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The non—symmetric, general laminate exhibits different types of coupling between the
extension, shearing, bending and twisting. For practical reasons, the in—plane coupled
laminate is a particularly interesting. In this case, the coupling between shearing and
extension takes place. Details calculations were performed for a short columns of square
cross-section made of in—plane coupled and fully uncoupled laminate under uniform com-
pression. Finite element method (FEM) and analytical-numerical method (ANM) were
performed. In FEM analyses, the eigenbuckling problem has been solved using the Lanc-
zos method, whereas the nonlinear buckling analysis were performed using the Newton—
Raphson method and the Ritz method. In ANM analyses, the Koiter’s asymptotic theory
is applied. The relationship between forces/moments and deformations/curvature were
described using classical lamination theory (CLT). The coupling between in—plane shear-
ing and extension has a significant influence on the behavior of thin-walled structures
under compression.
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1. Introduction

Layers of a laminate can be arranged in any way. This type of non-symmetric lami-
nates (the so—called: general laminate) exhibits different types of coupling between
the extension, shearing, bending and twisting [1-6]. In the literature, the most pop-
ular is bending-torsion coupling [7-8]. On the other hand, there are some known ar-
rangement layers for the general laminate, eg. general laminate with 18 plies: [60/-
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602/05/602/0/-60/602/-603 /02 /60]7, where it is possible to fully uncouple the in—
plane and out—of-plane response to mechanical and/or thermal loading [9]. For
selected laminate stacking sequence, it is possible to observe isolated coupling ef-
fects [5—6]. Particularly interesting is the hygro—thermally stable composite lami-
nates (the so—called: HTCS laminates) with coupling which, in the manufacturing
process are not warping. In the papers [10-14], the authors have presented a few
stacking sequences of the HTCS laminates with different coupling. The current
paper focuses on the behavior of compressed thin—walled columns made of general
laminate possessing isolated mechanical in—plane coupling, i.e., extension—shearing
coupling. There are no other couplings presented. In the literature, a substantial
lack of the buckling analysis of thin—walled structures made of coupled laminate
is observed. Some effects of mechanical coupling on the post—buckling behavior or
vibration analyses of composite laminated structures were studied in the papers
[15-19].

2. Characterization of composite laminates

A stacking sequence [-0/ 0] and a reference system x — y are illustrated in Fig. 1,
where a fiber angle is denoted as 6 in degree.

Layer 2
Layer 1

Figure 1 Arrangement of laminate layers

The relationships between forces/moments and deformations/curvatures are de-
scribed by the stiffness matrix consisting of three submatrices: extensional (A),
coupling (B) and bending (D). The constitutive equation can be written in the

following form [20-21]:
tnp-la ol {5} g

where: -~ ;
A A A
A= Azp Asg
L Sym A66 ]
Bi1 Bi2 B
B = By Bag (2)
L Sym BGG ]
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Dy1 D12 D
D= Dss Do
Sym D66

and &€ — middle surface strain tensor, kx — bending and twisting curvatures tensor
for the plate element. More details can be found in the Appendix A.

The coupling behavior depends on the form of the elements in each of the subma-
trices: A, B and D (Eq. 2). The stiffness submatrices for fully uncouple laminate
are:

A11 A12 0 D11 D12 0
A= Aoy 0 B=0 D= Dy 0 (3)
Sym. Ags Sym. Degg

When the elements: Aig and Asg are not equal to 0, the coupling between in-plane
shear and extension takes place. In this case, the stiffness matrices can be written
in the following form:

A A A Dy Dip O
A= Aoy Ass | B=0 D= Doz 0 (4)
Sym. Age Sym. Degg

For practical reasons, it is a particularly interesting case of coupling. The in-plane
coupled laminates can be produced with modern technology at elevated tempera-
tures. The elements are not warping in the cooling process. An example of the
in-plane coupled laminate is laminate with 18 plies [1]: [45/0/-45/45/-455/(0/-
45)3/452/-45/] 7.

Figure 2 The plate element of the thin—walled structure

3. Analytical-numerical method (ANM)

A plate model has been adopted for the walls of the analyzed laminated column.
To describe the middle surface strains the strain tensor for each plate has been
assumed in the following form (Fig. 2) [21-26]:

Ex =Ug + %(w,zgc —+ U,za: + u,Qz)
Ey =y + %(wa +u? +0%) (5)

280y = Yay = Uy t Vo +WaWy +Uzuy + 00y
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where: u, v, w — displacements parallel to the respective axes x, y, z of the local
Cartesian system of co-ordinates, whose plane = — y coincides with the middle
surface of the plate before its buckling.

Differential equations of equilibrium are [21]:

Now + Noyy + {(Nattg) o + (Nyty),y + (Nayt o) y + (Nayty) o} =0
Nay,z + Nyy + {(Novz) e + (Nyvy)y + (Nayv)y + (Nayvyy) 2z} =0 (6)
My oo + Myyy + 2Moy 2y + (Now,z) o + (Nyw )y + (Naywz) y
+(Npyw ),z =0

A non-linear stability problem has been solved by using the Koiter’s asymptotic
theory. The displacement field and sectional force field have been expanded into the
power series with respect to the buckling linear eigenvector amplitude (normalized
with the equality condition between the maximum deflection and the thickness of the
first plate— denote as h). The zero approximation describes the pre-buckling state,
whereas the first order approximation allows for determination of critical loads and
the buckling modes corresponding to them, taking into account minimisation with
respect to the m number of half-waves in the lengthwise direction. The second order
approximation is reduced to a linear system of differential heterogeneous equations,
whose right—hand sides depend on the force field and the first order displacements
only.

Finally, the interaction of N eigenmodes leads to a nonlinear system of equations
[21-26]:

(1 - U) & + 0ijr&i& + cijrrbi€iée = Ter r=1,..,N (7)

0.7" O.T'
where:

¢ = w;/h — is the dimensionless amplitude of the r-th buckling mode
(w, — maximum deflection referred to the thickness of the first plate),

or, G = w(/,rh — are the critical stress and dimensionless amplitude of the ini-
tial deflection corresponding to the r—th buckling mode (w,, — maximum initial
deflection referred to the thickness of the first plate),

N — is the number of interact buckling modes,

bij» — are the non-linear coefficients in the first order approximations,

Cijkr — are the non-linear coefficients in the second approximations.

The range of indexes: i, j, k, 7 is from | to N. The summation is supposed
on the repeated indexes. The coefficients b;;. and c;;,, can be determined with
well-known formulae (see for example [9]). One-mode approach can be written [25]:

g g
<1 - ) & +binél +ennél = —¢, r=1 (8)
01 o1

Having found the solutions to the first and the second order boundary problem,
the coeflicients by11, c1111 used to describe postbuckling equilibrium path have been
determined [9].
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4. Finite Element Method (FEM)

The numerical calculations were performed with the FEM using Abaqus software
package (Fig. 3). Discretized model of analysed column was composed of multi-
layered shell elements with 8 nodes (type: S8R). The elements have six degree of
freedom at each node.

Figure 3 FEM model of the thin—walled structures

The calculations were performed in two stages. At first stage, the eigenbuckling
problem have been solved to determine the critical/buckling load with the corre-
sponding buckling mode. In the second stage, the nonlinear buckling analysis was
performed to determine the postbuckling behaviour (force vs. displacement rela-
tions). The imperfections related to the first buckling mode were implemented to
the numerical model with the amplitude of imperfection equal 1/10 of the columns
wall thickness. The Newton—-Raphson method and the Ritz method (the arc-length
method) for solving the nonlinear problem were employed.

5. Comparison of post—buckling paths obtained with FEM and ANM

Detailed calculations were performed for the thin—walled column of square cross-
section made of in—plane coupled and fully uncoupled laminate under compression.
The former stacking sequence was:

[45/0/-45/45/-455/(0/-45)3 /452 /-45 /] (denoted as Case 2)
and the latter was the reference one:

[60/-604/03/605/0/-60/602/-603 /02 /60](denoted as Case 1).

The stiffness submatrices are presented in Tab. 1.

Mechanical properties of the IM7/8552 carbon-epoxy laminate are [1]: Young’s
moduli moduli in the 1 and 2 material directions: F; = 161 GPa, E5 = 11.38 GPa,
shear modulus in the 1, 2 plane: G2 = 5.17 GPa, Poisson ratio in the 1, 2 plane:
v12 = 0.38. The ply thickness is equal to 0.14 mm.
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Table 1 Stiffness submatrices

Case 1 — Laminate without coupling | Case 2 — Laminate with extension—
(layup arrangement: shearing coupling (layup arrange-
[60/ — 602/03/602/0/ — 60/602/ — | ment:
603/02/60]7) [45/0/ — 45/45/ — 455/(0/ — 45)3/452/
—45/]7)
173846 56603 0 190433 81757 —31676
A= 173846 0 A= 105963 —31676
i Sym. 58621 i Sym. 83771
B=0 B=0
[ 91999 29954 0 [ 92829 45514 0
D= 91999 0 D= 58485 0
Sym. 31022 Sym. 46575

The simulations were conducted for uniformly compressed columns with dimen-
sions of their cross—section shown in Fig. 4.

() (&
] i
Layer 2 = i
+0 & i
B o - H A I A e
| ol
y -0 _‘2.52 i 2
Layer 1 \ ' i
2000 230 -
(a) (b)

Figure 4 Schematic view of the column and its dimensions in mm

The eigenbuckling problem was solved using the FEM and the ANM methods.
Critical stresses for different number of axial half-waves are presented in Tab. 2.
All results obtained with both methods were the same. In all cases, the differences
were less than 3%. The lowest critical stress was equal to 26 MPa in Case 2 and
23 MPa in Case 1 — Fig. 5. The form corresponding to the lowest flexural buckling
load are shown in Fig. 6. It was a local buckling mode with 7 axial half-waves for
Case 2 (Fig. 6b) and 8 for Case 1 (Fig. 6a). In this case the increase in the lowest
critical stress was 16%.
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Table 2 Critical stress versus the number of axial half-waves m (-) for axial compression

Case 1 Case 2
m(-) ANM FEM ANM FEM
4 36.0 36.1 33.7 33.2
5 28.5 28.5 29.2 28.7
6 25.0 24.9 27.3 26.9
7 23.5 23.3 26.8 26.1
8 23.1 22.8 27.0 26.3
9 23.4 23.0 27.8 27.3
10 24.3 23.8 29.0 28.4
11 25.5 25.0 30.5 29.9
12 27.1 26.5 32.3 31.7
13 28.9 28.2 34.3 33.7
14 31.1 30.4 36.6 35.9
15 33.4 32.5 39.1 38.4
16 36.0 35.0 41.8 41.0
17 38.8 37.6 44.7 45.2
—x—Casel —e—Case?
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Figure 5 Critical stress versus the number of axial half-waves for axial compression
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Figure 6 The form corresponding to the lowest flexural buckling load: (a) Case 1 — laminate
without coupling, (b) Case 2 — laminate with extension—shearing coupling
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Figure 7 Dimensionless postbuckling paths of the column made of in-plane coupled lami-

nate under compression (Case 2 — [45/0/-45/45/-455/(0/-45)3/452/-45/]T), (a) wo1/h = 0.1,
(b) wol/h =04

(@) (b

Figure 8 Dimensionless postbuckling paths of the column made of in—plane coupled laminate

under compression for different amplitude of initial imperfections (Case 2 — [45/0/-45/45/-455/(0/-
45)3/452/-45/]T), (a) FEM, (b) A-N
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Figure 9 Postbuckling behaviour of the columns made of in—plane coupled (Case 2) and fully
uncoupled (Case 1) laminate under compression for different amplitude of initial deflections

The nonlinear problem of buckling was solved using the Newton—Raphson method
(denoted as: FEM(N-R))and the arc-length method (denoted as: FEM(Riks)) in
the FEM analysis. The FEM results were compared with the results obtained with
the analytical-numerical method (denoted as: ANM). All post—buckling results
were shown in Figs. 7-10 for the column made of the in—plane coupled laminate. If
the dimensionless loads were low (0/0; < 0.5 — Fig. 7) and the dimensionless initial
deflections were less than 0.4, all the obtained results were identical. On the other
hand, if the dimensionless loads were higher, the difference increased significantly
but were still at an acceptable level. The ANM results were the lowest ones. The
differences yield from the calculation procedure. In the cases of analytical-numerical
method (ANM) the one-mode approach was used (see Eq. (7)), while in the case
of the FE method the multi-modes approach was accepted.

If the dimensionless loads were higher than 1, the difference between the results
obtained by the FEM and the ANM methods was increasing, especially for larger
amplitude of initial deflection (compare Fig. 7a and Fig. 7b). In addition, the
ANM method was more sensitive to the initial deflection (Fig. 8b) than the FE
method (Fig. 8a). If the dimensionless initial deflection changed in the range of 0.1
to 0.4, the postbuckling paths determined by FE method were close to each other
(Fig. 8a). In other words, an increase in initial deflection for given loads did not
cause an increase in deflections. In that case, the postbuckling paths determined by
ANM method strongly dependent on the initial deflection (Fig. 8b). The increase in
initial imperfections for the given loads caused a significant increase in deflections.

The use of the in—plane coupled laminates had a significant influence on the
post—buckling behavior of the column under compression. Details were shown in
Fig. 9. In this case, the post-buckling paths had a lower rigidity in relation to the
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columns made of fully uncoupled laminate. This effect was made more visible for
large initial deflections. All postbuckling paths were stable and symmetrical.

6. Conclusions

Detailed calculations were performed for the thin—walled column of square cross—
section made of in—plane coupled and fully uncoupled laminate. In these cases, the
lowest forms of buckling. The designated equilibrium path was stable and symmetri-
cal. For discussed columns high similarity of the computational results were gained.
A quantitative and qualitative compatibility was obtained. The coupling between
the in—plane shearing and extension had a significant influence on the behavior of
thin—walled structures under compression.
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Appendix A.
The stiffness coefficients are defined as [20-21]:

Ay = k; Qi) (21 — 25-1) (A1)
SEPICHRCEE Y (A2)
u:%i< Qi) (28— 231) (A3)

where: z represent the height relative to the laminate mid—plane for the k-th ply.
The transformed reduced stiffness terms Q . are given by [20 21]:
Q11 = Q1108 0+ 2(Q12 + 2Qe6) cos 951n 0 + Q22 sin 0 (A4)
Q12 = Q21 = (Q11 + Q22 — 4Q¢g) cOS Hsm 0 + Q12(cos* 6 + sin 0) (A5)
Q16 = Qg1 = [(Q11 — Q12 — 2Q6) cos 9

+(Q12 — Qa2 + 2Q6) sin? 4] cos@sm@ (A6)
Qap = Qu1sin 0 + 2(Q12 + 2Qs) cos2 6 sin? @ + Q22 cos* (A7)
Qa6 = Qg = [(Q11 — Q12 — 2Qe6) sin® 0
B +(Q12 — Qa2 + 2Qe6) cos? 0] cos O sin 6 (A8)
Qo6 = (Q11 + Q22 — 2Q12 — 2Qe6) cos? Osin’ O + Qg6 (cos? O — sin® §) (A9)
where:
Qll = 1*1?:;1/21’ Q12 = 15;215321 = 11/?/1123;21’
Qu = Jﬁ, Qe6 = G12 (A10)

and mechanical properties are denoted as: Young’s moduli moduli in the 1 and 2
material directions: E7, Fso, shear modulus in the 1, 2 plane: G2, Poisson ratio in
the 1, 2 plane: vqs.

To determine the resultant moments M and forces N acting on the laminate,
the k—th ply stresses are integrated through the ply thickness and the sum of the
effects from all the plies is then taken in the following manner [21]:

M, p Oy
M, :Z/ oy zdz
Mg, k=1, Toy ) g
(A11)
N, p Zk o
N, :Z/ oy dz
Ny k=17 Tey )
and

M,

M, =

My,

p [ Qu Quiz Qs il i
S| Qu Qun Qu / Ey zdz-i—/ Ky 22dz

k=1 | Qo1 Qo2 Q66 |, |50, \ Yoy )&



Local Buckling of Thin—Walled Column of Square Cross—Section ... 141

SEL
I

(A12)

Qu Q12 Qus T ea T ke
Qa1 Q22 Qa6 / Ey dz+/ Ky zdz

M=

k=1 | Qo1 Qo2 Qoo e leos U Yoy ) oy U 262y ),

or

M,

M, =

My
Bi1 Bia Bis Ex Dyy D12 Dig R
Ba1 Bz Bag Ey + | Da1 Daa Doy Ky )
Bg1 Bez Bes Yy De¢1 De2  Dgg Kzy

N,

Ny =

Ngy

(A13)

Ay A A Ex Bi1 DBi2 Bis Kg
Ax Axp Agg Ey + | Ba1i Bz By Ky
As1 As2  Ass Yy Bs1 Be2 Bes Kzy






