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Abstract. Regularization techniques are used for computing stable solu-
tions to ill-posed problems. The well-known form of regularization is that of
Tikhonov in which the regularized solution is searched as a minimiser of the
weighted combination of the residual norm and a side constraint-controlled
by the regularization parameter. For the practical choice of regularization
parameter we can use the L-curve approach, U-curve criterion introduced
by us [1] and empirical risk method [2]. We present a comparative study
of different strategies for the regularization parameter choice on examples
of function approximation by radial basis neural networks. Such networks
are universal approximators and can learn any nonlinear mapping. e.g. rep-
resenting an magnetic inverse problem. Some integral equations of the first
kind are considered as well.
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1. Introduction

The regularisation method serves as a tool for the solution to ill-posed prob-
lems [3]. According to Hadamard, the originator of the concept of ill-posed prob-
lems, a problem can be defined as ill-posed if the solution is non-unique or if it is a
discontinuous function of the data. The classical example of an ill-posed problem
is a linear integral equation of the first kind in L*(/) with a smooth kernel. A so-
lution of this equation, if it exists, does not continuously depend on the right-hand
side and may not be unique. When the discretization of the problem is carried out
we receive a matrix equation in C™

Ax=b ey

where A is an matrix m X n with a large condition number, m > n A linear last
squares solution of the system (1) is a solution to the problem

min min ||Ax — b||? 2
xeCcm

where the Euclidian vector norm in C™ is used. We say that the algebraic problems
(1) and (2) are discrete ill-posed problems.

However, even ill-conditioned problems may have a meaningful solution, which
can be found by regularization. Making use of the Tikhonov regularization, the reg-
ularized solution to a linear problem can be found as a minimiser of the following
functional:

Xy = argmin[|Ax — b3 + o” [|Lx]3} 3)

where « is the regularization parameter and L approximates a derivative operator.

Regularised solution is searched as a minimiser of the weighted combination of
the residual norm and a side constraint. It can be stated that all regularisation meth-
ods for computing stable solutions to inverse problems involve a trade-off between
the “size” of the regularised solution and the quality of the fit that it provides to the
given data. What distinguishes the various regularisation methods is how they mea-
sure these quantities and how they decide on the optimal trade-off between the two
quantities. The weight given to the minimisation of the side constraint is controlled
by the regularisation parameter. Thus, the regularisation parameter is an important
factor that controls the quality of the regularised solution. A good regularisation
parameter should fairly balance the perturbation error and the regularisation error
in the regularised solution.
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2. Methods for choosing regularization parameter

There are several methods for choosing regularisation parameter. In the paper
we examine three of them.

2.1. L-curve method

The L-curve is a log-log plot — for all valid regularisation parameters — of
the norm ||Lx,||, of the regularised solution versus the norm of the corresponding
residual norm ||Ax, — bl [4]. We can write the solution and residual norms in
terms of the singular value decomposition (SVD):

2

Il = (f%) 4

i=1

n

%o~ bl = > (1~ ful B 5)

i=1

In this way, the L-curve clearly displays the compromise between the minimi-
sations of these two quantities, which is the heart of any regularisation method.
For discrete ill-posed problems, the L-curve has a characteristic L-shaped appear-
ance with a distinct corner separating the horizontal and the vertical parts of the
curve, where the solution is dominated by regularisation error and perturbation er-
rors, respectively. Two meanings of the “corner” were suggested by Hansen and
O’Leary [4]. The first one is the point where the curve closest to the origin, the
second one is the point where the curvature is maximum. L-curve for Tikhonov
regularization is important in the analysis of discrete ill-posed problems. Figure 1
shows an example of a typical L-curve.

2.2. U-curve method

Consider the following function

1 1
U(a):@+@,f0raf>0 (6)

where x(a@) and y(a) are defined by
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Figure 1. L-curve
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By U-curve we understand the plot of U(w), i.e. the plot of the sum of the reverse
both of the regularized solution norm and corresponding residual norm, for @ > 0
[1]. Figure 2 shows an example of a typical U-curve.

The U-curve consists of three characteristic parts, namely: on the left and right
side, almost “vertical” parts, in the middle almost, “horizontal” part. The vertical
parts correspond to the regularization parameter, for which the solution norm and
the residual norm are dominated by each other respectively. The more horizontal
part corresponds to the regularization parameter, for which the solution norm and
the residual norm are close to each other. The objective of the U-curve criterion for
selecting the regularization parameter is to choose a parameter where the curvature
attains a local maximum close to the left vertical part of the U-curve.

2.3. Vapnik method of empirical risk minimization

The details of the Vapnik’s method can be found in [2]. The principle is the one
of minimizing the empirical risk which is the empirical counterpart of the expected
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Figure 2. U-curve

risk. The starting point is that of Tikhonov functional minimization (formula 3)
with L being an identity operator. Hence, the problem is reduced to the solution of
the regularized set of normal equations:

(ATA + ozl) x=ATb )

Following Vapnik, we introduce a topological &-net in the space of admissible
solutions to (9). The set consists of vectors of the form

n

v=Y My, (10)

=l

where A;,1; are, respectively, eigenvalues and eigenvectors of the normal matrix
AT A, uj, are natural numbers and ¢ is the step of the e-net. The normal set of
equations is then solved for given « to find a node of the e-net which is closest to
found solution x®. The node can be found from the formula

5 [ x@9 | 1] e
Ve ;[ . /l]+2]’ujﬂj (11)
where the expression in square brackets stands for the entier function. The quality
of the solution is then estimated by minimizing the empirical risk functional with
respect to @ and . As a result, we can find the optimal regularization parameter
a for which the solution x® is of best quality [2]. The Vapnik’s method is closely
related to the ridge estimates approach.
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3. RBF network

Neural networks are composed of simple elements operating in parallel. These
elements are inspired by biological nervous systems. As in nature, the network
function is determined largely by the connections between elements. We can train
a neural network to perform a particular function by adjusting the values of the
connections (weights) between elements. Today neural networks can be trained to
solve problems that are difficult for conventional computers or human beings-they
are used in engineering, financial and other practical applications [5]. Typically
many input-output pairs are used, in supervised training, to train a network.

The construction of a radial-basis function (RBF) network in its most basic
form involves three entirely different layers. The input layer is made up of source
nodes (sensory units). The second layer is a hidden layer of high enough dimen-
sion, which serves a different purpose from that in a multilayer perceptron. The
output layer supplies the response of the network to the activation patterns applied
to the input layer. The transformation from the input space to the hidden-unit space
is nonlinear, whereas the transformation from the hidden-unit space to the output
space is linear. From the output space we get:

F) = ) wig(llx - il (12)

where (||..||) is, for the most part, Euclidean norm, are weights, ¢(||x — ¢;||) are radial
basis functions the values of which vary in a radial way around the centre.

Let the set of input-output data available for approximation is described by:
input signal: x; € R ,i = 1,2, ..., N and desired response: d; € R, i = 1,2,...,N,.
Let the approximating function be denoted by F(x;) = d;, where we have omitted
the weight vector w of the network from the argument of the function F. According
to Tikhonov regularization theory, the function F' is determined by minimizing a
cost functional

N
1 2, 1 2
E(F) = 3 1_21 [di — F(x)]” + EGIIPFII (13)

The @ is a positive real number called the regularization parameter. In [6]
Haykin presented the solution to the regularization problem. Following him, we
can write down the formula (3.1) as follows:

N
F(x) = > wiG(xj,x), j=1,2,3,..N (14)

i=1i



D. Krawczyk-Starido, M. Rudnicki, J. Starido

57

Figure 4. The plot of approximated Figure 5. The plot of error
function; U-curve

Figure 6. The plot of approximated Figure 7. The plot of error
function; L-curve
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Figure 9. The plot of approximated Figure 10. The plot of error
function; U-curve

Figure 11. The plot of approximated Figure 12. The plot of error
function; L-curve
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And similarly introduce the following:

F =[F(x1), .. Few)]", d=1[di,...dy]",
G(xl,xl) G(X],XN) (15)
G: ) ) ' ) W:[Wla""WN]T’
G(xn,x1) ... G(xn,xy)
we get
F =Gw (16)
Forw = %(d - F), we get
G+ Ahw =d (17

where [ is the N—by—N identity matrix. We call the matrix G the Green’s matrix. In
practice, we may always choose A sufficiently large to ensure that G + A/ is positive
defined and, therefore, invertible. This, in turn, means that the linear system of
equations (17) will have a unique solution given by [6]

w=(G+aA)'d (18)
We may use equation (18) to obtain the weight vector for a specified desired re-
sponse vector d and an appropriate value of regularization parameter a.
4. Numerical examples

Example 1
The Easom function: F(x,y) = —cos(x) cos(y) exp((x — )% + - 7)?%)

D={(xy):-5<x<5-5<y<5)
Learning patterns: 1000.

Error norm 1.3311e — 005-U-curve, parameter 0.0256, minimum —0.9778
Error norm 1.1302e — 005-L-curve, parameter 0.0126, minimum —0.9801



60 Modern Regularization Techniques for Inverse Modelling. ..

Figure 13. The plot of exact function Figure 14. The plot of approximated
function; U-curve

Figure 15. The plot of approximated Figure 16. The plot of approximated
function; L-curve function; Vapnik

Example 2
The function: F(x,y) = sin 1/x% + y2

D={(xy):—6<x<6,-6<y<6}
Learning patterns: 6561.

Error norm 7.2635¢ — 005-U- curve, parameter 0.3488
Error norm 7.3011e — 005-L- curve, parameter 0.2314

Example 3
The function:F(x,y) = sin y/x% + y?
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Figure 17. The plot of error; L-curve Figure 18. The plot of error; L-curve

Figure 19. The plot of error; Vapnik Figure 20. The plot of all error

Learning patterns: 36.

Error norm 1.3145¢ — 002-U-curve, parameter 6.1118
Error norm 7.0011e — 003-L- curve, parameter 0.8377
Error norm 1.6234e — 002-Vapnik, parameter 0.1201

Example 4
Equation Shaw [7].

Error norm 5.6101e — 005 -U- curve, parameter 4.3720e — 012
Error norm 1.5403e — 004 -L- curve, parameter 1.0634e — 014
Error norm 0.0080 Vapnik, parameter 0.100e — 03

5. Conclusions

Our study shows that the novel U-curve approach is fairly competitive with
respect to the others. In principle, it can be used for finding a regularized solution
to any ill-posed problem, including, e.g. Fredholm integral equations of the first
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Figure 21. The plot of exact function Figure 22. The plot of approximated
function; L-curve

Figure 23. The plot of approximated Figure 24. The plot of approximated
function; U-curve function; Vapnik

kind. On the other hand, Vapnik’s method based on regularised empirical risk min-
imization seems to be less reliable. The results obtained form L-curve method are
comparable to those from the U-curve method. Therefore, it is a question of choice
which method is best suited to the problem specific.
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