
JOURNAL OF APPLIED
COMPUTER SCIENCE
Vol. 28 No. 1 (2020), pp. 39-49

Loading Initial Data into the Quantum Register

Marcin Ostrowski1

1Technical University of Łódź
Institute of Information Technology FTIMS

ul. Wólczańska 215, 90-924 Łódź
marcin.ostrowski@p.lodz.pl

Abstract. In this paper, we examine a simple algorithm for loading initial
data into the quantum register. In order to perform the algorithm standard
two input gates are used. The algorithm is tested for the Gaussian and sine
wave states. In the Appendix full PyQuil code of the algorithm is attached.
Keywords: quantum computation, quantum simulation, quantum algorithms.

1. Introduction

In the near future, quantum calculations can make a major contribution to the
development of informatics [1]. Although practical implementations of quantum
computer have not been built yet, its existence seems to be possible. Therefore, it
is worth examining the properties of such machines.

Today we know Shor [2] and Grover [3] algorithms which are of lower com-
putational complexity than their best classical counterparts. Another promising
application of quantum computer are quantum simulations [4, 5, 6], i.e. the com-
puter modeling of behavior of physical quantum systems. It gives the possibility of
effective modeling quantum processes, which is not possible using classical com-
puters [7]. Quantum computers can simulate a wide variety of quantum systems,
including fermionic lattice models [8, 9], quantum chemistry [10, 11], and quan-
tum field theories [12].

DOI 10.34658/jacs.2020.28.1.39-49

https://doi.org/10.34658/jacs.2020.28.1.39-49

40 Loading Initial Data. . .

In previous works, we showed that a quantum computer can efficiently simu-
late processes such as free propagation of the Schrödinger particle [13] or diffusion
of the particle inside an infinite potential well [14]. In the first case, we assumed
that the initial state of the simulated particle (and thus the initial state of a quan-
tum register) is a sampled Gaussian state given by Eq. (6). In the second work, the
initial state of the particle takes the form of sine function in the form of Eq. (7).
The process of introducing the initial state to the register has not been considered
in any of these works. We discuss this issue here.

In this work we only consider Gaussian and sine wave states. However, the
algorithm presented in this paper is universal. It can be used to enter any arbitrary
state into the quantum register.

Issues similar to the one presented here have already been investigated in the
literature. For example, the problem of finding the unitary operators performing
the mapping between given initial and final states has been explored in [15]. The
problem of decomposition of large unitary operators was presented in (e.g. [16]).
The use of genetic algorithms as a possible solution to such problems was also
discussed in [17, 18, 19]. Another group of problems connected with minimization
of quantum automata can be found in [20].

The issue discussed here can be considered not only in the context of quantum
simulation. The problem of loading initial data into the register appears in many
other branches of quantum computing. For this reason, the algorithm presented
here may be used in quantum signal processing [21, 22] as well as in quantum
image processing [23].

2. Description of the algorithm

We assume that the initial state of the register (before executing the algorithm)
is |ψi〉 = |000 . . . 0〉. The purpose of the algorithm is to enter into the register a final
state in the form:

|ψ f 〉 = z0|0 . . . 00〉 + z1|0 . . . 01〉 + z2|0 . . . 10〉 + · · · + znb−1|1 . . . 11〉, (1)

where parameters zk are arbitrary complex values that satisfy the normalization
condition (

∑nb−1
k=0 |zk|

2 = 1), nb = 2nq is number of base states of the register and nq

is number of qubits in the register.
The scheme of the algorithm is presented in Fig. 1. Gates denoted by Y are standard

M. Ostrowski 41

Y0

Y

Y1

Y00 Y10Y01 Y11 U00 U01 U10 U11

Figure 1: The scheme of the algorithm (example for nq = 3)

Ry gates, which operates as follows:

Y =

[
w0 w1
−w1 w0

]
=

[
cos θ sin θ
− sin θ cos θ

]
. (2)

In the case of the one-qubit Y gate (first from the left in Fig. 1) coefficients wi are
given by:

w0 =

√√√√ nb
2 −1∑
k=0

|zk|
2, w1 =

√√√√√nb−1∑
k=

nb
2

|zk|
2. (3)

Coefficients wi for Y gates with control qubits we can calculate using two dimen-
sional array of real numbers in the form:

Ti, j =

√∑q−1
k=0 |zk+ jq|

2

T0, j\2i T1, j\2i−1 . . . Ti−1, j\2
, (4)

where i = 0, 1, . . . nq−1 corresponds to number of control qubits, j = 0, 1, . . . p−1,
p = 2i+1, q = nb/p and “\” is integer division. In the case of the first gate w0 = T0,0
and w1 = T0,1. In the case of the k-th gate with i control qubis w0 = Ti,2k and
w1 = Ti,2k+1.
In the second part of the algorithm (implementing phase part of the algorithm and
separated by the dotted line in Fig. 1) we use gates marked as Uk which carry out
the operations described as follows:

Uk =

[
exp(i arg(z2k)) 0

0 exp(i arg(z2k+1))

]
. (5)

Uk gates can be implemented using standard phase-shift and NOT gates, as is
shown in Fig. 2.

42 Loading Initial Data. . .

U R
0

R
1

X X=

Figure 2: Realisation of U gates

Multi-input unitary gates U and Y (with multiple control qubits) are realized ac-
cording to the scheme showed in Fig. 3. (Which is well-known and presented in
the literature, e.g. [24].)

=

U
2 U U

+
U

Figure 3: Realization of n input unitary gate using n − 1 input unitary gates

3. Examination of the algorithm

The algorithm presented in the previous section has been tested for two types
of states. In the first case we input to the register sampled Gaussian state of particle
in the following form:

zi = C exp
(
−

(xi − 〈x〉)2

4dx2 +
i〈p〉xi

~

)
, (6)

where xi = ixmax/nb is i-th spatial sample, 〈x〉 is the expected value of the position,
〈p〉 is the expected value of the momentum, dx is standard deviation of the position
while C is a normalization constant.
In the second case we input to the register sampled sine wave in the following
form:

zi =

√

2a−1 sin
(
πnxi

a

)
for i =

1
2

nb, . . .
3
4

nb (7)

0 for other,

M. Ostrowski 43

where xi = xmax(i/nb − 0.5) and n = 1, 2, Function given by Eq. (7) is sampled
wave function of the paritcle which corresponds to the stationary state inside an
infinite potential well of length a = 0.25xmax located in x ∈ (1

2 xmax,
3
4 xmax).

Results of the simulation are shown in Figs 4-6. In all cases nq = 8. Fig. 4 shows
result for the Gaussian state from Eq. (6) for xmax = 20nm, dx = 0.02xmax,
〈x〉 = 0.15xmax. Parameter 〈p〉 corresponds to kinetic energy of the packet equal
to 4eV. Fig. 5 shows result for the Gaussian state (Eq. (6)) for xmax = 20nm,
dx = 0.04xmax, 〈x〉 = 0.8xmax and 〈p〉 corresponding to kinetic energy of the
packet equal to 2eV. Fig. 6 shows results for state given by Eq. (7).

0 10 20 30 40 50 60 70 80

−0.2

−0.1

0.0

0.1

0.2

0.3
thr
reg

0 10 20 30 40 50 60 70 80

−0.2

−0.1

0.0

0.1

0.2

thr
reg

Figure 4: The state of the register after performing of the algorithm for the Gaus-
sian function. The left plot shows real part of the state, while the right on shows an
imaginary part. The figure shows only part of the state with non zero amplitudes.
Red dots correspond to theoretical values given by Eq. (6), while blue vertical lines
(ended with a blue dot) shows final state of the register.

In order to perform a quantitative analysis of the correctness of the obtained results,
we introduce following errors:

ε1 =

nb∑
i=0

|ψi − zi|, ε2 =

√√ nb∑
i=0

|ψi − zi|
2, (8)

where zi are theoretical values (calculated from Eqs (6) and (7)) whereas ψi is the
final state of the register. Values of errors (8) for the cases from Figs 4-6 are shown
in Tab. 1.

44 Loading Initial Data. . .

160 180 200 220 240

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

thr
reg

160 180 200 220 240
−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20 thr
reg

Figure 5: The state of the register after performing of the algorithm for the Gaus-
sian function. The left plot shows real part of the state, while the right on shows an
imaginary part. The figure shows only part of the state with non zero amplitudes.
Red dots correspond to theoretical values given by Eq. (6), while blue vertical lines
(ended with a blue dot) shows final state of the register.

4. Conclusions

• The main advantage of our algorithm is its universality. It allows one to enter
into the register any arbitrary state. For this reason, the algorithm may be
used not only in quantum simulation but also in quantum signal and image
processing.

• It is simple algorithm based on dividing of probability. It can be imple-
mented using standard quantum gates.

• The algorithm has been successfully tested using a Python library for quan-
tum programming (PyQuil) - see Appendix.

• The main drawback of the presented algorithm is its computational com-
plexity. We can conclude that the number of gates grows exponentially with
the length of the register. Therefore, the algorithm is not suitable for large
registers.

M. Ostrowski 45

50 60 70 80 90 100 110 120 130 140

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175 thr
reg

50 60 70 80 90 100 110 120 130 140

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

thr
reg

Figure 6: The state of the register after performing of the algorithm for sine func-
tion (Eq. (7)). The left plot shows real part of the state for n = 1, while the right on
shows an real part for n = 2. The figure shows only part of the state with non zero
amplitudes. Red dots correspond to theoretical values (Eq. (7)), while blue vertical
lines (ended with a blue dot) shows final state of the register.

5. Appendix

Listing 1: Code of the algorithm in PyQuil
import math
import cmath
from p y q u i l import Program
from p y q u i l . g a t e s import *

s y m u l a t i o n c o n t r o l :
nq=8# number o f q u b i t s
nb=2**nq# base s t a t e s
p s i = . . . # nb−e l e m e n t l i s t (f i n a l s t a t e o f t h e r e g i s t e r)

p r o b a b i l i t y l i s t :
modz2 = l i s t ()
f o r i in range (nb) : modz2 . append (abs (p s i [i]) * * 2)

phase l i s t :
f a z a = l i s t ()
f o r i in range (nb) : f a z a . append (cmath . phase (p s i [i]))

t a b l e o f c o e f f i c i e n t s c a l c u l a t i o n (o n l y n u m e r a t o r s) :

46 Loading Initial Data. . .

Table 1: Errors calculated for the cases from Figs 4-6

Fig. no. ε1 ε2

4 1.78 · 10−8 2.02 · 10−7

5 9.27 · 10−15 4.54 · 10−14

6(left) 3.13 · 10−15 3.78 · 10−14

6(right) 2.53 · 10−15 3.12 · 10−14

Tab = l i s t ()
f o r i in range (0 , nq , 1) :

p =2**(i +1)
q=nb / / p
podTab = l i s t ()
f o r j in range (p) :

wsp=0
f o r k in range (j *q , (j +1)*q , 1) : wsp+=modz2 [k]
podTab . append (wsp * * 0 . 5)

Tab . append (podTab)

t a b l e o f c o e f f i c i e n t s (d e n o m i n a t o r s) :
f o r k in range (nq −1) :

f o r m in range (k +1 , nq , 1) :
f o r j in range (2 * * (m+ 1)) :

i f (Tab [k] [j / / (2 * * (m−k))] ! = 0) : Tab [m] [j] / = Tab [k] [j / / (2 * * (m−k))]

t a b l e o f a n g l e s (a r c c o s) :
TabPhi = l i s t ()
f o r i in range (nq) :

PodTabPhi = l i s t ()
f o r j in range (0 , 2**(i +1) , 2) :

p h i = math . acos (Tab [i] [j])
PodTabPhi . append (p h i)

TabPhi . append (PodTabPhi)

program (a m p l i t u d e s) :
a l g=Program ()
f o r nu in range (nq , 0 , −1) :

kb =2**(nq−nu)
f o r i in range (nu +1 , nq +1 , 1) : a l g . i n s t (X(i))
k o n t r o l n e = l i s t (range (nu +1 , nq +1 , 1)) # l i s t o f c o n t r o l q u b i t s
f o r k in range (kb −1) :

M. Ostrowski 47

a l g . i n s t (RY(2* TabPhi [nq−nu] [k] , nu) . c o n t r o l l e d (k o n t r o l n e))
a l g . i n s t (X(nu +1))
f o r dn in range (2 , nq +1 , 1) :

maska =2**(dn−1)
i f k%maska==(maska −1) : a l g . i n s t (X(nu+dn))

a l g . i n s t (RY(2* TabPhi [nq−nu] [kb −1] , nu) . c o n t r o l l e d (k o n t r o l n e))

program (pha se s) :
kb =2**(nq−1)
f o r i in range (2 , nq +1 , 1) : a l g . i n s t (X(i))
k o n t r o l n e = l i s t (range (2 , nq +1 , 1)) # l i s t o f c o n t r o l q u b i t s
f o r k in range (kb −1) :

a l g . i n s t (X(1))
a l g . i n s t (PHASE(f a z a [2* k] , 1) . c o n t r o l l e d (k o n t r o l n e))
a l g . i n s t (X(1))
a l g . i n s t (PHASE(f a z a [2* k + 1] , 1) . c o n t r o l l e d (k o n t r o l n e))
a l g . i n s t (X(2))
f o r dn in range (2 , nq +1 , 1) :

maska =2**(dn−1)
i f k%maska==(maska −1) : a l g . i n s t (X(1+ dn))

a l g . i n s t (X(1))
a l g . i n s t (PHASE(f a z a [2* kb − 2] , 1) . c o n t r o l l e d (k o n t r o l n e))
a l g . i n s t (X(1))
a l g . i n s t (PHASE(f a z a [2* kb − 1] , 1) . c o n t r o l l e d (k o n t r o l n e))
p r i n t (a l g)

References

[1] Feynman, R., Internat. J. Theor. Phys., Vol. 21, 1982, pp. 467–488.

[2] Shor, P. W., Proc 35th Ann. Symp. Found. Comp. Sci., IEEE Comp.Soc. Pr.,
Vol. 124, 1994.

[3] Grover, L. K., From Schrodinger equation to the quantum search algorithm,
Am. J. Phys., Vol. 69, 2001, pp. 769–777.

[4] Lloyd, S., Universal Quantum Simulators, Science, Vol. 273, 1996, pp. 5278.

[5] Schaetz, T., Monroe, C. R., and Esslinger, T., Focus on quantum simulation,
New Journal of Physics, Vol. 15, 2013, pp. 085009.

[6] Lanyon, B. P., Universal digital quantum simulation with tapped ions, 2011,
http://xxx.lanl.gov//arXiv:1109.1512v2.

48 Loading Initial Data. . .

[7] Childs, A. M., Maslov, D., Nam, Y., Ross, N. J., and Su, Y., Toward the first
quantum simulation with quantum speedup, PNAS, Vol. 115, No. 38, 2018.

[8] Wecker, D., Solving strongly correlated electron models on a quantum com-
puter, Phys Rev A, Vol. 92, 2015, pp. 062318.

[9] Kokail, C., Maier, C., and van Bijnen, R., Self-verifying variational quantum
simulation of lattice models, Nature, Vol. 569, 2019.

[10] Wecker, D., Bauer, B., Clark, B. K., Hastings, M. B., and Troyer, M., Gate
count estimates for performing quantum chemistry on small quantum com-
puters, Phys Rev A, Vol. 90, 2014, pp. 022305.

[11] Hempel, C., Maier, C., and Romero, J., Quantum Chemistry Calculations on
a Trapped-Ion Quantum Simulator, Phys. Rev. X, Vol. 8, 2018, pp. 031022.

[12] Jordan, S. P., Lee, K. S. M., and Preskill, J., Quantum algorithms for quantum
field theories, Science, Vol. 336, 2012, pp. 1130–1133.

[13] Ostrowski, M., Simulation of the Schrödinger particle nonelastic scatter-
ing with emission of photon in the quantum register, Bull. Pol. Ac.: Tech.,
Vol. 68, No. 5, 2020.

[14] Ostrowski, M., Simulation of diffusion of a single Schrödinger particle in the
quantum register, Acta Phys. Polon. A, Vol. 137, No. 6, 2020, pp. 1182–1186.

[15] Ventura, D., Learning quantum operators, In: Proceedings of the Joint Con-
ference on Information Sciences, 2000, pp. 750–752.

[16] Nielsen, M. A. and Chuang, I. L., Quantum Computation and Quantum In-
formation, Cambridge University Press, 2000.

[17] Faber, J., Thess, R. N., and Giraldi, G., Lerning linear operators by generic
algorithms, 2003.

[18] Rubinstein, B. I. P., Evolving quantum circuits using generic programming,
In: Generic Algorithms and Generic Programming at Stanford 2000, Stanford
Bookstore, Stanford, California, 94305-3079 USA, 2000, pp. 325–334.

[19] Williams, C. P. and Gray, A., Automated Design of Quantum Circuits, Lec-
ture Notes in Computer Science, Springer-Verlag New York, Inc., Vol. 1509,
1999.

M. Ostrowski 49

[20] Siedlecka-Lamach, O., A minimization algorithm of 1-way quantum finite
automata, Metody Informatyki Stosowanej, Polska Akademia Nauk Oddzial
w Gdansku, Komisja Informatyki, , No. 4, 2010, pp. 73–79.

[21] Agaian, S. S. and Klappenecker, A., Quantum Computing and a Unitary Ap-
proach to Fast Unitary Transforms, Image Processing: Algorithms and Sys-
tems, 2002.

[22] Hoyer, P., Efficient Quantum Transforms, http://arXiv:quant-ph/9702028,
1997.

[23] Pang, C.-Y. and Zhou, R.-G., Signal and image compression using quantum
discrete cosine transform, Information Sciences, Vol. 473, 2019, pp. 121–
141.

[24] Preskill, J., http://www.theory.caltech.edu/∼preskill/ph229.

