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This paper attends to analyse the modes for static buckling and vibrations of 

column-beams with rectangular and trapezoidal cross-sections with the help of the 

finite elements method. In the case of forced vibrations as well as in static buckling, 

the bending or eccentric compression loadings are investigated. 

 

1. INTRODUCTION 

 

The paper deals with static buckling, natural free and forced vibrations for beams 

with rectangular trapezoidal cross-sections, subjected to eccentric compression or pure 

bending, using ANSYS 12.1 FEM program [1]. In order to determine dynamic critical 

load, the Budiansky-Hutchinson [2] criterion was used. Many works describe behaviour 

of steel and composite columns and column-beams with closed and open cross-sections 

with respect to buckling modes and their interactions in aspect of dynamic buckling 

under axial compression, but the world subject literature does not presents generally the 

dynamic buckling of bent or eccentrically compressed thin-walled structures. In work [3] 

Kubiak investigated rectangular girder subjected to pure bending, using the finite 

elements method (FEM) and analytical-numerical method. 

 

2. NUMERICAL MODELS 

 

In both numerical models, the multi-layered shell finite element (SHELL99) was 

used (see Fig. 1) to include composite material properties only with one layer of lamina. 

 
Fig. 1. SHELL99 element geometry [1] 

 

This element has 4 nodes and 6 degrees of freedom at each node. The numerical 

models (Fig. 2.1, 2.2) of two beams were prepared as one half of the analyzed column 

taking in mind symmetry condition assumed at the half length of column. Thickness of 

all walls is identical and equals 1 mm (Table 1). Load distribution at the ends of beams 
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causes pure bending to be developed (only bending moment is applied) or eccentric 

compression (combined load composed of bending moment and compressive force). In 

case of eccentric compression, there is uniformly distributed force applied to each node. 

The nodes that belong to the plate under tension are not loaded, but nodes at the edges 

that belong to the compressed plate (bottom plate) are loaded with 1 N. For rectangular 

beam, in case of eccentric compression, it gives moment value of 2.34 Nm and 

compression force of 60 N. For trapezoidal beam the bending moment equals 0.034 Nm 

and axial force is 1.36 N. For pure bending, bending moments are specified at 4.64 Nm 

for rectangular beam and 1.45 Nm for trapezoidal beam. These values are reference 

values used in static buckling and forced vibrations analysis. The columns is investigated 

as simply supported at the loaded ends in plane of neutral axis, but top and bottom edges 

can move in ‘z’ direction (‘z’ axis is parallel to neutral axis) and all loaded edges 

belonging to top and bottom plates, remain straight. The applied load is assumed as a 

dynamic pulse. The shape of this pulse is a rectangle and pulse duration corresponds to 

the period of natural fundamental flexural vibrations of analyzed beams. The structures 

are modeled using the assumption of constant total mass of rectangular beam. It means 

that trapezoidal beam is made in the way that its mass is equal to the mass of rectangular 

beam. 

 

                   
 

Fig. 2.1. Numerical model and boundary conditions (half model): a) pure bending, b) 

eccentric compression 

 

                   
 

Fig. 2.2. Numerical model and boundary conditions (half model) for two cases of load: a) 

pure bending, b) eccentric compression 

 

 Table 1. Dimensions of beam-columns 

Type of section a [mm] b1 [mm] b2 [mm] b3 [mm] [deg] 

trapezoidal 300 150 112 27 15 

rectangular 300 100 100 100 0 

 

a) b) 

a) b) 
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where: a – total length, b1 – width of bottom plate, b2 – width of inclined or vertical 

plates, b3 – width of top plate, α - angle of inclination (inclined or vertical plates). 

 
 Table 2. Mechanical properties of composite material   (1 – compression direction) 

E1 [GPa] E2 [GPa] G12 [GPa] 12 [-]  [kg/m3] 

76 5.5 2.1 0.34 7800 

 

3. 3. RESULTS OF CALCULATIONS 

 

Calculations, obtained with the finite element method, were conducted for static 

buckling (the critical static loads) and frequencies of natural vibrations, for two cases of 

the load.  

 

3.1. STATIC BUCKLING ANALYSIS 

 

The modes of buckling are shown for pure bending in figures 3 and 5 and for the 

eccentric compression in figures 4 and 6. The figures show first three modes of buckling. 

Static critical moments were calculated for two types of load (Tables 3a, 3b). 

 

       

 

Fig. 3. Buckling modes (half model) - for pure bending case: modes 1-3 (numbering from 

left to right) 

 

       
Fig.4. Buckling modes (half model) - for eccentric compression case: 1-3 modes 

(numbering from left to right) 
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Fig.5. Buckling modes (half model) - for pure bending case:  

modes 1-3 (numbering from left to right) 

 

       
 

Fig.6. Buckling modes (half model) - for eccentric compression case: modes 1-3 (numbering 

from left to right) 

 
 Table 3a. Critical static moments for rectangular beam 

Number of 

half-waves  

Critical buckling 

moment  

[Nm] 

Case of load 

3 107.7 pure bending 

3 54.2 ecc. compr. 

 
 Table 3b. Critical static moments for trapezoidal beam 

Number of half-waves  
Mcr  

[Nm] 

Case of load 

1 221.8 pure bending 

1 19.2 eccentric compression 

 

3.2. VIBRATION ANALYSIS 

 

Analysis of vibrations was conducted for first three modes obtained for natural and 

forced vibrations. In Figs. 7 and 8, the modes of natural vibrations are shown for 

rectangular and trapezoidal beams. Frequencies for each mode are shown in Table 4.1 

and 4.2 for rectangular and trapezoidal cross sections, respectively.  
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 Fig.7. Modes of natural vibrations (half model) for rectangular beam 

 
 Table 4.1. Natural frequencies for rectangular beam 

Number of half-

waves 
f [Hz] 

1 45.4 

1 64.7 

1 64.8 

 

       

 

 Fig.8. Modes of natural vibrations (half model) for trapezoidal beam 

 
 Table 4.2. Natural frequencies for trapezoidal beam 

Number of half-

waves 
f [Hz] 

1 33.8 

1 52.5 

1 57.2 

 

Next, frequencies of forced vibrations were calculated for the beams (Fig. 9). 

Moreover, in the case of trapezoidal one, the second mode of buckling was included. 
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 Fig.9. Frequencies of forced vibrations vs. moment ratio: M/Mcr  

 

4. CONCLUSIONS 

 

For the second mode of buckling, in case of eccentric compression, the frequency 

decreases, but it does not reach value equal to zero. In the case of pure bending, the 

frequency increases. Comparing the modes of vibrations and buckling, one can conclude 

that all the modes for appropriate numbers of modes are different except first modes for 

trapezoidal beam. 
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