
JOURNAL OF APPLIED
COMPUTER SCIENCE
Vol. 21 No. 1 (2013), pp. 25-38

Parallel Hierarchies for Solving Single Source
Shortest Path Problem

Łukasz Chomątek1

1Lodz University of Technology
Institute of Information Technology

Wólczanska 215,90-924 Lodz, Poland
lukasz.chomatek@p.lodz.pl

Abstract. The problem of route optimization is significant due to the fact
of the high availablity of private transport as well as the need of efficient
utilization of the corporate fleet. Optimal route can have different meaning
for different users. In the existing algorithms designed for finding optimal
route between two points on the map, hardly any preferences are reflected. In
this article we present efficient algorithm for finding optimal route between
points on the map which is designed to conforms Users’ needs.
Keywords: Single Source Shortest Path, Parallel Hierarchies, Drivers’ Pref-
erences.

1. Introduction

Problem of finding of shortest path (Single Source Shortest Path, SSSP) be-
tween two points in the graph is present for above 50 years in computer science.
Firt algorithms was based on the priority queue which even nowadays remains
the main idea. In section 2 main research tracks on SSSP problem are briefly de-
scribed. Main contribution of this work is shown in section 3 which contains de-
scription of all phases of the Parallel Hierarchies algorithm. Obtained results are
gathered in section 4. The last section contains conclusions and points the possi-
bilities of further research.



26 Parallel Hierarchies for Solving Single Source Shortest Path Problem

2. Finding the shortest path

Problem of finding the optimal, in other words: shortest in the sense of some
cost function is often solved by use of the priority queue [1]. Original version of
the algorithm was designed to construct the minimum spanning tree for the graph.
Resulting tree consisted of the shortest paths between selected start node and any
other node in the analysed graph. Algorithm can be utilized both for directed and
undirected graphs where edges have only non negative weights. Actual algorithm
is presented below:

Algorithm 1 Algorithm of finding the shortest path
Require: o . o - Start node

Lo ⇐ 0 . Cost of reaching the start node is set to 0
L j ⇐ ∞ ∀ j , o . For all other nodes it is set to∞
Po ⇐ NULL . Start node has no ancestor
Q⇐ {o} . Set the node o as required to reach
while Q , ∅ do . While there are other nodes to reach

i = poll(Q) . We choose first available node
for all l ∈ OutgoingEdges(i) do

j = IncomingNode(l)
if Li + cl < L j then . If the cost of reaching node j is lower, if the path

passes the node i
L j ⇐ Li + cl . Set proper values of cost and the ancestor node
P j ⇐ l
put(Q, j)

end if
end for

end while

where:

Li Cost of reaching the node i,

Pi Edge used for reaching the node i,

Q Data structure which holds nodes remaining to reach,

l Currently visited edge,

cl Cost of travelling the edge l.



Ł. Chomątek 27

For storing nodes remaining to reach one can use either priority queue or a
heap. Conducted research revealed that use of heap causes faster performance of
the algorithm, but almost all implementations utilizes the priority queue as it is
easier to manage [2].

Choosing between heap and priority queue is not the only method of the op-
timization of the shortest path algorithm. In the problem of finding the shortest
paths in the road network graph, not only information about neighbouring nodes
can be used but also one can focus on the network topology. Methods of handling
this case can be divided into the three groups [3]:

• pruning based,

• decomposing the problem,

• limiting the number of available edges.

The idea of pruning in case of graph search is based on finding the probability
for each node in the search scope of being a part of the shortest path. Karimi [4]
proposed limitation of the search space a rectangle containing both source and the
destination nodes. In the other work, authors proposed computation of the lower
and upper bounds for the path length. The cost of visiting new node cannot exac-
erbate the ratio of cost of visiting current node with respect to the lower bound for
the source node.

Decomposition of the problem is based on two independent searches [5]. One
of the searches was a classical search from source to the destination node. The
second search was performed from the destination to source. Query is finished
when at least one node is visited by both searches. One should note that the first
node when the searches meet can be not the best solution.

Further research shown that the most effective algorithms for finding the short-
est path are those based on the limiting of the number of edges that can be visited.
Such algorithms usually consist of two phases. In the first phase, some prepro-
cessing on the graph is made to reduce number of edges or nodes to reduce the
complexity of the queries.

First algorithm in this group is ALT (A-Star Landmarks Triangle inequality)
introduced by Goldberg [6]. In the first phase small set of nodes in the graph is cho-
sen. These nodes are called landmarks. After that, for each pair node-landmark its
distance is calculated. Query processing is based on the fact that the path from the
current node to the destination must not be longer that one containing a landmark.



28 Parallel Hierarchies for Solving Single Source Shortest Path Problem

Query complexity reduction can be obtained by temporal changes in the graph
structure. Delling and Schultes [7] proposed in their work an algorithm which is
based on the observations of real drivers’ behaviour. When such a person need to
travel far from the place he lives, he usually drives to the motorway. The he does
not leave the motorway until he is close enough to the destination. After that he
chooses some major roads to reach closer to the place.

3. Parallel Hierarchies algorithm

In this section we introduce Parallel Hierarchies algorithm which is designed
for solving problem of finding optimal paths in the road network graph. This ap-
proach is based on the Highway Hierarchies mentioned in the previous section.
Highway Hierarchies algorithm depends on the division of road network into cer-
tain number of hierarchy levels. Our solution is an improvement of this algorithm
as it does not operate on the whole graph, but on its subsets named sectors.

3.1. Construction phase in Highway Hierarchies

Highway Hierarchies [8] algorithm requires two parameters: H that identifies
the degree to which the requests for the shortest path are met without coming to
a higher level in the hierarchy, and L, which represents the maximum permissible
hierarchy level. The method iteratively generates a higher level with number l + 1
for a graph Gl in the way given below:

1. For each vertex v ∈ V , build the neighbourhood NH
l for all vertices reached

from v by using Dijkstra’s algorithm in graph Gl, respecting the H constraint.
Set the state of the vertex V to active.

2. For each vertex: Build the partial tree B(v) and assign to each vertex its state.
The state of the vertex is inherited from the parent vertex every time when
the vertex is reached or settled. Vertex becomes passive if on the shortest
path 〈v, u, . . . ,w〉 where v , u , w:

∣∣∣Nl
H(u) ∧ Nl

H(v)
∣∣∣ ≤ 1 Partial tree is

completed, when reached but unsettled vertices don’t exist.

3. For each vertex t, which is a leaf node in the tree B(v) move each edge (u,w),
where u ∈ Nl

H(t); w ∈ Nl
H(v) to the higher hierarchy level.



Ł. Chomątek 29

During the first stage, a highway hierarchy is constructed, where each hierar-
chy level Gl, for l < L, is a modified subgraph of the previous level graph Gl−1.
Therefore, no canonical shortest path in Gl−1 lies entirely outside the current level
for all sufficiently distant path endpoints. This ensures that all queries between far
endpoints on level l − 1 are mostly carried out on level l, which is smaller, thus
speeding up the search.

3.2. Graph partitioning in Parallel Hierarchies

The algorithm of graph partitioning is based on the Breadth First Search algo-
rithm. [9] At first, K nodes from the road graph are randomly chosen and they’re
the points of start for the BFS-based algorithm. The algorithm assigns nodes and
edges of the input graph to one or more sectors. When there are no unassigned
nodes, the algorithm is completed.

1. For each node k : k ∈ BFS start create empty list Ek and Nk to store the
information about edges and nodes that belong to the sectors.

2. For each node k : k ∈ BFS start:

(a) For the nodes from BFS queue, check if their children are assigned to
any sector. If not, add them to BFS queue of the current node. Add
adjacent nodes to Nk as well as corresponding edges to Ek

3. If there are unvisited nodes left, go to step 2.

4. Perform required post-processing for each set Nk

As one can see, some nodes from the input graph can be assigned to more than
one sector. These are border nodes (denoted as Bk) which are needed for proper
processing of the parallel queries. Each sector built from start node k ∈ BFS start

has its own set of border nodes. Such an algorithm can be applied for connected
graphs. If there is more than one connected component in the input graph, it should
be performed for each connected component.

In Fig. 1 an example of road map divided into four sectors is given. Each colour
represent a single sector. To create a division we use BFS algorithm which assigns
graph nodes to sectors. However presented method of creating sectors is quite
efficient, as it has low computational complexity, in future work we would like
to examine other methods of the partitioning to get a division which better fits the



30 Parallel Hierarchies for Solving Single Source Shortest Path Problem

Figure 1. Road map divided into sec-
tors

Figure 2. Hierarchical division of the
road map

hierarchical algorithm. One of the problems is that number included road segments
can differ quite much within the sectors, so that when the construction phase is
performed in parallel way, some threads will have to wait until other threads will
finish their work.

After graph partitioning phase is completed, for each sector a hierarchical di-
vision is performed by simultaneous instances of Highway Hierarchies algorithm
(Fig. 2).

3.3. Querying

Highway Hierarchies algorithm is designed for solving SSSP problem in the
graph which represents the road network, but both phases of the algorithm, the
whole road graph must be taken into account. Parallel Hierarchies assumes that
hierarchical division for all of the sectors obtained in the partitioning process is
calculated independently. What is more, when hierarchical division is performed
on the sectors, instead of the whole graph, hierarchy levels for edges in the sector,
can be different to levels of corresponding edges in the input graph. Due to the
fact, that in Highway Hierarchies the query algorithm depends on the proper hier-
archical division of the graph edges, we had to adapt the algorithm to our method.

In HH algorithm, edges and nodes that are on the highest hierarchy level be-
longs to the one connected component. In case of parallel division, edges belong-



Ł. Chomątek 31

ing to the highest hierarchy level, make a connected component in each sector.
When both source and target node are placed in the same sector, both search scopes
can meet without any modification of the querying algorithm known from HH, as
there is only one connected component in the highest hierarchy level for each sec-
tor.

Situation is more complicated, when the path between the source and target
node crosses the borders of sectors. The idea of the new algorithm is that actual
query is split into smaller subqueries, each of which is performed inside one sector.
In this case one have to identify border nodes, which are source and a target node
for a subquery. In the final step, results of all of the subqueries are merged to find
a proper itinerary.

Algorithm 2 presents the method of finding the path between nodes s and t.
List I contains source, target, and border nodes that are going to be traversed in the
final result. Function findClosest is responsible for finding the border node which
is closest to the line connecting nodes given as second and third parameters.

Algorithm 2 Algorithm for parallel querying
Require: s . s - Start node

I ⇐ ∅ . I is ∅
I.add(s)
b⇐ f indClosest(Bk, s, t)
I.add(b)
while sector(b) , sector(t) do . b and t are not in one sector

b⇐ f indClosest(Bk, b, t)
I.add(b)

end while
I.add(t)
Perform subquery for each neighbouring pair of nodes in I
Merge results of all subqueries

4. Obtained results

Our algorithm was implemented in Java programming language. Authors uti-
lized MATsim 1 project, where Parallel Hierarchies algorithm was added as a path

1www.matsim.org



32 Parallel Hierarchies for Solving Single Source Shortest Path Problem

calculator. For the research purposes, authors also implemented Highway Hier-
archies and extended existing Dijkstra’s algorithm to present number of visited
nodes.

Input road network is a map of Lodz,Poland taken from OpenStreetMap2 database.
To have it read by the MATsim environment, we had to use the Osmosis tool,
which is the part of MATsim project. Input network has over 7000 nodes and over
17000 links. Each link is treated as a one way road, so that if one can drive in two
directions, there are to links for such a segment.

Modelled simulation of road traffic contained agents that need to drive from
their houses placed in the suburbs to workplaces in the city centre. For each agent,
optimal routes from and to home had to be calculated, as many streets in the city
centre are one-way and this causes agents to have different routes in both direc-
tions.

In this section we gathered results concerning the performance of the Parallel
Hierarchies algorithm. At first we examined we present how do the architecture
of prepared hierarchical division changes. After that duration of the construction
phase (section 4.2) depending on number of sectors. In section 4.3, we discuss the
efficiency of adapted querying algorithm.

For visualization of obtained data we used StreetVis tool, which was imple-
mented in C# 4.0 language. We decided to use the C# language as the application
can be easily scaled and converted to the web application. On Fig. 3 classes that
represent graphs in StreetVis are shown. Graph consists of two lists. One is a list
of nodes, and the other is a list of edges. GraphEdge represent directed edge in
the graph. When one need an undirected edge, two directed edges must be added
instead. GraphNode keeps information about its coordinates as well as incoming
and outgoing edges. Both GraphNode and GraphEdge classes are base classes for
task-dependent representation for both structures.

In the Fig. 3 one can see HierarchizedGraphEdgewhich specifies edge with
additional property named HierarchyLevel. This is needed for proper handling
of Parallel Hierarchies algorithm.

4.1. Different hierarchy levels depending on the size of the sector

Number of nodes in each hierarchy level can differ depending on sectors count
and the parameters used for construction of hierarchical division for each sector.
The research was conducted to acknowledge if number of sector influences the

2www.openstreetmap.org



Ł. Chomątek 33

Figure 3. Classes for graph representation

obtained division. We decided to temporarily modify the Highway Hierarchies
algorithm in two aspects:

• contraction was disabled after promoting edges to the new level,

• first phase algorithm was forced to stop after processing certain number of
levels.

In Table 1 results for construction phase for different algorithm parameters are
shown. As one can see, for constant neighbourhood size (denoted as N), number of
edges that belong to the certain hierarchy level can differ significantly. For N = 10,
we observe the major number of road segments is placed on the highest level. It is
not a normal situation in HH algorithm, as its task is to reduce number of edges
in the top levels. This happened because of small neighbourhood size - if HH
construction for the sector is not stopped, the maximum hierarchy level would
be greater for the lower neighbourhood size than for larger one. For N = 20,
we obtained almost correct division (no further hierarchy levels were needed in a
construction phase in some cases). Number of edges on different levels gets lower
from level to level, so that search will be performed faster as we cut many of the
road segments when traversing to the higher levels.



34 Parallel Hierarchies for Solving Single Source Shortest Path Problem

Table 1. Number of nodes on each hierarchy level and processing time gain, de-
pending on sectors count.

N Sectors Count Hierarchy level Time Reduction Parallel TR
0 1 2 3 (sum based)

10 1 4702 2169 1766 8502 1 1
2 5440 2532 1940 7423 1.55 2.82
3 5405 2562 2060 7277 1.65 4
4 5798 2819 2085 6677 2.01 5.33
5 5773 2877 2220 6404 2.18 6.15

20 1 7952 4457 3129 1601 1 1
2 8899 4612 2773 1051 1.51 2.61
3 8890 4793 2497 1124 1.74 4.27
4 9409 4844 2349 777 1.88 5.52
5 9547 4888 2283 556 2.23 6.71

What is more number of road segments on certain levels depends on the num-
ber of sectors. As one can see, the more sectors are present, the smaller number
of road segments remains in the lowest hierarchy levels. This situation is caused
by the fact, that in smaller sectors, building ’isolated’ neighbourhoods is easier
(neighbourhoods overlaps each other more often for far nodes), so that road seg-
ment promotion is also easier.

The third important thing is that larger neighbourhood size obstructs the possi-
bility of promotion of the road segments to higher level. If there is large number of
road segments in the lowest levels, the search process can get slower. It is important
to adapt the neighbour size to the size of the sector.

4.2. Construction phase duration

We expected that parallel computation of the hierarchy levels for road seg-
ments in the road graph will be faster for graph divided into sectors. Correspond-
ing results are gathered in Table 1. Value of time reduction for one sector was set
to 1 as then the algorithm works like plain Highway Hierarchies. For larger num-
ber of sectors, value in the table shows the time gain from performing a division.
However in Parallel Hierarchies, the construction phase for each sector is done in-
dependently, in the table we show gain obtained from summing up times needed
to process each sector (Ti). What is more, time needed to divide road network to



Ł. Chomątek 35

sectors (Tdivision), as well as identification of border nodes (Tborders) is added too
(Eq. 1).

TRsectorsCount =

Tdivision +
sectorsCount∑

i=1
Ti + Tborders

TwholeGraph
(1)

In general, when algorithm is performed in parallel, processing time gain can be
calculated as follows:

PTsectorsCount =
max(Tdivision(i)) + max(Tprocesing(i)) + max(Tborders(i))

TwholeGraph
(2)

Equation 2 is valid only if the processing of all sectors is performed in parallel and
does not take into account time needed for the synchronisation of the processing
threads.

As one can see, Highway Hierarchies algorithm parameter (neighbourhood
size) does not affect significantly the time gain obtained by dividing the road net-
work graph into sectors. The number of sectors affects the total preprocessing time
- we obtain higher gain when we have larger number of sectors. Please note, that
the total processing time for all sectors cannot be easily associated with the par-
allel processing time, as sectors can have different shapes, number of nodes and
road segments, and, of course different weights of the graph edges. All of this
parameters affect the speed of hierarchical division for the sector.

4.3. Number of visited nodes

Number of nodes visited during the search is an important criterion in solv-
ing SSSP problem, either for systems, where number of queries is very high or
when system resources are very low. Our research revealed, that in Parallel Hierar-
chies, search algorithm needs to visit lower number of nodes than other examined
algorithms.

For our research we counted number of visited nodes for about 40 agents.
Obtained results are gathered on Fig. 4. As one can see, the highest number of
nodes needed to be visited before a solution is found, is for Dijkstra’s algorithm.
Number of nodes visited for Highway Hierarchies is more than five times lower.
For Parallel Hierarchies, we obtained even better results. Division of the road graph
into more than two sectors can result in their further improvement.



36 Parallel Hierarchies for Solving Single Source Shortest Path Problem

Figure 4. Number of visited nodes depending on algorithm

Moreover, for Parallel Hierarchies performed for four sectors, number of vis-
ited nodes does not differ a lot from query to query. On the other hand, for Dijsk-
tra’s algorithm dispersion of values is very high.

5. Conclusions

Presented Parallel Hierarchies algorithm is an efficient way of solving SSSP
problem. Conducted research shown that both preprocessing and querying phase
can be performed faster than in the initial version of Highway Hierarchies. As one
can see, number of road segments in each sector depends on the sector size, which
also affects the hierarchical division of the road segments. This causes the need to
examine chosen properties of the algorithm for hierarchical division.

Our querying algorithm performs better in comparison to the known querying
algorithms. Number of visited nodes is significantly lower, so that User gets faster
responses for his queries. Efficiency of the querying algorithm depends also on the
number of sectors. Number of sectors must be adjusted by the constructor of the
division, but two main remarks must be taken into account: at first, greater number



Ł. Chomątek 37

of sector causes the faster switching the querying algorithm between sectors, so
that a single sub-query is supposed to be performed faster. On the other hand,
when sectors are smaller, if the chosen neighbourhood size is rather large, included
Highway Hierarchies algorithm can build lower number of the hierarchy levels, so
that most edges will fall to the lowest levels and the query will not be fastened.

Presented querying algorithm can be also utilized with other algorithms for
preprocessing the sectors. In future, we would like to check the performance of
other known routing algorithms like Contraction Hierarchies or make improve-
ments known from ALT to the actual querying procedure. Extensibility of pro-
posed querying algorithm applied to the divided road network graph is the main
contribution in this paper, as independent research can be conducted on its opti-
mization and in other fields.

References

[1] Dijkstra, E. W., A note on two problems in connexion with graphs, Numerische
Mathematik, Vol. 1, 1959, pp. 269–271.

[2] Jacob, R., Marathe, M., and Nagel, K., A computational study of routing algo-
rithms for realistic transportation networks, J. Exp. Algorithmics, Vol. 4, Dec.
1999.

[3] Fu, L., Sun, D., and Rilett, L., Heuristic shortest path algorithms for trans-
portation applications. State of the art, Computers and Operations Research,
Vol. 33, No. 11, 2006, pp. 3324–3343.

[4] Karimi, H., Real-time optimal route computation: A heuristic approach, ITS
Journal, 1996.

[5] Dantzig, G., On the shortest route through a network, Management Science,
Vol. 6, 1960, pp. 187–90.

[6] Goldberg, A. V. and Harrelson, C., Computing the shortest path: A search
meets graph theory, In: Proceedings of the sixteenth annual ACM-SIAM sym-
posium on Discrete algorithms, SODA ’05, Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2005, pp. 156–165.



38 Parallel Hierarchies for Solving Single Source Shortest Path Problem

[7] Sanders, P. and Schultes, D., Engineering Highway Hierarchies. In: ESA,
edited by Y. Azar and T. Erlebach, Vol. 4168 of Lecture Notes in Computer
Science, Springer, 2006, pp. 804–816.

[8] Delling, D., Sanders, P., Schultes, D., and Wagner, D., Engineering Route
Planning Algorithms, In: ALGORITHMICS OF LARGE AND COMPLEX
NETWORKS. LECTURE NOTES IN COMPUTER SCIENCE, Springer,
2009.

[9] Chomatek, L. and Poniszewska-Maranda, A., Multi-agent System for Parallel
Road Network Hierarchization, In: ICAISC (2), 2012, pp. 424–432.


