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The paper presents a hybrid finite element method of shell modeling in order to model collecting electrodes of electrostatic
precipitators. The method uses the finite element method to reflect elastic features and the rigid finite element method in order
to model mass features of the body. A model of dust removal systems of an electrostatic precipitator is presented. The system
consists of two beams which are modeled by means of the rigid finite element method and a system of collecting shells modeled
by means of the hybrid finite element method. The paper discusses both the procedure of deriving the equations of motion and
the results of numerical simulations carried out in order to analyze vibrations of the whole system. Experimental verification of the
model is also presented.

1. Introduction

Electrostatic precipitators (ESP) are one of the most effective
devices used for removing dust from industrial emission
gases. The general idea of electrostatic precipitation can be
described as charging, collecting, and removing particles
fromgas flowing through a device.The efficiency of collecting
particles can be as high as 99.9% in many cases. The per-
formance and thus the effectiveness of ESP depend on many
factors since the whole process is very complex and multi-
disciplinary, covering fluid dynamics, electrical engineering,
mechanical engineering, and chemistry [1]. There are a
number of publications dealing with the problems of gas flow
and electrical field in ESP [2–5].

One of the important factors influencing the effectiveness
of ESP is the efficiency of periodic cleaning of the collecting
electrodes, which is done by a rapping system (Figure 1).
Usually there are nine collecting electrodes in one section of
the dust-removal system; however, the number of active elec-
trodes can vary between one and nine. The dust is removed
from the collecting electrodes by inducing vibrations propa-
gated over the whole section. These vibrations are caused by

an axial impact of a beater on a brushing bar (Figure 1). The
problem of optimization of the beater has been discussed in
[6]. Values of normal and tangent accelerations of vibrations
at control points are used to evaluate the process of collecting
particles and cleaning the electrodes. These accelerations
are an important factor influencing the efficiency of the
precipitations since when the vibrations are too small the
dust stays on the surface of the electrodes causing corona
discharge and a sudden drop in electric field potential. When
the vibrations are too large secondary contamination of gases
can occur.

The subject of the paper is a newmethod called the hybrid
finite element method, which has been developed to analyze
the vibrations of the collecting electrodes. For this purpose
two methods, the finite element method (FEM) and the rigid
finite element method (RFEM), are combined. The FEM is
used for calculation of the energy of spring-damping defor-
mations, while the RFEM is used to reflect inertial features
of the electrodes. The FEM [7] enables us to model complex
shapes, and the availability of professional packages such
as MSC NASTRAN, Abaqus, and ANSYS is an advantage
of the method. In spite of continuous development and
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Figure 1: The dust-removal system.

modification of the existing commercial software, there are
reasons why it is useful to develop specialized models and
computer programs. General (universal) software packages
have very complex and developed interfaces and they are
based on sophisticated mathematical models. The end-user
(engineer, designer) often has to spend a long time and
much effort in order to learn the package. For small and
medium-sized enterprises which design and produce devices
of similar structure and activity it is more convenient to use
software dedicated to such a type of devices, with a simpler
interface adapted to the needs and without many options
never used. Moreover, special applications are often more
numerically effective and require less advanced hardware.
In comparison to commercial packages based on FEM, the
software is less universal but more suited to solving specific
tasks and fulfilling designers’ requirements [8, 9].

The primary division is used in order to define spring
deformation energies by means of rectangular shell elements.
Since all the elements have the same length along axis x̂, the
spring energy of element (𝑖, 𝑗) is independent of 𝑖 and angle
𝛼𝑗.

One of the most evident advantages of the RFEM is the
division of the complex structures into rigid elements. This
enables us to reflect exactly the mass features of the system.
And it makes the discretization intuitive and easy for inter-
pretation. An important feature of this method is a diagonal
mass matrix, which considerably simplifies numerical cal-
culations in the case of large systems. Including additional
masses (concentrated or distributed) in the system and mod-
eling connections is also straightforward. Until now, the
method has been used mainly to model multibody systems
with flexible beam-like links. Both large deflections and phys-
ical nonlinearities have been taken into account [10–12]. At
the same time, the RFEM reflects spring-damping features
only approximately and the FEM is much more effective in
this respect. This is the reason that in the approach presented
the authors intend to combine advantages of both the meth-
ods.

This paper is the first complete presentation of the hybrid
method used for modeling vibrations of shells. The idea of

the method lies in dividing not only the upper and bottom
beams but also electrodes into finite rigid elements with
six degrees of freedom (secondary division of the shells).
The rigid generalized coordinates define translational and
rotational displacements of the elements with respect to local
coordinate systems. The axes of these systems coincide with
the main central inertial axes of the elements. This is the
reason that mass matrices both of the elements and of the
whole system are diagonal. The classical FEM is used in
order to reflect elastic features of the electrodes (primary
division) and the continuous field of deformation is described
by displacements of the nodes (elastic coordinates). Transfor-
mation formulae between the elastic and rigid coordinates are
defined. Such an approach enables us to describe vibrations
by means of displacements of the rigid elements, which are
the generalized coordinates of the system.The authors do not
know any other research in which this approach is used.

In the paper the model of the system is presented. We
discuss primary and secondary divisions of the electrodes.
Further discretisation of the beams into the rigid finite
elements and spring-damping elements and the connection
between the beams and the electrodes are described. The
theoretical part of the paper concludes with the formulation
of the equations of motion of the system. Subsequently,
the experimental validation of the method, essential for
evaluating its correctness and usefulness, is presented.

2. Model of the Dust-Removal System

In the case of the gravity-operated rapping systems, excitation
of vibrations is achieved by the axial striking of a beater on the
anvil beam, in which an intensive stress-wave is generated.

Both the electrodes’ geometrical features and the force
impact have an essential influence on tangent and normal
accelerations at different points of the electrodes and thus
on the effectiveness of the dust-removal process. The dust-
removal system, as shown in Figure 1, consists of two beams
which support a set of collecting electrodes.

A collecting electrode is usually connected with the top
beam, the suspension bar, by means of one articulated joint,
while at the bottom it is connected with the brushing bar
using two joints. The model of the system is divided into
three subsystems: top and bottom beams and the collecting
electrodes.

2.1. Model of the SIGMA Electrode. The collecting elec-
trodes are 10- to 16-meter-long shells of complicated shapes
(Figure 2), which can be considered as a set of long strips
with different angles of inclination towards axis ŷ. In order
to model the electrodes, the hybrid finite element method is
proposed. The discretisation procedure is carried out in two
steps, which are called primary and secondary division.

2.1.1. Primary Division. Let us assign a coordinate system x̂ŷẑ
as in Figure 2. Discretization is carried out along axis ŷ into
𝑛𝑦 strips and along axis x̂ into 𝑛𝑥 segments with the length

Δ𝑥 =

𝐿

𝑛𝑥

, (1)
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Figure 2: Primary division of the electrode.
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Figure 3: A rectangular shell element.

where 𝐿 is the length of the electrode. Thus the electrode is
divided into

𝑛 = 𝑛𝑥𝑛𝑦 (2)

elements.
Let us consider a rectangular element as in Figure 3. The

following vectors describe displacements of nodes for such an
element:

q󸀠𝑝 = [𝑢
󸀠
𝑝, V

󸀠
𝑝, 𝑤

󸀠
𝑝, 𝜑

󸀠𝑥
𝑝 , 𝜑

󸀠𝑦
𝑝 , 𝜑

󸀠𝑧
𝑝 ]

𝑇
for 𝑝 = 1, 2, 3, 4, (3)

where: 𝑢󸀠𝑝, V
󸀠
𝑝, 𝑤

󸀠
𝑝 are displacements of node 𝑝 along x̂󸀠, ŷ󸀠, ẑ󸀠,

respectively; 𝜑󸀠𝑥𝑝 , 𝜑
󸀠𝑦
𝑝 , 𝜑

󸀠𝑧
𝑝 are respective rotations in node 𝑝

about axes parallel to x̂󸀠, ŷ󸀠, ẑ󸀠.

Shape functions are defined as

𝑢
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,

V󸀠 = 𝑎V1 + 𝑎
V
2𝑥

󸀠
+ 𝑎

V
3𝑦

󸀠
+ 𝑎

V
4𝑥

󸀠
𝑦

󸀠
+ 𝑎

V
5𝑥

󸀠2
+ 𝑎

V
6𝑥

󸀠2
𝑦

󸀠
,

𝑤

󸀠
= 𝑎

𝑤
1 + 𝑎

𝑤
2 𝑥

󸀠
+ 𝑎

𝑤
3 𝑦

󸀠
+ 𝑎

𝑤
4 𝑥

󸀠2
+ 𝑎

𝑤
5 𝑥

󸀠
𝑦

󸀠
+ 𝑎

𝑤
6 𝑦

󸀠2
+ 𝑎

𝑤
7 𝑥

󸀠3

+ 𝑎

𝑤
8 𝑥

󸀠2
𝑦

󸀠
+ 𝑎

𝑤
9 𝑥

󸀠
𝑦

󸀠2
+ 𝑎

𝑤
10𝑦

󸀠3
+ 𝑎

𝑤
11𝑥

󸀠3
𝑦

󸀠
+ 𝑎

𝑤
12𝑥

󸀠
𝑦

󸀠3
.

(4)

It is assumed that 𝑢󸀠𝑝, V
󸀠
𝑝, and 𝜑

󸀠𝑧
𝑝 describe shield deforma-

tions, while 𝑤󸀠𝑝, 𝜑
󸀠𝑥
𝑝 , and 𝜑

󸀠𝑦
𝑝 describe plate deformations. The

angles are defined by the following relations:

𝜑

󸀠𝑥
=

𝜕𝑤

󸀠

𝜕𝑦

󸀠
, 𝜑

󸀠𝑦
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, 𝜑
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1
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) .

(5)

The elastic strain energy is a sum of energies correspond-
ing to the shield and plate states and can be calculated as [13]

𝐸 =

1

2

∫

𝑉

[𝜎
(𝑠)
]

𝑇
𝜀
(𝑠)
𝑑𝑉 +

1

2

∫

𝑉

[𝜎
(𝑝)
]

𝑇
𝜀
(𝑝)
𝑑𝑉, (6)

where 𝑉 = Δ𝑥Δ𝑦ℎ, ℎ is the thickness of the element,
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=
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are vectors of strains,

𝜎
(𝑙)
=

[

[

[

[

[

[

𝜎

𝑙
𝑥

𝜎

𝑙
𝑦

𝜎

𝑙
𝑥𝑦

]

]

]
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]

= D𝜀(𝑙), 𝑙 ∈ {𝑠, 𝑝} (8)

are vectors of stresses,

D =

𝐸

1 − 𝜐

2

[

[

[

1 𝜐 0

𝜐 1 0

0 0

1 − 𝜐

2

]

]

]

, (9)

𝐸 is Young’s modulus, and 𝜐 is the Poisson ratio.
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After the necessary calculations, the energy of deforma-
tion of the element can be expressed in the following form:

𝐸 =

1

2

s𝑇C(𝑠)s + p𝑇C(𝑝)p, (10)

where

s = [𝑢󸀠1 V󸀠1 𝜑

󸀠𝑧
1 𝑢

󸀠
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󸀠
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4 ]

𝑇
,

p
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󸀠
4 𝜑
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4 𝜑

󸀠𝑦

2
]

𝑇
.

(11)

The dimension of matrices C(𝑠) and C(𝑝) is 12 × 12.
Integrals occurring in elements of matrices can be calculated
analytically or by means of Gauss quadratures. Detailed
formulae for elements of matrices C(𝑠) and C(𝑝) are presented
in [14]. If we assume that the form of these matrices is as
follows:

C(𝑙) =

[

[

[

[

[

[

[

[

[

[

C(𝑙)11 C(𝑙)12 C(𝑙)13 C(𝑙)14

C(𝑙)21 C(𝑙)22 C(𝑙)23 C(𝑙)24

C(𝑙)31 C(𝑙)32 C(𝑙)33 C(𝑙)34

C(𝑙)41 C(𝑙)42 C(𝑙)43 C(𝑙)44

]

]

]

]

]

]

]

]

]

]

, 𝑙 ∈ {𝑠, 𝑝} , (12)

then having taken into account the definition of vectors of
generalized coordinates describing plate and shield deforma-
tions in (10), the elastic strain energy can be presented in
terms of the generalised coordinates as follows:

𝐸 =

1

2

[q󸀠𝑇1 q󸀠𝑇2 q󸀠𝑇3 q󸀠𝑇4 ]
[

[

[

[

C11 C12 C13 C14
C21 C22 C23 C24
C31 C32 C33 C34
C41 C42 C43 C44

]

]

]

]

[

[

[

[

[

[

[

[

[

q󸀠1

q󸀠2

q󸀠3

q󸀠4

]

]

]

]

]

]

]

]

]

=

1

2

q󸀠𝑇Cq󸀠,

(13)

where C is a stiffness matrix with 24 × 24 elements,

q󸀠 =

[

[

[

[

[

[

[

[

[

q󸀠1

q󸀠2

q󸀠3

q󸀠4

]

]

]

]

]

]

]

]

]

, (14)

and nonzero elements of matrix C from (13) are defined as
follows:

(C𝑖,𝑘)𝑞,𝑡 = (C
(𝑠)

𝑖,𝑘
)

𝑞,𝑠
for 𝑞, 𝑡 = 1, 2

(C𝑖,𝑘)𝑞,6 = (C
(𝑠)

𝑖,𝑘
)

𝑞,3
for 𝑞 = 1, 2

(C𝑖,𝑘)𝑞+2,𝑡+2 = (C
(𝑝)

𝑖,𝑘
)

𝑞,𝑡
for 𝑞, 𝑡 = 1, 2, 3

(C𝑖,𝑘)6,𝑞 = (C
(𝑠)

𝑖,𝑘
)

3,𝑞
for 𝑞 = 1, 2

(C𝑖,𝑘)6,6 = (C
(𝑠)

𝑖,𝑘
)

3,3
.

(15)

For the assumed values of parameters 𝐸, 𝜐, 𝛼, ℎ, the
stiffness matrices depend only on Δ𝑥 and Δ𝑦. Having used
denotations from Figures 2 and 3 and relation (1), in the
case considered, we have C(𝑖,𝑗) = C(𝑗) = C(Δ𝑥, Δ𝑦𝑗) for
𝑖 = 1, . . . , 𝑛𝑥, 𝑗 = 1, . . . , 𝑛𝑦.Thus, as a result of constant length
Δ𝑥 of elements, stiffness matrices for each strip are identical
and are calculated only for 𝑗 = 1, . . . , 𝑛𝑦.

The coordinates (𝑥𝐶𝑖,𝑗, 𝑦
𝐶
𝑖,𝑗, 𝑧

𝐶
𝑖,𝑗) of the geometrical center of

element (𝑖, 𝑗) can be calculated according to the formulas

𝑥

𝐶
𝑖,𝑗 = (𝑖 − 1) Δ𝑥 +

Δ𝑥

2

,

𝑦

𝐶
𝑖,𝑗 = 𝑦0 +

𝑗−1

∑

𝑠=0

𝑏𝑠 cos𝛼𝑠 +
𝑏𝑗

2

cos𝛼𝑗,

𝑧

𝐶
𝑖,𝑗 = 𝑧0 +

𝑗−1

∑

𝑠=0

𝑏𝑠 sin𝛼𝑠 +
𝑏𝑗

2

sin𝛼𝑗,

(16)

where 𝑦0, 𝑧0 define coordinates of the left edge of strip num-
ber 1 and 𝑏𝑗, 𝛼𝑗 are the width and angle of inclination of the
𝑗th strip to axis ŷ, respectively.

Coordinates of nodes of primary elements can be calcu-
lated as follows:

r𝑖,𝑗,𝑝 = r𝐶𝑖,𝑗 + R𝑗r
󸀠
𝑖,𝑗,𝑝, (17)

where r𝐶𝑖,𝑗 = [𝑥
𝐶
𝑖,𝑗 𝑦

𝐶
𝑖,𝑗 𝑧

𝐶
𝑖,𝑗]

𝑇
is defined in (16),

R𝑗 = [
[

1 0 0

0 cos𝛼𝑗 − sin𝛼𝑗
0 sin𝛼𝑗 cos𝛼𝑗

]

]

, (18)

and r󸀠𝑖,𝑗,𝑝 is the vector of coordinates of the mass centre of the
𝑝th segment in the local coordinate system:

r󸀠𝑖,𝑗,1 = [−
Δ𝑥

2

−

𝑏𝑗

2

0

]

𝑇

, r󸀠𝑖,𝑗,2 = [
Δ𝑥

2

−

𝑏𝑗

2

0

]

𝑇

,

r󸀠𝑖,𝑗,3 = [
Δ𝑥

2

𝑏𝑗

2

0

]

𝑇

, r󸀠𝑖,𝑗,4 = [−
Δ𝑥

2

𝑏𝑗

2

0

]

𝑇

.

(19)
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Figure 4: Secondary division of the shell.

2.1.2. Secondary Division of the SIGMA Electrode. In the
rigid finite element method the flexible body considered is
divided into rigid elements reflecting inertial features of the
body and spring-damping elements which connect the rigid
elements and adopt spring and damping features [9]. For the
subsequent analysis damping will be omitted. Since in the
hybrid finite element method proposed, spring features of
the electrode are included in the elements described above,
the method of discretisation into rigid elements is discussed
below.

Let us consider element (𝑖, 𝑗) from the primary division,
as in Figure 4.

Coordinate system x̂, ŷ, ẑ is a global coordinate system.
Primary element (𝑖, 𝑗) is divided into four equal parts called
subsegments. Then the rigid finite element (rfe) is formed
from one, two, or four subdivisions, which may belong to
different primary elements.Thus each segment of the primary
element belongs to the following rfes:

(𝑖, 𝑗)

1
= (𝑖 − 1)𝑚 + 𝑗,

(𝑖, 𝑗)

2
= 𝑖𝑚 + 𝑗,

(𝑖, 𝑗)

3
= 𝑖𝑚 + 𝑗 + 1,

(𝑖, 𝑗)

4
= (𝑖 − 1)𝑚 + 𝑗 + 1,

(20)

for 𝑖 = 1, . . . , 𝑛𝑥, 𝑗 = 1, . . . , 𝑛𝑦, and𝑚 = 𝑛𝑦 + 1.
Figure 5 shows an example of primary and secondary

division of a rectangular area for 𝑛𝑥 = 3 and 𝑛𝑦 = 4.
The number of rigid finite elements is

𝑛 = (𝑛𝑥 + 1)𝑚 = (𝑛𝑥 + 1) (𝑛𝑦 + 1) . (21)

It can be seen from Figures 4 and 5 that rfes are con-
structed by rigid connections of stiffened subsegments in the
following way.

(i) Corner elements:

rfe 1 is subsegment (1, 1)1 stiffened;
rfe𝑚 is subsegment (1, 𝑛𝑦)

4 stiffened;
rfe 𝑛𝑥𝑚 is subsegment (1, 𝑛𝑥)

2 stiffened;
rfe 𝑛 is subsegment (𝑛𝑥, 𝑛𝑦)

3 stiffened.

(ii) Other boundary elements:

for 𝑗 = 2, . . . , 𝑛𝑦,
rfe 𝑗 is formed by connecting and stiffening
subsegments (1, 𝑗 − 1)4 and (1, 𝑗)1;
rfe 𝑛𝑥𝑚 + 𝑗 is formed by connecting
and stiffening subsegments (𝑛𝑥, 𝑗 − 1)

3 and
(𝑛𝑥, 𝑗)

2;
for 𝑖 = 1, . . . , 𝑛𝑥 − 1,

rfe 𝑖𝑚+1 is formed by connecting and stiff-
ening subsegments (𝑖, 1)2 and (𝑖 + 1, 1)1;
rfe (𝑖 + 1)𝑚 is formed by connecting
and stiffening subsegments (𝑖, 𝑛𝑥)

3 and
(𝑖 + 1, 𝑛𝑥)

4.

(iii) Internal elements:

for 𝑖 = 1, . . . , 𝑛𝑥 − 1, 𝑗 = 1, . . . , 𝑛𝑦 − 1,
rfe 𝑖𝑚 + 𝑗 + 1 is formed by connecting and
stiffening subsegments (𝑖, 𝑗)

3,(𝑖 + 1, 𝑗)4,
(𝑖 + 1, 𝑗 + 1)

1, and (𝑖, 𝑗 + 1)2.

Secondary division of the electrode into rfes is essential
for the method discussed since in further considerations the
shell is treated as a system of 𝑛 rigid bodies with 6 degrees of
freedom. A local coordinate system x̂𝐶𝑘 ŷ

𝐶
𝑘 ẑ

𝐶
𝑘 , whose axes are

central inertial axes of the element, is assigned to each rfe as in
Figure 6. Angle 𝛽𝑘 defines inclination of the plane of element
𝑘 with respect to plane x̂ŷ of coordinate system x̂ŷẑ assigned
to the electrode.

The vector of the generalized coordinates of rfe 𝑘 includes
three displacements and three rotations:

q󸀠𝑘 = [
Δ
󸀠
𝑘

𝜑
󸀠
𝑘

] = [Δ𝑥

󸀠
𝑘, Δ𝑦

󸀠
𝑘, Δ𝑧

󸀠
𝑘, 𝜑

󸀠𝑥
𝑘 , 𝜑

󸀠𝑦

𝑘
, 𝜑

󸀠𝑧
𝑘 ]

𝑇
, (22)

where Δ󸀠𝑘 = [Δ𝑥
󸀠
𝑘, Δ𝑦

󸀠
𝑘, Δ𝑧

󸀠
]

𝑇 and 𝜑󸀠𝑘 = [𝜑
󸀠𝑥
𝑘 , 𝜑

󸀠𝑦

𝑘
, 𝜑

󸀠𝑧
𝑘 ]

𝑇
.

When the vibrations of the collecting electrodes are con-
sidered, it can be assumed that angles 𝜑󸀠𝑥𝑘 , 𝜑

󸀠𝑦

𝑘
, 𝜑

󸀠𝑧
𝑘 are small.

Thus, when coordinates (𝑥󸀠, 𝑦󸀠, 𝑧󸀠) of a point are known in
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Primary division (FEM elements) Secondary division (rfes)

rfe 1 rfe 2 rfe 3 rfe 4 rfe 5

rfe 6 rfe 7 rfe 8 rfe 9 rfe 10

rfe 11 rfe 12 rfe 13 rfe 14 rfe 15

rfe 16 rfe 17 rfe 18 rfe 19 rfe 20

(1, 1)1 (1, 1)4 (1, 2)1 (1, 2)4 (1, 3)1 (1, 3)4 (1, 4)1 (1, 4)4

(1, 4)3(1, 4)2(1, 3)3(1, 3)2(1, 2)3(1, 2)2(1, 1)3(1, 1)2

(2, 1)1

(2, 1)2 (2, 1)3 (2, 2)2 (2, 2)3 (2, 3)2 (2, 3)3 (2, 4)2 (2, 4)3

(3, 1)1 (3, 1)4 (3, 2)1 (3, 2)4 (3, 3)1 (3, 3)4 (3, 4)1 (3, 4)4

(3, 1)2 (3, 1)3 (3, 2)2 (3, 2)3 (3, 3)2 (3, 3)3 (3, 4)2 (3, 4)3

(2, 1)4 (2, 2)1 (2, 2)4 (2, 3)1 (2, 3)4 (2, 4)1 (2, 4)4

Figure 5: Division of a rectangular area into 𝑛𝑥 = 3 and 𝑛𝑦 = 4 elements.

rfe k after deformation

rfe k before deformation

x̂ ŷ

ẑ rrfe
k

x̂Ck

ŷCk

𝛽k

x̂ 󳰀Ck

ẑCk

ẑ 󳰀Ck

𝜑󳰀xk

𝜑
󳰀y

k𝜑
󳰀z

k

ŷ 󳰀Ck

Ck

Δy󳰀k

Δx󳰀kΔz󳰀k

C󳰀
k

Figure 6: Rigid finite element.



Mathematical Problems in Engineering 7

the local system of the 𝑘th rfe, its coordinates in the global
coordinate system can be calculated as follows:

r = rrfe𝑘 + R𝑘r
󸀠𝐶
𝑘 , r󸀠𝐶𝑘 = U (r󸀠) q󸀠𝑘+r

󸀠
, (23)

where r󸀠 = [𝑥󸀠, 𝑦󸀠, 𝑧󸀠]𝑇 is the coordinate vector in {x̂𝐶𝑘 , ŷ
𝐶
𝑘 , ẑ

𝐶
𝑘 }

and rrfe𝑘 is defined in Figure 6, as the coordinate vector of
point 𝐶𝑘 for a nondeformed rfe (when q󸀠𝑘 = 0),

U =

[

[

1 0 0 0 𝑧

󸀠
−𝑦

󸀠

0 1 0 −𝑧

󸀠
0 𝑥

󸀠

0 0 1 𝑦

󸀠
−𝑥

󸀠
0

]

]

,

R𝑘 = [
[

1 0 0

0 cos𝛽𝑘 − sin𝛽𝑘
0 sin𝛽𝑘 cos𝛽𝑘

]

]

.

(24)

2.1.3. Equations of Motion of the SIGMA Electrode. Using the
standard RFEM approach, the diagonal mass matrix of the
𝑘th rfe can be formulated as follows:

M𝑘 = diag {𝑚𝑘, 𝑚𝑘, 𝑚𝑘, 𝐼
𝑥
𝑘 , 𝐼

𝑦

𝑘
, 𝐼

𝑧
𝑘} . (25)

In the case of SIGMA electrodes it is relatively easy to
formulate the algorithm to calculate elements of matrix M𝑘

using the above formula and angles 𝛽𝑘 defining the position
of central inertial axes of rfes.

In view of (20) and (22) the kinetic energy of an rfe can
be presented in the form

𝑇𝑘 =
1

2

q̇󸀠𝑇𝑘 M𝑘q̇
󸀠
𝑘

(26)

and the kinetic energy of the whole electrode as

𝑇 =

𝑛

∑

𝑘=1

𝑇𝑘 =
1

2

q̇󸀠𝑇Mq̇󸀠, (27)

where q󸀠 = [q󸀠1 ⋅ ⋅ ⋅ q
󸀠
𝑘 ⋅ ⋅ ⋅ q

󸀠
𝑛]
𝑇 andM = diag{M1,M2, . . . ,M𝑛}.

In order to formulate the stiffness matrix for the whole
electrode, the displacements of primary elements have to be
expressed in terms of generalized coordinates of the rigid
finite elements. The vector of generalized coordinates and
the stiffness matrix for primary element (𝑖, 𝑗) are defined in
(12). Individual segments of primary element (𝑖, 𝑗) belong to
various rfes, whose indexes are determined in (20).

It results from (20) that node (𝑖, 𝑗)𝑝 belongs to rfe:

𝑘 (𝑖, 𝑗, 𝑝) =

{

{

{

{

{

{

{

{

{

(𝑖 − 1)𝑚 + 𝑗 for 𝑝 = 1,
𝑖𝑚 + 𝑗 for 𝑝 = 2,
𝑖𝑚 + 𝑗 + 1 for 𝑝 = 3,
(𝑖 − 1)𝑚 + 𝑗 + 1 for 𝑝 = 4.

(28)

Coordinates r𝑖,𝑗,𝑝 in the global coordinate system of
the electrode x̂, ŷ, ẑ are defined by (17). Having taken into
account (23), node coordinates in local system {x̂󸀠𝐶𝑘 , ŷ

󸀠𝐶
𝑘 , ẑ

󸀠𝐶
𝑘 }

can be defined as follows:

r󸀠𝐶𝑘,𝑝 = R𝑇𝑘 [r𝑖,𝑗,𝑝 − rrfe𝑘 ] , (29)

where R𝑇𝑘 = R−1

𝑘 , 𝑘 = 𝑘(𝑖, 𝑗, 𝑝) defined in (28). If rfe 𝑘(𝑖, 𝑗, 𝑝)
has coordinates defined in (22), then coordinates of node
(𝑖, 𝑗)

𝑝 in the global system can be calculated from (23):

r𝑘(𝑖,𝑗,𝑝) = rrfe𝑘 + R𝑘 [U (r
󸀠𝐶
𝑘,𝑝) q

󸀠
𝑘 + r󸀠𝐶𝑘,𝑝] . (30)

In order to define the energy of spring deformation of
node (𝑖, 𝑗)𝑝 the node displacements and rotations

Δ
󸀠
𝑖,𝑗,𝑝 = [𝑢

󸀠
𝑖,𝑗,𝑝, V

󸀠
𝑖,𝑗,𝑝, 𝑤

󸀠
𝑖,𝑗,𝑝]

𝑇
, 𝜑

󸀠
𝑖,𝑗,𝑝 = [𝜑

󸀠𝑥
𝑖,𝑗,𝑝, 𝜑

󸀠𝑦

𝑖,𝑗,𝑝, 𝜑
󸀠𝑧
𝑖,𝑗,𝑝]

𝑇

(31)

have to be defined by means of generalized coordinates q󸀠𝑘.
The displacement vector of node (𝑖, 𝑗)𝑝 belonging to rfe 𝑘,

as in (28), is defined as follows:

Δ
󸀠
𝑖,𝑗,𝑝 = R𝑇𝑗 [r𝑘(𝑖,𝑗,𝑝) − r𝑖,𝑗,𝑝] . (32)

After some transformations, when (30), (29), and (17) are
taken into account, the following is obtained:

Δ
󸀠
𝑖,𝑗,𝑝 = R𝑇𝑗 R𝑘U (r

󸀠𝐶
𝑘,𝑝) . (33)

Rotation angles can be calculated from the formula

𝜑
󸀠
𝑖,𝑗,𝑝 = R𝑇𝑗 R𝑘Sq

󸀠
𝑘, (34)

where

S = [
[

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

]

]

. (35)

Finally, the following relation is derived:

q󸀠𝑖,𝑗,𝑝 = [
Δ
󸀠
𝑖,𝑗,𝑝

𝜑
󸀠
𝑖,𝑗,𝑝

] = [

R𝑇𝑗 R𝑘 U (r󸀠𝐶𝑘,𝑝)
R𝑇𝑗 R𝑘 S ] [

Δ
󸀠
𝑘

𝜑
󸀠
𝑘

] = H𝑘,𝑝q
󸀠
𝑘.

(36)

Matrix H𝑘,𝑝 enables the coordinates of an rfe to be
transformed into the elastic coordinates of a primary element.
Thus, the energy of spring deformation of primary element (𝑖,
𝑗) can be written in the following form

𝐸𝑖,𝑗 =
1

2

4

∑

𝑝
1
=1

4

∑

𝑝
2
=1

q󸀠𝑖,𝑗,𝑝
1

𝑇C
(𝑗)

𝑝
1
,𝑝
2

q󸀠𝑖,𝑗,𝑝
2

, (37)

where C(𝑗)
𝛼,𝛽

is defined in (12) and (13).
Bearing in mind that 𝑘 = 𝑘(𝑖, 𝑗, 𝑝), and taking into

account (36), the above can be written as follows:

𝐸𝑖,𝑗

=

1

2

4

∑

𝑝
1
=1

4

∑

𝑝
2
=1

(q󸀠𝑘(𝑖,𝑗,𝑝
1
))
𝑇
(H𝑘(𝑖,𝑗,𝑝

1
),𝑝
1

)

𝑇
C(𝑗)𝑝
1
,𝑝
2

H𝑘(𝑖,𝑗,𝑝
2
),𝑝
2

q󸀠𝑘(𝑖,𝑗,𝑝
2
)

=

1

2

4

∑

𝑝
1
=1

4

∑

𝑝
2
=1

(q󸀠𝑘(𝑖,𝑗,𝑝
1
))
𝑇
C(𝑖,𝑗)𝑝
1
,𝑝
2

q󸀠𝑘(𝑖,𝑗,𝑝
2
),

(38)

where C(𝑖,𝑗)𝑝
1
,𝑝
2
= (H𝑘(𝑖,𝑗,𝑝

1
),𝑝
1

)

𝑇C(𝑗)𝑝
1
,𝑝
2
H𝑘(𝑖,𝑗,𝑝

2
),𝑝
2

.
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Table 1: Comparison of features of the finite element method and hybrid finite element method.

Feature Finite element method Hybrid element method
Generalized
coordinates

Displacements of nodes of elements q󸀠(𝑝)𝑖,𝑗 (elastic
coordinates) (36)

Displacements and rotations of rigid elements q󸀠𝑘 (rigid
coordinates) (22)

Stiffness matrix C Interpolation of field displacements and rotations by
means of continuous functions

Interpolation of field displacements and rotations by
means of continuous functions
Additional transformation of elastic coordinates to
rigid coordinates:
q󸀠(𝑝)𝑖,𝑗 = H𝑘,𝑝q󸀠𝑘

Mass matrixM
Interpolation of field displacements and rotation
velocities by means of continuous functions

M = diag {M1,M2, . . . ,M𝑛}

M𝑘 = diag {𝑚𝑘, 𝑚𝑘, 𝑚𝑘, 𝐼
𝑥
𝑘 , 𝐼

𝑦

𝑘
, 𝐼

𝑧
𝑘 }

Inertial moments are taken into accountAdditional operations in order to use lumped mass

This leads to a straightforwardmethod of generating stiff-
ness matrix C using coordinates q󸀠𝑘 as generalized coordi-
nates. The appropriate algorithm is as follows:

(1) for 𝑘1 = 1, . . . , 6𝑛; 𝑘2 = 1, . . . , 6𝑛, accept: 𝑐𝑘
1
,𝑘
2

= 0.
(2) for 𝑖 = 1, . . . , 𝑛𝑥; 𝑗 = 1, . . . , 𝑛𝑦

(i) for 𝑝 = 1, . . . , 4 compute H𝑘(𝑖,𝑗,𝑝),𝑝 according
to (36)

(ii) for 𝑝1 = 1, . . . , 4; 𝑝2 = 1, . . . , 4
(a) compute:

𝑘1 = 𝑘 (𝑖, 𝑗, 𝑝1) , 𝑘2 = (𝑖, 𝑗, 𝑝2)

𝑘

𝐶
1 = 6 (𝑘1 − 1) , 𝑘

𝐶
2 = 6 (𝑘2 − 1)

(39)

(b) for 𝑗1 = 1, . . . , 6; 𝑗2 = 1, . . . , 6 compute:

𝑐𝑘𝐶
1
+𝑗
1
,𝑘𝐶
2
+𝑗
2

= 𝑐𝑘𝐶
1
+𝑗
1
,𝑘𝐶
2
+𝑗
2

+ 𝑐

(𝑖,𝑗)
𝑝
1
,𝑝
2

. (40)

It is important to note that matrix C is a sparse band
matrix and this is used to facilitate computations of dynamics
of the collecting electrodes. The potential energy of gravity
forces is calculated as follows:

𝑉𝑔 = −

𝑛
𝑥

∑

𝑘=1

𝑚𝑘𝑔𝑥
𝐶
𝑘 , (41)

where 𝑔 is the acceleration of gravity, 𝑥𝐶𝑘 = 𝜃1r
𝐶
𝑘 , and 𝜃1 =

[1 0 0]. Bearing in mind (23) we can calculate derivatives
of the potential energy

𝜕𝑉𝑔

𝜕q󸀠
𝑘

= −𝑚𝑘𝑔𝜃1R𝑘U
𝐶
𝑘 . (42)

Since the origin of the local coordinate system of rfe 𝑘 is
located at the center of mass of the rfe, that is, U𝐶

𝑘 = [I 0],
the derivative of potential energy of gravity forces for the 𝑗th
strip of the electrode can be presented in the matrix form

𝜕𝑉𝑔

𝜕q󸀠
= G = [G1 ⋅ ⋅ ⋅G𝑘 ⋅ ⋅ ⋅G𝑛

𝑥

]

𝑇
, (43)

where G𝑘 = [−𝑔𝑚𝑘 0 0 0 0 0]

𝑇.

Equations of motion of a free electrode can be written in
the form

Mq̈󸀠 + Cq󸀠 = −
𝜕𝑉𝑔

𝜕q󸀠
, (44)

and the eigenvalue problem takes the form

det (C − 𝜔2M) = 0. (45)

Some important differences between the hybrid finite
element method and the finite element method applied to
modeling of electrodes are listed in Table 1.

2.2. Models of Beams. The detailed description of the rigid
finite elementmethod is presented in [8, 9]. In this paper only
the general idea and final equations of motion will be given.
More details can be found in [15].The general idea of discreti-
sation of the top and bottom beams is presented in Figure 7.

The number of elements into which the beams are dis-
cretized may be different for both beams. If 𝑝 is the number
of electrodes and 𝑎 is the length of a section of the beam with
respect to a single electrode (all electrodes in a rapping system
are usually the same) (Figure 2), then in the primary division
the length of rigid elements is as follows:

𝑑

𝑠
0 = 𝑎

𝑠
𝐿 +

𝑎𝑠

2

, 𝑑

𝑠
𝑖 = 𝑎𝑠, 𝑑

𝑠
𝑝
𝑠

=

𝑎𝑠

2

+ 𝑎

𝑠
𝑅,

for 𝑖 = 1, . . . , 𝑝𝑠 − 1,
(46)

where 𝑎𝑠 = 𝑎/𝑛𝑠, 𝑠 ∈ {𝑡, 𝑏}; 𝑡, 𝑏 denote top or bottom beam,
respectively; and 𝑝𝑠 = 𝑛𝑠𝑝.

The secondary division leads to a system of rigid finite
elements with the length equal to

𝑙

𝑠
0 =

𝑑

𝑠
0

2

, 𝑙

𝑠
𝑖 =

𝑑

𝑠
𝑖−1 + 𝑑

𝑠
𝑖

2

, 𝑙

𝑠
𝑝
𝑠
+1 =

𝑑

𝑠
𝑝
𝑠

2

,

for 𝑖 = 1, . . . , 𝑝𝑠.
(47)

We treat both beams as those with a uniform cross-
section, whose geometrical parameters exactly reflect mass
and stiffness parameters of the real beams.

The axes of the local coordinate system assigned to each
rfe before deformation are parallel to the axes of the global
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atR

· · ·

· · ·

· · ·

· · ·

...
...

as as as as as

nsns − 1

Figure 7: Connections between the beams and the 𝑗th plate and discretisation of beams.

reference system and are the main central inertial axes of the
element.Thus the mass matrix of the element is diagonal and
takes the following form:

M𝑠
𝑖 = diag {𝑚𝑠

𝑖 𝑚
𝑠
𝑖 𝑚

𝑠
𝑖 𝐼

𝑠
𝑖,𝑥 𝐼

𝑠
𝑖,𝑦 𝐼

𝑠
𝑖,𝑧} , (48)

where 𝑚𝑠
𝑖 = 𝜌𝑙

𝑠
𝑖𝐴

𝑠 is the mass of the 𝑖th rfe, 𝐴𝑠 is the cross-
section area, 𝐼𝑠𝑥, 𝐼

𝑠
𝑧 are inertialmoments of the cross-section of

the beam, 𝐼𝑠𝑖,𝑥 = 𝑚
𝑠
𝑖 [((𝑙

𝑠
𝑖 )
2
/12) + (𝐼

𝑠
𝑥/𝐴

𝑠
)], 𝐼𝑠𝑖,𝑦 = (𝑚

𝑠
𝑖 /𝐴

𝑠
)[𝐼

𝑠
𝑥 +

𝐼

𝑠
𝑧], and 𝐼

𝑠
𝑖,𝑧 = 𝑚

𝑠
𝑖 [((𝑙

𝑠
𝑖 )
2
/12) + (𝐼

𝑠
𝑧/𝐴

𝑠
)]. The vector of general-

ized coordinates of rfe 𝑖 is as follows:

q𝑠𝑖 = [𝑥𝑠𝑖 𝑦
𝑠
𝑖 𝑧̃

𝑠
𝑖 𝜑

𝑠
𝑖
̃

𝜃

𝑠
𝑖
̃
𝜓

𝑠
𝑖
]

𝑇
,

(49)

where 𝑥𝑠𝑖 , 𝑦
𝑠
𝑖 , 𝑧̃

𝑠
𝑖 are displacements of the center of mass 𝑆𝑠𝑖 of

the rfe and 𝜑𝑠𝑖 , ̃𝜃
𝑠
𝑖 ,
̃
𝜓

𝑠
𝑖 are the angles of rotations. The kinetic

energy of the 𝑖th rfe is calculated according to the formula

𝐸

𝑠
𝑖 =

1

2

[q̇𝑠𝑖 ]
𝑇M𝑠

𝑖 q̇
𝑠
𝑖 .

(50)

The energy of spring deformation can be presented in the
form

V𝑠𝑒,𝑖 =
1

2

(Δ
𝑠
𝑖 )
𝑇C𝑠𝑖Δ

𝑠
𝑖 ,

(51)

whereC𝑠𝑖 = diag {𝑐𝑠𝑖,1 ⋅ ⋅ ⋅ 𝑐

𝑠
𝑖,6}, 𝑐

𝑠
𝑖,𝑗 are the stiffness coefficients

calculated according to the formulas given in [9], and Δ𝑠𝑖 is
the deformation of spring damping element (sde) 𝑖, which
depends on q𝑠𝑖 and q𝑠𝑖−1.

The potential energy of gravity forces of each rfe can be
calculated according to the formula

𝑉

𝑔

𝑠,𝑖 = −𝑚
𝑔

𝑖 𝑔𝑥𝑆
𝑔

𝑖

, (52)

where 𝑥𝑆𝑔
𝑖

= 𝜃1r𝑆𝑔
𝑖

and 𝜃1 is defined in (41).
Kinetic and potential energies of the beams are the sum

of energies of all rfes:

𝐸

𝑠
=

𝑝
𝑠
+1

∑

𝑖=0

𝐸

𝑠
𝑖 , 𝑉

𝑠
𝑔 =

𝑝
𝑠
+1

∑

𝑖=0

𝑉

𝑠
𝑔,𝑖,

(53)

and the potential energy of spring deformation is the sum of
energies of sdes 0 to 𝑝𝑠:

𝑉

𝑠
𝑒 =

𝑝
𝑠

∑

𝑖=0

𝑉

𝑠
𝑒,𝑖. (54)

The vector of generalized coordinates of a beam can be
presented as

q𝑠 = [q𝑠0 ⋅ ⋅ ⋅ q
𝑠
𝑖 ⋅ ⋅ ⋅ q

𝑠
𝑝
𝑠
+1]

𝑇
.

(55)
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Figure 8: Elastic connection 𝐸 between rfes 𝑙 and 𝑟.

So finally, the following can be written:

𝑑

𝑑𝑡

𝜕𝐸

𝑠

𝜕q̇𝑠
−

𝜕𝐸

𝑠

𝜕q𝑠
+

𝜕 (𝑉

𝑠
𝑔 + 𝑉

𝑠
𝑒 )

𝜕q𝑠
= M𝑠q̈𝑠 + K𝑠q𝑠 + G𝑠

,

(56)

where M𝑠 is the diagonal mass matrix, K𝑠 is the stiffness
matrix with constant coefficients, andG𝑠 is the vector of grav-
ity forces, 𝑠 ∈ {𝑡, 𝑏}. Thus, the motion of beams is described
by the following number of generalized coordinates:

𝑛

𝑠
dof = 6 (𝑝𝑠 + 2) . (57)

The top beam is connectedwith the base, and this connec-
tion has to be taken into account when deriving the equations
of motion.

As has beenmentioned, the vibrations in the rapping sys-
tem are excited, when the beater hits the anvil. It is assumed
that the impulse of the force is modelled as a central, straight
stroke of force F = [0 −𝑆(𝑡) 0]

𝑇, and the resulting general-
ized force follows

Q(𝑆)
𝑝
𝑏
+1 = [0 −𝑆 0 0 0 0]

𝑇
. (58)

2.3. Modeling Elastic Connections. The collecting electrodes
are connected with the suspension and brushing bars and
they may be also connected to each other. Such connections
can be easily included in the model by means of an elastic
connection of two rigid bodies. Let us consider two rigid
bodies connected at point 𝐸 by means of spring-damping
element (sde) as shown in Figure 8.

We assume the following denotations: {𝑠} denotes the
system before deformation and {𝑠} denotes the system rigidly
assigned to rfe 𝑠, where 𝑠 ∈ {𝑟, 𝑙}.

Owing to (22) and (49), the motion of rfes is governed by
the vectors

q̃𝑠 = [
̃Δ𝑠

𝜑̃𝑠

] , 𝑠 ∈ {𝑙, 𝑟} , (59)

where ̃Δ𝑠 = [𝑥𝑠 𝑦𝑠 𝑧̃𝑠]
𝑇, 𝜑̃𝑠 = [𝜑𝑠

̃

𝜃𝑠
̃
𝜓𝑠]

𝑇
, 𝑥𝑠, 𝑦𝑠, 𝑧̃𝑠

describe the position of the beginning of system {𝑠} in {𝑠}, and
𝜑𝑠,
̃

𝜃𝑠,
̃
𝜓𝑠 describe the orientation of system {𝑠} with respect

to {𝑠}. After deformation, rfes 𝑙 and 𝑟 move, and thus the
position of point 𝐸 in the global coordinate system may vary
depending on whether point 𝐸 is considered as a point of rfe
𝑙 or 𝑟:

r(𝑙)𝐸 = r(𝑙)𝑐 + R𝑙 [̃Δ
(𝑙)
+

̃R(𝑙)r̃(𝑙)𝐸 ] ,

r(𝑟)𝐸 = r(𝑟)𝑐 + R𝑟 [̃Δ
(𝑟)
+

̃R(𝑟)r̃(𝑟)𝐸 ] ,
(60)

where r(𝑠)𝑐 is the position vector of the beginning of {𝑠} in the
global system { }, r̃(𝑠)𝐸 is the vector of coordinates of point 𝐸
in system {𝑠}, R𝑠 is the rotation matrix of direction cosines of
system {𝑠} with respect to { },

̃R(𝑠) = [[
[

1 −
̃
𝜓

(𝑠)
̃

𝜃

(𝑠)

̃
𝜓

(𝑠)
1 −𝜑

(𝑠)

−

̃

𝜃

(𝑠)
𝜑

(𝑠)
𝑖 1

]

]

]

(61)

when the rotation angles are small, and r̃(𝑠) are coordinates of
a point in system {𝑠} rigidly connected with rfe 𝑠.

Vectors of translational and rotational displacements of
sde 𝐸 with respect to the global system can be calculated as
follows:

Δr𝐸 = r(𝑟)𝐸 − r(𝑙)𝐸 = R𝑟 [x̃
(𝑟)
+

̃S(𝑟)𝐸 𝜑̃
(𝑟)
] − R𝑙 [x̃

(𝑙)
+

̃S(𝑙)𝐸 𝜑̃
(𝑙)
] ,

Δ𝜑𝐸 = R𝑟𝜑̃
(𝑟)
− R𝑙𝜑̃

(𝑙)
,

(62)

where

̃S(𝑠)𝐸 =

[

[

[

[

[

[

0 𝑧̃

(𝑠)
𝐸 −𝑦

(𝑠)
𝐸

−𝑧̃

(𝑠)
𝐸 0 𝑥

(𝑠)
𝐸

𝑦

(𝑠)
𝐸 −𝑥

(𝑠)
𝐸 0

]

]

]

]

]

]

, 𝑠 ∈ {𝑟, 𝑙} . (63)

After transformations the following can be obtained:

̃Δ𝐸 = [
Δr̃𝐸
Δ𝜑̃𝐸

] = U(𝑟)
𝐸 q̃𝑟 − U(𝑙)

𝐸 q̃𝑙, (64)

where

U(𝑟)
𝐸 = [

R𝑇𝐸R𝑟 R𝑇𝐸R𝑟̃S
(𝑟)
𝐸

0 R𝑇𝐸R𝑟
] , U(𝑙)

𝐸 = [

R𝑇𝐸R𝑙 R𝑇𝐸R𝑙̃S
(𝑙)
𝐸

0 R𝑇𝐸R𝑙
] .

(65)

It is important to note that the matrices ̃S(𝑙)𝐸 , ̃S
(𝑟)
𝐸 ,R𝑙, and R𝑟

are constant.
Finally, the energy of spring deformation of the connec-

tion can be presented in the following form:

𝑉𝐸 =
1

2

̃Δ

𝑇

𝐸C𝐸̃Δ𝐸, (66)



Mathematical Problems in Engineering 11

E

z(e)

y(e)

x(e)

czE

cxE

cyE
c𝜃E

c
𝜑
E

cxE = c
y
E = czE = cT

c
𝜑
E = c𝜃E = cR

c
𝜓
E = 0

(a)

E

z(e)

y(e)

x(e)

czE

cxE
cyE

c
𝜑
E

c𝜃E

c
𝜓
E

cxE = c
y
E = czE = cT

c
𝜑
E = c𝜃E = c

𝜓
E = cR

(b)

Figure 9: Models of connections between beams and a plate: (a) rotary joint and (b) universal joint.

where C𝐸 = diag{𝑐𝑥𝐸 , 𝑐
𝑦

𝐸 , 𝑐
𝑧
𝐸, 𝑐

𝜑

𝐸 , 𝑐
𝜃
𝐸, 𝑐

𝜓

𝐸 }. It can be seen from
(64) that the energy of spring deformation of the connection
depends on generalized coordinates of rfes 𝑙 and 𝑟. Thus the
following components will appear in the equations of motion

𝜕𝑉𝐸

𝜕q̃(𝑙)
= C(𝐸)

𝑙𝑙
q̃(𝑙) + C(𝐸)

𝑙𝑟
q̃(𝑟), 𝜕𝑉𝐸

𝜕q̃(𝑟)
= C(𝐸)

𝑟𝑙
q̃(𝑙) + C(𝐸)𝑟𝑟 q̃

(𝑟)
,

(67)

where

C(𝐸)
𝑙𝑙
= [U(𝑙)

𝐸 ]
𝑇
C𝐸U

(𝑙)
𝐸 ,

C(𝐸)𝑟𝑟 = [U
(𝑡)
𝐸 ]

𝑇
C𝐸U

(𝑡)
𝐸 ,

C(𝐸)
𝑙𝑟
= [C(𝐸)

𝑟𝑙
]

𝑇
= −[U(𝑙)

𝐸 ]
𝑇
C𝐸U

(𝑟)
𝐸 .

(68)

It should be stressed that the element presented is univer-
sal.When stiffness coefficients inmatrixC𝐸 are assumed to be
large enough or equal to zero, any joint (rotary, longitudinal,
and spherical) can be modeled.

In order tomodel connections between beams and plates,
two joints have been used (as shown in Figure 9) and the coef-
ficients of stiffness have been assumed to be 𝑐𝑇 = 10

12N/m for
translational displacements and as 𝑐𝑅 = 10

9N/rad in the case
of rotary displacements.

2.4. Equations of Motion. The equations of motion for the
system of the beams and electrodes can be written in the
following form:

M𝑡q̈𝑡 + K𝑡q𝑡 = −G𝑡
,

M𝑗q̈𝑗 + K𝑗q𝑗 = −G𝑗
, 𝑗 = 1, . . . , 𝑛𝑝,

M𝑏q̈𝑏 + K𝑏q𝑏 = −G𝑏
+ f𝑏 (𝑆) ,

(69)

a

rfe k0j of beam

Thejth electrode

rfe kLj of electrode rfe kRj of electrode

...

Figure 10: Connection of the electrode with the beams.

where 𝑛𝑝 is the number of active electrodes, M𝑡
,K𝑡,G𝑡

,

M𝑏
,K𝑏,G𝑏 are defined in Section 2.2, M𝑗

,K𝑗,G𝑗 are defined
in Section 2.1, 𝑗 denotes the number of the electrode, f𝑏 =
[0, . . . ,Q(𝑆)𝑇

𝑝+1 ]
𝑇
, andQ(𝑆)

𝑝+1 is defined in (58).
It has been assumed that the electrodes are connected,

as in Figure 10, with the top beam by means of one elastic
connection (rotary joint, Figure 9(a)) and with the bottom
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Figure 11: Influence of coefficient 𝜂 on frequencies of free vibrations.

beam by two elastic connections (all springs are active,
Figure 9(b)).

Finally, the equations of motion after necessary calcula-
tions take the following form:

M𝑡q̈𝑡 + C11q
𝑡
+

𝑝
𝑎

∑

𝑗=1

C(1)𝑗 q𝑗 = −G𝑡
,

M𝑗q̈𝑗 + C(1)𝑇𝑗 q𝑡 + C(𝑗)q𝑗 + C(3)𝑇𝑗 q𝑏 = −G𝑗
, 𝑗 = 1, . . . , 𝑛𝑝,

M𝑏q̈𝑏 +
𝑝
𝑎

∑

𝑗=1

C(3)𝑗 q𝑗 + C33q
𝑏
= −G𝑏

+ f𝑏.

(70)

The coupling resulting from the connections between the
electrodes is reflected by new stiffness matrices C(1)𝑗 and C(3)𝑗 ,
while C11, C(𝑗), and C33 are modified matrices K𝑡, K𝑗, and
K𝑏 supplemented with the connections of the beams with the
electrodes, respectively.

3. Numerical Simulations and
Verification of the Method

Themodel presented has been implemented inDelphi 7.0 on a
computer with MicrosoftWindows Vista Business 64 Bit. All
simulations have been carried out using a personal computer
with processor INTEL CORE 2 QUAD Q9550 2.83GHz
LGA775 BOX and 8MB of RAM.

3.1. Free Vibrations. The analysis of free vibrations is carried
out for a free rectangular plate with the following dimensions:
width 𝑎 = 1m, length 𝑏 = 4m, and thickness ℎ = 0.002m,
and the following material parameters: Young modulus 𝐸 =
2.06 × 10

11N/m2, 𝜌 = 7850 kg/m3, and Poisson number
] = 0.3. Figure 11 presents the first fifteen frequencies of
free vibrations obtained from the hybridmodel for a different
proportion defined by a coefficient 𝜂 according to the formula

𝜂 =

Δ𝑦

Δ𝑥

, (71)

where Δ𝑥 = 𝑎/𝑛𝑥 and Δ𝑦 = 𝑏/𝑛𝑦.

It can be seen that each of the analyzed frequencies
achieves the maximal value for 𝜂 = 1.Thus, for further analy-
sis square elements (Δ𝑥 = Δ𝑦) are used for the discretization
of the plate. Results of numerical simulations are compared
with the results obtained from Abaqus, where the shell has
been discretized using 𝑛𝑥 = 40, 𝑛𝑦 = 10 and 𝑛𝑥 = 60, 𝑛𝑦 = 15
elements.

Frequencies of free vibrations obtained from the hybrid
model (𝜔𝐻,𝑖) are compared with results obtained for two
models formulated in Abaqus (𝜔𝐴 𝐿𝑀,𝑖 and 𝜔𝐴 𝐶𝑀,𝑖) in
Table 2. First six free vibrations are zero as for a rigid body
and thus they are not shown in Figure 11.

Two types of shell elements, S4R of the first order and S8R
of the second order, are used for discretisation in the lumped
mass formulation (𝐴 𝐿𝑀) and consistent mass formulation
(𝐴 𝐶𝑀), respectively. Quantity 𝜀𝐴 ,𝑖 represents percentage
error with respect to the Abaqus solutions:

𝜀𝐴 ,𝑖 =

󵄨

󵄨

󵄨

󵄨

𝜔𝐴 ,𝑖 − 𝜔𝐻,𝑖
󵄨

󵄨

󵄨

󵄨

𝜔𝐴 ,𝑖

⋅ 100%, (72)

where index

𝐴 , 𝑖 = {

𝐴 𝐿𝑀, 𝑖, for lumped mass formulation,
𝐴 𝐶𝑀, 𝑖, for consistent mass formulation,

(73)

and quantity 𝜀𝐴,𝑖 represents percentage error of the lumped
mass formulation with respect to the consistent mass formu-
lation in Abaqus solutions:

𝜀𝐴,𝑖 =

󵄨

󵄨

󵄨

󵄨

𝜔𝐴 𝐶𝑀,𝑖 − 𝜔𝐴 𝐿𝑀,𝑖
󵄨

󵄨

󵄨

󵄨

𝜔𝐴 𝐶𝑀,𝑖

⋅ 100%. (74)

Results obtained from the hybridmodel differ from those
obtained for the A LM model by no more than 2.4%. Much
better compatibility is obtained if comparing the hybrid
method with the consistent mass formulation in Abaqus,
when the percentage error does not exceed 0.5%. It is
important to note that relative error 𝜀𝐴,𝑖 between the results
obtained for A CM and A LM models in Abaqus is larger
than 2%. Thus the method proposed enables us to obtain
results closer to those from the more exact model A CM.
Values presented in Table 2 prove that the method proposed
gives reliable results comparable with those obtained from
Abaqus.

The influence of numbers 𝑛𝑥 and 𝑛𝑦 on exactness of
the calculations of free vibrations is shown in Figure 12. It
can be seen that acceptable exactness is obtained already for
𝑛𝑥 > 20 and 𝑛𝑦 > 6. In order to verify the hybrid method
used for complicated shapes, the analysis of free vibrations
of the SIGMA electrode was carried out and compared with
that obtained using Abaqus and ANSYS packages as well as
the strip method [13]. The relative error for the electrode of
10m has been 7% in comparison with results obtained from
ANSYS and larger in comparison with those obtained from
Abaqus.

Some calculations enabling us to analyse the influence of
angles 𝛼𝑗 from Figure 2 on frequency of free vibrations of



Mathematical Problems in Engineering 13

80

60

40

20

0

10
20

30
40

50

60
3

6
9

12
15

nx ny

𝜀
(%

)

10
20

30
40

50 6
9

12
1

nx

(a)

80

60

40

20

0

10
20

30
40

50
60

nx

𝜀
(%

)
3

6
9

12
15

ny

(b)

80

60

40

20

10
20

30
40

50
60

3
6

9
12

15
nx

ny

𝜀
(%

)

(c)

Figure 12: Relative error with respect to the number of elements in discretization for (a) tenth (b) thirteenth, and (c) sixteenth frequency,
respectively.
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𝛼11

𝛼13
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Figure 13: Profile of the SIGMA electrode.

SIGMA plate are also carried out. Figure 13 presents a typical
profile of the electrode.

It is assumed that angles 𝛼𝑗, which are multiples of 90∘
(horizontal and perpendicular segments), do not change.
Only values of angles 𝛼7 = 𝛼11 = 45

∘, 𝛼9 = 𝛼13 = −45

∘,
𝛼5 = 37

∘, and 𝛼15 = −37

∘ are changed for ±30%, while the
width of the strips stays constant.

Figure 14 presents the comparison of frequencies of first
36 free vibrations of a steel plate with the length of 4m
and thickness of 0.0015m. It can be seen that the change of
angles 𝛼𝑗 (0.7𝛼𝑗 and 1.3𝛼𝑗) influences the frequencies of free
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Table 2: Frequencies of free vibrations obtained in the hybrid model and Abaqus.

𝑖

Hybrid model Abaqus
Lumped mass formulation Consistent mass formulation

𝑛𝑥 = 40, 𝑛𝑦 = 10
𝜔𝐻,𝑖 [s

−1] 𝜔𝐴 LM,𝑖 𝜔𝑖 [s
−1] 𝜀𝐴 LM,𝑖 [%] 𝜔𝐴 CM,𝑖 [s

−1] 𝜀𝐴 CM,𝑖 [%] 𝜀𝐴,𝑖 [%]
1,. . .,6 0 0 — 0 — —
7 0.660 0.661 0.13 0.660 0.04 0.15
8 1.608 1.609 0.06 1.608 0.01 0.06
9 1.830 1.838 0.42 1.831 0.06 0.38
10 3.332 3.338 0.18 3.333 0.04 0.15
11 3.605 3.637 0.88 3.609 0.11 0.78
12 5.277 5.299 0.41 5.284 0.13 0.28
13 5.974 6.068 1.55 5.988 0.23 1.34
14 7.535 7.595 0.79 7.556 0.28 0.52
15 8.907 9.124 2.38 8.943 0.40 2.02
16 10.189 10.325 1.32 10.237 0.47 0.86
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Figure 14: Free vibrations of the SIGMA plate, comparison for the
first 36 frequencies of frr vibrations for different values of 𝛼𝑗.

vibrations. The more undulated the profile of the electrode
(resulting from the change of angles 𝛼𝑗) the larger the values
of frequencies of free vibrations of the SIGMA plate. This
conclusion can be an important tip for engineers at the design
stage.

3.2. Vibration Analysis of the System. In this paper vibration
analysis is carried out for a system of electrodes 16.152m
long, 0.0015m thick, consisting of 19 strips and the following
material parameters: Young modulus 𝐸 = 2.06 × 1011N/m2,
and 𝜌 = 7850 kg/m3. The course of the force caused by the
hammer and inducing the vibrations is presented in Figure 15.

The scheme of the control system (configuration 1) is
presented in Figure 16.The system consists of three collecting
SIGMA type electrodes (𝐸1,𝐸5, and𝐸9) suspended on a com-
mon beam (𝑆𝐵) and connected at the bottom with a brushing
bar (𝐴𝐵) with the anvil (𝐴) at the end. This system has been

120
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Figure 15: Force inducing the vibrations.

used to study the influence of density of discretisation in
𝑥-axis direction. The respective computation time has been
recorded. Table 3 shows the influence of number 𝑛𝑥, into
which the plates are divided, on total calculation time.

Figures 17, 18, and 19 show the influence of number 𝑛𝑥,
into which the electrodes are divided, on three components
of accelerations at a chosen point of the electrode. Good
convergence of the results can be observed.

The equations of motion have been integrated using
the Newmark method with a constant integration step over
time interval ⟨0, 0.1⟩. Bearing in mind the convergence of
the results and a strong dependence of calculation time on
number 𝑛𝑥, the results presented below have been obtained
for 𝑛𝑥 = 200. Figure 20 presents total accelerations in the
middle strip of the electrode at the largest distance from the
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Figure 17: The influence of number 𝑛𝑥 on 𝑎𝑥 component of acceleration.

impact point at 9 different points along the length of the
electrode. The origin and the process of wave shifting can be
observed.

Further, we will compare simulation results with those
obtained from experimental measurements. The measure-
ments have been carried out at a special test stand (Figure 21)
built by a producer of electrostatic precipitators. The system
of electrodes was considered during model validation.

The electrodes were 16 meters long and 1.5 millime-
ters thick. The configuration of checkpoints corresponds
(Figure 22) to the arrangement of acceleration sensors on
the test stand. The equipment used consists of a 16-channel
recorder TEAC lx110, a portable computer with LX Navi and
FlexPro software, 5 triaxial vibration ICP sensors, and an ICP
force sensor. The signals were recorded with a sampling rate

of 24 kHz (per channel) as the response of the system for a
single force impulse 𝐹(𝑡) applied to the anvil (Figure 15).

The authors’ experience shows that one may not directly
compare time histories (courses) of accelerations obtained
by means of different commercial software packages (ANSYS
and Abaqus have been checked) or from numerical simula-
tions and experimental measurements. Therefore, averaged
(integral) values of accelerations calculated at points at which
the sensors have been placed are used in order to validate the
model presented:

𝑅 = [

1

𝑇

∫

𝑇

0

𝑎

2
𝑠 𝑑𝑡]

1/2

,

(75)
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Table 3: The influence of number 𝑛𝑥 on calculation time.

𝑛𝑥 200 300 400 500 600 700 800 900 1000
𝑡 [s] 275 543 855 919 1240 1453 1599 1996 2246
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Figure 18:The influence of number 𝑛𝑥 on 𝑎𝑦 component of acceler-
ation.
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Figure 19: The influence of number 𝑛𝑥 on the 𝑎𝑧 component of
acceleration.
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Figure 20: Tangent accelerations at different points.

Figure 21: Test stand.

where

𝑎𝑠 = {
√𝑎

2
𝑥 + 𝑎

2
𝑦, for 𝑠 = 𝜏,

𝑎𝑧, for 𝑠 = 𝜐.
(76)

Correspondence of results has been evaluated by means
of factors used in computer fluid mechanics [16, 17].

The Hit Rate. Consider

𝑞 =

1

𝑛𝑝

𝑛
𝑝

∑

𝑖=1

𝑁

𝑞

𝑖 , 𝑁

𝑞

𝑖 =

{

{

{

1, if
󵄨

󵄨

󵄨

󵄨

𝑅

𝑐
− 𝑅

𝑒󵄨
󵄨

󵄨

󵄨

|𝑅

𝑒
|

< 𝜀,

0, otherwise,
(77)

where 𝑅𝑐, 𝑅𝑒 are calculated according to (75) (superscript 𝑐
indicates accelerations calculated, while superscript 𝑒 indi-
cates those obtained from experimental measurements), 𝜀 is
permissible error, and 𝑛𝑝 is the number of points.

Factor 2 (FAC2). Consider

𝑓 =

1

𝑛𝑝

𝑛
𝑝

∑

𝑖=1

𝑁

𝑓

𝑖 , 𝑁

𝑓

𝑖 =

{

{

{

1, if 1
2

≤

𝑅

𝑐

𝑅

𝑒
< 2,

0, otherwise.
(78)

Figure 22 shows arrangements of the measurement
points. Due to technical limitations the sensors have been
placed below the level of 10m above the anvil (measurement
level 5). The accelerations have not been measured on the
two electrodes closest to the beater because their values were
larger than 5000m/s2.

Coefficients 𝑓 and 𝑞, in view of the chosen placement of
the sensors, allow us to compare the numerical results and



Mathematical Problems in Engineering 17

x
y

1

Control electrodes

Checkpoints

A

1210 29 11

1614 313 15

2018 417 19

2422 521 23

421 3
865 7

282625 27

F(t)

AB

P2P1

SB

E1 E3
E5 E7

2
m

16
.1
5
2

m

M
ea

su
rin

g/
co

nt
ro

l l
ev

els

Figure 22: Arrangements of the acceleration sensors on the electrodes (configuration 2).
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Figure 23: FAC2 and hit rate 𝑞 for normal, tangent, and total accelerations.

experimental measurements both for the whole system of 𝑛
electrodes and locally, for example, for a single strip of the
electrode. Values of coefficients𝑓 (FAC2) and 𝑞 are presented
in Figure 23.

Since maximal values of accelerations are important fac-
tors for the producer of electrostatic precipitators, coefficients
𝑞 and 𝑓 are also compared for value 𝑅 defined as follows:

𝑅 =

max 𝑎𝑐𝑠
max 𝑎𝑒𝑠

. (79)

The results are shown in Figure 24.
In both figures hit rate 𝑞 is presented for different values

of 𝜀 from (77). In view of the results of validation, the model
reflects the main features of the system and it will be of
definite benefit for producers of electrostatic precipitators at

the design stage in order to predict accelerations induced in
the electrodes by the rapping system.

4. Conclusions

Analysis of free vibrations of a single plate shows very
good convergence of the method and compatibility of results
(the relative error smaller than 0.5%) when compared with
those obtained from the commercial software. Thus, the
method has been used for modeling and analysis of a system
containing thin plates of complicated shapes.

In order to validate the model experimental measure-
ments have been carried out on a special test stand con-
sisting of a real system of collecting electrodes used in dry
electrostatic precipitators. Consistency factors FAC2 and 𝑞
have been used for comparative analysis of the results of
calculations andmeasurements. Good correspondence of the
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results of accelerations of vibrations in three directions has
been achieved.

The method proposed is intuitive and easy in imple-
mentation of complicated systems in which the structure
contains shells, beams, and concentratedmasses.The authors
compared numerical effectiveness of the method presented
with some other methods, including commercial software in
[18], and it has been shown that due to the shortest calculation
time the software developed is an effective tool used by
engineers at the design stage.

Values of accelerations of vibrations exceed 100 g for the
whole surface of the plates. Particularly large vibrations occur
at the level of the impact force and accelerations transmitted
by the brushing bar exceed 500 g. Since the effectiveness of
the dust-removal process depends not only on the values
of accelerations but also on their distribution, the analysis
of different configurations of the system is very important,
especially that the vibrations are quickly suppressed.

The software elaborated enables us to analyze the influ-
ence of the position of the brushing bar; its present position
does not ensure even distribution of vibrations.

The overall conclusion is that the process of vibration
excitation and wave propagation in the system of electrodes
is the result of many factors. This process depends not only
on the impact force but also on the physical parameters,
geometry, and construction of all the elements that make up
this system. In this respect the model presented in this paper
is an important novelty since using the testing calculations
can predict properties of the future structure as early as at the
stage of its design.

The possibility of analysis of vibrations for different
profiles of the collecting plates with various geometrical
parameters makes the software useful for the design process.

List of Symbols

FEM: Finite element method
RFEM: Rigid finite element method

est: Spring-damping element
rfe: Rigid finite element
𝑓, 𝑞: Factors
a ⋅ ⋅ ⋅ z,A ⋅ ⋅ ⋅Z: Matrices and vectors are marked by bold

letters
a𝑇: Transposition of matrix or vector
𝑥, 𝑦, 𝑧: Coordinates in global coordinate system
𝑥

󸀠
, 𝑦

󸀠
, 𝑧

󸀠: Coordinate in local coordinate system
{ }: Global coordinate system
{ }

󸀠: Local coordinate system
q, q󸀠: Vectors of generalised coordinates with

respect to coordinate systems { } and { }󸀠
𝜀,𝜎: Strain and stress vectors
Q: Vector of generalised forces
C,C𝑘,𝑗,𝑖: Stiffness matrices: global and of element

(𝑘, 𝑗, 𝑖)

M,M𝑘,𝑗,𝑖: Mass matrices: global and of element
(𝑘, 𝑗, 𝑖)

𝑇: Kinetic energy
𝑉: Potential energy
𝑉𝑔: Potential energy of gravity forces
𝑉𝑠: Potential energy of spring deformation
𝑢, V, 𝑤: Translational displacements for x, y, z axes,

respectively
𝜑, 𝜃, 𝜓: Rotational displacements about x, y, z axes,

respectively.
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[9] E. Wittbrodt, I. Adamiec-Wójcik, and S. Wojciech, Dynamics
of Flexible Multibody Systems: Rigid Finite Element Method,
Springer, Berlin, Germany, 2006.

[10] S. Wojciech and I. Adamiec-Wójcik, “Nonlinear vibrations of
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