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3.  

Tolerance modelling of medium thickness 
functionally graded plates 

Various averaging approaches based on the known Hencky-Bolle-type plate 
assumptions are proposed in many papers to model medium thickness 
functionally graded plates with a microstructure. It can be shown that the effect 
of the microstructure size plays a crucial role in different thermomechanical 
problems of similar plates, cf. [3.2, 3.5, 3.7, 3.29, 3.68÷3.70]. However, 
governing equations of most of averaged models neglect the effect of the 
microstructure size on the overall behaviour of these plates. This lack of these 
models is supplemented in the tolerance model, which is based on the tolerance 
modelling approach, cf. [3.64, 3.65, 3.66]. 

3.1. Introduction 

Fig. 3.1. A fragment of a functionally graded plate with a microstructure, cf. [3.23] 

In this chapter vibrations of medium thickness functionally graded plates 
with a microstructure are considered. It is assumed that the plate has tolerance-
periodic structure on the microlevel along only one direction parallel to the 
x1-axis, but on the macrolevel it has functionally graded properties along this 
direction, cf. [3.21÷3.24, 3.57]. Material properties of the plate are assumed to be 
constant along the x2-axis. In plates of this kind a “basic cell” can be 
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distinguished, with a span l. The length l is assumed to be of an order plate 
thickness d, d∼l. A fragment of the plate is shown in Fig. 3.1. 

Composites and structures with functionally graded properties are usually 
described using the known methods, which are applied for periodic media. Some 
of them are shown in [3.57]. Similar approaches can be used for functionally 
graded plates with microstructure. Models based on the asymptotic 
homogenization method, cf. [3.4], are very interesting and useful, cf. [3.33]. 
Other modelling approaches for various periodically microstructured media are 
also proposed and applied in a series of papers, e.g. a homogenization based on 
microlocal parameters is used to model periodic plates by Matysiak and Nagórko 
[3.38] or to analyse temperature distributions in a periodically stratified layer by 
Matysiak and Perkowski [3.39]; natural frequencies of thick square plates made 
of orthotropic and hexagonal materials are considered by Batra et al. [3.3]; 
stability of multi-cell thin-walled columns is analysed by Królak et al. [3.34]; 
dynamic stability and buckling of beams or plates with metal foam core with 
variable mechanical properties are considered by Magnucka-Blandzi [3.36], 
Jasion et al. [3.16], Grygorowicz et al. [3.15]. 

In a series of papers there are shown many theoretical and numerical results 
of various problems of functionally graded structures. The modified Donnell type 
dynamic stability and compatibility equations are used to analyse stability of 
functionally graded cylindrical shells by Sofiyev and Schnack [3.56], where 
solutions are obtained by Galerkin’s method. Natural frequencies are investigated 
applying some meshless methods in a few of papers, e.g. for functionally graded 
plates by Ferreira et al. [3.14], for sandwich beams with functionally graded core 
by Bui et al. [3.6]. A collocation method with higher-order plate theories is used 
to analyse vibrations of FG-type plates by Roque et al. [3.53]. A GDQ solution 
for free vibrations of shells is presented by Tornabene et al. [3.61]. Higher order 
deformation theories are used to analyse thermomechanical problems for plates, 
which are functionally graded along their thickness by Akbarzadeha et al. [3.1] 
and also for functionally graded plates and shells by Oktem et al. [3.47]. 
Tornabene and Viola [3.60] consider a static behaviour of functionally graded 
shells. Modal analysis of functionally graded beams with effect of the shear 
correction function is shown by Murin et al. [3.45]. A new low-order shell 
element is used to investigate shell-like structures with functionally graded 
material properties by Kugler et al. [3.35]. In the paper of Jha et al. [3.31] there 
are analysed free vibrations of functionally graded thick plates with shear and 
normal deformations effects. Higher-order shear and normal deformable plate 
theory is applied by Sheikholeslami and Saidi [3.55] to consider vibrations of 
functionally graded rectangular plates. A numerical analysis of heat transfer in 
polycrystalline composites, containing metallic or elastic interfaces is shown by 
Sadowski and Golewski [3.54]. A problem of single-pulse chaos for 
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a functionally graded materials rectangular plate is considered by Yu-Gao 
Huangfu and Fang-Qi Chen [3.67]. Non-linear analysis of functionally graded 
plates based on a certain shear deformation theory is presented by Derras et al. 
[3.10]. Laminated plates are investigated by Fantuzzi et al. [3.13], where a strong 
formulation finite element method based on GDQ technique is shown. 

It is necessary to observe that governing equations of these models neglect 
usually the effect of the microstructure size, cf. [3.5]. In order to analyse this 
problem it can be applied the tolerance averaging method, cf. [3.21, 3.64, 3.65, 
3.66], which makes it possible to take into account this effect on the overall 
behaviour of microstructured media. Various problems of dynamics and stability 
for periodic structures and thermoelastic problems for periodic composites were 
analysed using this method in a series of papers, e.g. for thin periodic plates by 
Jędrysiak and Woźniak [3.29], Jędrysiak [3.17÷3.20]; for periodic fluid-saturated 
grounds by Dell’Isola et al. [3.9]; for plane periodic structures by Wierzbicki and 
Woźniak [3.62]; for periodic wavy-type plates by Michalak [3.42]; for thin plates 
reinforced periodically by a system of stiffeners by Nagórko and Woźniak [3.46]; 
for periodic medium-thickness plates by Baron [3.2]; for periodic thin plates with 
the microstructure size of an order of the plate thickness by Mazur-Śniady et al. 
[3.41]; for multiperiodic fibre reinforced composites by Jędrysiak and Woźniak 
[3.30]; for honeycomb lattice-type plates by Cielecka and Jędrysiak [3.8]; for 
periodic shells by Tomczyk [3.58, 3.59]; for microperiodic composite rods with 
uncertain parameters by Mazur-Śniady et al. [3.40]; for medium thickness plates 
resting on a periodic Winkler’s foundation by Jędrysiak and Paś [3.27]; for thin 
periodic plates with large deflections by Domagalski and Jędrysiak [3.11]; for 
vibrations of geometrically nonlinear slender periodic beams by Domagalski and 
Jędrysiak [3.12]; for dynamics of periodic three-layered plates by Marczak and 
Jędrysiak [3.37]. 

The tolerance modelling can be successfully used to consider various 
thermomechanical problems of functionally graded structures, e.g. for stability of 
transversally and longitudinally graded plates by Jędrysiak and Michalak [3.26]; 
for heat transfer in transversally graded laminates by Jędrysiak and Radzikowska 
[3.28]; for dynamics of plates with longitudinally graded structure by Michalak 
and Wirowski [3.44], Wirowski [3.63], Perliński et al. [3.51]; for vibrations of 
transversally graded thin plates with the plate thickness small in compare to the 
microstructure size by Jędrysiak [3.21], Kaźmierczak and Jędrysiak [3.32], 
Jędrysiak and Kaźmierczak-Sobińska [3.25]; for dynamics of thin plates having 
the microstructure size of an order of the plate thickness by Jędrysiak [3.22-
3.24]; for dynamic problems of a thin-walled structure with dense system of ribs 
by Michalak [3.43]; for non-stationary heat transfer in a hollow cylinder with 
functionally graded material properties by Rabenda [3.52]; for heat conduction in 
cylindrical composite conductors with non-uniform microstructure by Ostrowski 
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and Michalak [3.48, 3.49]; for thermoelastic problems in transversally graded 
laminates by Pazera and Jędrysiak [3.50]. A lot of examples of applications of 
the tolerance method to analyse these composites and structures can be found in 
the books [3.21, 3.64, 3.65]. 

In this chapter there are derived the tolerance model equations of the 
medium thickness microstructured functionally graded plates with the 
microstructure size of an order of the plate thickness, which describe the effect of 
the microstructure size. Moreover, these equations and equations of the 
asymptotic model are applied to analyse vibrations for a simply supported 
microstructured plate band. Formulas of vibration amplitudes and resonance 
frequencies are obtained by using the Ritz method. 

3.2. Modelling foundations 

3.2.1. Preliminaries 

A plate is considered in the orthogonal Cartesian coordinate system Ox1x2x3. 
Let t be the time coordinate and subscripts i,k,l run over 1,2,3, but α,b,γ run over 
1,2. Introduce x≡(x1,x2), x≡x1, z≡x3 and denote the region of the undeformed plate 
by },2/2/:),{( Π∈≤≤−≡Ω xx dzdz , where Π is the plate midplane and d(⋅) is 
the plate thickness, which can be a tolerance-periodic function in x. Derivatives 
of xα are denoted by ∂α and also ∂α...d≡∂α...∂d. Let }0{]2/,2/[ ×−≡∆ ll  be the 
“basic cell” on Ox1x2, where l is its length dimension along the x1-axis, which 
satisfies conditions d∼l and l<<L1. Hence, it is called the microstructure 
parameter. Introduce also an interval ],0[ 1L≡L . All material and inertial 
properties of the plate, as mass density ρ=ρ(⋅,x2,z) and elastic moduli 
aijkl=aijkl(⋅,x2,z), are assumed to be also tolerance-periodic functions in x,  
even functions in z and independent (constant) of x2. Denote 
cαbγd≡aαbγd−aαb33aγd33(a3333)−1, cα3γ3≡aα3γ3−aα333a33γ3(a3333)−1, where aαbγd, aαb33, 
aα3γ3, a3333 are the non-zero components of the elastic moduli tensor. Denote also 
plate displacements by ui (i=1,2,3) and total loadings in the z-axis direction by p. 

3.2.2. Governing equations 

The medium thickness plates under consideration have properties described 
by tolerance-periodic functions of x - a mass density per unit area µ, a rotational 
inertia ϑ and stiffnesses bαbγd, dαb, defined by the following formulas 
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Using the kinematic assumptions of the Hencky-Bolle-type plate theory, the 
following action functional can be written 
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with Lagrangean   defined by the formula 
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where: w=u3(x,t) is a plate deflection; φα(x,t), α=1,2, are plate rotations. It is 
assumed that   is tolerance-periodic, highly oscillating function of x. Using the 
principle of stationary action to functional  , (3.2), and Lagrangean  , (3.3), 
we arrive at the known system of partial differential equations for deflection 
w(x,t) and rotations φα(x,t) of the medium thickness plate: 
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The above equations describe vibrations of medium thickness functionally 
graded plates with microstructure. Equations (3.4) have highly oscillating, non-
continuous functional coefficients. Hence, an application of these equations to 
special problems is rather difficult and it is necessary to propose an averaged 
approach of them or Lagrangean  , (3.3). 

3.3. Tolerance modelling 

3.3.1. Basic concepts 

Basic concepts of the tolerance modelling method, which is used here, were 
defined in the books [3.21, 3.64÷3.66] and also in a series of papers, e.g. for 
transversally graded plates in [3.23÷3.24]. Here, these concepts can be only 
mentioned: the tolerance system, the tolerance-periodic function f, 

),( ∆Λ∈ rTPf δ , the slowly-varying function F, ),( ∆Λ∈ rSVδF , the highly 
oscillating function φ, ),( ∆Λ∈φ δ

rHO , the fluctuation shape function g, 
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),( ∆Λ∈ δ
rFSg , where d is a tolerance parameter, 0<d<<1, r is a kind of the 

function, r>0. 

Introducing a cell ∆+≡∆ xx)(  at ∆Λ∈x , })(:{ Λ⊂∆Λ∈=Λ∆ xx , the 
averaging operator for an integrable function f can be defined by 

 .,),(),(
)( 2

1
2 ∆∆

Λ∈=>< ∫ xdyxyfxxf
xl  (3.5) 

The averaged value of a tolerance-periodic function f, calculated from (3.5), 
is a slowly-varying function in x. 

3.3.2. Fundamental modelling assumptions 

Using the introductory concepts two fundamental assumptions of the 
tolerance modelling can be formulated, cf. [3.64÷3.66] and for thin functionally 
graded plates in [3.23÷3.24]. 

The first assumption is the micro-macro decomposition, which lets to 
decompose medium thickness plate displacements in the form 
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txgtztzu
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xxx
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=

 (3.6) 

where: new unknowns - macrodeflection w, macrorotations ϕα (α=1,2), and 
fluctuation variables θα (α=1,2), are slowly-varying functions in x 
( ),(),,(),,,(),,,( 1

222 ∆Λ∈⋅θ⋅ϕ⋅ δαα SVtxtxtxw ); the known fluctuation shape function 
g, ),(),,()( 1 lOgFSg ∈∆Λ∈⋅ δ  has the form of a saw-type function of x. Similar 
assumptions were introduced for periodic plates - thin, cf. [3.41], and medium 
thickness, cf. [3.2]. 

The next fundamental assumption is the tolerance averaging approximation, 
such that terms of an order of tolerance parameter d are negligibly small in the 
modelling procedure, e.g. for functions ),,(1 ∆Λ∈ δTPf  ),,(1 ∆Λ∈ δFSh  

),,(1 ∆Λ∈ δSVF  in formulas: ),()()( δ+>=<>< Oxfxf  
),()()()( δ+>=<>< OxFxfxfF  )()()()()( δ+>∂=<>∂< OxFxhfxhFf , and 

they can be neglected. 

3.3.3. Modelling procedure 

The tolerance modelling procedure of thin functionally graded plates, having 
thickness d, which is small in comparing to the span of cell l, cf. [3.21, 3.32], can 
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be easily adopted to consider plates with the span l being of an order of the plate 
thickness, cf. [3.22÷3.24]. 

In the first step Lagrangean   in the form (3.3) is formulated. The second 
step is the substitution of the micro-macro decomposition (3.6) into formula 
(3.3). In the next step the averaging operator (3.5) is used to the resulting 
equation. Applying in the fourth step the tolerance averaging approximation the 
tolerance averaged lagrangean >< g  is derived in the following form 

.)
2(

)
2(

)(

2
1

22221111

112
1

2
1

wpggdd
wdwwd

ggbggb
gbb

ggwwg

><+θθ><+ϕϕ><+
+ϕ∂><+∂∂><−

−θ∂θ∂><+θθ>∂∂<+
+θϕ∂>∂<+ϕ∂ϕ∂><−

−dθθ>ϑ<+dϕϕ>ϑ<+>µ<>=<

bααbbααb

bααbbααb

dbdbdbdb

dbαdαbdgbααbgd

αbbααbbα


(3.7) 

From the principle of stationary action used to formula (3.7) the Euler-
Lagrange equations for unknown functions ),,(),,,(),,,( 222 txtxtxw ⋅θ⋅ϕ⋅ αα  can be 
derived 
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3.4. Governing equations 

Substituting Lagrangean (3.7) into equations (3.8), after some manipulations 
governing equations for functions ),,(),,,(),,,( 222 txtxtxw ⋅θ⋅ϕ⋅ αα , α=1,2, are 
obtained 
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which are a system of partial differential equations. Equations (3.9) with micro-
macro decomposition (3.6) stand the tolerance model of medium thickness 
functionally graded plates with a microstructure. Underlined terms of equations 
(3.9) depend on the microstructure parameter l. Hence, the tolerance model takes 
into account the effect of the microstructure size. Coefficients of (3.9) are slowly-
varying functions in x. The basic unknowns - w, ϕα, θα, are slowly-varying 
functions in x. Boundary conditions should be formulated for macrodeflection w 
and macrorotations ϕα on all edges, but for fluctuation variables θα only for 
x2=const. 

In order to compare and evaluate obtained results an approximate model, 
which governing equations neglect the effect of the microstructure size, is 
introduced. The equations of this model can be derived from equations (3.9) after 
vanishing underlined terms and can be written as 
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The above equations stand the asymptotic model of medium thickness 
functionally graded plates with a microstructure. On the contrary to equations 
(3.9) they do not describe the effect of the microstructure size on vibrations. 
Equations (3.10) have also slowly-varying coefficients. 

3.5. Example - vibrations of medium thickness functionally 
graded plate band  

3.5.1. Preliminaries 

 
Fig. 3.2. A fragment of a functionally graded plate band 
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Let us consider vibrations of a simply supported plate band, with a span 
L≡L1, cf. Figure 3.2. It is assumed that the plate band is made of two elastic 
isotropic materials, with Young’s moduli EE ′′′, , Poisson’s ratios ν′′ν′,  and mass 
densities ρ′′ρ′, . Both materials are perfectly bonded across interfaces. It is 
assumed that ,),(),( Λ∈ρ xxxE  are tolerance periodic, highly oscillating functions 
in x, )(),()(),( 00 Λ⊂∆Λ∈⋅ρ⋅ δ HTPE , but Poisson’s ratio ν′′=ν′≡ν  is constant. 
Under condition EE ′′≠′  and/or ρ′′≠ρ′  the material structure of the plate can be 
treated as functionally graded in the x-axis direction. Hence, these plate 
properties can be assumed in the form 
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(3.11) 

where γ(x) is a distribution function of material properties, cf. Figure 3.3. 

Fig. 3.3. A basic cell of a functionally graded plate under consideration, cf. [3.23] 

Because the cell ),(x∆  ,Λ∈x  of the plate band, has the form shown in 
Fig. 3.3 the periodic approximation of the fluctuation shape function can be 
assumed in as 
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where )(, xyx ∆∈Λ∈ ; )(~ xγ  is a periodic approximation of the distribution 
function of material properties γ(x), cf. Fig. 3.4. 
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Fig. 3.4. A fluctuation shape function for the cell of the plate, cf. [3.23] 

3.5.2. Governing equations of vibrations 

Because vibrations of a medium thickness plate band are considered it is 
assumed that all basic unknowns are independent of argument x2. Hence, the 
governing equations of the tolerance model (3.9) take the form 
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 (3.13) 

Equations (3.13) are decoupled on two systems of equations: the first of 
differential equations for unknown functions - macrodeflection w, macrorotation 
ϕ1, fluctuation variable θ1, and the second - for macrorotation ϕ2 and fluctuation 
variable θ2. 

Obtained results can be evaluated using the governing equations of the 
asymptotic model (3.10), which have the form 
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They are also decoupled on two systems of equations. It can be observed that 
for fluctuation variables θα, α=1,2, there are only algebraic equations (3.14)3,5. 

3.5.3. Approximate solutions to the governing equations 

Equations (3.13), (3.14) have slowly-varying functional coefficients of x1 
argument. Hence, they are not a good tool to solve special problems of these 
plates. But some known approximate methods can be used, for instance the Ritz 
method, such for thin functionally graded plates in [3.21, 3.22÷3.25, 3.32]. For 
the plate band under consideration and using the following denotations 
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Lagrangean >< g , (3.7), takes the form 
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Solutions to equations (3.13) can be assumed in the form satisfying proper 
boundary conditions for a simply supported plate band 
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where: α is a wave number; w is a free vibration frequency; 
2211

,,,, θϕθϕ AAAAAw  
are amplitudes. 

Using these solutions (3.17) and introducing the following denotations 
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the maximal kinetic energy TM
maxK  and the maximal potential energy TM

max  by the 
tolerance model can be written as: 

− the maximal kinetic energy TM
max  
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− the maximal potential energy TM
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Similarly, these energies in the framework of the asymptotic model take the 
form: 

− the maximal kinetic energy AM
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Using the conditions of the Ritz method 
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to formulas (3.19) and (3.20) systems of linear algebraic equations for amplitudes 
2211

,,,, θϕθϕ AAAAAw  can be obtained. 

For the tolerance model these algebraic equations take the form of two 
decoupled systems: 

− the first for amplitudes 
11

,, θϕ AAAw

,0)]([~
,0~)(

,)(

11

11

1

2
1

2
11

1
2

1
2

11

1
22

1

=ϑω−++α

=α+ϑω−+α+α

−=α+µω−α

θϕ

θϕ

ϕ

ADlBAB

ABADBAD

PADAD

ω

ω







(3.22a) 

− the second for amplitudes 
22
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Below, our considerations are restricted only to equations (3.22a). Solving 
this system formulas of amplitudes 

11
,, θϕ AAAw  take the form 
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where 21, −− ϖϖ  are two lower and 1+ϖ  the higher resonance frequencies, 
respectively. Introducing the following denotations 
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and also 
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formulas of the abovementioned resonance frequencies take the following form 
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It can be observed that formulas (3.26) are identical to these, which describe 
free vibration frequencies of medium thickness functionally graded plate band 
with microstructure in the framework of the tolerance model. There are two 
fundamental lower frequencies 21, −− ϖϖ  of free macro-vibrations and one higher 
frequency 1+ϖ  of free micro-vibrations. 

On the other side, using the conditions of the Ritz method (3.21) to the 
asymptotic model formulas of the maximal energies (3.20) the systems of 
algebraic equations are obtained: 
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− the second for amplitudes 
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Restricting our considerations to equations (3.27a) and solving this system 
formulas of amplitudes 

11
,, θϕ AAAw  have the form 
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where 21
~,~

−− ϖϖ  are two lower resonance frequencies. Introducing denotations 
similar to (3.24) 
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formulas of the abovementioned resonance frequencies take the following form 



Tolerance modelling of medium thickness functionally graded plates 

 
105 

 
.]~~4~~[)~2(~

,]~~4~~[)~2(~

21
2

21
1

dbccb

dbccb

−+=ϖ

−−=ϖ

−
−

−
−

 (3.30) 

Formulas (3.30) are identical to these of free vibration frequencies of 
medium thickness functionally graded plate band with microstructure in the 
framework of the asymptotic model. They are only two fundamental lower 
frequencies 21

~,~
−− ωω  of free macro-vibrations.  

It can be observed that only in the framework of the tolerance model the 
effect of the microstructure size of the plate strip can be analysed in the form of 
higher vibration frequencies, (3.26)3. However, in the asymptotic model this 
effect is neglected and the fundamental lower frequencies can be only 
investigated, (3.30). 

3.6. Final remarks 

The main problem considered in this chapter is modelling of vibrations of 
medium thickness functionally graded plates having a microstructure. 
Unfortunately, most averaging approaches applied to analyse these problems 
neglects phenomena related to the microstructure size of the plate. In order to 
take into account the effect of the microstructure size the tolerance method is 
used. Applying this method the known differential equations, based on the 
Hencky-Bolle-type plate assumptions, with tolerance-periodic, non-continuous, 
functional coefficients is replaced by governing equations with smooth, slowly-
varying coefficients. The derived tolerance model equations describe the effect of 
the microstructure size on the overall behaviour of microstructured medium 
thickness functionally graded plates under consideration. However, the 
asymptotic model equations neglect this effect and describe these plates on the 
macrolevel only. 

Following the obtained analytical results some general remarks can be 
formulated. 

1 The tolerance model take into account the effect of the microstructure 
size in dynamic problems of microstructured medium thickness 
functionally graded plates, e.g. the “higher order” vibrations related to 
the plate microstructure; 

2 The asymptotic model lets to investigate only lower order vibrations 
of these microstructured plates; 
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3 Solutions obtained in the framework of the tolerance model have to 
satisfy the condition to be slowly-varying functions in x1. This 
condition stands a posteriori verification of results of this model. 

Some other thermoelasticity problems of the medium thickness functionally 
graded plates will be considered in forthcoming papers, where certain evaluations 
and comparisons with other averaged models could be presented. 
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