. Change in critical parameter of the load *
cl  in relation to parameter R* 

of the head inducing the load of the system for different values of rigidity coefficient 
of the elastic base K* 

A range of changes in the values of the parameters of head realising the load 
*
eR , for which maximal values of the critical load were received for the given 

values of Winkler’s base rigidity, is presented in Fig. 17.14. The computations 
were carried out for chosen parameters of elastic base lc

* and its placement ld
*. 
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Fig. 17.14. Influence of the rigidity coefficient of elastic base K* 
on the value of the head parameter inducing the load *

eR  

Fig. 17.15. Influence of the rigidity coefficient of elastic base K* 
on the value of critical parameter of the load *

cl  of KLW column

In Fig. 17.15, the influence of the rigidity coefficient of elastic base K* on 
the value of the dimensionless parameter of critical load *

cl  is shown. 
Computations were carried out for chosen parameters of head radius R* and for 
chosen values of the location and placement of the elastic base. Together with an 
increase in the rigidity coefficient of the base at given lengths of the column, an 
increase in the value of the dimensionless parameter of load *

cl  occurs. 

A physical and a mathematical model of the system was built within 
theoretical research presented in this subsection. The boundary conditions of the 
considered column were determined on the basis of potential energy. Numerical 
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simulations, concerning changes in the critical load in relation to chosen 
parameters of the heads realizing the load, were carried out. On the basis of the 
conducted numerical computations it can be stated that there are some values of 
the geometrical parameters of the heads for which the maximum of the critical 
load is obtained. Consideration of the Winkler type base in the physical model of 
the column increases the value of the critical load. The value of this load is 
dependent on the *

cl , *
dl  parameters describing the base size and its location in 

relation to the system length. Maximal values are obtained for the base placement 
at the free end of the column. 
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18. 

Elasto-plastic behaviour and load-capacity 

of multi-layered plated structures 

18.1. Introduction 

This chapter is a review of research realized in last decade mainly in 

collaboration with the late Professor Katarzyna Kowal-Michalska in the domain 

of elasto-plastic behaviour and ultimate strength of multi-layered plated 

structures. Thin plates consisting of several layers are widely used in modern 

thin-walled structure design. The layers are made of different materials. This 

concept is connected with common effort to reduce the weight of a structure 

while maintaining its strength properties. Since the mid-1980s, composite 

materials have been widely used in numerous engineering applications, also as 

materials of thin-walled beams and columns. Among them there are fiber 

composites, fiber metal laminates (FML), functionally graded materials (FGM). 

A separate class of multi-layered plated structures are sandwich plates: three-

layered plates with different types of structural cores (honey comb, corrugated 

sheets, reinforced foam). 

The fibrous composite material consists mostly of two components: the matrix 

and reinforcement i.e. fibres. The typical modern fibrous composite material is that 

belonging to the HCTL class (Hybrid Titanium Composite Laminate) and it consists 

of several layers of titanium and carbon fibres laid alternately [18.26]. 

Fibrous composites are non-homogenous and anisotropic materials. In 

particular cases, if fibres are orientated in the matrix in one or two perpendicular 

directions the composite is the orthotropic material with certain principal 

directions of orthotropy. If the reinforcement is distributed randomly in the 

matrix the composite material is isotropic one. 

Fiber Metal Laminates (FMLs) are hybrid materials, built from thin layers of 

metal alloy and fiber reinforced epoxy resin. These materials are manufactured 

by bonding composite plies to metal ones. FMLs, with respect to metal layers, 

can be divided into FMLs based on aluminum alloys (ARALL reinforced with 

aramid fibers, GLARE - glass fibers, CARALL - carbon fibers) and others. 

Nowadays material such as GLARE (carbon fiber/aluminum) due to their very 

good fatigue and strength characteristics combined with the low density find 
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increasing use in aircraft industry. The most common type of aluminium applied 

in Glare is 2024-T3 Alloy. 

The safe work of thin-walled structures subjected to in-plane loading is often 

determined by local buckling. The methods allowing for estimation of ultimate 

strength of thin-walled plated structures can be classified into four categories: 

 analytical-numerical methods where the equations describing the 

elastic post-buckling behaviour are found out analytically and next 

the elasto-plastic state is dealt with on the basis of the theory of 

plasticity by means of an iterative procedure [18.10], 

 the effective width approach, which consists in reduction of the 

flexural stiffness of the cross-section after local buckling and 

subsequently - in the implementation of the first yield threshold 

criterion in order to estimate a load-carrying capacity of the structure 

(lower bound estimation) [18.10, 18.22], 

 numerical methods - finite element methods and finite strip methods 

are both included in this category [18.25, 18.15], 

 kinematical methods based on principle of virtual velocities, leading 

to the upper-bound estimation of ultimate load [18.13]. 

18.2. Problem formulation 

The aim of the study is the estimation of the ultimate load for rectangular 

three-layered plates subjected to compression. The load carrying capacity of 

three-layered plated structures is determined by means of four methods 

mentioned above. The considered plate elements are simply supported and 

initially flat. The complex structure is assumed to be built of three-layered plates 

with metallic isotropic face layers and metallic or composite (orthotropic) core. 

The following core materials are taken into consideration: 

a) metallic,

b) fibrous composite,

c) FML material,

d) honeycomb core.

The loading is applied in such a way that during analysis the response of the 

plate to the increment of its nodal displacements (Fig. 18.1) is searched for. 

The plates are initially flat and stress free. It is assumed that the plate edges 

are simply supported and remain straight during loading. The plates are built 

of two identical isotropic layers (faces) that cover the middle layer (a core) 

of different material than faces. 
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The plates under consideration can be treated as individual elements (walls) 

of plated structures such as columns or beams (girders). Determining an ultimate 

strength of separate plate member allows one to estimate (approximately as a 

lower bound) the ultimate load of a whole structure. 

a  

b

g h  
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Fig. 18.1. Geometry of the plate 

18.3. Review of applied methods of analysis 

18.3.1.  Analytical-numerical method 

The method described below allows one to conduct the analysis of strains 

and stresses in the elastic and elasto-plastic range and to find out a load-

displacement curve for the multi-layered plate. The analysis is carried out on the 

basis of nonlinear theory of thin plates involving plasticity [18.6, 18.8]. When 

mechanical properties of all layers are of the same range, the Kirchhoff’s 

hypothesis can be applied for the entire section. 

The elastic material properties are determined by following independent 

constants: 

 for outer layers: Em, m, 

 for middle layer (it can be orthotropic in such a way that there are 

only differences in strengths/yield limits due to positive and negative 

stresses) - Ec, c, 

 the pre-buckling displacement and stress fields of a plate are 

described by its nodal displacements in the x and y direction 

a

x
Uu c

o  (18.1) 

and additionally: .consto
x  , 0o

y , 0o
xy . 
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In the elastic range the solution of buckling problem and post-buckling 

behaviour has been obtained on the ground of the classical theory of thin 

laminated plates [18.10]. 

In order to obtain the approximate solution of the problem the expressions 

describing the forms of displacement fields in the elastic range have been found 

out (the detailed description of the method is given in Refs. [18.6, 18.7]). 

The deflection function “w” has been assumed as 

b
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where f  denotes the free parameter. 

Assuming the in-plane displacements  u and v  in following forms 
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where C1, C2, B1, B2 are constants depending on the material and geometrical 

properties of layers that can be found out from equilibrium equations and taking 

into account boundary conditions. The displacement fields are determined for 

whole plate in the elastic range. 

If the displacements “u”, “v”, “w” are known then using the von Karman’s 

geometrical relations between strains and displacements and Hooke’s law for 

orthotropic and/or isotropic material the elastic stresses can be determined in any 

point of a three layered plate. 

In aim to determine the ultimate load the analysis of the post-buckling state 

has to be carried out in the elasto-plastic range. In the plastic range the following 

assumptions are made: 

 the material properties of layers are known in the whole range of 

stresses, 

 the appropriate yield criterion is applied for considered materials, 

 all assumptions of non-linear plate theory still hold, 

 the forms of displacement functions are the same in the elastic and 

elasto-plastic range but their amplitude “f” can vary arbitrarily, 

 according to the plastic flow theory the increments of plastic strains 

are described by Prandtl-Reuss equations. 
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Additionally it has been assumed that the material characteristics of isotropic 

and orthotropic layers are elastic-perfectly plastic. Therefore the following 

material properties in plastic range are to be applied: 

 for isotropic material (faces, core) - Ym , Yc  - yield limit, 

 for orthotropic material (a core) - T, C - yield limit in tensile and 

compression tests in x and y direction, respectively; and additionally S - 

yield stress in pure shear. 

For orthotropic materials Tsai and Wu proposed the yield (failure) criterion 

that takes into account the difference in strengths due to positive and negative 

stresses. In case of a plane stress state Tsai-Wu criterion is formulated as follows 

 13 2

3312

2

22

2

11321


xyyxyxxyyx
kkkkkkkF   (18.5) 

where parameters 33122211321 ,,, and ,, kkkkkkk  have to be determined by tensile, 

compressive and shear tests [18.10]. 

It is easy to notice that both Hill’s yield criterion and Huber-Mises criterion 

can be obtained from the equation (18.5). 

The associated flow rule for a given yield criterion can be expressed as 

[18.10] 
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The relations (18.6) were formulated by Prandtl and Reuss [18.10]. 

In the calculations of elasto-plastic plates undergoing large deformations the 

infinitesimal increments in (18.6) have to be replaced by finite ones (denoted by 

). Then the relations between stress and strain increments in the elasto-plastic 

range are described by Prandtl-Reuss equations in a form 
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where Sxx, Syy, Sxy are defined as 
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T and C denote the values of yield (failure) stress in tension and compression, 

respectively, determined for the characteristic of reference (see [18.10]). 

For a material isotropic in the elastic range with the elastic-perfectly plastic 

characteristics the parameter  (which is a scalar, positively defined) is [18.10] 
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where:   EGG /1 2 . 

Rayleigh-Ritz variational method involving plasticity is applied to the 

problem. It was proved by Graves-Smith [18.8] that it is possible to apply the 

variational method to the plates undergoing finite deflections. 

The potential energy in any point of a plate is a sum of elastic and plastic 

components. The plastic strain energy existing prior to the current strain 

increment bears no direct relation to the current state of stresses. For the purposes 

of minimisation this energy may arbitrarily be put to zero and only further 

changes of the strain energy have been taken into account. 
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where: V - is a volume of the plate, xyyx  ,,  denote the stresses before the 

loading increment is applied and xyyx   ,, , xyyx   ,,  denote the 

stress and strain increments produced by the increment of shortening Uc. 

In the elasto-plastic range the current state of stresses depends on the path of 

loading, so the solution of the problem can only be reached numerically. 

Therefore the numerical solution starts from the evaluation of the energy 

increment (10). In order to accomplish this, every layer is divided equally into 

kji   appropriate cubicoids. The energy values calculated in each of cubicoids 

are summed for a whole structure. 
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Next, the numerical minimisation of the energy functional is performed 

versus independent parameter f of displacement functions. The average stress 

corresponding directly to the load applied to a considered structure is obtained 

numerically. 

In each step of calculations active, passive and neutral processes and also the 

reduction of stress to the yield surface are taken into account. 

18.3.2.  Finite element method 

The FE analysis of buckling, post-buckling and ultimate load of thin-walled 

members is usually solved in two steps: 

 linear stability analysis (eigenvalue problem), which gives buckling 

loads (bifurcation points) and buckling modes (Fig. 18.3a [18.11]), 

 non-linear stability analysis that allows to follow the behaviour of the 

structure in the post-buckling range and to find out the load carrying 

capacity. 

Fig. 18.2. Four-node shell element 

Results of a linear buckling analysis (buckling loads and buckling modes) 

are used in the second step - non-linear analysis. The FE discrete model with the 

perturbation (geometric imperfections of the same shape as buckling modes 

determined in the first step) is applied. The analysis is carried out in order to 

determine the post-buckling path, the ultimate load and post-failure path. The 

imperfection amplitude is usually taken as 1/10 to 1/20 of the plate thickness. 

The FE model is built from shell elements. The simplest, typical shell element is 

shown in Fig. 18.2. It is a four-node element with six degrees of freedom at each 

node. 
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a) b)

Fig. 18.3. Relations between forces and displacements in nonlinear 

and linear stability analysis using FEM [18.11] 

In the present analysis the FE model was built of eight-node multi-layered 

shell elements of six degrees of freedom at each node (Fig. 18.4). This element 

allows to account for up to 100 layers of different thickness and material 

properties. In order to ensure the compatibility of boundary conditions 

considered in both methods the coupled degrees of freedom were assumed on the 

plate edges. It means that the distribution of applied compressive forces has to 

correspond to the uniform shortening of loaded edges and in the same time the 

unloaded edges should to remain straight and free of stresses. To describe a 

material stress - strain relationship the bilinear characteristic with plastic 

hardening [18.24, 18.25] was involved (Bilinear Kinematic Hardening option 

was used in ANSYS software). 

Fig. 18.4. Multi-layered shell element [18.24] 

It should be added that in the post-buckling range the calculations were 

conducted using iteration scheme, the “arc-length” method, in order to avoid 
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bifurcation points and track unloading. The applied iteration method is 

represented schematically in Fig. 18.5 [18.24]. 

The numerical calculations were conducted using FE commercial code ANSYS. 

The value of the imperfection amplitude was equal to 1/20 of the thickness of an 

analysed structure.  

Fig. 18.5. Arc-length iteration method [18.24] 

18.3.3.  Plastic mechanism analysis 

The kinematical method associated with the plastic mechanism approach 

(yield-line theory - YLT), has been used successfully to the analysis of ultimate 

load and post-failure behaviour of thin-walled structures since 60-ties of the 20
th
 

century [18.19]. This approach is attractive from some points of view, for it leads 

to relatively simple analytical or analytical-numerical solutions and provides not 

only with the upper-bound estimation of the ultimate load but with a knowledge 

about a rapidity of the failure process as well. The combination of the non-linear, 

post-buckling analysis with the analysis of the plastic mechanism allows one to 

establish a failure parameter approximately, i.e. to estimate the upper bound 

load-carrying capacity of the structure. Failure process in thin-walled, multi-

layered structures may be of different character The failure modes of sandwich 

structures, depending on different layers configurations, materials of layers, span, 

etc., include face sheet yielding at large deformations (mainly for metal faces), 

face wrinkling, core shear leading to crack or yielding, core indentation. In the 

case of face sheets made of composite materials, one can detect delamination of 

faces. Another mode of failure is debonding on the contact surface between face 

sheet and core. Thus, among all failure modes mentioned above, a failure due to 

yielding (both in face sheets and core) can also take place in certain cases. 

The kinematical method, based on the principle of virtual velocities [18.13, 

18.19, 18.15], has been applied to the problem of the load-carrying capacity 
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estimation of multi-layered plated structures in association with the rigid-plastic 

theory. Thus, the following additional assumptions are taken in the analysis: 

 yield occurs in all layers simultaneously, so that the continuity of 

plastic strains takes place (it limits the analysis to certain “sets” 

of materials), 

 layers lay-out is symmetrical with respect to the plate middle surface 

and yield stresses increase with the increase of the distance from the 

centre layer, 

 yield zones are not only concentrated at yield lines, but also at plastic 

zones of tensile stresses (true or quasi-mechanisms are taken into 

account). 

In the case of the multi-layered plate subject to compression, from the 

principle of virtual velocities we obtain the following variational relation 

mbext WWW   (18.11) 

where extW  is the variation of work of external forces, 
bW  is the variation of 

the energy of bending plastic deformation, mW - variation of the energy of 

membrane plastic deformation. 

The fully plastic moment capacity [18.13, 18.15] at concentrated yield-lines 

has been evaluated for multi-layered walls of the global plastic mechanism, under 

assumptions mentioned above. 
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where 0
pm  is a fully plastic moment at the centre layer (generally orthotropic) 

which is expressed as follows 
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for yield-line parallel to principal directions of orthotropy with corresponding 

yield stresses k
00 , 
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for yield-line inclined at angle  to principal directions of orthotropy whereas 

00  is the yield stress for the direction  that can be evaluated according to Hill 
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yield criterion [18.16]. The variation of the energy of bending plastic 

deformation dissipated at a yield-line amounts 

 k

k

pkb mlW  
~

 (18.15) 

where lk  is a length of the yield-line and k  is an angle of relative rotation of two 

walls of the global plastic hinge along that line. 

In the case of three-layered wall with orthotropic core and taking into 

account the strain hardening phenomenon in face sheets, the plastic moment 

takes the form 
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where 0
pm  is a fully plastic moment at the center layer (core), generally 

orthotropic, t1, t0 are facings and core thickness, respectively, 01 - yield stress of 

the facing material. The effective stress 1  is evaluated under assumptions taken 

by Kotełko [18.13, 18.16] 
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where Et is a tangent modulus and ult is an ultimate stress of the facing material, 

 is an angle of rotation as in [18.15] and n is a multiple of the wall thickness. 

Variation of plastic strain energy dissipated at plastic zones of membrane 

stresses in i-th layer takes form 

 p
p
yyi

p
xxiim ANNW )(,    (18.18) 

where: Nxi, Nyi are membrane forces per unit length, Ap is an area of membrane 

stresses plastic zones. Membrane forces Nxi, Nyi can be determined using the 

associated flow rule for Huber-Mises yield criterion. 

The total plastic strain energy dissipated at plastic zones of membrane 

stresses through the whole plate thickness is expressed as 
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where: Wm0 - plastic strain energy in center layer, Wmi - plastic strain energy in 

i-th
 
layer. 
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Taking into account (18.12) to (18.19) in (18.11), a relation of compressive 

external force P in terms of shortening parameter (represented graphically as a 

failure curve) is evaluated. 

An evaluation of the failure structural path (referred to as failure curve) can 

be used subsequently to the upper bound estimation of the load-carrying capacity 

of the plate or plated structure, namely an ordinate of the inter-section point of 

the failure curve with the post-buckling path obtained from the solution discussed 

in paragraph 3.2 is referred to as an upper bound ultimate load of the plate. 

18.4. Selected numerical results 

In this paragraph selected results of comparative numerical analysis carried 

out using three methods mentioned above, namely: analytical-numerical method 

(ANM), Finite Element Method (FEM) and kinematical method (KM) are 

presented for three-layered plates made of different materials. Point 4.9.3. 

concerns a particular problem of the three-layered plate with honeycomb core, 

solved using equivalent single plate models. 

Fig. 18.6. Load-shortening curves of square steel-aluminium-steel plate 

 under compression [18.11] 

18.4.1.  Plates with metallic or fibrous composite core 

Diagrams in Fig. 18.6 present the comparison of results obtained using 

different analytical methods and Finite Element Method for the plate with steel 

face sheets and aluminum core. Ratios hg  and ha  correspond to the notation 

in Fig. 18.1. The diagrams show the non-dimensional average stress normalized 

Faces - stainless steel 
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5
 MPa; m=0.3

Ym=184 MPa. 

Core-aluminium 

Ec=710
4
 MPa  c=0.3
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Load - shortennig curves of square muli-layered 
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with respect to face sheets yield stress * = av/Ym in terms of non-dimensional 

shortening coefficient u
*
 = (uc/a)/(Ym/Em) in the whole range of loading,

including the failure phase. Diagrams present FE results (curves FEM), results of 

calculations of the load-capacity in the elasto-plastic range, based on the method, 

described in paragraph 18.3.1 [18.17] (curves ANM) and failure curves for the 

pitched-roof plastic mechanism [18.15], obtained using kinematical method, 

described in paragraph 18.3.3 (curves KM). In the kinematical approach the 

pitched-roof plastic mechanism model has been applied [18.15]. Three sets of 

diagrams are presented, corresponding to three different core thickness to total 

plate thickness ratio hg . 

Analogous diagrams in co-ordinate system * = cv/Ym in terms of 

u
*
 = (uc/a)/(Ym/Em) for the plate with composite core are shown in Fig. 18.7.
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E
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m
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=384 MPa

Core - composite

E
c
=5.5*10

4
 MPa;  

c
=0.07; 

T=384 MPa; C=825 MPa

Fig. 18.7. Load-shortening curves of square metal-composite-metal plate 

 under compression (a/h = 100) [18.11] 

Analytical-numerical method (ANM) and FE simulations give very close 

results. The kinematical approach results, which are comparable with other 

results in the plastic range only, are also in relatively good agreement with two 

first methods. 
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Fig. 18.8. Load-shortening diagrams of square metal-FML-metal plate under 

compression: a/h = 50; g/h = 0,4  (curves 1, 1a), g/h = 0,2 (curves 2, 2a); 

curves 1a,2a - kinematical method (KM),  

curves 1,2 - analytical-numerical method (ANM) 

18.4.2.  Plates with FML core 

When a plate with GLARE core is subjected to the load, acting in its mid-

plane, in the post-buckling state aluminium layers undergo yielding, while 

deformations of layers with glass fibers are still in the elastic range. Thus, 

structural behaviour of the plate with FML core differs substantially from the 

behaviour of the plate with homogeneous core [18.12]. In this paragraph very 

preliminary results of the analysis of structural behaviour of plates with FML 

core are presented. This analysis should be treated as a very far going 

approximation. The results concern also very particular parameters of plate layers 

and cannot be generalized. In Fig. 18.8 load-shortening diagrams in the 

coordinate system *=cv/Ya in terms of u
*
 = (uc/a)/(Ya/Ea) are presented.

Values of ultimate loads obtained using ANM and KM methods are very close (it 

should be underlined again, that equilibrium paths obtained from ANM and KM 

methods are comparable only in the plastic range). However, this agreement has 

to be confirmed in further analysis for wider range of plate dimensions, material 

parameters and layers configurations. 

Face sheets - aluminium     Core - Glare 

 E=7 105 MPa, =0.3, 0=290 MPa   Ec=3104 MPa, c= 0.144 
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18.4.3.  Plates with honeycomb core 

a

b

tf

hc

E ,G ,ff f E ,Gc c



Fig. 18.9. Three-layered plate with honeycomb core 

For inherently non-homogeneous structures like densely stiffened panel or 

three-layered plate with reinforced foam core, honeycomb core as well as 

corrugated metal sheet core a concept of structural orthotropy can be applied. It 

means, that one can calculate reduced orthotropic material parameters of the non-

homogeneous structural member and subsequently consider the member as 

homogeneous but orthotropic one. Another words we can “smear” the non- 

homogeneity of the structure but take into account its orthotropy or generally, 

anisotropy. The problem of stability and load-capacity of sandwich structures 

with honeycomb core has been investigated by numerous researchers since 60-

ties of the 20
th
 century. Romanów [18.23] and Magnucki and Ostwald [18.17] 

carried out research in this domain. Romanów [18.11] has solved the problem of 

the sandwich plate with honeycomb core, using the energy method. Earlier 

Benson [18.20, 18.2] and Bert [18.3] worked on the same problem. The non-

linear problem (of large deformations) of three-layered plate with orthotropic 

core have been solved by Alwan [18.1]. 

The problem of homogenisation of the honeycomb core strength 

characteristics was analyzed by Birger and Panovko [18.4] but has not been 

solved entirely so far. It seems that this problem as well as a homogenization of 

local failure phenomena could be solved using an averaging technique based on 

the asymptotic approach, however there has been very limited  investigation into 

applications of this technique carried out. 

Thus, simplified models that enable to avoid a complexity of the real 

sandwich structure are very much desirable and very attractive for designers 

under the circumstances discussed above. Two methods may be applied to 

replace the honeycomb sandwich panel by the equivalent single plate. There are 

namely: the equivalent rigidity method and the equivalent weight method 

(Vinson [18.26], Faulkner [18.5]), however limitations of these two approaches 

have not been entirely defined so far (Paik [18.21] and Kotełko and Mania 

[18.14]). 
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In the equivalent rigidity method the single plate equivalent thickness teq and 

equivalent Young modulus Eeq are defined such that the flexural rigidity of the 

equivalent plate given by the relation 

)1(12 2

3

eq

eqeq

eq

tE
D


 (18.20) 

(where eq = f) is equal to the flexural rigidity of the sandwich plate, calculated 

as (Paik [18.21]) 
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Additionally, the shear stiffness of the equivalent plate is equal to the shear 

stiffness of facings. Thus, the parameters of the single plate are as follows 

[18.21] 
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In the equivalent weight method the weight of the equivalent plate equals 

that of the actual sandwich plate so that the equivalent thickness amounts 
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where f  is a density of the facing material and cav is an average density of the 

core. The Young and shear moduli are assumed to be equal to those of the facing 

material (Eeq = Ef, Geq = Gf). 

A more realistic and accurate model of the sandwich panel is the three-

layered plate with homogenized orthotropic core. In this study the 

homogenisation of the honeycomb core strength characteristics has been carried 

out using relations derived by Birger and Panovko [18.4]. Reduced elastic 

parameters of the core are determined assuming relative displacements of facings 

of the honeycomb sandwich panel to be equal to the corresponding displacements 

of three-layered plate with homogeneous orthotropic core. For example, in order 

to determine a shear modulus Gxz one has to calculate (using a certain method) 

relative displacements of facings in their mid-surfaces subject to loads applied in 
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these surfaces that cause distorsional (shear) relative displacements. The latter 

have to be compared with corresponding displacements in three-layered plate 

with homogeneous core. In an analogical way one can determine linear elastic 

moduli and Poisson ratios analyzing loads causing tension in the plate mid-

surface or the normal direction. 

Reduced elastic parameters used subsequently in FE analysis have been 

determined from following relations by Birger and Panovko [18.4]: 

 shear moduli  
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where t0 is the thickness of the cell foil, 2r is the size of the hexagonal cell,  is a 

coefficient depending on structural parameters of the honeycomb core; 
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Fig. 18.10. Ultimate compressive stress predictions obtained from equivalent single plate 

models for square 500x500 mm sandwich plate with aluminium facings and honeycomb 

core made from aluminium foil tf  = 3 mm,  

Ef  = 71 070 MPa, f0 = 268 MPa, f  = 2.7 g/cm
3
, cav = 54.4.kg/m

3
 [18.22] 

The equivalent single plate models have been used by Kotełko and Mania 

[18.14] in order to determine buckling loads and load-bearing capacity of the 



Selected Problems of Solid Mechanics 

424 

sandwich three-layered plate with the honeycomb core subject to compression 

(Fig. 18.9). The load-bearing capacity of equivalent single plates was determined 

using the effective  width approach. The exemplary results for plates with 

equivalent rigidity and weight together with FE results obtained for three-layered 

plate with homogenized core are shown in Fig. 18.10. 
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Fig. 18.11. Square plate 500x500 mm, hc = 3, tf = 1.5 mm, aluminium 

facings and honeycomb core made of aluminum foil  

(Ef = 71 070 MPa, f0 = 268 MPa), cav = 54 kg/m
3

The diagrams represent ultimate stress normalized with respect to facings 

material yield stress f0, in terms of core to face thickness ratio. Ultimate stress 

has been calculated using von Karman [18.9] and Marguerre [18.18] relations for 

the effective width reduction factor. Diagrams obtained for both equivalent plate 

models are compared with FE results and experimental results [18.21]. Diagram 

of the normalized buckling stress, calculated using classical solution for the thin 

plate under uniform compression, concerns only the model of equivalent rigidity. 

The FE analysis was performed in that case using reduced parameters of 

orthotropy, given by relations (18.11) and (18.12) in section 18.3.3. Hence, the 

material of facings was assumed isotropic and the core was modelled as 

homogenous orthotropic layer. The overall critical load and buckling mode of the 

plate was determined in the linear buckling analysis (eigen-value buckling). The 

non-linear buckling approach was employed for post-buckling response of the 

plate. The initial geometric imperfection for non-linear analysis was set as a first 

buckling mode shape with appropriate reduction coefficient. 

Predictions of ultimate stresses obtained for the single plate model of 

equivalent weight underestimate an actual load-capacity of the sandwich panel 
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except the lowest values of 
fc

th  ratios, although experimental results even for 

35.4
fc

th  are very close to that prediction. However, it should be underlined 

here that both experimental ultimate loads indicated in the diagram concern the 

case of the failure initiated by the delamination while both theoretical models 

assume a perfect bonding between facings and the core. For higher values of 

fc
th  ratio greater than 3 the equivalent weight model is inadequate and gives 

ultimate load values more than two times lower than those obtained from 

equivalent rigidity model. 
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Fig. 18.12. Load-shortening diagram of square 500x500 mm sandwich plate  

with aluminium facings and honeycomb core made from aluminium  

foil tf  = 3 mm, hc = 25.4 mm, Ef  = 71 070 MPa, f0 = 268 MPa,  

f = 2.7 g/cm
3
, cav = 54.4.kg/m

3
 

Structural behaviour of the sandwich plate in the entire range of loading (up 

to and beyond an ultimate load) has been examined using the effective width 

approach (for post-buckling state) and the kinematical approach (for the failure 

state). Pre-buckling paths were obtained taking into account compressive 

stiffness of facings only while compressive stiffness of the core was neglected. 

The single plate model of equivalent rigidity was applied as a more realistic one. 

Post-buckling paths were calculated using the effective width approach with 

two different reduction factors, by von Karman [18.9] and Marguerre [18.18], 

respectively. 

An exemplary diagram of the plate structural behaviour is shown in  

Fig. 18.11. Continuous straight line (1) represents the pre-buckling path, the 

failure curve (2) is obtained from the solution described in the previous 
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paragraph (kinematical approach). The ordinate of the intersection point 

indicated in the diagram represents the upper-bound estimation of the load-

capacity of the sandwich plate. Theoretical pre-buckling and post-failure paths 

together with the failure curve form an approximate structural behaviour 

characteristics of the sandwich plate. 

The discrepancy of results obtained for the single plate of equivalent rigidity 

and those obtained from FE calculations for the three-layered plate with 

homogenized orthotropic core is significant. However, the discrepancy concerns 

the stiffness of both equivalent plate and the three-layered plate with 

homogenized core. On the contrary, it is worthy to notice that buckling loads 

(folding points in both diagrams) are nearly the same for both cases. The 

discrepancy in magnitudes of upper bound estimations of ultimate loads obtained 

using the pre- and post-buckling path for the single plate of equivalent rigidity 

and the failure curve (from kinematical approach) and using FE results and the 

same failure curve amounts about 36%. More safe seems to be the second 

estimation: compilation of the failure curve and the post-buckling path obtained 

from FE analysis. 

In this study the same approach has been used in order to analyse the load-

capacity and failure of the simplified, approximate model of the sandwich panel, 

i.e. the model of two-layered plate consisting of facings of the real sandwich 

plate, the distance of which is maintained constant and equals the core thickness. 

Thus, the load-carrying capacity of the core is entirely neglected. The model 

applied is in fact a very “rough” approximation of real phenomena occurring in 

sandwich panels. However it enables to determine effectively a load-capacity of 

the sandwich panel in relatively simple analytical-numerical procedure. 

Comparison of theoretical and experimental results obtained from the 

calculations based on this simplified model are shown in Fig. 18.12. Continuous 

straight line (1) represents the pre-buckling path, the failure curve (2) is obtained 

from the solution described in paragraph 18.3 (kinematical approach). The 

ordinate of the intersection point indicated in the diagram represents the upper-

bound estimation of the load-capacity of the sandwich plate. Theoretical pre-

buckling and post-failure paths form an approximate structural behaviour 

characteristics of the sandwich plate that is compared with experimental results 

obtained by Paik [18.21] - curve (3). The agreement of theoretical and 

experimental values of ultimate loads is reasonably good, although many factors 

influencing the sandwich panel structural behaviour were  not taken into account 

in this  approximate theoretical analysis. 
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18.5. Final remarks 

The above chapter presents some selected results of the structural behaviour 

analysis of three-layered plates made of widely treated composite materials. It 

contains also the review of analytical-numerical methods, which can be applied 

in this analysis and are competitive with Finite Element simulations. However, 

the authors are aware of many simplifications assumed in those analytical-

numerical methods. First of all, yielding is assumed as an only mode of failure, 

while in real plated structures made of composite materials one has to do with 

some other complex modes of failure, like face wrinkling, core shear leading to 

crack, core indentation, debonding on the contact surface between face sheet and 

core, etc. Thus, further research should be continued to include into the 

analytical-numerical models some of these phenomena. Also extension of those 

models into multi-layered plates built of orthotropic layers of different 

configuration is an open question. 
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19. 

Non-linear vibrations of a thin-walled composite 
column under periodically varied in time 
compression load 

The phenomenon of a static buckling and post-buckling behaviour of thin-
walled structures is well-known [19.3÷19.6, 19.10÷19.20, 19.30÷19.35]. In this 
case, the problem of interaction of the different buckling modes is very 
interesting and great significance. Thin-walled structures have many different 
local and global buckling modes. Such structures can sustain load after local 
buckling mode. This mode only cause a reduction in stiffness of the structures. 
While, the global buckling mode always causes a collapse of the structures. The 
interaction between buckling modes accelerates this process. This effect takes 
place when the global and local buckling modes are close each other [19.30, 
19.35]. It can be achieved by selecting the appropriate length of the column. The 
local buckling takes place for the short columns. On the other hand, the long 
columns are subject to global buckling [19.2]. 

The problem of interactive buckling can be solved using asymptotic Koiter’s 
theory [19.18÷19.19, 19.35] which is based on the asymptotic type expansion of 
the post-buckling path. The consideration of displacements and load components 
in the middle surface and precise geometrical relationships enabled an analysis of 
all possible buckling modes. The determination of the post-buckling equilibrium 
path requires the second order approximation to be taken into account. The two 
uncoupled modes are symmetric and stable, but on coincidence they are found to 
give rise to a symmetric unstable mixed form. The unstable coupled path will 
branch off the lower of the two uncoupled paths. The coupled post-buckling path 
can be important in continuous systems and it have an important effect on the 
type of instability which occurs. It enables determination of post-buckling 
equilibrium paths for the imperfect structure and to determine on them secondary 
bifurcation points or/and the limit point. If one takes into account the second 
order approximation, one can determine the limit load capacity of a structure 
in the elastic range. An assumption of one of the ”engineering” hypotheses 
of load carrying capacity allows for determination of the approximate estimation 
of load carrying capacity for the elastic-plastic range. Static interactive buckling 
of composite column has been described, among others, in books [19.12, 19.18, 
19.35]. 
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However, if the load depends on the time, then the strength of the structure 
may reduce. The dynamic behaviour of thin-walled structures, subjected to in–
plane non-periodic and periodic loading can be considered using Koiter’s theory 
[19.3, 19.20, 19.31÷19.34]. The asymptotic approximation leads to non-linear 
equations which can be solved with the Runge-Kutta method. The periodically 
changing load produces periodically changing coefficients in the mathematical 
model. The approximate analytical solutions can be determined by the multiple 
time scales of method [19.7÷19.8, 19.21÷19.23, 19.29, 19.37÷19.40]. The 
influence of different parameters of excitation on the structure response can be 
investigated. Additionally, a bifurcation scenario and a possible transition to 
chaotic oscillations can be also described. The response of structures subjected to 
oscillating loads can lead to vibration buckling [19.36]. Then, in certain 
frequency intervals, the trivial solution loses its stability and, the parametric 
resonance occurs. In such a case transverse vibrations become unacceptably large 
at critical combinations of amplitude, load frequency and damping. The most 
essential and dangerous, from the practical point of view, is the principal 
parametric resonance. This phenomenon appears for sufficiently small values of 
the axial force, when the loading frequency equals twice the natural bending 
frequency of the system (the column in our case). Apart from the principal also 
case the fundamental resonances may also appear, when the loading frequency 
coincides with the natural bending frequency of the column. Moreover the 
secondary parametric resonances may also occur. So, vibration buckling 
corresponds to the buckling resulting from parametric excitations. In paper 
[19.40], the authors deals with aspects of the parametric oscillations of thin-
walled composite column under compression load, composed of static and 
periodic parts. The mathematical model of the structure considers geometrical 
nonlinear terms which couple considered global mode and the lowest local 
buckling one. The dynamic solutions were investigated around the principal 
parametric resonances. 

The dynamic buckling of the structures under impact compression load can 
be treated as an amplification of initial displacements, or stresses [19.16]. For the 
dynamic buckling of a prefect structure, due to pulse loading, there is no exact 
counterpart in the static bifurcation load. Therefore dynamic bucking can be 
defined as the dynamic response of the structure which attains unacceptable level 
of displacements or stresses. In the analysis of dynamic buckling, a shape of 
pulse loading, pulse duration and a magnitude of its amplitude should be taken 
into account. The rectangular pulse is the most dangers. If the pulse duration is 
comparable to the period of natural vibrations, the dynamic buckling occurs.  
If the pulse duration is longer, the problem becomes quasi-static. Using  
the dynamic buckling criteria, it is possible to determine the dynamic critical load. When 
the displacement growth is assessed with time for different amplitude of load, 
buckling occurs when the dynamic load reaches a critical value associated with 
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a maximum acceptable deformation (strain) or stress, the magnitudes of which 
are defined arbitrarily. Thus, there is no perfect criterion so far for dynamic 
buckling and no general guidelines for the design. Detailed reviews of problems 
of dynamic buckling under impact are presented in books [19.15÷19.17, 19.20, 
19.25÷19.26]. The monographs [19.27÷19.28] deals with the experimental 
aspects of dynamic buckling. 

19.1. An approximate method of analytical solutions 
for non-linear vibrations around the principal 
parametric resonances 

The differential equations of motion can be obtained from the Hamilton’s 
Principle. Under analysis, the plate model of a thin-walled structure 
[19.18÷19.19] was used. The rectangular plates are connected along longitudinal 
edges and supported at both ends. The constitutive equations of the material are 
assumed to be linear according to the classical theory of multi-layer plates [19.1, 
19.9, 19.24]. The solution of these equations for each plate should satisfy: initial 
conditions, kinematic and static continuity conditions at the junctions of adjacent 
plates and the boundary conditions. The non-linear problem of multi-modes 
buckling has been solved with the asymptotic perturbation method in order to 
obtain an approximate analytical solution to the equations. The displacement 
fields and the sectional force fields were expanded in power series in the 
amplitudes of the buckling modes divided by the thickness of the first component 
plate. By substituting the displacement fields and the sectional force fields into 
the equations of equilibrium, junction conditions and boundary conditions, the 
boundary value problems of the zero, first and second order can be obtained. This 
method has allowed one to find the post-buckling coefficients which can be used 
in description of post-buckling equilibrium path for static load and in Lagrange 
equations for dynamic load. The details descriptions of this analytical-numerical 
method can be found in the monographs [19.18÷19.19]. In Poland, Kołakowski 
from the Department of Strength of Materials, Lodz University of Technology 
and co-workers developed this method and presented a lot of interesting results 
for problems of the coupled buckling of thin-walled plate structures with 
complex shapes of cross-sections, including an interaction of component plates. 

In the case of the interaction of n buckling modes, the differential equations 
of motion can be written as [19.3÷19.6, 19.10÷19.20, 19.30÷19.35] 
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for r = 1,…,n  (19.1) 

where: rζ  is the dimensionless amplitude of the r-th buckling mode (maximum 
deflection referred to the thickness of the first plate); 

rs , orω , *
rζ  are the critical stress, circular frequency of free transverse 

vibrations corresponding to the r-th buckling mode when the compression 
stress is equal to 0 and dimensionless amplitude of the initial deflection 
corresponding to the r-th buckling mode; n is the number of interact 
buckling modes, respectively; 

pqrb  are the non-linear coefficients in the first order approximations; 

pqsrc  are the non-linear coefficients in the second approximations. 

For the ideal structure (i.e. without initial imperfections) 0* =rζ and adopting 
the theory of the first order non-linear approximation (i.e. 0=pqsrc ) Eq. (19.1) 
can be written as 
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ω
  for r=1,…,n (19.2) 

The range of indexes p, q, r, s are (l, n). The summation is supposed on the 
repeated indexes. The coefficients pqrb  were determined with well-known 
formulae (see for example [19.3-19.6, 19.10-19.20, 19.30-19.35]). 

The static problem of interactive buckling of thin-walled multilayer columns 
has been solved by the method presented in [19.12], while the frequencies of free 
vibrations have been determined in [19.33]. 

Let’s consider the interaction of the global buckling mode and the lowest 
local one (i.e. p = r = q = 2 in Eq.(19.2)). Introducing dimensionless time 
[19.7÷19.8, 19.21÷19.23, 19.37÷19.40] 

to2ωt =  (19.3) 

And assuming that compression stress is composed of constant and periodic 
component 

tts Ω+= cos)( qqo  (19.4) 
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Eq. (19.2) can be written as 
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Introducing dimensionless natural frequencies 211 / ooo ωω=Ω  and 
1/ 222 ==Ω ooo ωω , Eq. (19.5) is written in the form 
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where: tζ ,1 , tζ ,2 , ttζ ,1 , ttζ ,2  denote the first and the second order time 
derivatives. 

Parameter 12 /ssδ =  means the ratio of critical stresses; oρ  represents a 
dimensionless constant load and ρ the amplitude of parametric excitation, defined 
as: 2/sρ oo q= , 2/sρ q= . Parameter Ω represents a dimensionless parametric 
excitation frequency. In Eq. (19.5) 21112112 bbb += , 21 212 122b b b= +  and 
furthermore modal viscous damping is introduced, by means of coefficients 1β  
and 2β . 

The differential equations of motion Eq. (19.5) constitutes a nonlinear 
system which includes nonlinear quadratic terms and parametric excitation. 
When we try to find solutions of such problem we have to assumed those 
nonlinear coupling terms are small [19.22-19.24]. Assuming that the nonlinear 
terms, the parametric excitation and the damping are all small, we express all 
those coefficients by a formal small parameter ε  

oo q~ερ = , q~ερ = , 111111
~bb ε= , 1212

~bb ε= , 221221
~bb ε= , 112112

~bb ε= , 

2121
~bb ε= , 222222

~bb ε= , 11
~βεβ = , 22

~βεβ = . 
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Thus, recalling that, the differential equations of motion take the form 
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To determine approximate analytical solutions we use the multiple time 
scale method [19.7, 19.21-19.23]. A solution of Eq. (19.7) is sought near the 
main parametric resonances in form of a series of the small parameter ε 

( ) ( ) ( ) ...,,, 1110 ++= TTTT ojojj εζζεtζ  for   j=1,2 (19.8) 

coordinates ( )10 ,TTojζ  and ( )11 ,TTojζ , are, respectively, the zero-th and first 
order functions of time. Dimensionless time is also expressed by a series for the 
small parameter, 

1TTo εt +=  (19.9) 

where oT  and 1T  are respectively the fast and slow time scales. Such time 
definitions results in the following formulae for the first and the second time 
derivatives [19.21-19.23] 
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where n
mm

n TD ∂∂= /  means m order partial derivative with respect to the n-th 
time-scale. 

19.1.1.  Principal parametric resonances for Ω≈2Ω01 

Assuming that 12 oΩ≈Ω  [19.21÷19.23], we can write 

1
22

1 25.0 εν−Ω=Ωo (19.11) 

where 1ν  is a frequency detuning parameter. 
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Substituting solution, taking into account the derivative definitions and 
expressing the natural frequency, after grouping terms with respect to order ε, we 
get a set of differential equations in the successive perturbation order 

εo - order 
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We may write the solution in ε0– order in the form 
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where: i is the imaginary unit, A1 is the complex amplitude and 1A  it’s complex 
conjugate. 

Solution (19.15) is substituted in ε1- order. After grouping the terms in 
proper exponential functions, we get 
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where ST represent terms which generate secular terms in the solution of (19.16) 
and cc mean complex conjugate functions to those written in the equation. 
Therefore, to avoid this situation the ST have to be zero, thus we have 
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Next, rejecting the ST terms we may determine the particular solutions 
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Substituting this solutions into the second order equations (i.e. ε2 - order) we get 

NSTcc

bbbbb

AiAA

ADiADADD

o

o

++

+
Ω

++Ω+

+Ω++−

+Ω−Ω+=Ω+

Ω
2
Ti

1
22

1
2
12

12112
12112111

2

11111

12111
2

1
2
112

2
12

2

o

]}eA~
128

1- A)A
-1

~~
0.25 ~~5.0~ 

6
5[(

]~5.0)~5.0~([

~25.0{25.0

ρδ

βρρδν

βζζ

NSTDo =+ 2222
2 ζζ (19.19) 

To avoid secular terms, thus we have 
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where NST denotes nonsecular generating terms. 

Applying the so called reconstitution method, we may formulate modulation 
equations for the complex amplitudes A1. The amplitude derivative with respect 
to dimensionless time takes the form 
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Expressing complex amplitude A1 in the polar form 

 1
11 5.0 Φ= ieaA  (19.22) 

We can get the modulation equations for amplitude a1 and phase φ1 
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In steady state a1,τ = 0, φ1,τ = 0. We can find the resonance curve around the 
principal parametric resonance 
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We note that all the parameters in above equation have their original definitions, 
and are written without the tilde. 

Finally, we can obtain approximate solutions for the first and second coordinate 
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19.1.2.  Principal parametric resonances for Ω≈2Ω02 

In this case, we can write [19.21÷19.23] 

2
22

2 25.0 εν−Ω=Ωo (19.26) 

where: 2ν  is a frequency detuning parameter around the second natural 
frequency.  

In this case the second coordinate dominates therefore, we seek solution in 
the form 
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Repeating a similar procedure as in chapter 19.1.1, we get a set of equations 
in the 0ε , 1ε , 2ε  perturbation orders. Solving, them successively, and 
eliminating the secular generated terms, we get solutions for both coordinates 
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Expressing complex amplitude A2 in the polar form 

2
22 5.0 φieaA = (19.29) 

We can get the modulation equations for amplitude a2 and phase φ2. In 
steady state a2,τ = 0, φ2,τ = 0. We can find the resonance curve around the 
principal parametric resonance 
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19.2. Exemplary calculations and numerical studies 

A detailed analysis of the calculations is conducted for compressed columns 
with the following dimensions of the channel cross-sections (Fig. 19.1): 

b1 = b3 = 50 mm, b2 = 25 mm, h = 0.927 mm. 

The length of the column is L = 450 mm. 

 
Fig. 19.1. Schematic view and dimensions in mm of the channel column 

The column is made of a seven-layer composite with symmetric ply 
alignment [07]. Each layer of the thickness hlay = 0.131 mm is characterized by 
the following mechanical properties: Young’s elastic moduli in the 1 and 2 
material directions E1 = 130 GPa, E2 = 6.36 GPa, Kirchhoff’s modulus (shear 
modulus) in the 1, 2 plane G12 = 4.18 GPa, Poisson’s ratio in the 1, 2 plane 
ν12 = 0.32 and the density 2000 kg/m3. 

The static problem of buckling of thin-walled multilayer columns has been 
solved (Fig. 19.2) and the frequencies of free vibrations have been determined. 
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Fig. 19.2. Values of buckling stresses versus the number of half-waves m 
for the uniformly compressed channel column  

(a) (b) 
Fig. 19.3. Buckling modes: 

a) global buckling mode (m =1), b) lowest local buckling mode (m =3)

The frequency of free vibration ωor and critical stresses σr (r=1,2) for global 
(Fig. 19.3a) and the lowest local buckling modes (Fig. 19.3b) are: 

ωo1 = 1098.50 rad/s, ωo2 = 1796.22 rad/s, σ1 = 49.518 MPa, σ2 = 14.711 MPa 

The values of nonlinear coefficients bijr of the first order approximation are: 
b111 =-0.0126409, b221 =-0.0563475, b12 =0.0273859, 

b112 =0.00520127, b222 =-0.00306516, b21 =-0.0428073 

Modal damping of the structure has been assumed to be arbitrary with 
coefficients β1 = 0.01 and β2 = 0.01. 
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Solving modulations equations (19.24) in the first order perturbation near the 
first natural frequency, we can determine the relation between the parameters 
which has to be satisfied in order to get periodic oscillations 

 42
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The above equation allows to determine stability zones in a two parameters plane 
(ρ, Ω) i.e. amplitude and frequency of excitation. In a similar way we may find 
the stability zone near the second natural frequency 
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Unfortunately, the first perturbation order does not allow to determine the 
amplitudes as a function of frequency or another bifurcation parameter. To get 
these dependencies we have to examine the modulation equations taking into 
account the second order terms. 

Solving the equations (19.24) and (19.30) representing the resonance curves 
in the second perturbation order, around the first and the second principal 
parametric resonance, we find amplitudes a1 and a2, respectively. The resonance 
curves, calculated around the first (Fig. 19.4a) and the second (Fig. 19.5a) 
principal parametric resonance, exhibit the softening effect. The influence of the 
added constant load component, ρ0 = 0.1, is presented by red curves. This 
parameter shifts the resonance zones into the lower frequency direction. 

a)    b)  

Fig. 19.4. The resonance curves (a) for ρ0 = 0, ρ = 0.08 (black colour), ρ0 = 0.1, ρ = 0.08 
(red colour), and amplitude of the column response versus amplitude of parametric 

excitation (b) for ρ0 = 0, Ω = 1.205 (black colour), for ρ0 = 0.1, Ω = 1.205 (red colour), 
around the first natural frequency 
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a)  b) 

Fig. 19.5. The resonance curves (a) for ρ0 = 0, ρ = 0.08 (black colour), ρ0 = 0.1, ρ = 0.08 
(red colour), and amplitude of the column response versus amplitude of parametric 

excitation (b) for ρ0 = 0, Ω = 1.9 (black colour), ρ0 = 0.1, Ω = 1.9 (red colour), around 
the second natural frequency 

On the basis of the approximate analytical solutions, the bifurcation 
diagrams for fixed frequency and varying amplitude of excitation ρ are 
computed. Trivial solutions go to periodic oscillations after the subcritical or 
supercritical Hopf bifurcation. This phenomenon is presented in Fig. 19.4b 
around the first natural frequency and in Fig. 19.5b around the second natural 
frequency. The scenario is different for different values of constant load. If ρ0 = 0 
(black curve) then the subcritical Hopf bifurcation takes place. While for ρ0 = 0.1 
the supercritical Hopf bifurcation occurs (red curve). Similar behaviour have 
been observed around the first and the second resonance zones (Fig. 19.4b and 
Fig. 19.5b). Comparing Fig. 19.4b and Fig. 19.5b we may conclude that for the 
assumed configuration of the composite column, the second (local) mode loses 
stability of its equilibrium position earlier then the first (global) mode. 

a)    b) 

Fig. 19.6. Bifurcation diagrams near the first principal resonance, (a) coordinate ζ1, 
and (b) coordinate ζ2, ρ = 0.1 [19.40] 
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In order to verify analytical solutions the bifurcation diagrams near the first 
and the second principal parametric resonance are computed directly from the 
ordinary differential equations of motion (19.6). Curves in Fig. 19.6 confirm the 
analytical prediction very well. Moreover on the basis of the direct numerical 
simulation we see that dynamics of the structure is very sensitive to the initial 
conditions. The increase in the dynamic load amplitude ρ leads to a period 
doubling bifurcation (Fig. 19.7), and then the solution transits to chaotic 
oscillations after the cascade of period doublings. Another scenario is observed 
while varying excitation frequency. Around the first resonance zone for ρ=0.1 
the subcritical Hopf bifurcation occurs (Fig. 19.8a) which is in agreement with 
the analytical prediction. But around the second resonance zone, apart from 
periodic solutions also irregular oscillations arise (back region in Fig. 19.8b). 

a)    b)  

Fig. 19.7. Bifurcation diagrams of coordinate ζ1 versus amplitude of parametric 
excitation ρ near the first principal resonance Ω = 1.22, (a) full diagram and (b) zoom 

near the period doubling bifurcation [19.40] 

a)     b)  

Fig. 19.8. Bifurcation diagrams near the first, (a) and the second (b) principal parametric 
resonance; coordinate ζ1, ρ = 0.1 
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20. 

Research and design of thin-walled steel 
structures by FEM. Part I- Stability of slender 
steel structures: A short review and guidance  
for numerical modelling 

20.1. Introduction 

Scientifically, buckling is a mathematical instability, leading to a failure 
mode. The formal meaning of the notion is found in engineering and sciences, 
concerning stability of systems. Broadly speaking, structural stability can be 
defined as the power to recover equilibrium [20.1]. It is an essential requirement 
for all structures. Theoretically, for a structural system, buckling is caused by a 
bifurcation in the solution to the equations of static equilibrium. At a certain 
stage under an increasing load, further load is able to be sustained in one of two 
states of equilibrium: an undeformed state, or a laterally-deformed state. In 
practice, buckling is characterized by a sudden failure of a structural member 
subjected to high compressive stress, where the actual compressive stress at the 
point of failure is less than the ultimate compressive stresses that the material is 
capable of withstanding. 

To evaluate the behaviour of a slender structure, which might loss its 
stability, according to previous definition, needs for the control by design the 
three characteristic ranges of load-deformation, as shown in Figure 20.1: 

− Pre-critical range, e.g. P∈(0, Pcr] defining the domain of Structural 
stability; 

− Critical point (bifurcation of equilibrium); 
− Post-critical range, e.g. P > Pcr, the Structural instability domain. 

Although the stability of bars was firstly studied over 250 years ago (Euler's 
paper was published in 1744), adequate solutions are still not available for many 
problems in structural stability. So much has been and being studied and written 
in the field of structural stability, that one may well wonder why, after such 
intellectual and financial efforts, there are no definite solutions to these problems. 
Numerical facilities and advanced FE codes make possibly today to calculate 
and/or simulate accurately the behaviour of complex structures. However, for 
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slender structures highly sensitive to buckling, still there are difficulties for a 
reliable evaluation of the buckling load. 

Why? Because determining the load under which a structure collapses due to the 
loss of stability still remains one of the most sensitive problems of structural design! 

Fig. 20.1. Critical and post-critical behaviour 

This is due to the following factors [20.2]: 
a) The loss of stability depends on numerous factors, some of which are

very difficult to control. This is confirmed by a number of recent
structural accidents. Faulty design and execution, overstressing or the
use of inadequate materials have been shown to be mainly responsible
for these accidents. It should be noted that these accidents practically
cover the entire range of structures. Today, only a specialist can carry out
stability checks in complete agreement with the actual behaviour of the
structure;

b) Instability occurs in a region with both strong geometrical and material
nonlinearities. For pre-critical range an extensive literature provides
effective solutions. For post-critical range, the theoretical background
was significantly developed within second half of last century, but only
after remarkable progress in the field of electronic computing equipment,
and nonlinear analysis using FE (e.g. GMNIA - Geometrical and
Material Nonlinear with Imperfection Analysis) and some special
numerical techniques (such as the Arc-Length Method) in the
neighbourhood of the limit point, has made possible to correctly describe
the behaviour of structure, shortly before its failure and after. However,
such analyses are difficult and costly and they are not accessibly for
many designers;

c) In no other field of structural mechanics the influence of imperfections
due to the execution is not as significant as in the field of instability. In
strength analysis the stress-strain state is determined by means of an
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idealized scheme of the structure, neglecting the geometrical and 
mechanical imperfections, compared to the actual structure, differences 
are relatively small. However, in the case of slender structures, highly 
sensitive to nonlinear effects and imperfections, due to instability the real 
capacity might drops up to 50%-80% compared with the one of ideal 
structure, if that is evaluated using a simplified elastic eigenvalue 
buckling approach; 

d) Checking the buckling of structure experimentally is very difficult
because it is impossible to test the actual structure just until it collapse.
In strength analysis, the reduced model tests are used for checking the
validity of theoretical values. In stability analysis, testing on reduced
models is irrelevant in most cases, because a correct modelling of the
effect of imperfections is practically impossible;

e) In the last decades, a lot of information has become available through
scientific papers and books related to the progress in research on stability
and instability of structures; however the design codes and standards
with modern conceptions for stability checking remained at the level of
classical formulation.

Why such a delay between the advances in research and update of the codes? 
This is because, trying to integrate the research results related to the complex 
problems of stability and, particularly, instability of structures, into the actual 
format of design codes, using analytical formulations, sometimes leads to really 
complicate formulas, difficult to understand and difficult to apply. At the end, 
even these analytical approaches are not applied through hand calculations, since 
they can be solved using Excel calculation sheets, Mathcad or other 
computational tools, their use in practical design still remains difficult. 

One speaks, more and more, that the future design codes will be mostly 
based on application of numerical tools than on the code based analytical 
methods. However, the availability of numerical tools, e.g. computer and 
software, it is not enough, since applying correctly these tools needs for a deep 
understanding of the problem and, for that, a good theoretical background and 
experience are necessary. 

To support these ideas, the authors attempt to prepare to the readers of this 
volume, the title of above for their contribution, divided in two parts. The present 
one, aiming to make a review of classical problems of stability and instability of 
steel structures (however, even not exhaustively, but still aiming to give a light 
guidance for the application of Finite Element Method-FEM to the problems of 
slender structures) and, the second part, which summarises two case studies 
devoted to solve two complex problems using advanced FE analyses. 
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In a large extend, this work has a monograph character, based on cited 
contributions, collected from available literature. However, some relevant 
contributions of the authors are integrated too. 

20.2. Stability of slender steel structures. A short review 

20.2.1. Basic assumptions for elastic theory of stability 

Definition of stability of equilibrium of a structure, regarded as a mechanical 
system, is basically related to the “quality” of the equilibrium configuration 
possibly to be achieved by that system. Intuitively, stability might be defined as 
the ability of the system to return to equilibrium when slightly disturbed. 
According to the theorem Dirichlet: "The equilibrium of a mechanical system is 
stable if, moving out the points of the system from their equilibrium positions by 
an infinitesimal amount, and giving each one a small initial velocity, the 
displacements of different points of the system remain, throughout the course of 
the motion, contained within small prescribed limits". So, the stability is a quality 
of one solution - an equilibrium solution - of the system, and that the problem of 
ascertaining the stability of a solution is concerned with the "neighbourhood" of 
this particular solution. It applies for both rigid bodies and elastic or even 
nonlinear systems, which can be classified on the basis of their possible evolution 
after a small (finite) perturbation on the system, while resting in its equilibrium 
condition. 

Testing the sensitivity to the loss of stability of equilibrium, one considers an 
elastic conservative system, which is initially in a state of equilibrium under the 
action of a set of forces; the system will move-out from its equilibrium state only 
if acted upon by some transient perturbation force. To formulate mathematically, 
the applied force (or forces) is characterized by a loading parameter λ, also 
called a load factor. Setting λ = 0, it means the structure is unloaded, at which it 
takes up an equilibrium configuration C0 = (0), called the undeformed state. This 
state is stable. As the forces λ is varied from 0 the structure deforms and assumes 
equilibrium configurations C(λ). These are assumed to be (i) continuously 
dependent on λ and (ii) stable for sufficiently smaller values of λ. How the 
stability of the system can be proved? Freeze λ at a specific value, say λd, where d 
connotes “deformed.” The associated equilibrium configuration is Cd = C(λd). 
Apply an admissible perturbation to Cd, and remove it. 

The perturbation triggers subsequent motion of the system. Three possible 
equilibrium configurations, namely S, N and U are sketched in Figure 20.2 [20.1]: 
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S: Stable. For all admissible perturbations, the structure either returns to the 
examined configuration Cd or executes bounded oscillations about it. If so, the 
equilibrium is called stable. 

U: Unstable. If for at least one admissible perturbation the structure moves 
to (decays to, or oscillates about) another configuration, or “takes off” in an 
unbounded motion, the equilibrium is unstable. 

N: Neutral. The transition from stable to unstable occurs at a value λcr, 
which is called the critical load factor. The configuration Ccr = C(λcr) at the 
critical load factor is said to be in neutral equilibrium. The quantitative 
determination of this transition is a key objective of the stability analysis. 

Fig. 20.2. Equilibrium states 

Even the equilibrium problems can be solved in terms of balance between 
force acting and reaction forces, between external and internal forces, according 
to the static approach, terms as perturbation, oscillation and motion are used to 
define stability of equilibrium state. That leads to the idea the stability concept 
rather is dynamic in its nature because, in fact, “the failure of structures is a 
dynamical process, and so it is obviously more realistic to approach buckling 
and instability from a dynamical point of view.” [20.3]. Stability of motion (e.g. 
the equilibrium of dynamic state) is a more general topic, considering the static 
case as a particular one. 

A dynamic approach for equilibrium offers the means to better characterise 
the system behaviour and “quality” of solutions (e.g. criteria) for stability state, 
in the sense reported above. Equation of motions can be written for the system 
starting from its current equilibrium condition to ascertain whether it tends to 
come back to the original condition or evolves towards other more stable ones. 
But, the dynamic approach, despite to be closer-to-the-nature of phenomenon, 
and more accurate, usually results in more complicated mathematical procedures, 
making it more difficult to apply for current engineering stability problems. 
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Equilibrium of bodies or structures can be studied within the framework of 
various hypotheses. Considering the material is linear elastic and the applied 
forces are conservative, a relevant class of equilibrium problems are usually 
named Euler-model problems and are based upon the two following hypotheses: 

− small strains of the structures starting from a reference equilibrium 
configuration; however, the displacement and rotations are not 
necessarily very small, they are finite; 

− perfect or “ideal” systems, namely absence of geometric, material, and 
mechanical imperfections (initial bow or lack of straightness of centroid 
axis, initial vertical slope, initial distortion of cross-section, non-
homogeneous material, initial induced stresses, eccentricity centrically 
applied loads and supports etc.). 

A conservative load is that which can be derivable from a potential. For 
example, gravity and hydrostatic loads are conservative. On the other hand, 
aerodynamic and propulsion loads (wind gusts on a bridge, rocket thrust etc.) are 
often non-conservative. The loss of stability under non-conservative loads is 
inherently dynamic in nature. 

20.2.2. Continuous and discrete models 

Physical models applied in stability analysis are framed models of actual into 
two categories i.e.: 

Continuous models. Such models have an infinite number of degrees of 
freedom (DOF). This is the case of deformable structures, either of elastic or 
plastic behaviour. They lead to ordinary or partial differential equations, 
generally defined in 3D in space, from which stability equations may be 
derived by perturbation techniques. Obtaining nontrivial solutions of the 
perturbed equations generally leads to transcendental eigenvalue problems, 
even if the underlying model is linear. 
Discrete models. These models have a finite number of DOF in space. 
Often, such models are discrete approximations to the underlying continuum 
models. For instance, if a structure is assumed to be composed by rigid 
body-type members, interconnected by spring elements, this is a discrete 
model. 

Two common discretization techniques can be applied: 
− Lumped parameter models, in which the flexibility of the structure is 

localized at a finite number of places. One common model of this type 
for columns is joint-hinged rigid struts supported by extensional or 
torsional springs at the joints; 

− Finite element models that include the so-called geometric stiffness 
properties. 
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Stability equations for discrete models may be constructed using various 
devices. For lumped parameter models one may resort to either perturbed 
equilibrium equations (these equations are written taking as reference the 
deformed shape of given structure), or to energy methods. For FEM models only 
energy methods are practical. All techniques eventually lead to matrix stability 
equations that take the form of an algebraic eigenvalue problem. 

20.2.3. Bifurcation and limitation of equilibrium 

Euler definition of stability will be firstly referred to discrete structures 
pointing out the condition of possible alternative equilibrium configuration 
available for the system (affected by no imperfections and in equilibrium in its 
reference position) when the compression axial load achieve a certain “critical” 
value: this possible availability of more than one equilibrium configuration (e.g. 
“bifurcation” of equilibrium). Moreover, imperfections do play a relevant role in 
the so called “equilibrium path” (namely the relationship between the current 
value of loads and the corresponding equilibrium configuration of the system) 
and their influence will be analysed in this chapter with reference to the 
mentioned discrete systems. 

Two basic models are used to describe the instability state: Bifurcation of 
equilibrium and Limitation of equilibrium. Related to the Limitation model, for 
the particular case of imperfect bar, there is also the divergence of equilibrium 
model. 

Bifurcation of equilibrium 

Currently, structural engineers associate bifurcation of equilibrium with 
buckling. The structure reaches a bifurcation point (see Figure 20.3), at which 
two or more equilibrium paths intersect. What happens after the bifurcation point 
is traversed is called post-buckling behaviour. According to bifurcation model, 
the equilibrium equation can be directly written on a deformed configuration in 
the neighbours of the reference undeformed one, considering the effect of 
displacements of the forces applied of the structure.  

Limitation of equilibrium 

This is the case when the structure reaches a limit point at which the load, or 
the loading parameter, reaches a maximum value. Figure 20.3 shows 
comparatively the bifurcation and limitation models, for the case of an axially 
compressed member, in terms of compression force P and member axial 
shortening, u. 



Selected Problems of Continuum Mechanics 

454 

P

u

Pcr

bifurcation
stability

P

u

Plim

limitation
instability

Fig. 20.3. Limitation of equilibrium 

The phenomenon is also known as limit point or snap buckling. What 
happens after the limit point is traversed is called post-buckling or post-snapping 
behaviour. 

Divergence of equilibrium 

The physical model which is closest to real phenomenon of instability is the 
so called divergence of equilibrium (“divergence” is term lent from French and 
the model itself was proposed by Dutheil [20.4]). Maquoi and Rondal [20.5] 
applied Ayron-Perry equation [20.6] to calibrate experimentally the equations of 
actual European buckling curves. 

The model itself is simple; it assumes the imperfect slender member in axial 
compression starts continuously deform from the initial moment of load 
application due to second order effect (see Figure 20.4a). Until point E (P = Pe), 
the behaviour of the slender member is geometrically nonlinear only (e.g. 
elastically nonlinear). Since in point E the elastic limit is attained in the outer 
fibre of section, if the load still increases, the behaviour becomes elastically-
plastic nonlinear until arrive at the apex point of the curve, corresponding to the 
ultimate capacity, Pn (see Figure 20.4b). In this point the internal stresses 
equilibrate the external ones. After, if the load continues to increase, it cannot be 
equilibrated by internal stresses and the so called divergence between internal 
and external stresses occurs, the member undergoes into the post-critical range, 
following descending (softening) path, until the moment when full pacification of 
the section occurs, appears the plastic hinge and the member collapses. 

The divergence model is fact a limit point model, which assumes the elastic-
plastic behaviour of the compression member [20.7]. 

Bifurcation points and limit points are instances of critical points. The 
importance of correct estimation of critical points, at least in terms of corresponding 
critical or limit loads, in static stability analysis terms is crucial because the 
transition from stability to instability can only occur at the critical points! 
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a)  b) 

Fig. 20.4. Divergence of equilibrium [20.7] 

Reaching a critical point may lead to unforeseen collapse of the structure. 
This depends on its post-buckling or post-snapping behaviour, but also on the 
ductile or fragile nature of the material. For some scenarios the knowledge of 
such behaviour is important since a sudden collapse may lead to the loss of the 
structure. On the other hand, there are some configurations where the structure 
keeps resisting - or even increasing - loads after traversing a critical point. It is 
important for the structural system to possess redundancy in order to offer 
alternate paths for stresses redistribution in case of stability loss of a member. Of 
the most dangerous phenomenon is the so called dynamic propagation of 
instability, from a member to the entire structure which collapses, and, of course, 
such a phenomenon has to be prevented by correct evaluation and appropriate 
design. 

To illustrate the occurrence of static instability as well as critical points we 
will often display load-deflection response curve, which plots the successive 
equilibrium configurations taken by a structure, as a load or loading parameter 
(starting from zero is gradually and continuously varied). The load, or the loading 
parameter λ, is plotted along the vertical axis while a judiciously chosen 
representative deflection, which could be an angle, is plotted along the horizontal 
axes. A common convention is to take zero deflection at zero load. This defines 
the initial state. 

A continuous set of equilibrium configurations forms an equilibrium path. 
Such paths are illustrated in Figure 20.5. The load-deflection curve in Figure 
20.5a shows a response path with no critical points. On the other hand, that in 
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Figure 20.5b depicts the occurrence of two critical points: one bifurcation and 
one limit point, labelled as B and L, respectively [20.1]. 

a)  

equilibrium
path

initial linear
response

b)   

B

limit
point

equilibrium
paths

bifurcation
point

L

Fig. 20.5. Graphical representation of static equilibrium paths and their critical points: 
(a) a response path with no critical points; (b) multiple response paths showing 
occurrence of two critical points types: bifurcation point, B, and limit point, L 

However, in case of complex structures multiple critical points might be 
identified along the load-defection equilibrium paths, with a sequence of 
bifurcation and limit points. In such cases an important question raised by 
structural engineer is which critical point should be chosen as determining the 
critical or limit load to be used for estimating the safety factor against instability 
of given structure? 

In current design practice it is recommended to take the lowest critical load 
or load factor. When the analysis is limited to pre-critical range, up to attainment 
of critical or limit load that is the correct answer. 

a) 
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L
B

             b)  
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B

 

Fig. 20.6. Primary Equilibrium Path and the Design Critical Load: 
a) Bifurcation point located on the primary equilibrium path, before limit point;

b) Limit point is attained before bifurcation

However, for a more comprehensive answer, it is useful to define first the 
primary equilibrium path, which is the one that passes through the reference state 
(often this is the undeformed or unloaded state).Then, the design critical load 
will be taken the one located on the primary equilibrium path that is nearest to 
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Load 

Load 

Deflection Deflection 

Load 
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the reference state. This choice makes engineering sense since most structures 
are designed to operate on the primary equilibrium path while in service. In fact, 
for design purposes, a critical load is that associated with the critical point first 
encountered when traversing the primary equilibrium path from the reference 
state. Figure 20.6 illustrates such two situations. In Figure 20.6b, for instance, the 
limit point L defines the design critical load because it is encountered first while 
traversing the primary equilibrium path, starting from initial state, and that does 
not matter that the bifurcation point B occurs at a lower load factor unless post-
critical behaviour is important in design, which rarely is the case [20.1]. 

20.2.4. Post-buckling behaviour 

The equilibrium paths of the three cases described in Figure 20.2, can be 
schematized for both ideal (with no imperfections) and imperfect structures, as 
shown Figure 20.7, to summarize some basic examples [20.8]. 

1. Post-critical stable;  2. Post-critical unstable; 3. Post-critical “neutral”
  imperfection low sensitive 

Deflection

imperfection
insensitive

(plates)

imperfection
sensitive

(shells, inelastic
columns)

(elastic beas,
columns,
frames)

0 0 0

P/PE P/PE P/PE

1 1 1

straight
initial imperfection

Fig. 20.7. Perfect and imperfect post-critical behaviour 

20.3. Instability types 

The contents of this section, is composed as follows: 

− sub-chapters 20.3.1-20.3.3, which are mainly based on Chapter 2: 
Phenomenological Modelling of Instability, authored by Professor Victor 
Gioncu, of the Lecture Note No. 470 entitled Phenomenological and 
Mathematical Modelling of Structural Instabilities [20.2]; however, 
other references cited in the text have been used, too; 

− sub-chapters 20.3.4-20.3.5, based on the authors previous works [20.9, 
20.10]. 

Ideal 
Initial imperfection 
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20.3.1. Structures undergoing instability by bifurcation 

Considering the bifurcation instability model described in Figure 20.1, such 
type of behaviour may happen in one of the following situations: 

− When the pre-critical deformations do not correspond with the instability 
deformations; this is the case portal frame which has a symmetrical pre-
critical deformation, while the post-critical deformation is asymmetrical 
(see Figure 20.8a); 

− When the structure is perfect, as in case of compression bar, the bar in 
the pre-critical state is straight, while the post-critical form is bent (see 
Figure 20.8b); 

− When the structure is an actual one with geometrical imperfections, but 
these are not affine with the post-critical deformations. As example, 
the pin-supported arch can have a symmetrical deviation from the 
designed form, but the post-critical deformation is asymmetrical one (see 
Figure 20.8c). 

P P
P P P

P

a) b) c) 

Fig. 20.8. Bifurcation cases 

The bifurcation models are classified according to the shape of post-critical 
path. When traverse the critical point, from pre-critical range (e.g. primary path) 
to post-critical one (secondary path), the system changes its rigidity (n.b.: in the 
critical point the stiffness is null, corresponding to the neutral stability state), two 
situation may appear: 

− Stable when the stiffness is increasing, because the nonlinear 
deformations have a stabilizing effect; 

− Unstable when the stiffness of system is decreasing, the nonlinear 
deformations inducing a destabilizing effect. 

There are simple and coupled (multiple) bifurcation instabilities. Simple 
bifurcation instabilities are those cases when a given structure undergoes a single 
mode of bifurcation. There are three distinct situations: 

Asymmetric bifurcation, which are stable in one side and unstable in the 
other (see Figure 20.9a), and occurs when for positive or negative 
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deformations the stiffness of members having contrary effects, as in cases of 
the three-hinged arch, two bars frame (“Lee” frame), or bridge-type truss 
(see Figure 20.9b). Such type of behaviour also appears in case of latticed 
planar space structure and in case of unsymmetrical cross-section 
compression bar of fixed end-supports; cylindrical compressed shells are 
very sensitive for such a type of instability. This type of post-critical 
behaviour is very unstable, with high sensitivity to imperfections, of which 
correct estimation, both for amplitude and sign is crucial. An imperfection 
applied on the wrong sense stabilizes the structure, when in fact it is severely 
unstable. 
Symmetric stable bifurcation, for which post-critical stiffness increases in the 
post-critical range for both, positive or negative displacements, is presented in 
Figure 20.10a; as in the case of the portal frame or a ring see (Figure 20.10b). 
Such type of behaviour also occurs in case of flexural buckling of double 
symmetric cross-section columns, for lateral-torsional buckling of beams, 
rectangular and circular compression plates, for sphere under concentrated 
loads. The sensitivity to imperfections of structures framed into such type of 
behaviour, even not negligible, is quite low. 
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Fig. 20.9. Asymmetric bifurcations 
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Fig. 20.10. Symmetric stable bifurcation 

Symmetric unstable bifurcation (see Figure 20.11a) which occurs when for 
both positive or negative displacement the post-critical stiffness decreases, 
as in the cases of two-hinged arch and compressed beam on elastic 
foundation (see Figure 20.11b). This behaviour occurs also for a 
compression bar with elastic end-supports, for a ring under variable pressure, 
axially compressed cylinders undergoing axially symmetric buckling. 
Structures framed in this type of behaviour are characterized by a moderate 
sensitivity to imperfections. 

a)

θ

P

decreasing
stiffness

decreasing
stiffness

perfect
imperfect b)

θ

θ

Fig. 20.11. Symmetric unstable bifurcation 

Coupled bifurcation instabilities are characteristic for the structures for 
which, at the same critical load, there are possible two or more (multiple 
bifurcation) instability modes. In these cases some additional unstable paths 
corresponding to the coupled instability might occur. This subject will be 
discussed later on for interactive buckling. 
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20.3.2. Structures undergoing instability by limitation 

The instability by limitation occurs in two situations, i.e.: 

a) Limitation due to geometrical imperfections. A perfect structure which,
theoretically, loses its stability by bifurcation, under de effect of initial 
imperfections is prone to second order effects and switch into a limitation 
instability. In fact, if examine all those cases the conclusion is simple: Perfect 
structures buckle in general by bifurcation, while imperfect structures undergo 
instability by limitation. However, the buckling resistance of structures framed as 
being of stable symmetrical post-critical bifurcation, even imperfect, due to their 
lower sensitivity to imperfections, could be approximated by a bifurcation 
analysis. 

b) Limitation due to nonlinear deformations. It is not happened often for
current structures; it is the case of some structural typologies for which, under the 
effect load the change of geometry becomes significant and the structure, still 
remaining elastic, exhibits geometrical nonlinear load-deflection relationship. In 
principle, the response of an imperfect system is similar to that of the 
corresponding perfect system (see Figure 20.12a). In case of shallow arches, 
shallow trusses and spherical domes, characterized by high compression stresses, 
snap-through buckling can occur where the initially stable path loses its stability 
when reaching the locally maximum value of the load, in the limit point of 
equilibrium, to jump suddenly in another equilibrium point, from where the 
structure (largely deformed) being able to take again loading. Figure 20.12b 
shows the jump of equilibrium phenomenon for the well-known toggle frame. 
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Fig. 20.12. a) Limitation instability due geometrical nonlinear deformations; 
b) Snap-trough instability of toggle frame

It can be observed that from the limit point 1 the structure suddenly passes to 
the point 2, corresponding to another position of stable equilibrium loading. 
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The rate at which the equilibrium jump takes place is very high and large inertial 
forces appear. When the external load N reach the limit value the geometry 
suddenly changes with dynamic effects. 

20.3.3. Dynamic instability 

The transition of a structure from a stable state into an unstable one is a 
dynamic process and should be analysed accordingly; this is an aspect which was 
already tackled. However, in most of practical load cases, even the action has a 
dynamic character the problem can be solved using a static equivalent approach, 
amplifying the corresponding static load with a dynamic amplification factor. 
This is, for instance, the method applied in design of running beam of a bridge 
crane. However, there are some cases, almost always when apply non-
conservative actions, when the static equivalent approach is not suitable. Three 
types of dynamic loads, for which the dynamic stability approach must be 
applied, can be met: 

− step load when the time of action is very small, infinitesimal; blast is 
such a load; 

− impulsive loads, it is a step load type, but with a finite duration, the 
structure undergoing vibrations; impact is such a load; 

− time dependent or periodic loads, which may cause instability by flutter 
or divergence, as wind gust for example. 

Fig. 20.13. Progressive propagation of a local dent in case 
of pipelines under external pressure 

A very particular and dangerous case is the dynamic propagation or 
progressive instability. A local instability of a member in a structure occurs, 
caused, for instance, by a static load, and following to the redistribution of 
stresses in the neighbored zone, other members will buckle, and so one, till the 
overall collapse of the structure. The problem is such a phenomenon - dynamic in 
its nature - takes place with a very high speed! Such phenomena might appear in 
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cases pipelines (see Figure 20.13), for double-layer grids (see Figure 20.14) and 
reticulated shells (see Figure 9.15). 

Fig. 20.14. The domino effect in case of double-layer grids 

Fig. 20.15. Dynamic propagation of instability in case of reticulated domes 

For double-layer grids (see Figure 20.14) and reticulated shells (see Figure 
20.15), two types of local instabilities might occur: compression member 
buckling and node instability, the last being the most dangerous. It can be 
initiated by a variety of causes such as material defects, fabrication errors, 
impact, and deviations in the geometry of the ideal form or abnormal 
concentrated forces in nodes. A nodal snap-trough failure undergoes, it extends 
to a small surrounding portion of the structure initially, but has potential to 
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propagate in the structure and cause a line instability or even the total collapse. 
The two examples in Figure 20.15, show the numerical simulation performed 
with Ansys of phenomenon, with the time steps, from initiation to the collapse 
[20.11]. 

20.3.4. Interactive buckling. The phenomenon 

This subject refers to coupled bifurcation already introduced in §§20.3.1. In   
 the case of an ideal structure, the theoretical equilibrium bifurcation point and 
corresponding load, Pcr, are observed at the intersection of the pre-critical 
(primary) force-displacement curve with the post-critical (secondary) curve as 
shown in Figure 20.16. 

For a real structure, affected by a generic imperfection (δ0), the bifurcation 
point does not appear anymore and, instead, the equilibrium limit point is the one 
characterizing the ultimate capacity (Pu) of the structure. The difference between 
Pcr and Pu represents the Erosion of the Critical Bifurcation Load (ECBL), due to 
the imperfections. 

This model applies in the instability mode interaction. The meaning of the 
mode interaction refers to the erosion of critical bifurcation load in case of 
interaction of two (or more) buckling modes associated with the same, or nearly 
the same, critical load; it happens when the mode simultaneity is due to the 
results of design and/or imperfections. A well-known example of mode 
interaction are the coupling of local or distortional buckling with overall 
buckling in the case of thin-walled cold-formed members, or the coupling 
between local buckling of class 4 web with the lateral-torsional buckling of 
plated beam. 
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Fig. 20.16. Critical and post-critical behaviour 



Research and design of thin-walled steel structures by FEM… 

465 

One of the pioneering studies devoted to local-overall mode interaction was 
conducted by Van der Neut [20.12]. In this case, the interaction occurred 
between the local buckling of the flanges and flexural buckling of a column of 
square box plated section; only the flanges have been considered to be active, 
while the web role was to connect them. 

Figure 20.17a shows the buckling curve of the Van der Neut column without 
local or overall imperfections. For lengths greater than L1 the column fails in 
overall Euler buckling, 2 2/EN EI Lπ= . For shorter lengths, the local buckling 

load 
22

, 22
12(1 )cr L

k E tN
d

σπ
ν

 =  −  
, is reached before Euler buckling takes place (t is 

the thickness and d is the width of flanges, ν is the Poisson’s ratio and kσ = 4, the 
plate buckling coefficient). In the locally buckled shape, a reduced bending 
stiffness of the column, given by ηEI, is considered, where η is the slope of the 
load-strain diagram of the flange plate in the post-local buckling range. Van der 
Neut has considered the results of work by Hemp [20.13], who demonstrated that 
η is fairly constant over an extended strain range past the local buckling point and 
can be taken as η = 0.4083 for plates of which the longitudinal edges are free to 
pull in. As a result, the reduced overall buckling load in the post-local buckling 
range is given by Nu = ηNE, with 2 2/EN EI Lπ= . For column lengths between L1 
and L2, equilibrium at a load NL is stable if: 
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Fig. 20.17. a) The van der Neut model; 
b) Local imperfection effect on the buckling load

Eq. (20.1) expresses that the column post-buckling capacity, given by 
Engesser’s double modulus formula, has to be greater than the local buckling 
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load NL, and results in: L2 < L < L0, with L0 = 0.761L1. Columns with L0 < L < L1 
are in a state of unstable equilibrium once the local buckling load is reached and 
collapse explosively (e.g. snap through effect). 

In a second step, Van der Neut considered a local imperfection affine with 
the local buckling mode. Figure 20.17b displays the non-dimensional buckling 
load N/NL,cr function of PE/PL,cr for different values of w0/t, where w0 is the local 
imperfection amplitude and t, is the flange thickness. It is seen that the local 
imperfection can cause a severe reduction in column capacity, and that the effect 
is most pronounced in the vicinity of the point where PE = PL,cr. For instance, a 
reduction (e.g. erosion) of 30% was calculated for w0/t = 0.2. It was also 
demonstrated that, in the region where the perfect column displays unstable 
collapse, the peak of the load-bar shortening curve gets smoothened out as a 
result of the imperfection and the instability almost vanishes for w0/t = 0.2. Van 
der Neut [20.12] also investigated the effect of an overall imperfection. The 
research concluded that the presence of an overall imperfection (e.g. bar 
deflection) has a similar negative effect on the column strength, the most 
significant erosion being obtained again in the point PE = PL,cr, but extending its 
influence over a larger zone (compared to the local imperfection) into the region 
where PE > PL,cr. At the end, the most important observation of this study is the 
reduction of P, due to the initial imperfection of flanges which is most significant 
when PE = PL,cr. 

Another relatively recent design method, which can be framed in the class of 
semi-analytical methods, is Direct Strength Method [20.14] which practically 
replace the “effective width” concept with the “effective stress” one. The method 
explicitly incorporates local or distortional and Euler buckling resistances, which 
are evaluated numerically, and does not require calculations of the effective 
properties. The procedure is an alternative to the “effective width method”. 
Direct Strength Method has been adopted in 2004 as design method in Appendix 
1 to the North American Specification for the Design of Cold-Formed Steel 
Structural Members [20.15]. 

The General method in EN 1993-1-1 [20.16], applied for lateral-torsional 
buckling problems operates, in some way, similarly. 

20.3.5. Interaction classes and erosion of critical bifurcation load 

In almost all practical cases, the mode interaction, obtained by coupling of a 
local instability with an overall one, is a result of design (e.g. calibration of 
mechanical and geometrical properties of member) and has a nonlinear nature: 

− Coupling by design occurs when the geometric dimensions of structure 
are chosen such as two or more buckling modes are simultaneously 
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possible. For this case, the optimization based on the simultaneous mode 
design principle plays a very important role and the attitude of the 
designer towards this principle is decisive. This type of coupling is the 
most interesting in practice because, even the erosion of critical buckling 
load is maximum in the interactive range, the ultimate buckling strength 
still remain maximum in this range; 

− Nonlinearity characterizes the post-buckling behaviour of coupling of 
instability modes and is due to design and the presence of the 
geometrical imperfections which is indispensable for coupling; this 
coupling doesn’t exist for ideal structure. For instance, this is the case of 
the interaction between flexural buckling and torsional-flexural buckling 
of some mono-symmetrical cross-section. 

Figure 20.18 illustrates such a case for a mono-symmetrical T section in 
compression, which is prone to the mode interaction between flexural and 
flexural-torsional modes [20.17, 20.18]. 

Due to the imperfections, an interaction erosion of critical bifurcation load 
occurs. This erosion is maximum in the coupling point vicinity. For bar 
members, an interactive slenderness range, in which sensitivity to imperfections 
is increased, may be identified. Depending on imperfection sensitivity, classes of 
interaction types, characterized by specific levels of erosion intensity, may be 
defined. 
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Given a compression member and assuming two simultaneous buckling 
modes which might couple, the perfect member prone to interactive critical 
buckling load, Ncr, while the actual member to ultimate load, Nu, the erosion, ψ, 
can be expressed as follows: 

cr uN Nψ = − (20.2) 

and 

(1 )u crN Nψ= − (20.3) 

The erosion factor ψ was introduced as a measure of erosion of critical load. 
Gioncu [20.18] has ranked the mode interaction types in terms of erosion factor 
in four classes (see Figure 20.19). 
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Fig. 20.19. Erosion classes 

Obviously, an appropriate framing of each mode interaction into a relevant 
class is very important because the methods of analysis used for design have to 
be different from one class to another. In case of week or moderate interaction, 
structural reliability will be provided by simply using of design code safety 
coefficients, while in case of strong or very strong interaction, special methods 
are needed. Interaction classes can be associated with erosion levels or classes 
(see Figure 20.19) i.e. week weak erosion - low interaction of low sensitivity to 
imperfections; strong erosion - high interaction of high sensitivity to 
imperfections; a.s.o. 

In case of thin-walled members, two types of interaction might occur. The 
first one is due to multiple local modes, which leads to a so called localized 
mode, and gives rise to an unstable post-critical behaviour. The second 
interaction between the localized buckling mode with the overall buckling mode 
yields to a very unstable post-critical behaviour, with great erosion due to the 
imperfections. This case of multiple local buckling mode interaction causes in the 
second case (local-overall) very destabilizing effects. Strong and very strong 
interactions are the result of this type of coupled instability. In such a case, very 
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special design methods must be developed. Usually, this is the case of thin-
walled columns in compression. 

Stiffened plates in compression are prone to the interaction between overall 
flexural buckling with local buckling of stiffeners in compression or 
compression-bending. This is a high interaction characterised by high sensitivity 
to imperfections and strong erosion. Very strong erosion, due to the high 
sensitivity to imperfections can be encountered in case of cylinders or dome 
shells, continuous or reticulated were bi- or multi-modal interaction might occur. 

To take into account properly for such a type of interaction in practical 
design, the FEM is actually the only effective tool!  

20.4. Principles and general recommendations for 
numerically-based buckling analysis of thin-walled  
steel structures 

20.4.1. Finite Element Methods (FEM) for analysis and design 

The Finite Element Method (FEM) is widely used in design of structures. 
Annex C of EN 1993-1-5 [20.19] gives guidance on the use of FE-methods for 
ultimate limit state design, serviceability limit state design and fatigue 
verifications of plated structures. The FE-modelling may be carried out either for: 
(1) the component as a whole or (2) a substructure as a part of the whole 
structure. Also, design of members and details can be assisted by numerical 
simulations (e.g. numerical testing). The choice of the FE-method depends on the 
problem to be analysed. 

The key categories of computational analysis that were first devised for use 
in EN 1993-1-6 [20.20] are recommended for wide use for all structures [20.21]: 
LBA:  Linear elastic bifurcation analysis, obtaining the lowest eigenvalue for 

the system; 
MNA:  Materially nonlinear analysis, using small displacement theory (no 

change of geometry), and an ideal elastic-plastic constitutive model for 
the material; 

GNA:  Geometrically nonlinear analysis of the elastic perfect structure; 
GMNA: Geometrically and materially nonlinear analysis of the perfect structure; 
GMNIA: Geometrically and materially nonlinear analysis with explicit 

imperfections. 

Geometrically nonlinear means an analysis that takes full account of the 
change in geometry, both in kinematic and equilibrium relationships, whether 
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this be a small change in one dimension or a gross inversion of the complete 
structure. Similarly it is expected that in a GMNA or GMNIA analysis, the 
material model will be fully nonlinear and not simply an ideal elastic-plastic 
model, unless this truly represents the material response. The classic image of the 
load-displacement curves given by these analyses is shown in Figure 20.20. 

 

Elastic bifurcation: LBA Geometrically non-linear 
elastic: GNA 

Geometrically 
non-linear elastic with 
imperfections: GNIA 

Geometrically and 
materially non-linear with 

imperfections: GMNIA 

Plastic collapse: MNA 

Deformation 

Applied 
load 

True structure 
strength 

Fig. 20.20. Load-displacement curves found using different analyses 
of the same structure [20.21] 

In using FEM for design special care should be taken in: 
− the modelling of the structural component and its boundary conditions; 
− the choice of software and documentation; 
− the modelling of imperfections; 
− the modelling of material properties; 
− the modelling of loads; 
− the choice of limit state criteria; 
− the choice of partial factors to be applied. 

The choice of FE-models (shell models or volume models) and the size of 
mesh determine the accuracy of results. For validation, sensitivity checks with 
successive refinement may be carried out. 

The boundary conditions for supports, interfaces and applied loads should be 
chosen such that results obtained are conservative. Geometric properties should 
be taken as nominal. 

Where imperfections need to be included in the FE-model these 
imperfections should include both geometric and structural imperfections. 
Unless a more refined analysis of the geometric imperfections and the 
structural imperfections is carried out, equivalent geometric imperfections may 
be used. The direction of the applied imperfection should be such that the 
lowest resistance is obtained. In combining imperfections a leading 
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imperfection should be chosen and the accompanying imperfections may have 
their values reduced to 70%. 

Material properties should be taken as characteristic values. Depending on 
the accuracy and the allowable strain required for the analysis the following 
assumptions for the material behaviour may be used: 

a) elastic-plastic without strain hardening;
b) elastic-plastic with a nominal plateau slope;
c) elastic-plastic with linear strain hardening;
d) true stress-strain curve modified from test results.

The loads applied to the structures should include relevant load factors and 
load combination factors. For simplicity a single load multiplier α may be used. 

Thin-walled cold-formed steel members are characterised by the following 
instability modes: local buckling of the walls, distortional buckling of the cross-
section or global buckling of the member. For relevant member lengths an 
interaction of these modes can occur. The structural design of thin-walled cold-
formed steel members is strongly dependent on the analysis of the stability and, 
consequently, the elastic stability behaviour has to be obtained as accurate as 
possible, in order to produce safe and reliable results to be applied in design 
procedures. 

For this, one can apply direct formulations previously obtained from the 
theory of elastic stability, as for the case of the global buckling, or take advantage 
of computational programs that allow general stability analysis by solving the 
fundamental eigenvalue problem, related to the bifurcation-type stability 
behaviour. The general solution of the first order stability problem for the case of 
thin-walled members can be easily accessed, with the help of finite element 
method – based programs. 

Alternative computational solutions have been developed, on the basis of 
numerical models other than the FEM, such as the general beam theory method 
(GBT) and the finite strip method (FSM). 

Generalized Beam Theory is an extension to conventional engineering beam 
theory that allows cross-section distortion to be considered. Stability analysis of 
thin-walled members may also be performed using GBT. GBT was originally 
developed by Schardt [20.22], then extended by Davies et al. [20.23], and has 
over the last several years been an active focus of Silvestre & Camotim [20.24, 
20.25, 20.26]. It has a short solution time and the method is applicable for both 
pin-ended and fixed-ended members. Generalized Beam Theory has a user 
friendly program for use developed at the TU Lisbon called GBTUL 
(http://www.civil.ist.utl.pt/gbt/), that performs elastic buckling (bifurcation) and 
vibration analyses of prismatic thin-walled members. 



Selected Problems of Continuum Mechanics 

472 

Another alternative to determine the elastic buckling loads of thin-walled 
cold-formed members is the freely available open source program CUFSM tool 
(http://www.ce.jhu.edu/bschafer/cufsm/). CUFSM employs the semi-analytical 
finite strip method to provide solutions for the cross-section stability of such 
members [20.27]. The new version CUFSM 4.04 applies to members with 
general end boundary conditions. The constrained finite strip method (cFSM) is 
also fully implemented in this version. Other software packages that provide the 
same solutions are available e.g. CFS (www.rsgsoftware.com) and THIN-WALL 
(http://sydney.edu.au/ engineering/civil/case/thinwall.shtml). 

In case of thin-walled cold-formed members, when the interaction of local-
overall or distortional-overall buckling is the purpose of an analysis, GNIA or 
GMNIA, with shell finite elements are recommended. For connecting details, in 
almost all the cases, MNA with 3D finite elements can be used. A useful 
reference for a good guidance in design of steel structures using FEM is the book 
of Kidmann and Krauss [20.28]. 

a)  b)

Fig. 20.21. Effects of cold straining and strain aging on σ-ε characteristics of carbon 
steel: a) global σ-ε diagram; b) apparent σ-ε diagram for a cold-formed member 

20.4.2. Modelling of material properties and imperfections for 
numerical analysis 

Material properties and modelling 

Thin-walled steel sections are fabricated by means of cold-rolling of coils or 
press-braking of plates made by carbon steel. However, for these members, 
frequently used in modern steel construction, the initial σ-ε relation of the steel is 
considerably changed by the cold-straining due to the manufacturing processes. 
Figure 20.21a shows the modification of the σ-ε diagram when a carbon steel 
specimen is first strained beyond the yield plateau and then unloaded. For 
modern steel the strain aging effect is now very rare, or at least limited. 
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Therefore, only the cold-forming effect has to be considered in the computation 
and on this purpose the apparent σ-ε diagram (see Figure 20.21b) can be used. 

Due to the forming process strain-hardening can vary considerably along the 
cross-section as shown in Table 20.1 and Figure 20.22. 

Table 20.1. Influence of manufacturing process on the basic strengths of 
hot and cold-formed profiles [20.29] 

Forming process Cold rolling Press braking 

Yield strength (fy) 
Corner high high 

Flat faces moderate -- 

Ultimate strength (fu) 
Corner high high 

Flat faces moderate -- 

Fig. 20.22. Influence of manufacturing process on yield strength [20.30] 

Eurocode 3-Part 1.3 [20.31] gives the following formula to evaluate the 
average yield strength, fya, of the full section: 

2( / ) ( )ya yb g u ybf f C n t A f f= + ⋅ ⋅ ⋅ −  (20.4) 

where Ag is the gross cross sectional area and n is the number of 90° bends in the 
section, with an internal radius r < 5t. In this formula, C = 7 for cold-rolling and 
C = 5 for other methods of forming, but 

0.5 ( )ya yb uf f f≤ ⋅ +  (20.5) 

or 
1.25ya ybf f≤ ⋅ (20.6) 

The average yield strength, fya, can be used in numerical analysis when a 
bilinear stress-strain model approximates the material behaviour. However, if 
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tests results are available, the input parameters for material model needed to 
describe the stress-strain behaviour, directly obtained from tensile coupon tests 
from different portions of the member cross-section. 

The increase of the yield strength is due to strain hardening and depends on 
the type of steel used for cold rolling. On the contrary, the increase of the 
ultimate strength is related to strain aging that is accompanied by a decrease of 
the ductility and depends on the metallurgical properties of the material. 

Material modelling represents one of the most important aspects of the FE 
simulation. If tests results are not available, an idealisation of the material model, 
that is elastic-plastic with strain hardening, can be conveniently approximated by 
Ramberg-Osgood or Powell equations. 

In [20.32] very accurate tests, performed at University of Sydney [20.33], on 
compressed cold-formed steel lipped channels, have been selected to investigate 
the influence of material models. The L36 test series, on pin-ended members, 
was chosen to calibrate the FEM model. The nominal cross-section dimensions 
for the series specimen are: thickness of 1.5 mm, web width of 96 mm, flange 
width of 36 mm and lip width of 12 mm. The lipped channels were brake-pressed 
from zinc-coated structural steel sheets grade G450 (nominal yield stress of 450 
MPa). Material properties, determined from coupon tests, are: measured static 
0.2% (σ0.2) tensile proof stresses of 500 MPa, tensile strength (σu) of 540 MPa 
and Young’s modulus E = 195 GPA.  

Using Ansys, the ideally elastic-plastic material model can be implemented 
by means of bilinear isotropic plastic model (BISO), and Ramberg-Osgood 
model by means of multi-linear model (MISO). Table 20.2 and Figure 20.23 
shown the numerical results obtained with Ansys large-deformation elastic-
plastic analysis using the two material loads [20.32]. One can see that both 
characteristic values and the shape of load-deflection curves do not differ 
significantly in the models. 

Table 20.2. Limit loads in kN [20.32] 

Specimen Tests Ansys with 
bilinear material model 

Ansys with 
R-O model 

measured 
imperfections 

equivalent 
imperfections 

measured 
imperfections 

L36P0280- 83.5 - 85.87 81.41 
L36P0815+ 67.9 70.5 72.08 69.8 
L36P1315- 41.1 41.42 38.56 40.75 

An important role plays the corner properties. Due to the manufacturing 
process the material exhibits significant strain hardening in corner regions of the 
cold-formed section. They are characterised by a yield strength much higher than 
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in the flat zone, and simultaneously by a reduced ductility. For stainless steel, 
[20.34] proposed a simple model which can be applied to all types of corners to 
predict σ0.2,c by knowing the ultimate strength of virgin material, σu,v, i.e. 

0.2, ,0.85c u vσ σ= ⋅ . 
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Fig. 20.23. Load versus mid-length deflection about minor axis 
and deformed shapes at the limit load [20.32] 

Residual stresses 

In cold-formed steel members, both residual stresses and increase in yield 
strength are due to the manufacturing process and tend to compensate each other. 
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Hot-rolled profiles are affected by residual stresses, which result from air 
cooling after hot-rolling. These stresses are mostly of membrane type; they 
depend on the shape of sections and have a significant influence on the buckling 
strength. Therefore, residual stresses are the main factor which causes the design 
of hot-rolled sections to use different buckling curves in European design codes 
[3.16]. 

In the case of cold-formed sections the residual stresses are mainly of 
flexural type, as Figure 20.24 demonstrates [20.35], and their influence on the 
buckling strength is less important than membrane residual stresses as Table 20.3 
shows. On the other hand, cold rolling process produces different residual 
stresses in the section when compared with press braking, as shown in Table 
20.3, so the section strength may be different in cases where buckling and 
yielding interact [20.29]. 

Fig. 20.24. Evidence of flexural residual stresses in a lipped channel 
cold-formed steel section [20.35] 

Table 20.3. Type magnitude of residual stress in steel sections [20.29] 

Forming method Hot 
rolling 

Cold forming 
Cold rolling Press braking 

Membrane residual stresses (σrm) high low low 
Flexural residual stresses (σrf) low high low 

Adequate computational modelling of residual stresses is troublesome. 
Inclusion of residual stresses (at the integration points of the model for instance) 
may be complicated, and selecting an appropriate magnitude is made difficult by 
the lack of data. As a result, residual stresses are often excluded altogether, or the 
stress-strain behaviour of the material is modified to approximate the effect of 
residual stresses. 

In hot-rolled steel members, residual stresses do not vary markedly through 
the thickness, which means the membrane residual are dominant, while in cold-
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formed members residual stresses are dominated by a “flexural”, or through 
thickness variation. This variation of residual stresses leads to early yielding at 
the faces of cold-formed steel plates. Through-thickness residual stresses are 
implicitly considered when obtaining the stress-strain curve from coupon tests, 
and lead to a roundedness of the stress-strain curve near the yield point. 

Residual stress can be idealised as a summation of two types: flexural and 
membrane (see Figure 20.25). 
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Fig. 20.25. Idealisation of residual stress [20.36] 

Membrane residual stresses are more prevalent in roll-formed members than 
press-braked members. Compressive membrane residual stresses cause a direct 
loss in compressive strength. Significant membrane residual stresses exist 
primarily in corner regions. Counteracting this effect, the yield stress, fy, is 
enhanced in corner regions due to significant cold work during forming. If large 
membrane residual stresses are modelled in the corners or other heavily worked 
zones, then increased yield stress in these regions should be modelled as well. 
Conversely, if membrane residual stresses are ignored, the enhancement of the 
yield stress should not be included. Further study is needed to assess how much 
these two effects counteract one another. 

Flexural residual stresses. Flexural residual stresses are much more 
significant in cold-formed steel sections than the membrane ones. For member 
buckling (overall modes) their influence is usually not important. However, 
sectional buckling strengths, mainly the local and distortional buckling strengths 
can be significantly influenced. 

Large magnitudes of flexural residual stresses in cold-formed sections are 
regularly observed - residual stresses equal to 50% fy are not uncommon. 
Measured flexural residual stresses also experience a large degree of variability. 
For the purpose of numerical analysis Schafer and Peköz [20.36] proposed the 
approximate and conservative average distributions of flexural residual stresses, 
as shown in Figure 20.26. 
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a) Roll-formed b) Press-braked

Fig. 20.26. Average flexural residual stress as percentage of fy [20.36] 

When a highly refined numerical analysis is performed, both residual 
stresses and actual distribution of yield strength over the full cross-section, taking 
into account the influence of cold-forming have to be considered. Numerical 
studies have shown the reduced influence of flexural residual stresses on the 
ultimate strength of sections [20.37]. Moreover, Rasmussen and Hancock [20.38] 
observed that tension and compression coupons cut from finished tubes curved 
longitudinally as a result of through-thickness flexural residual stresses, and that 
straightening of the coupons as part of the testing procedure approximately 
reintroduced the flexural residual stresses. Therefore, when the material 
properties of the cross-section are established from coupons cut from within the 
section, the effect of flexural residual stresses is inherently present, and is not 
require to be explicitly defined in the finite element model [20.39]. 

Geometrical imperfection 

Geometric imperfections refer to the deviation of member from the perfect 
or nominal geometry. Imperfections of cold-formed steel members include 
bowing, warping, and twisting as well as local deviations. 

When a geometrical nonlinear analysis is performed, some kind of initial 
disturbances (e.g. imperfection) are necessary when the strength of the member is 
studied [20.40]. In case of cold-formed steel sections, two kinds of imperfections 
are characteristic, i.e.: 

− geometrical imperfections, sectional and along the member; 
− residual stress and change of yield strength due to cold forming effect. 

When initial imperfections are used to invoke geometric nonlinearity, the 
shape of imperfections can be determined with a linear buckling analysis and 
must be affine with the relevant local, sectional or overall buckling modes 
of the cross-section. Consequently, until now the geometrical imperfections are 
introduced in numerical models using equivalent sine shapes with half-
wavelength corresponding to relevant instability modes. Rasmussen and 
Hancock [20.41] and Schafer and Peköz [20.36] proposed numerical models to 
generate automatically geometrical imperfection modes. Schafer et al. [20.42] 
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used the probabilistic analysis in order to evaluate the frequency and magnitude 
of imperfections. 

Maximum measured imperfections can be conservatively used as amplitude 
in sine shape to predict by analysis lower bound strength [20.41]. While it is true 
that larger imperfections do not always mean lower strength, if the eigenmode 
shape used in the analysis does not characterise the most unfavourable imperfect 
shape of the member, generally the strength decreases as the magnitude of the 
imperfection increases. However, different shapes of local/sectional 
imperfections have different effect on the buckling strength of the member and, 
not always, the sine shape of geometrical imperfections represents the most 
relevant mode to be considered in the analysis. Since maximum imperfections are 
not periodic along the length, using the maximum amplitude of imperfection as 
for the buckled shape is rather conservative. Despite these drawbacks, the 
maximum imperfection approach is simply to apply and provides a reasonable 
criterion for a lower bound strength analysis. At this point, it is also useful to 
underline a conclusion by Bernard et al. [20.43], who demonstrated statistically 
that a significant influence of geometrical imperfections exists in thin-walled 
members at short and medium wave-lengths, leading to reduction of the load 
carrying capacity. This means the sectional buckling modes, singly or coupled 
with overall ones are mainly affected. 

Appropriate allowance must be made to account for the effects of practical 
imperfections in the global analysis, in the analysis of bracing systems and in 
member design. Practical imperfections, which include residual stresses, are 
geometrical imperfections such as lack of verticality, lack of straightness, lack of 
fit and unavoidable eccentricities present in practical joints. Allowance for these 
imperfections may be achieved by incorporating suitable geometric imperfections 
with values which reflect all types of imperfection. According to EN1993-1-1 
[20.16] the following imperfections should be taken into account in the global 
analysis of all frames: 

a) global imperfections for frames and bracing systems,
b) local imperfections for individual members.

The effects of member imperfections may neglected when carrying out the 
analysis of non-sway frames. For sway frames with slender columns it may be 
required to incorporate member imperfections in the analysis. 

The effects of global frame imperfections must be accounted for in the 
global analysis in the form of an equivalent geometric imperfection, i.e. an initial 
sway [20.16]. The assumed shape of global imperfections and local imperfections 
may be derived from the elastic buckling mode of a structure in the plane of 
buckling considered. Both in- and out-of-plane buckling including torsional and 
flexural-torsional buckling with symmetric and asymmetric buckling shapes 



Selected Problems of Continuum Mechanics 

480 

should be taken into account in the most unfavourable direction and form. The 
resulting forces and moments shall be used for member design. These global 
imperfections can also be accounted for by introducing equivalent lateral loads at 
the floor levels. 

For frames sensitive to buckling in a sway mode, the effect of imperfections 
should be allowed for in frame analysis by means of an equivalent imperfection 
in the form of an initial sway imperfection and individual bow imperfections of 
members. The recommended values given by EN1993-1-1 [20.16] are presented 
in Table 20.4, with reference to the column buckling curves. 

Table 20.4. Design values of initial local bow imperfection for elastic analysis [20.16] 

Buckling curve e0/L 
a0 1/350 
a 1/300 
b 1/250 
c 1/200 
d 1/150 

The appropriate equivalent bow imperfection for a given member depends 
on the relevant buckling curve, the method of analysis and the type of cross-
section verification used. 

In what concern the overall sinusoidal imperfections (bar deflection), with 
the maximum amplitude of 1/1500 times the member length, (L), which 
corresponds to statistical mean of imperfections of carbon steel columns, as 
suggested by Bjorhovde [20.44], can be used, or more conservatively, L/1000, as 
proposed by ECCS Recommendation [20.45]. 

In case of lateral-torsional buckling of thin-walled beams, both initial 
deflection and initial twisting may be significant. On this purpose, the Australian 
Standard AS 4100 [20.46] proposes recommendations for the initial deflection, 
(fo), and initial twist, ( oφ ), as follows: 

1000 / 1000 ( / ) 1      0.6LTo o cr crf L M N L forϕ λ⋅ = ⋅ ⋅ = − ≥  (20.7) 

1000 / 1000 ( / ) 0.001      0.6LTo o cr crf L M N L forϕ λ⋅ = ⋅ ⋅ = − <  (20.8) 

where Ncr is the column elastic critical buckling (Euler) load about minor axis, 
Mcr is the elastic critical moment for lateral-torsional buckling, LTλ  is the 
flexural-torsional slenderness and L is the length of the member. 

Local deviations are characterised by dents and regular undulation on the 
plate. Collected data on geometric sectional imperfections are sorted by Schafer 
and Peköz [20.36] in two categories (see Figure 20.27): type 1, maximum local 
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imperfection in a stiffened element (e.g. local buckling type imperfection), and 
type 2, maximum deviation from straightness for a lip stiffened or unstiffened 
flange (e.g. distortional type imperfection). 

d1

d2

Type 1 Type2 

Fig. 20.27. Sectional imperfections 

Based on statistical analysis of actual measurements, Schafer and Peköz 
[20.36] proposed the following simple rules to apply when width/thickness (b/t) 
less than 200 for type 1 imperfections and, (b/t) less than 100 for type 2 
imperfections, respectively. Thickness should be less than 3 mm. For type 1 
imperfections, a simple linear regression based on the plate width yields to the 
approximate expression 

1 0.006d b≈ ⋅  (20.9) 

where b is width or depth of the web. 

An alternative rule based on an exponential curve fit to the thickness (t) 
2

1 16 ( )td t e d and t in mm−≈ ⋅ ⋅  (20.10) 

For type 2 imperfections the maximum deviation from straight is 
approximately equal to the plate thickness: 

2d t≈ (20.11) 

20.5. Conclusions 

There is a large variety of instability problems which can be encountered in 
practice; most of them are covered by the codes provisions but, however, still 
being some aspects which cannot be properly solved by codified approaches. 
Numerical advanced FE codes, such as Ansys, Abaqus, Nastran, etc., make 
possibly today to calculate and/or simulate accurately the behaviour of complex 
problems. The choice of the FE-method depends on the problem to be analysed. 
Particularly, for slender structures, highly sensitive to buckling, still there are 
difficulties for a reliable evaluation of the buckling load. On the other hand, since 
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there are several ways to model and to analyse the stability problems, it is 
important to make the appropriate choice of the model and procedure to apply to 
the given problem. 

The stability issues for structures with reduced sensitivity to imperfections 
and stable post-critical behaviour can be addressed in a simplified way, using 
LBA analyses, treated as bifurcation problems. Those, which are sensitive to 
second order effects and, therefore, to imperfections, that develop plastic 
mechanisms only in the failure stage (the case of cold-formed sections of class 
4), GNIA can be applied. If the behaviour in the post-buckling range is 
investigated (local plastic mechanism primarily occurs and the behaviour in the 
post-elastic stage is of interest when follows the post-critical path), GMNIA must 
be used. If elastic-plastic problems are investigated, GMNIA have to be used in 
all cases. In case of interactive buckling problems GMNIA is recommended to be 
used in all cases. 

Stability analysis of thin-walled members may also be performed using 
specialised software, such as: Generalized Beam Theory (GBTUL - http://
www.civil.ist.utl.pt/gbt/), open source program CUFSM tool (http://
www.ce.jhu.edu/bschafer/cufsm/), CFS (www.rsgsoftware.com) and THIN-
WALL (http://sydney.edu.au/ engineering/civil/case/thinwall.shtml). These 
specialised programs enable to determine the elastic buckling loads of thin-
walled cold-formed members, to perform vibration analyses and modal 
decomposition. The main problems of these programs are that they do not cover 
post-critical range, do not include imperfections and are not developed to analyse 
the structure as a whole. For such problems, GNIA or GMNIA, with shell finite 
elements is recommended. 

What is important to be underlined is that the numerical models, together 
with the solver procedures, particularly for complex nonlinear analyses, must be 
always calibrated and validated through experimental results or validated 
benchmark numerical examples. 
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