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Abstract. The optimal shape design of the capacitor with Laplace equation 
of state and inverse problem solution in Electrical Impedance 
Tomography using level set method are presented in the paper. The 
inverse problem solution determines the positions of capacitor plates, 
which were optimized to achieve required potential distribution, while the 
inverse problem solution in EIT enables the identification of the size and 
the position of internal areas with different conductivity. 

1. Introduction 

The electromagnetic structures have been widely investigated in recent 
years. The most frequent approach to this problem is to come it down to the 
problem of optimization and solve it by deterministic or stochastic methods. The 
optimization problem solution deals with minimizing the objective function of 
the problem [1, 2]. There are many different algorithms for this problem 
solution: deterministic methods (e.g. back-projection, perturbation, and Newton-
Raphson, Conjugate Gradient method) [1,2,3], stochastic methods (e.g. Genetic 
Algorithms, Monte-Carlo method, Simulated Annealing)[1,2,3], and also 
Artificial Neural Network (ANN). In the first case, although the number of 
function evaluations needed to be reached is generally small, the risk of being 
stopped in local minima is very high. Stochastic algorithms deal with finding the 
global minimum. In this case the continuity and differentiability of the objective 
function are not required. Main disadvantages of these methods are weak 
convergence and high time complexity. In order to solve the inverse problem 
using iterative optimization method it is necessary to repeat forward problem 
solution many times – to determine the distribution of potential [4]. 
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In Electrical Impedance Tomography (EIT) the reconstruction algorithm 
uses the knowledge of applied current patterns and measured electrode voltages 
to solve the inverse problem, computing electrical conductivity distribution in 
the object. The inverse problem in EIT is nonlinear, because the current flow 
strongly depends on the unknown conductivity within the object. The solution of 
the inverse problem in EIT is significantly more difficult than in case of e.g. X-
ray computed tomography, where the photon paths are essentially straight lines. 
Furthermore, the problem is ill-posed due to its instability – small errors in the 
measurements can produce large errors in reconstruction of conductivity. 

In our case the level set method approach to the inverse problem solution 
was used. The solution determines the positions of the capacitor plates, which 
were optimized to achieve required potential distribution. The inverse problem 
solution in EIT provides the identification of the size and the position of internal 
areas with different conductivity. 

The level set method is chosen to describe moving shapes, since this method 
is able to simplify model topological changes of the boundaries. In this 
technique, the shapes are given as the zero level set of a higher dimensional 
level set function.  

The level set methods approach in optimal shape design involving partial 
differential equation has received little attention up till now.  

The method, that uses both level set for determining the shape of the 
domains and essentially nonoscilatory schemes to solve the Hamilton-Jacobi 
equation is known as an efficient method for wide class of shape optimization 
problems involving partial differential equation [5,6,7]. 

2. Level Set Method 

Level set methods were proposed as a versatile tool for representing moving 
fronts in a variety of physical processes, involving flow phenomena, crystal growth 
and phase changes among others. The use of level set methods for shape 
optimization involving partial differential equations apparently received little 
attention so far [10]. 

Given an interface Γ and region Ω its subsequent motion under a velocity field 
was analyzed and computed. The level set function ϕ has the following properties 
(see Fig. 1) [6,7]: 
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Fig.1. Considered regions – convex functions  

 
The level set method allows to move the interface Γ along the direction V

r
 

within a neighborhood of Γ. To derive the equation for level set function, let ),( ⋅tϕ  

denote a family of functions from 2R  to R . If ),( xtx ϕ→  is perturbed to 
))(,( xthxtx +→ ϕ  then differentiating level contours { }constxthxtx =+ ))(,(: ϕ  

with respect to t we obtain [8]: 
 

0=∇+ ϕϕ ht  (2) 
 
This leads to the Hamilton-Jacobi equation for level set function. 
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The updating of level set is possible using Hamilton-Jacobi equation (3) in 

which velocity field is the function of the direction of the unit normal [7,8]: 
The first step in the solution of a problem using set level method is 

determination of zero-level set (Fig. 2) ( )0,0 xϕ=Γ  for t=0 [6]. 
Do the following steps in the numerical algorithm until its convergence: 
− solve the Laplace equation  
 

0
1 =









∂
∂

∂
∂

r

u
r

rr
 with boundary conditions 

0)(

1)(

=
=

bu

au
 (4) 

 
− determine the potential distribution 0u [6]; 
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− compute the difference of the observed value and expected value 0uu − ; 

− solve the Poisson equation: 
 

0uup −=∆−  (5) 
 
− evaluate the normal velocity: 
 

kkk upv ∇⋅∇=  (6) 
  
− update the level set function ( )tx,ϕ  by solving the Hamilton-Jacobi 

equation: 
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− check the convergence; options include repeating the process, stopping if 

convergence criteria are satisfied [6]. 

 

Fig.2. Zero-level set 
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The stability of received solution is guaranteed by Courant-Friedreichs-Levy 

condition, which asserts, that the numerical waves should propagate at least as fast 
as the physical waves. The CFL time step restriction is described as: 
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Equation is usually enforced by choosing a CFL number α  with [6]: 
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An optimum value of α that provides best stability and convergence is 0.9, 

and a common conservative choice is 5.0=α . 

2.1 Hamilton-Jacobi ENO 

The scheme ENO – essentially nonoscillatory polynomial interpolation was 

used to determine the function of level set gradient kϕ∇  in the following iterations.,  

The zeroth divided differences of ϕ , as a standard with Newton polynomial 
interpolation are defined at the grid nodes and defined by [6]:  

 

iiD ϕϕ =0  (11) 
 

at each grid node i. The first divided differences of defined midway between grid 
nodes as: 
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The divided differences are used to reconstruct a polynomial of the form: 
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that can be differentiated and evaluated at ix  to find ( )ix

+ϕ  and ( )ix
−ϕ . That is, we use 
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3. Boundary Element Method 

Integral equations are used to the solution to the forward problems (analysis) 
and the inverse problems (synthesis and identification) [3, 4]. The function and 
Green’s formulas are used to the transformation of the integral equations. The 
Green’s function satisfies the Laplace’s equation: 

 
02 =∇ G  (15) 

 
and for 2D domain is: 
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where: r – the distance between M and P 
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The second Green’s identity (symmetrical), which was used in transformation of 
the integral equation, is described as follows:  
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where: u – the potential in 2D domain Ω. 
To solve this problem numerically, the surface has to be discretized into 
elements. The element, which was modeled as a constant value were used in this 
case. 

4. Numerical experiments and results 

4.1 Cylindrical capacitor 

The cylindrical capacitor (Fig. 3) with the potential distribution described by 
Laplace equation (4) was considered [8, 9] with boundary conditions. 
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Fig.3. Cross-section of the capacitor 

 
The potential distribution is known in the original region Ω and defined as 

( ) ( )rru 714286.0ln721348.00 −= . 

The solution of considered problem is finding the region Ω0, where the function 
u0 is the solution of Laplace equation with boundary conditions (4).  

Potential distribution was evaluated using Boundary Element Method. Both 
covers of the capacitor (two circles) were discretized into 32 segments 
(boundary elements). In the next step the inverse problem was calculated on the 
basis of the potential values obtained by using BEM. Level set method, shortly 
described in section 2, was used to the solution of inverse problem. These 
procedures were repeated until the values of potential distribution were equal to 
u0.  
The conjugate equation for Laplace equation is defined as: 
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Figures 4 – 7 present the iteration process for two different values of α . For 

α=0.8 the function u0 is the solution of Laplace equation for the radii values 
a=0.349 and b=1.401 (Figs. 4 and 5) in 48 iterations. For α =0.9 we got the radii 
values of capacitor plates a =0.35 and b=1.40 in 29 iterations (Figs. 6 and 7). In 
comparison, the material derivative (one of the most popular method in shape 
optimization) the approach to the solution gave results just after 672 iterations 
[10].  
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Our experiments confirm that in this case, the selection of α  value is very 
important. 

 

 

Fig.4. Iteration process for α =0.8 

 
Fig.5. The normal velocity in following iterations for α=0.8 
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Fig.6. Iteration process for α =0.9 

 
Fig.7. The normal velocity in following iterations for α =0.9 

 

4.2 Impedance Tomography 
The solution of the forward problem in EIT is to determine the distribution 

of potential for a given conductivity geometry and for a given set of current 
injection electrodes (Fig. 8). 
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Algebraic solution of the forward problem in 2D EIT can be formulated as 
follows: 

 
[ ] 0),(),( =∇⋅∇ yxyx ϕγ  in Ω  (19) 

 
where: 

),(  E yxϕ∇−=
r

 – the vector of the electric field intensity; 

),( yxγ  – the conductivity. 

With n being the unit outward normal vector to the boundary surface, ϕ  is 
subjected to the following boundary conditions: 

 

Dϕ  – is known potential at the electrodes connected to the voltage 
source  

(20) 

0=
∂
∂

Nn

ϕ  – at the rest of the boundary including the bottom of the 

hemisphere 
(21) 

 
The model of the computer simulation consists of layer with 16 electrodes. 

In all experiments, the protocol files so-called the polar voltage excitation has 
been used (Fig. 8). 

 

 
 

Fig. 8. Configuration of electrode-to-electrode voltages – protocol file 
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The solution to the inverse problem deals with finding the position and 

radius of the internal object with different conductivity. The procedure of this 
kind problem solution based on electrode-to-electrode voltages obtained on the 
surface of tested object. 

In order to solve the EIT problem for the identification of the size and the 
position of the anomalies, the LSM was used. 

Figures 9 and 10 present the iteration process for two different locations of 
the region with different conductivity. In Fig. 9 the solution after 25 iterations 
and in Fig 10 – after 50 iterations are shown. 

 

Fig. 9. Iteration process for central region with different conductivity 

 

Fig. 10. Iteration process for region with different conductivity located in the near 
of outer boundary 
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5. Conclusions 

The presented experiments indicated the efficiency of combination level set 
method with BEM to the solution of the forward and inverse problems. Level set 
formulation to describe the shapes of the domains combined with essentially 
nonoscilatory schemes to solve the Hamilton-Jacobi equation is efficient method 
for optimal shape design involving partial differential equation. 

The proposed method can be used in the inverse problem solution of 
electromagnetic fields (e.g. image reconstruction in impedance or optical 
tomography). 

In the further experiments we are going to use WENO (weighted essentially 
nonoscillatory polynomial interpolation) instead of ENO and solve Poisson 
equation by BEM. 
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