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PREFACE

This is the thirteen time when the conference “Dynamical Systems: Theory
and Applications” gathers a numerous group of outstanding scientists and engineers, who
deal with widely understood problems of dynamics met in daily life.

Organization of the conference would not have been possible without a great effort
of the staff of the Department of Automation, Biomechanics and Mechatronics, as well as
Committee of Mechanics of the Polish Academy of Sciences. The financial support has
been given by the Polish Academy of Sciences.

It is a great pleasure that our invitation has been accepted by recording in the history
of our conference number of people, including good colleagues and friends as well as a
large group of researchers and scientists, who decided to participate in the conference for
the first time. With proud and satisfaction we welcomed over 180 persons from 29
countries all over the world. They decided to share the results of their research and many
years experiences in a discipline of dynamical systems by submitting many very interesting
papers.

This year, the DSTA Conference Proceedings were split into three volumes entitled
“Dynamical Systems” with respective subtitles: Mathematical and numerical approaches;
Mechatronics and life sciences and vol. 3 Control and stability. Additionally there will be
also published two volumes of Springer Proceedings in Mathematics and Statistics entitled
“Dynamical Systems. Modelling” and “Dynamical Systems. Theoretical and Experimental
Analysis”.

These books include the invited papers and regular papers dealing with the following
topics:

e control in dynamical systems,

o stability of dynamical systems,

¢ asymptotic methods in nonlinear dynamics,

e mathematical approaches to dynamical systems,

¢ dynamics in life sciences and bioengineering,

* engineering systems and differential equations,

e original numerical methods of vibration analysis,

e bifurcations and chaos in dynamical systems,

e vibrations of lumped and continuous systems,

¢ non-smooth systems,

e other problems.

Proceedings of the 13th Conference ,Dynamical Systems - Theory and Applications"
summarize 164 and the Springer Proceedings summarize 60 best papers of university
teachers and students, researchers and engineers from whole the world. The papers were
chosen by the International Scientific Committee from 315 papers submitted to the
conference. The reader thus obtains an overview of the recent developments of dynamical
systems and can study the most progressive tendencies in this field of science.



Our previous experience shows that an extensive thematic scope comprising
dynamical systems stimulates a wide exchange of opinions among researchers dealing
with different branches of dynamics. We think that vivid discussions will influence
positively the creativity and will result in effective solutions of many problems of
dynamical systems in mechanics and physics, both in terms of theory and applications.

We do hope that DSTA 2015 will contribute to the same extent as all the previous
conferences to establishing new and tightening the already existing relations and scientific
and technological co-operation between both Polish and foreign institutions.

On behalf of both
Scientific and Organizing Committees

Hfimica—

rman

Professor Jan Awrejcewicz
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Influence of a volumetric chemical reaction of the
convective diffusion near a drop
(ASY095-15)

Rustyam Akhmetov, Ruslan Kutluev

Abstract: The problem of steady convective diffusion around a drop in view of the
distributed chemical reaction is a streamlined flow of a viscous incompressible fluid.
The characteristic feature of the problem is the presence of two dimensionless
parameters: k, is rate constant of the chemical reaction, Pe is Peclet number, which
determine the concentration distribution in the flow. The quantity of rate constant of
the chemical reaction and Peclet number is assumed to have a constant value. It is a
boundary value problem for a quasilinear elliptic partial differential equation with a
small parameter multiplying in higher derivatives. The additional boundary layer
arises in the neighborhood of the saddle point. The asymptotic expansion of solution
is constructed in the boundary layer near the rear stagnation point of the drop as the
solution for the quasilinear ordinary differential equation. The asymptotics of the
solution are obtained near a spherical drop.

1. Introduction

The boundary value problem is considered as

2 1 ou oy ou oy

AU——— | =2 222 1 F(u)=0, 1
¢ r2sing\or 80 80 or #F(u) @
u=lifr=1,u—>0ifr—>ow, ou/o0=0 if 6=r and =0, 2)

Y2 is the small parameter, w (r, 6) is the stream function, r and ¢ are spherical

where ¢ = Pe”
coordinates (0<@<7), A is the Laplace operator. zz =k, Pe™" is the constant value, where Pe is
the Peclet number, and k, is parameter depending on the chemical reaction rate.

The function of the current in the Stokes approximation has the form

. A 1
r,0)=sin?0(r-1) 2r—-—=—|{1+=||/4, where A —const. 3
vle,0)=sin” oo 1 2212 ®

The natural variables in the diffusion boundary layer are x =& *(2+1)™?(r-1), ¢, then the

asymptotics of the solution u(x,8,¢) is sought as

11



u(x,0,6)=uy(x,0)+0(¢). ()
From Eqgs. (1) — (4) at the variables x, 8 for determining uo(x,e) we obtain the problem

ZUO

ox?

U(0,60)=1; uy(x,8)—>0 if x—>o0.

aou aou
—xc050—2 +5sin 0—2 — 4F(uy)=0,
ox 20 H (o)

The asymptotics ug(x,0) as @ — 7 is sought as
Up (X, 8)=uqo(x)+ O((7r -0y exp(— ;/xz)) for some » > 0.
Inarea D= {x, 0:x>0,7,6" <0< ﬂ} the assessment is fair

luo(x,0) <M exp(—ﬂz) for some M >0, ve(0,1) and 7, >0.

2. The Asymptotics uo(x,a) when 8 - 0
Let us assume that F(u) taking into account

F(u)=u“g(u), glu)ec=(R), g(0)>0, a>1, (5)
where the function g(u) has an asymptotic

g(u)=1+gu+g,u? +gsud+g,u® +ggu® +O(u6) for u—0, (6)

In work [1] the asymptotic behavior of the solutions near a spherical particle, when the bulk

chemical reaction has the following forma: F(u)=u(glu)=1). Inacase & >1 and « - not whole,

with conditions (5) and (6) when @,, ., =0,k =1,2,..., itis constructed in work [2].

The asymptotics of the function uo(x,9) when € —0 is sought as

Uo(x,8)=vy(x)+ 0(6’2),

where the function v, (x) is constructed as the solution for the problem

V5 (%)= xvp (x) = F (vo (x)) =0, ©)
vo(0)=1, vo(x)=0(1) upn x>0. (8)

12



Formal asymptotic decomposition v, (x) of the decision (7), (8) is sought as

- U e

k=0m=1 ((a —1),u Inx+ c)md+k x?

We will substitute ranks (5), (6) and (9) in the equation (7). We will equate coefficients at
identical degrees (o —1)uInx+c (for convenience we will enter designation r=(a —1)uInx+c)

and receive expressions

rot uCoy — Cq1 =0,

rt 24Cy 5 _llcgl(aco,z + glco,l): 0,

et 3uC 3 —ﬂcgl(aco,a +a2Cg,2 + gl[CO,Z +ac0,lC0,2)+ 92C§,1): 0,

r 4 4uC,, —/zcéfl(acm +0:,2C0,Co5 +3C 5 + gl[co,s +0‘{C§,2 +C0,1Cc),3j+

+,C0,Co )+ 92 (2C0,1C0,2 +aCo,Co4 )+ 93Cg,1): 0,

r2Inr: quCy; — uCaC,; =0,

r?2inr: (@+1)uC,, - uC¢y (aCl’z +@,2C0,Cy + gl(CLl + aCO,lclxl)): 0, (10)

r2nr: (@+2)uCyq - y(:g"l((acm +05(2C03Cyy +2C,,Cy 5 ]+a33CgVZCL1J+ 01(Cy, +
+ a(zco,zcm +Co1Ci )J +@,2C,Cy,Ci1 10, (2C0,1C1,1 + aCélCM )): 0,

F 92 In2 r: (2 —1)uC,, — 4C& (aCyy +,C2 =0,

29302 1 20uC, , - #CE (C, , +ay(2C0 ,Coy +2C1,Cop )+ @33Co,CE +0y(Coy +
+0(C +CyCay |+ #,CosCH )): 0,

ro#n’r: Ba-2)uC;, —yC{fl(ogCG"1 +a,2C,Cyy + a3Cfl): 0.

ala-1)-...-(a—n+1)

Where o, = '
n!

- is binomial coefficient fromon « on n.

From where equating to zero expression (10) we find coefficients C, ,

Cou=1, C0y2(2—a): 91, C0,3(3—0‘):a203,2 +91(a+1)c0,2 +02,

Co,4(4—a): 32C4,Cq5 +053002,2 + 91((05 +1)Co,3 +(0‘+0‘2 )Céz)“‘ gz(a"‘z)co,z +03,

13



Cu (a —a): 0, Cpp =2a,C,Cyy + 91(0‘ “'1)(:1,1 1 2G5 = Zaz[CO,SCLl + CO,ch,Z) +
+3a,Cq ,Cyy + gl[cl,Z + Za(co,zcl,l + Cl,ZD +2a,Co .Gy + Oplo + 2)C1,1v
Cz,l(a -1)= a,Cly, aCyy = az(zco,zcz,l + 2Cl,lcl,2) +@33C,Cfy +

+ 91[C2,1 + a(cfl + CO,1C2,1J + aZCO,lelj , HC3;(2a~2)=a,2C,Cyy +asC .

From the equations (10) it isn't possible to find coefficients C,, for the whole «>1, for

example in a case =2 the coefficient C,, isn't defined. For resolvability of a task in cases of the

whole «>1 it is necessary to add members of type In*r. Then the structure of the decision

becomes complicated, and there are the following expressions

r 2 (l-a)uC,,,

r22: l-a)uC,;,

[ 3d-2 . (1—0!)ﬂc1,4v (11)
r3iInr:2Q-a)uC,;,,

r2=2inr:20-a)uc,,,

rn?r:3(1-a)uCy; .

It is possible to notice that for each whole « >1 indicators of degrees at which equalities are

written out (10) coincide with indicators of degrees of equalities (11). For example for o =2

2l L2

28l op a-1 3 gnd r 9 2=y a1 =3,

After addition of new members in cases o =2 for stay C,, we receive the equation

r2:(2-2)Cq,-9;+{1-2)C;y =0, where Cy, -any, Cy; =-9;.

The case when « =2 is considered in article [6]. We will consider the table of coincidence of
degrees. We will consider table 1. In the first column r exponents in expressions are presented (10).

In the second, third and j a column are presented r (11). Each element of 1 column coincides with

one of the column j elements depending on value of « .

14



Table 1. Comparison of indicators of degrees r =(a —1)uInx+c.

a -thewhole | o=2 a=3 a=]j,j=22, jeN.
rfdfl

r—zd—l r—d—z

r73dfl r72d72 rfdfz

—kd-1 —(k-1)d-2 —(k-2)d-2 —(k=l+1)d-2

r (k) (c2) ()
r92inr

r29-2nr r%2iInr

r34-2nr r2=3nr r 9 3inr

—kd-2 ~(k-1)d-3 —(k-2)d-3 —(k-1+1)d-3

r Inr p (D93 0y p (293 pr (a3
—d—(t+1

p )ty

—2d—(t+1 —d—(t+2

p 20 e | ) ey

—3d—(t+1 —2d—(t+2 —d—(t+2
P e | 20 ey r () nty

—kd—(t+1 —(k-1)d—(t+2 —(k=-2)d—(t+2 —(k=1+1)d—(t+2
) gt | I e | eR)E2) p(<HIE2) g

Theorem 1. The function F(u) satisfies conditions (5), (6) and s —const, then x —> oo for the

solution of Eq. (7) asymptotics holds (9) and v, (x)>0, vg(x)<0 at x>0.

Proof. The function v, (x) in the form of the sum is:

Vo (x)=1, (x)+w(x), where x>2, n>2, V,(x)eC(x>0) and

(@ —L)unx+c)

. In
Vi = z zck,m

komt - ((@=Lulnx+c

)md+k ’

where N =1+(a-1)nx).

Substituting the sum (12) in Eq. (7), we obtain the problem

()= () o 9, )~ F 5 )=y (),

w(x)—0, w/(x)—>0, for x—o0, where

[, (x) <M (Int)™""

1

15
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Equation (13) is transformed as

W (x)—xw'(x)— 2F (0, (x)W(x) = £R (9, (x), w(x))+ h, (x), where
R(On W, X): F(W(X)'H?n (X))_ F(ﬁn (X))_ F ,(on (X))W(X) )

R(%, () wfx)) = O[3 ) ).

IF"(7, (%)) < B(In )@ for & (1, 2). 17)

(16)

The idea of that transformation was earlier used in Refs. [3], [4].

In order to construct the solution w(x) of the problem (13), (14) we obtain an integral equation

W(X) = _jW N (5)(401 (X)(/’z (S) ¢ (5)402 (X))(:UR(Vn » W, S) +h, (S))ds (18)

X

2
where, W(t):exp L is the Wronskian and ¢, (x), ¢,(x) are linearly independent solutions
2
W —xw' — uF (0, W=0.
@ (X)=d, (e —LuInx+c)™ + O((In x) 2o ) for x>0,
%)= q,x e 2 (&~ In x+¢)™ [1+0((In x)= ) for x —>c0 , where d,, g, — const .
(02( ) a; H A

We apply the method of successive approximations for the solution for the solution of the
integral Eq. (18). We choose w, =0, then, using (15) — (18), we find W(x).

There exists M, >0 that for solution of the Eq. (18) inequality
[w(x)] <M, (Inx)™, where m=n-(2-a)d.

3. Numerical Solution and solution of the problem

We rewrite Eq. (7) in the form of the system

v(x)=2(x),
{z'(x)— xz(x)+ 4F (v(x)). (19)

Sufficient conditions of stability of the Runge-Kutta difference scheme for the system (19) are

the inequalities [5]

|h-u-F'(x)[<<1,h<0,|hX, <1

16



This implies that one should take X, and integrate it backwards (i.e. with increments h<0) in

the interval [0; X, ]. The initial conditions at the point X, have the form
Vo(Xo)=Vo, 2(X,)=2,, (20)

where V, Z, are frome (10), (11)

1+(a-1)(4-k) k _
V)= 3 ﬁ c. In*((c —1)uIn x +¢)

o m1 (@i x+c)m

o

Zy(4)= ih(u—l (H),uC —(@=12)fmd +K)InK (@ =L)uIn x+c)+
o\X)= k,m x((a—l),uln X+C)md+k+1

L+(a=1)(4-k) k(e -1)In**((e—1)uIn x+c)
k,m X((O.’ —1)/1 In X+ C)md+k+1 ’

k=0 m=!

N

+3

k=1 m=

B

N

Coefficients of an C, = are defined from (10), (11) for each o with the table. We will give

results of the numerical analysis of a task (19), (20). It agrees with (5), (6) we will set an obvious look

for function of an F(u), for example: F(u)=u®(L+In(l+u)).

1
0.8 Ba=2u=1)
B a=2u=25)
Ha=2u=1)
0.6 B a=3,u=25
v(x)t
0.4
\\
0,2 \-{‘__\
0
0 20 40 00 x 80 100 120 140

Figure 1. The graphical image of function v(x).
Thus, the numerical solution of a task is constructed (7), (8).
Incase of ¢=2:
#=1,c=0,3697, 2(0)=—-0,8924; u=15,c=0,2139, z(0)=-1134%;
u=2,c=0,0817,2(0)=-13367; u=25,c=0,0001 z(0)=-1,4107.
Incase of ¢ =3:

u=1,c=0,6299,2(0)=-0,7898; x=15,c=0,5942, z(0)=-0,999%;
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u=2,¢=05206,2(0)=-11745; u=25,c=0,4008, z(0)= —1,3284.

4. Conclusion

The problem considered in this work describes the phenomenon of convective diffusion around a
drop in view of distributed chemical reaction, a streamlined flow of a viscous incompressible fluid. It
is well known that several boundary layers develop in the neighborhood of the particle (see [5]). In
work [2] the main member of an asymptotics in a diffusive interface about a drop in the vicinity of a
point of running off of liquid from a drop in case of «>1, with conditions (5) and (6) when
O =0, ke N, was constructed. In this work the result for the following members of an

asymptotics, in cases of the whole o >1 is generalized. For finding coefficients of C, , software

mathematical packages, for example Maple are used. An analogous structure of the asymptotics (up to
a linear change of variable x) takes place in the diffusive boundary layer of convection-diffusion
problem around the cylinder, a streamlined cross-flow of ideal fluid (see [6] in cases «=2). Case

a =2 shown for comparison.
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Internal resonances in nonlinear vibrations of a continuous
rod with microstructure
(ASY104-15)

Igor V. Andrianov, Jan Awrejcewicz, Vladyslav V. Danishevskyy, Bernd Markert

Abstract: Nonlinear longitudinal vibrations of a periodically heterogeneous rod are
considered. Geometrical nonlinearity is described by the Cauchy—Green strain tensor.
Physical nonlinearity is modelled expressing the energy of deformation as a series
expansion in powers of the strains. The governing macroscopic dynamical equation is
obtained by the higher-order asymptotic homogenization method. An asymptotic
solution is developed by the method of multiple time scales. The effects of internal
resonances and modes coupling are predicted. The specific objective of the paper is to
analyse how the presence of the microstructure influences on the processes of mode
interactions. It is shown that depending on a scaling relation between the amplitude of
the vibrations and the size of the unit cell different scenarios of the modes coupling
can be realised.

1. Introduction

The effect of internal resonances may arise in nonlinear multi-degree of freedom systems, when
natural frequencies of the modes become commensurable with each other. Then, the presence of
nonlinearity induces a coupling between different modes even in zero-order approximation.
Complicated modal interactions occur, which may result in a self-generation of higher-order modes.
In such a case, truncation to the modes having non-zero initial energy (which is usually applied
studying vibrations of continuous structures) will not be valid and all resonant modes should be taken
into account simultaneously.

The nonlinear phenomena of modes coupling and internal resonances have been intensively
studied for homogeneous structures [1-3]. Meantime, the nonlinear dynamic behaviour of
heterogeneous solids was considered significantly less. Several studies of nonlinear vibrations of
composite structures were presented in [4-6]. However, many authors have focused on laminated
plates and shells that include a small number of layers (usually only a few), so the influence of a
microstructure was not investigated thoroughly. Only very recently, vibrations of a heterogeneous rod
embedded in a nonlinear elastic medium were considered in [7].

In this paper, natural longitudinal vibrations of an elastic periodically heterogeneous rod are
studied. Geometrical and physical nonlinearity of the problem is taken into account. We wish to

predict how the presence of the microstructure affects the processes of internal resonances and mode
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interactions. The governing macroscopic dynamical equation was obtained earlier with the help of the
asymptotic homogenization method [8]. The method of multiple time scales [1-3] is applied for the
analysis of nonlinear dynamical behaviour of the rod.

The paper is organized as follows. In Section 2, the input problem is formulated. In Section 3, the
perturbation procedure for a homogeneous rod is introduced. In Section 4, the influence of the

microstructure is analysed. Conclusion remarks are presented in Section 5.

2. Input problem
We consider a periodically heterogeneous composite rod consisting of alternating layers of two

different components 0 and 0¥ with a perfect bonding at the interface 0Q (figure 1). Natural

longitudinal vibrations in the direction x are studied.

a0 \
|

|

L

Figure 1. Heterogeneous rod under consideration.

Geometrical nonlinearity appears due to nonlinear relations between the elastic strains and the
gradients of displacements and is described by the Cauchy-Green strain tensor [9]. Physical
nonlinearity displays a deviation of the stress—strain relations from the proportional Hooke’s law. It is
modelled representing the energy of deformation as a series expansion in powers of invariants of the
strain tensor and taking into account the higher-order terms. Such expansion is usually referred to as
the Murnaghan elastic potential [10]. In our previous paper [8], we have obtained a macroscopic
dynamical equation that describes nonlinear vibrations of heterogeneous layered structures. For the
problem under consideration it can be written as follows:

o%u ou d%u T d'u_

E, S +E, =2

=p—, 1
oxt 7 ox ox? o @

where u is the displacement; | is the size of the unit cell; E,, E,, E, are the effective elastic

coefficients; p is the effective mass density. In the L.h.s. of equation (1), the first term is associated
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with a linear elastic response of a homogeneous solid. The second term accounts for nonlinear effects
(both physical and geometrical). The third term describes the influence of the microstructure.
For the effective coefficients, explicit analytical expressions were derived [8]. The coefficients

E,, E, are always positive. E, is negative for the most industrial materials, but it will be positive in
the case of a physically linear solid. The typical magnitudes of the elastic coefficients are as follows:
|E,|/E. ~10, E,/E, ~107.

Equation (1) presents an asymptotic approximation of the original problem. It is valid only if the
size of the microstructure | is smaller than the macroscopic size L of the entire body, I/L<1. It
was shown [11] that a good accuracy is achieved for 1/L<0.4,i.e. I?/2<10™" .

Let us introduce non-dimensional variables x=x(z /L), t =t(z/ L)\/El_/p, o=u/A, where
A is the amplitude of the vibrations. For the simplicity, after the substitution we drop the over bars.
Then, equation (1) reads

o%u Lo o*u  o'u _ ol

B 2
e ol Toxt o @

where &=z (E,/E,)(A/L), n=7*(E,/E,)(1?/L?) . Let us note that 7 is always positive, whereas the
sign of ¢ depends on the properties of the material: £ <0 if E, <0 (soft nonlinearity) and &>0 if
E, >0 (hard nonlinearity). The variables » and & may be considered as natural small parameters

characterizing, accordingly, the rate of heterogeneity and the rate of nonlinearity.

Let us consider the case of clamped-clamped edges. The boundary and the initial conditions are:

u(0,t)=u(z,t)=0, u(x,00=U,(x), ou(x,0)/ot=U,(x). ?3)

It should be noted that equation (2) includes the fourth-order spatial derivative and,
consequently, additional boundary conditions are required. This is a typical difficulty that arises when
higher-order models, derived originally for infinite media, are applied to bounded domains. It has
been shown [12] that general solutions of the higher-order models combine contributions of long-
wave solutions associated with the macroscopic problem and short-wave solutions localised in the
vicinity of boundaries. The latter are induced particularly by the presence of higher-order derivative
terms. The short-wave solutions describe extraneous boundary layers that have no physical sense.
Therefore, additional boundary conditions for equation (2) should be formulated in such a way to
eliminate the effect of short-wave boundary layers. This principle yields [12]:

o%u(0,t) / ox* = du(x,t) 1 ox2 =0. (4)
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3. Vibrations of a homogeneous rod

The behaviour of the nonlinear problem (2)—(4) depends on the scaling relation between the small

parameters 7 and ¢, which, in its turn, is determined by the size | of the microstructure and by the
amplitude A of the vibrations. If the size of the microstructure is considerably small, one can

estimate 77~ &2. In such a case, 12/L2~10" for A/L~10"* and 1?/L2~10" for A/L~102. Upto

O(&?) approximation, the influence of the microstructure can be neglected, so equation (2) reads:
—te——+0()=—-. (5)

Let us represent the displacement u as a Fourier-sine expansion:
u(x,t) = g, (t)sin(x) + g, (t)sin (2x) + g (t)sin (3x)... . (6)

Substituting (6) into (5), we obtain:

d2

dttzll +w12q1 +g(q1q2 +30,0, +~~~): 0, ©)
d?q, +w?q +g(1q2+3qq +...|=0

dtZ 2112 2 1 13 l

2

ddt(js+a;32q3+g(3q1q2+,,_):0,

where o, is the frequency in the linear case, @, =n; n isthe number of the mode, n=1,2,3,....
Let us introduce different time scales t,=t, t =t and represent g, as an asymptotic

expansion in powers of & :
0, (1) = oo (1) + &0, (1, ,t1)+O(€2) . (8)

We note that d?/dt® =a°/6t2 +2£8°/(At,0t,) + O(e?) . Next we substitute expressions (8) into
equations (7) and collect the coefficients at equal powers of ¢ .

In O(&°) approximation we obtain

an = an (tl)cos(a)nto) + bn (tl)Sin(a)"tO) ! (9)

where a_(0) = (2/7) jo”uo(x)sin(nx)dx , b,(0) :[2/(7m)n)]I0”U1(x)sin(nx)dx .

In O(&") approximation equations (7) for give:
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A straightforward integration of system (10) will lead to the appearance of secular terms in the
expressions for q,,. Secular terms grow without a bound in time, which is inconsistent with the
physical properties of the conservative system under consideration. In order to eliminate secular

terms, the coefficients of cos(w,t,) and sin(w,t,) in the r.h.s. of equations (10) must be equal to

zero. Substituting expressions (9) into equations (10) and fulfilling the aforementioned condition, we
obtain a system of equations for a, and b, , which gives a possibility to investigate the interactions
between different modes.

We note that in the problem under consideration an infinite number of modes can be involved
into the resonant interactions. In this paper, we consider only two leading modes and examine in
detail the internal resonance between the modes 1 and 2. Coupling between higher-order modes can
be investigated in a similar way.

For the further analysis, it is convenient to introduce polar coordinates as follows:

a,=rcos(g,), b, =rsin(g,), where r, is the amplitude and ¢, is the phase. After routine

transformations, the condition of the elimination of secular terms gives:

dr, _1

dTiZZUZW(% -2¢,), .

G%= ‘%Grzcos(% -2¢), -

dr, 1 2

—2=__"r%sin(p,-2¢,), .

& 6" (qoz (/71) -
de 1

r, dr.l2 " 16 r'cos(e, —2¢,) . -

A simple analysis shows that equations (11)—(14) allow vibrations by a single mode 2 (r, =0,
r,=0). In this case the amplitude is constant in time, r,(t,) =r,(0) . This is true up to the order O(s)

for the time t<O(e™) . If we start with zero initial energy in the 1st mode, there will be no energy
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present up to the order O(g) on the timescale O(e™). On the other hand, vibrations by a single
mode 1 are not possible, because system (11)—(14) does not hold for r, #0, r,=0. If there is initial
energy present in the mode 1, energy transfers occur between the modes 1 and 2. Thereby, the modes
1 and 2 are coupled in O(&®) approximation. This effect is called the internal resonance.

Multiplying equation (11) with r, and equation (13) with r,, adding both equations and
performing the integration, one obtains: r’+4r?=E?. This formula represents the energy

conservation law, where E is the constant of integration having a physical sense of the full energy of
the vibrations. Since in the input non-dimensional equation (2) the displacement u has been
normalized to the amplitude A of the vibrations, without loss of generality we let E=1. Then,
equations (11)—(14) can be written as follows:

dr, _4r7 -1 .

—£= sin , 15

16 ") (15)
2 p—

dy _12¢; 1COS(W) ;

dt, 16r,

where =@, —2¢,, 0<r1,<1/2.

We performed a numerical integration of system (15) using the Runge-Kutta fourth-order

method; the obtained results are presented in (r,,¢ ) phase plane in figure 2. The solution is 2z -

periodic in y ; the parts of the phase diagram at r, >0 and at r, <0 are symmetric with respect to

the line r, =0 . The critical points are located at r, = i\/§/6, w=tzm (centres) and at r, =+1/2,
w=r/2+tzm (saddles); m=0,12,... We can observe that the system oscillates around an

equilibrium state with a periodic energy transfer between the modes 1 and 2.

4. Influence of the microstructure
As the size of the microstructure increases, the parameters n and & become the same order of
magnitude: 77~ & . In such a case, 12/L2~10" for A/L~10". The presence of the microstructure

provides a kind of detuning effect for the phenomenon of internal resonance. Let us introduce the
detuning parameter » of the order O(1) as follows: y =7/s = z(E,/E,)(1?/L*)(L/A) . The input

dynamical equation (2) takes the form:
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Figure 2. Phase plane in the case of a homogeneous rod.

du, oudu ool
K T T

Following the asymptotic procedure presented in Section 3, we obtain an additional contribution
in system (15), which now reads:

dr, _ 47 -1

sin , 16
it 16 (v) (16)
dy _12r7 -1
—= cos 3y .
dt, 16r, (l//)+ 4

Let us examine the solution in the domain 0<r, <1/2, 0 <y <27, because for other values of r,
and y it continues periodically.

In the case of soft nonlinearity, <0, examples of the phase plane are shown in figure 3. As ||
increases, one centre moves left along the line y =7z, whereas two centres move right along the lines
w =0, y =27 . One saddle moves up and the other saddle moves down along the line r, =1/2. For
y =-1/12, centres and saddles coincide at the points r, =1/2, w =0 and r, =1/2, w =2z and then
disappear. The only one centre remains and, with the further increase in |;/| , it continues moving left
along the line y =z . The area of the periodic energy transfers between the modes 1 and 2 narrows.

In the case of hard nonlinearity, >0, the behaviour of the system is illustrated in figure 4. As

¥ increases, one centre moves right along the line =7z and two centres move left along the lines
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w=0, w=2x.For y=1/12, one centre and two saddles coincide at the point r, =1/2, w=x and
disappear. With the further increase in y , two centres continues moving left along the lines =0,

w =2z and the intensity of the energy transfers between the modes decreases.

For the both soft and hard nonlinearity, the increase of the size of the microstructure suppresses
the energy exchange between the modes, so the effect of internal resonance becomes negligible.
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Figure 3. Phase plane in the case of soft nonlinearity.
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Figure 4. Phase plane in the case of hard nonlinearity.
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5. Conclusions

Natural vibrations of a periodically heterogeneous rod are considered with an account for
geometrical and physical nonlinearity. The governing dynamical equation was obtained earlier by the
method of higher-order asymptotic homogenization. In this paper, we present the asymptotic analysis
of the problem with the help of the method of multiple time scales.

If the size of the microstructure is relatively small in comparison to the amplitude of the
vibrations, the effect of internal resonance takes place. It results in periodic energy transfers between
different modes and in a modulation of their amplitudes. The resonant modes are coupled in O(&°)
approximation, so the truncation to the modes having non-zero initial energy is not possible. We
studied in details the internal resonance between the leading modes 1 and 2, which is of primary
importance for the engineering practice. The behaviour of the system was analysed in the phase plane
using the Runge-Kutta fourth-order method and numerical results were presented.

If the size of the microstructure increases, the intensity of the energy transfers between different
modes decreases and the effect of internal resonance is suppressed

The results presented in the paper can be applied to facilitate the development of new efficient
methods of non-destructive testing. Measuring the characteristics of nonlinear vibrations at different
amplitudes allows us to receive precise information about the internal structure of heterogeneous
solids. This is sometimes that may be not possible within a linear framework.

Changing properties of the microstructure (e.g.,, using piezoelectric effects or
saturation/desaturation of porous media) make it possible to tune the macroscopic dynamic response
of nonlinear structures. This can be useful for a design of new active control devices in various
branches of engineering.

Finally, we remark that the effect of internal resonance may be applied for the purposes of
vibration damping. Nonlinear coupling between the vibrating modes may help to transfer mechanical
energy from low- to high-order modes and, therefore, to decrease essentially the amplitude of the

vibrations.
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Wave energy conversion with fully enclosed multi-axis inertial reaction
mechanisms
(CON258-15)

I.A. Antoniadis, V. Georgoutsos

Abstract: A novel class of Wave Energy Converters is proposed, consisting from a
class of fully enclosed appropriate internal body mechanisms, which provide inertial
reaction against any multi-axis, multi-direction motion of an external vessel. This
ensures maximum wave energy capture in comparison to other wave energy
converters. The internal bodies are suspended from the external vessel body in such
an appropriate geometrical configuration, that a symmetric four bar mechanism is
essentially formed. The first advantage of this suspension geometry is that a linear
trajectory results for the center of the mass of the suspended body with respect to the
external vessel, enabling the introduction of a quite simple form of a Power Take Off
(PTO) design. Moreover, the simplicity and the symmetry of the suspension geometry
and of the PTO, ensure a quite simple and robust technological implementation,
removing the restrictions of other linear, pendulum or gyroscopic variants of inertial
reacting bodies. Furthermore, the mass and the inertia distribution of the internal body
is optimized for the maximal conversion and storage of the wave energy. As a result,
the dynamic behavior of the internal body assembly is essentially that of an equivalent
vertical physical pendulum. However, the resulting equivalent pendulum length and
inertia can far exceed those that can be achieved by an actual technical
implementation of other pendulum variants, which results to a significant reduction of
the suspended mass.

1. Introduction

Estimates for ocean wave power are of the same order as the global electricity production [1]. More
than a thousand of patents and tenths (if not hundreds) of experimental prototypes of Wave Energy
Converters are being tested in the sea [2]. However, no specific technological paradigm exists till
today for efficient wave energy conversion. Among the WEC concepts with best perspectives, are
those consisting from two-body configurations, in which only one body is in contact with the water
and the other body is located above the water or is totally enclosed inside the wetted one. Numerous
variants exist, such as the Frog and PS the Frog [3], which is a linear sliding mass enclosed inside a
floating vessel. Interesting variants of this design include various pendulum forms, such as the
SEAREV [4], inverted pendulum designs, or horizontal pendulum designs [5-8], all of which are
associated with serious disadvantages.
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A novel concept for the design of a general class of wave energy converters able to overcome all
of these disadvantages is presented, based on fully enclosed internal body configurations, which
provide inertial reaction against the motion of an external vessel. An example of such an arrangement
is further analysed in details. An external vessel is subjected to simultaneous surge and pitch motion
in all directions, ensuring thus maximum wave capture, in comparison for e.g. to heave only point
absorbers. An inertial reacting body is enclosed internally, suspended appropriately from the external
body in such a way that a symmetric 4bar mechanism is formed.

The first advantage of this suspension geometry is that the center of the mass of the suspended
body moves in a linear trajectory with respect to the external vessel. This implies that the internal
body appears to move essentially in linear way, like a simple mass in the conventional form of the
PSFrog arrangements. This enables the introduction of a quite simple Power Take Off (PTO) system,
as for e.g. hydraulic rams. Moreover, the simplicity and the symmetry of the suspension geometry and
of the PTO, ensure a quite simple and robust technological implementation, contrary to all other
known above variants of inertial reacting internal bodies.

The second advantage of this design is that the internal body behaves dynamically as a vertically
suspended pendulum. However, the suspension geometry, in combination to the optimal mass and the
inertia distribution of the internal body, ensure the maximal conversion and storage of the wave
energy in the form of kinetic and potential energy. This is reflected to the resulting equivalent
pendulum length and inertia of this design, which can far exceed those that can be achieved by an
actual technical implementation either of a simple horizontal or of a vertical pendulum (suspended, or
inverted). The direct consequence is significant reduction of the suspended mass.

The kinematic relations and the dynamic equations of motion are derived in section 2. In section
3 the equations of motion are linearized, an appropriate feedback law is proposed and the power that
can be converted is estimated. Finally an indicative design of an LMW WEC is presented in section 4.

2. Equations of motion

2.1. Kinematic relations

The assembly considered is depicted in Fig. 1, consisting from a floating external vessel V into which
an internal symmetric four bar mechanism ABDE is suspended at a height « above the sea level. The
waves induce to the vessel a simultaneous surge motion of magnitude u and a pitching motion of an
angle & with respect to the inertial coordinate system OXY. The center of mass G of the vessel V is
located at a distance b below the level of the sea. The member DE of the internal four bar mechanism
provides a basis onto which a solid body S is placed. The solid body provides a reaction mass to the

motion of the external vessel, rotating with an angle ¢ about the Z axis of the inertial reference frame
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OXY. The coordinate reference system RXgYp is rigidly attached to the vessel V, following its
motion.

The basic geometrical configuration of the four bar mechanism is presented in Fig 2 and it is
defined by the selection of the three independent lengths d, ¢, I. Following the fundamental kinematic
analysis of 4 bar mechanisms, the angles y and ¢ can be expressed as a function of the angle ¢ and of
the three independent lengths d, c, I. The center of mass C of the body S is located at a distance h
above the member DE.

The angular velocities of the mechanism can be expressed in the following compact form:

\_—

Figure 1. Schematic presentation of the assembly considered. An internally reacting body S is

suspended by an appropriate 4bar mechanism ABDE from an external floating vessel V.
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sin(y + 6)
7 S+ ®) @
The coordinates Xg ,yg of the center of mass C of the body S with respect to the coordinate system
RXgYg result as follows:
x =—d+lcosy+ccose+hsing (5)
yg =lsiny +csing —hcosg (6)
A typical choice for h is:
h = lsiny, @)
It is easy to derive that yg is equal to zero when I=d=2c, as it is the special case of the Roberts
linkage. Therefore, the point C moves in a straight line over the segment AB.

The coordinates of the point G with respect to the inertial coordinate system are as follows:

X¢ =u+bsinf ®)
Y¢= —bcosf ©)
The translation of the center of mass C of the body S according to the system OXY is as follows:

10
Xy = Xg + XgCcosO —ygsind = u+ xgcosf — (a+yg)sinf (10)

Yy =Yg +xpsinf + ygcosf = xgsin@ + (a + yg) cos an

2.2. Dynamic equations of motion
The kinetic energy captured from the bodies V and S can be written as:

1 - - 1 . 1 : - 1 .
=gy (e +58) + 30 4 gms (v 4 vi) + 3100 - 0) 12)

where:
my, is the mass of the vessel V including the added mass of the water
mg is the mass of the body S
ly is the moment of inertia of the vessel V about O
I5 is the moment of inertia of the reaction mass S about C.

The potential energy is as follows:
1 2
U=msgym + EKVH +mygye (13)

where Ky is the hydrostatic stiffness in pitch (and/or roll) for the vessel about O.
The system presents three degrees of freedom:

_— (14.2)
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=0 (14.b)
=@ (14.c)

The equations of motion of the system can be derived by the application of the following

Lagrange principle:

d /oL oL
(oL _ (oL L2 (15)
dt (aﬁ-) <6ri) Fri=13

L=T-U (16)

where Fi denote the external and the damping forces of the system.
After appropriate differentiations, the equations of motion result as:

d
ph R =F, (17.a)
d
EPB + KVB + Tyg + ng =0 (17b)
Pt Top =Ty (17.0)

where the momentum values P, Py, P, are defined as follows:

P, = Myt + Myg6 + Myyp (18.2)
Py = Mygit + Mggf + Mgy, (18.b)
P, = MyyU + Mgy + My (18.c)
with:

My =my, +mg (19.8)
My = myb cos @ —mglyy (19.b)
Myy = mgTyy (19.0)
Mgg = I, + Is + myb? + mg(12) + 1Zy) (19.d)
Moy = —[Is + my(remlam — Tymlym)] (19.¢)
My = Is + ms(ry + 12m) (19.f)
Iy =(a+yg)cosf +x siné (20.2)
lyy = x cos — (a +yg)sind (20.b)
Tym = Tx CO0S 6 —1,,5in 0 (21.8)
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Tym = Ty SiNf + 1, cos 6 (21.b)

Ty =lusiny —csing + hcos ¢ (22.9)

1, = —lpcosy + ccos@ + hsing (22.b)

The moments due to the gravity are:

T,o = m,gbsin @ (23.2)
TgB = ms.glym (23.b)
Typ = MsGTym (23.c)

The rest of the terms are:
R, is an added damping coefficient for the surge motion induced by the waves.
F., is the force due to the incident and diffracted waves.
T, is the reaction force of the PTO.

Under the assumption that the surge and pitch motion of the external vessel are known in the time
domain, the equations of motion can be further simplified, retaining only the set of equations which
refer to the mechanism itself:

d , d , .
E(Mw‘/’) = _a(Muun"'Mﬁwa) Ty +Tp (24)

3. Maximum power conversion capability

3.1. Linearization of the equations of motion

Under the assumption of small perturbations around the rest position of the mechanism, the following

approximate relations hold for the angles a € {¢, ¥, 6} of the assembly:

cosa=1 (25.2)

sina = a (25.b)

which result to:

cosy = cos(y, — ) = cosy, + Psiny, (26:3)

siny = sin(y, —¥) = siny, — P cosy, (26.b)
The equations of motion (5) and (6) can thus be simplified as follows:

x =l @7)
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yp=0 (28)

L, =@+ Dh (29)
_ 2c o 1
“N“O_lao_lcosyo_d/c—l (30)
o= 0, = sin 27, = 2cos
°  siny, Yo (31)

Equations (27),(28) imply that the physical motion of the center of the mass of the body is linear,
exactly in the same way as the traditional designs of linear sliding mass WECs, as for e.g. in the form
of PS Frog. Similar simplified relations hold for the factors ry , ry, Ly, lyw, v @nd ryy

T = (32)
=0 (33)
Ly =a (34)
bym = Lo (35)
Tam = by (36)
Tym = 1,0 37)

as well as for the components of the matrix M:

My, = m, (38.a)
Myg ~ myb (38.b)
My, ~ mgl, (38.c)
Mgg =~ I, + I + m,b? (38.d)
Mg, =~ —lg = —[Is + mslya] (38.¢)
Mpp = Iy =I5 + milj (38.f)

and the moments due to the gravity :

Tvg =0 (393.)
Tge ~ msglpqo (39.b)
Typ = msgl,0 (39.c)

3.2. Proposed form for the Power Take Off force and Feedback Law

In view of the non-linear equations of motion (17), the mechanism is inherent to an unstable behavior.

For this reason, a feedback law of the following form is incorporated in the power take off force:
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Ty = —Kpp — Ry + Ty (40)

where K, and R, are constant linear feedback gains to be properly selected and Ty denotes an

appropriate compensator for the non-linearity of the system in the form:
d . . .
Ty = E(P‘p —mglyu + 1g0 — 1(p(p) + (Typ —msgl,0) (41)
which results to the following equation for motion of the internal body:
Io§ + Ry + Kpp = —mglyii + 10 —mygly6 + Ty (42)

Obviously Ty is equal to zero for a linearized system.

Equation (42) implies that the motion of the internal body is fully equivalent dynamically to that
of a damped physical pendulum, with a mass mg and inertia I about its CM, which is suspended at a
distance I, from its center of mass.

However, it should be stretched, that in view of equation (29), the equivalent length I, of this
pendulum can be many orders of magnitude higher than that expected by any other vertical pendulum,
realized in the traditional natural technological way, as for e.g. in the form of SEAREV [4].

This pendulum can simultaneously convert three different forms of wave energy:
e  The kinetic energy resulting from the surge motion
e  The kinetic energy resulting from the pitching motion
e  The potential energy resulting from the pitching motion

In view of equation (40), the selection of the feedback gains can be performed in a way to ensure
stability of the system, optimal tuning of the natural periods of the system to the periods of the

external source, as well as maximum power conversion capability.

3.3. Calculation of maximum power conversion capacity

The analysis of the power conversion capability can be performed independently for the surge and
pitch motion of the converter. However, the design of the external vessel and the coupled form of
equations [17] imply that a dependence exists in fact between them. Detailed analysis of such a
dependence is performed in {5}. Following the outline of such an analysis, the vessel will be assumed

to be subjected to a pitching motion of amplitude @¢ and frequency w:
0(t) = O¢ cos wt (43)
while the surge motion will depend on the pitch motion as follows:

u(t) = —b(t) = —bO cos wt (44)
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As aresult, the equation of motion (42) now becomes:

I,¢ + Ryo + Ky = —M,0 cos wt (45)
T, = —K,¢ — Ry (46)
M, = w?lp + mygl, (47)
Ip =Is + mgly(a+b) (48)

The steady state response of the system is a harmonic function with a frequency equal to ® and
with a phase difference of n/2 with the excitation force, in order to maximize power capture from the

excitation force:
@(t) = —Ps sin wt (49)

The minus sign is used to denote that for the positive 8 angle, a negative ¢ angle should result, in
order to ensure the stability of the vessel.
Substitution of equation (49) into equation (45) leads to the following results:

R, = M 0,/ wd (50.a)
Ky = w?l, (50.b)
The mean power absorbed by the Power Take Off is defined as follows:

1 (T .
Pout = 7= f Typdt (51)
wJ0

Tw =21n/w (52)

Substitution of equations (46), (49) into (47) leads to the following expression
1
Pour = _EwMeOC(Ds =Py (53)

or alternatively to:

Py = —%w@CmSXMae (54)
where:

Xy = L,ds (55.9)
a,=g+owi(a+b+l) (55.b)
= Is/(mslp) (55.c)
and
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o : Frequency of the waves

O, : Amplitude of the pitch motion

m : reaction mass

Xm : Amplitude of the linear motion of the center of mass of the oscillating body

@, : maximum inclination of the mechanism

I : equivalent pendulum length

Is : inertia of the oscillating body about its CM

a : distance of the mechanism suspension points from the sea level

b : distance of the vessel’s CM from the sea level

Equation (54) is of paramount importance for the design and sizing of the mechanism, since it
clearly defines the effect of the various design parameters on the expected power output. As for
example, the power output is proportional to the frequency w of the waves, which normally very low.
Typically, this necessitates the usage of large oscillating masses ms, travelling over long distances Xy.
However, these typical design requirements can be reduced, due to the intelligent selection of the
various factors appearing in a,, equation (55.c)

4. Indicative implementation

An indicative mechanism for a standalone 1MW WEC is presented. A body S consisting of two
unequal spheres and a beam that links them together will be used as an inertial mass. This body is
suspended with three links inside a sealed vessel V. All the other additional components such as the
hydraulic system and the rams are also enclosed in the vessel. This basic configuration has the form
presented in Figure 2. As fig 2 indicates, the vessel is a fully sealed hull with a plate at the bottom for
maximizing reaction, increasing the added mass and lowering the center of mass of the external
vessel. The hydraulic system power pack can be placed at the bottom, while the rams operate in the
same plane with the center of mass C of the oscillating body V. Assuming that the weight of the beam
and the supporting brackets are negligible, the values of M;= 64tn, r;=2.5m and M,=8 tn, r,=20 m are
reached, where M; and M, indicate the masses of the two spheres and r, , r, their distance measured
from the center of mass C. Table 1 below includes the main dimensions of the configuration. It should
be clarified, that the above values refer just to an indicative implementation of a mechanism for a
WEC and they are by no means optimized. Such an approach is obviously necessary in full

association to the design of an optimized external vessel.
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Figure 2: Rest position and limit position of the inertial mass
Table 1: Main design parameters of the Standalone WEC

Total mass (body) 72tn
M, 64 tn
M, 8tn

r; (distance of M; from C/CoM) 25m
r, (distance of M, from C/CoM) 20m
d(Mechanism) 7m
c(Mechanism) 5m

h (Mechanism) 18 m
a (Vessel) 5m

b (Vessel) 25m
T (period of waves) 8s

O (Pitch ampltude) 25 deg
@ (Internal mass inclination) 5 deg
Translation Xy (concerning C/CoM) 55m
Rated Power Output 1MW

The combined values of power and suspended mass in Table 1 compare more than favorably to
those necessary for other types of internally reacting WECs, such as PSFrog [3] or SEAREV [4]. Far
more important, the suspension geometry and the simplicity of the PTO render this design far more

reliable and easily implementable than all other known types of internally reacting masses.

5. Conclusions

The novel class of Wave Energy Converters, consisting from fully enclosed inertially reacting bodies
under appropriate suspension geometry from an external floating vessel can provide a reliable design,
able to meet the severe conditions for survivability under extreme weather conditions.
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The linear motion of the center of mass of the suspended body enables the introduction of a quite
simple form of a Power Take Off (PTO) design. Moreover, the simplicity and the symmetry of the
suspension geometry and of the PTO, ensure a quite simple and robust technological implementation.
The optimal dynamic design of the geometry and the mass and the inertia distribution of the internal
body ensure the maximal conversion and storage of the wave energy. This results to a significant
reduction of the suspended mass, compared to other internal reacting designs.

The concept is flexible and parametrically designed, enabling its implementation in any form of
floating vessels. A first option is as standalone WECs, fully enclosed in appropriately designed hulls.
Moreover, an alternative direction for their implementation consists in properly embedding them in
floating offshore platforms, supporting wind turbines. Such a design can drastically enhance the
performance, the efficiency and the potential of floating offshore energy applications.
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Hyperdamping properties of a novel stable non-linear oscillator
concept, based on a statically unstable stiffness element
(CON257-15)

loannis A Antoniadis, Konstantinos J Kyriakopoulos, Evangelos G Papadopoulos

Abstract: A novel concept of a non-linear oscillator is proposed, based on a bistable
element, which operates around an unstable equilibrium point. Contrary to Quasi-
Zero Stiffness oscillators, a totally different redistribution of the stiffness elements is
followed, so that any level the required static stiffness can be maintained. This
oscillator is designed to present the same overall (static) stiffness around the system
equilibrium point, the same mass and to use the same damping element as a reference
classical linear SDOF oscillator. Once such an oscillator is optimally designed, it is
shown to exhibit an extraordinary apparent damping ratio, which is several orders of
magnitude higher than that of the original SDOF system, especially in cases where the
original damping of the SDOF system is extremely low. This damping behaviour is not
a result of a novel additional extraordinary energy dissipation mechanism, but a result
of the phase difference between the positive and the negative stiffness elastic forces;
this is in turn a consequence of the proper redistribution of the stiffness and the
damping elements. This fact ensures that an adequate level of elastic forces exists
throughout the entire frequency range, able to counteract the inertial and the external
excitation forces. Consequently, a resonance phenomenon, which is inherent in the
original linear SDOF system, cannot emerge in the proposed oscillator.

1. Introduction

The concept of introducing negative stiffness elements (or ’anti-springs’) for vibration isolation
has a long history, being first introduced in the pioneering publication of Molyneaux [1] as
well as in the milestone developments of Platus [2]. On a parallel approach, a quite interesting
possibility towards achieving significant damping has been demonstrated to exist also in materials
comprising a negative stiffness phase [3], not only at a material level [4], but also at
macroscopic devices [5]. Quite interestingly, such a behaviour is combined with high stiffness
properties. A theoretical approach has been performed for the analysis of the static and dynamic
stability of composite materials, incorporating negative stiffness elements [6]. Recently, meta-
material designs have appeared with negative effective moduli. An initial comprehensive
review of such designs can be found in [7]. A rich variety of designs have been proposed for
the realization of negative spring configurations, incorporating various structural elements such
as post-buckled beams, plates, cells, pre-compressed springs, etc., arranged in appropriate

geometrical configurations. Some interesting designs are described in [8],[9]. The central
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concept of these approaches is to significantly reduce the stiffness of the isolator and
consequently to reduce the natural frequency of the system even at almost zero levels [10].
In this way, the transmissibility of the system for all operating frequencies above the natural
frequency is reduced, resulting to enhanced vibration isolation. Since then, numerous other
applications have been reported in a diversity of engineering domains, such as automotive
suspensions [11, 12, 13] or seismic isolation [14, 15]. From the dynamics point of view, many
interesting improvements have been proposed, based on the non-linear properties of the elastic
force of such designs [16, 17, 18, 19, 20]. However, all these designs suffer from their
fundamental requirement for a drastic reduction of the stiffness of the structure almost to
negligible levels, limiting thus the static load capacity of such structures.

In order to remove this drawback, a novel approach has been proposed [21], on how to
optimally design a simple linear oscillator incorporating a negative stiffness element, which
can exhibit extraordinary damping properties, without presenting the drawbacks of the
traditional linear oscillator, or of the ’zero-stiffness’ designs. This oscillator is designed to present
the same overall (static) stiffness as a traditional reference original oscillator. In this way, it
overcomes the inherent disadvantage of the known negative stiffness oscillators in requiring
stiffness reduction. Moreover, it does not require any increase in the mass or the viscous
damping of the original oscillator in order to increase the vibration isolation properties, as it is
the case of the traditional linear vibration isolators. However, it differs both from the original
SDoF oscillator, as well as from the known negative stiffness oscillators, by appropriately
redistributing the individual stiffness elements and by reallocating the damping. Although the
proposed oscillator incorporates a negative stiffness element, it is designed to be both statically
and dynamically stable. Once such a system is designed according to the approach proposed in
[21], it is shown to exhibit an extraordinary damping behaviour, with an apparent damping
ratioto be even several orders of magnitude higher than that of the original system, especially
in the cases where the original damping of the system is extremely low. Moreover, a drastic
increase of several orders of magnitude has been observed for the damping ratio of the flexural waves
propagating within layered periodic structures incorporating such negative stiffness oscillators [22].

In this paper, the concept of [21] is further generalized, by replacing the linear negative stiffness
element by a non-linear bistable element, which operates around an unstable equilibrium point. This
bistable element takes the form of two springs, which are oblique in their initial unstressed condition,
while they allowed to oscillate around a stressed and unstable static equilibrium position, presenting
thus a negative stiffness. When the properties of this oscillator are properly selected, it is shown to be
statically and dynamically stable, presenting simultaneously an extraordinary damping behaviour and

any level of required static stiffness.
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2. The proposed non-linear oscillator system concept

(a) (b) (c)

Figure 1. Schematic presentation of the oscillators considered. (a) Proposed non-linear oscillator

at the static equilibrium point. (b) Notation concerning the perturbed behaviour of the oscillator. (c)
Equivalent conventional Quasi-Zero Stiffness (QZS) non-linear oscillator.

The non-linear oscillator system under consideration is depicted in Figures 1(a) and 1(b). It
consists from a mass m which is supported by two parallel linear springs with stiffness ks and kg
respectively and by a damper with constant n. The damper » and the spring kg are in turn supported by
a set of two symmetric linear oblique springs with constants kq. The static equilibrium position of the
system is depicted in Fig 1(a), when no external force is applied. The perturbed position after an
external dynamic excitation f(t) is depicted in Fig 1(b), along with the necessary notion concerning
the various displacements of the system. For comparison purposes, the structure of an equivalent
conventional Quasi-Zero_Stiffness (QZS) non-linear oscillator is depicted in Fig 1(c).

The equations of motion of the proposed oscillator are:

mX+7(X—y)+ks (Is =g ) +ke(lg —lg ) = f (1a)

10 Y) ke (I ~1g )+ f (u) =0 (Lb)
where:

Is(t) is the length of the spring ks, lg; is the initial length of the un-deformed spring ks, Ig(t) is the
length of the spring ke, Ig, is the initial length of the un-deformed spring ke and fy(u) is the non-linear
force exerted by the set of the two symmetric oblique springs ko.

The equations of the system at the static equilibrium point are derived by the set of equations (1):
ks (Iso —1s1) + ke (leg =1 ) =0 (2.2)

kg (lgo =1g ) + T \(Ug) =0 (2.b)
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where the index ( ) is used to denote the static equilibrium point and I is the length of the (normally
deformed) spring ks at the static equilibrium point, Ig, is the length of the (normally deformed) spring
ke at the static equilibrium point and fy(ug) is the non-linear force exerted by the set of the two

symmetric oblique springs Kq at the static equilibrium point.

Denoting by:
Vs =lgo — g, (3.9)
Ve =lgg—Ig (3.b)
fno =1 n(Up) (3.0)
the following equations result:
Vs =—fyo/kKs (4.8)
Ve = fyo/ ke = —(Kg 7Kg )vg (4.b)

Further elaboration of the sets of Eqgs (2),(3),(4) and substitution in the set of Eqs (1) leads to the

final set of equations of motion:

mX+kgx+ fyg(u)=f (5.2)

(%= ¥) ke (X—Y) + ) =0 (5.)
where:

fug () = fy (U) = fyo (6.a)

Uu=ug+y (6.b)

Ig =lgo + X (6.c)

The following expressions can be derived for the potential energy Uy, the non-linear force fy and

the equivalent non-liner stiffness ky of the set of the oblique springs kg :

UN[u(y)]ZZ%kQ(IQ_lQI)Z :kqlél(l—lqllol)z )
ou

fy(u)= ayN =2ko(@~lg /lg)u (8)

Ky :%:2kQ(1—|Q|d2/I8):2kQ[1—C|2(|Q| /|Q)3] 9)

where lg, is the initial length of the un-deformed springs ko, , o(t) is the length of the springs ko,

lo =(U*+d?)"? (10)
and:

¢ =d/lg <1 (11)
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Assuming that the operation of the non-linear set of springs is limited in the range:
lg <lgz U<y, (12.a)

where lq; is the value of Iy were the stiffness ky becomes zero,

loz =loici"® <lg, (12.b)
up = (15, —d?)"% =g, (c}"* —cf)? (12.c)
u, = (|é| -d?)"? = loi @-c))? 2y, (12.d)

then the equivalent non-liner stiffness ky of the set of the oblique springs kq is negative and reaches its
peak value for u=0. Similarly, when Ig(t)< lo, the non-linear force fy is also negative.
By linearizing the non-linear part of the oscillator around the local static equilibrium point,

fug =key (13.2)
of
ke =ky (Ug) == (U =) (13.b)
oy
equations (5) lead to the following linear dynamic system:
mX+kgx+key = f (14.a)
—n(X=-y) ke (x=y) +ky=0 (14.b)

which is exactly the type of oscillator analysed in [21].

The transfer function of the system in (14) is:

X __ sp+(ke+ke) _ sn+ (ke +ke) (15.3)

F s’ +c,5%+65+¢, mu(o+p)(s?+24,0,5+wf)

Y __ sntke (15.b)

X sp+(kg +ke) '
with:
c,=mp (16.a)
¢, =m(ke +kc) (16.b)
3 =n(ks +kc) (16.c)
Cs =ks (kg +ke) +Keke (16.d)

The linearization of the dynamic system (5) enables the direct implementation of the systematic
procedure for the selection of the parameters of the dynamic system of (14), and which is analytically
described in [21].
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3. A numerical example

According to the systematic design procedure described in [21], a reference SDOF linear
oscillator is defined first, with a stiffness ky, a mass m and a damper with a constant #. The natural

frequency wq and the damping factor {; of this reference linear oscillator are consequently:

@y =+ko/ M (16.a)
So=n/2/kym (16.b)

In the subsequent numerical example, the reference oscillator is defined with a natural frequency
of wy = (27) rad/sec, a damping factor of {; =0.01 and a stiffness of ko=1 N/m.

The design procedure described in [21], essentially consists in an approach on how to redistribute
the stiffness of the new oscillator by defining new stiffness constants ks, kg, ke, in order to maximize
its damping behaviour, while maintaining the same total stiffness k, the mass m and the damper 1 of
the reference oscillator. The design steps, as detailed in section 2.2 of [21] are the following.

First, in order to retain the total original stiffness of the system, the following constraint must
hold:

keke
ke +ke

ko =ks + @17)

Next, since a high value of k¢ can lead to a negative value of ko, an engineering safety margin
£>0 is defined, prohibiting the system from reaching such a statically unstable situation:
ol )
Finally, a freely selectable design parameter « is defined:
ks = akq (19)

In view of (19), equations (17) and (18) become:

ke =k 20

E 01+5—ag 20)
g(a-1

o =Ko 22 @
+&

Thus, after selecting a specific value of the safety margin ¢, the design parameter « can be varied,
so that a new maximum damping coefficient ¢, is achieved for the modified negative stiffness
oscillator.

In the numerical example considered, a safety factor of ¢=5% is selected. According to Fig 2, a
new optimal damping factor of {,=0.158 results for a value of a=3, increasing the initial damping

factor {,=0.01 of the system by 16 times.
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Figure 2: Variation of the new damping factor ¢, with the parameter a.

The corresponding optimal values of the stiffness coefficients of the new linear oscillator result
from equations (19),(20),(21) as ks=3N/m, kg =0.333N/m and k¢ =-0.2857N/m.
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Figure 3. Response of the linear oscillator with a negative stiffness element: (a) Displacements
(b) Velocities.

The response of this oscillator to an initial displacement of x(0)=0.05m is presented in fig. 3. As
it can be observed, although the initial reference oscillator has a very low damping factor of {; =0.01,
the new system with the negative stiffness element achieves a highly damped behaviour.

Next, a non-linear oscillator in the form of Fig. 1a is designed, were the negative stiffness spring
of constant ke = -0.2857N/m is replaced by a set of oblique springs. The necessary parameters of the
oblique springs to be selected are the values of kg lgi, Cqi , as well as the position uy.

For the proper selection of these parameters, first the maximum permissible amplitude of the
excitation force is defined as Fyax = Ko*Xst with Xgr =0.05m. Thus, an initial estimate of the
maximum response amplitudes of x(t) and y(t) to a harmonic excitation under Fyax can be derived by
the transfer function in eq. (15) as Xyax =0.076m and Yyax =0.5326m. Thus, a conservative estimate
for the maximum permissible value of u(t) can be set as Uyax =0.500m. Next the value of uy is
selected as uy;=0.005m. This value is selected reasonably close to uy=0 so that an almost symmetric
response around u=0 is obtained.
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The rest of the parameters of the oblique springs are selected so that ky(0)=1.02kc and
Kn(Umax)=0.96Kkc. Since ky(0) is the minimum value of Ky, this setting of ky(0) guarantees that in
view of eq (17), the system of springs remains statically stable for the entire operating range. Parallel,
the choice of ky(Uwax) guarantees that ky retains a sufficient level of negative values in the entire
operating range, so that the damping properties of the oscillator are not compromised. The resulting
parameters of the oblique springs are kg =1.3114N/m , g =8.7719 m, cq =0.9, uy=0.005m.

The response of this oscillator to an initial displacement of x(0)=0.05m is presented in fig. 4. The
system behaves almost exactly as the linear oscillator in Fig. 3, indicating also a highly damped
behaviour. Figure 5a presents the variation of ky over time and Fig 5.b as a function of the

displacement u of the set of the oblique springs. As it can be observed, the negative stiffness remains
within acceptable negative value limits.
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Figure 4 Response of the non-linear oscillator to x(0)=0.05m: (a) Displacements (b) Velocities.
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Next, the response of the proposed non-linear oscillator to a harmonic excitation force of

f(t)=Fccos(2xft) is considered, for a value of the excitation amplitude equal to F, = Fyax = Ko*Xst
with Xsr =0.05m and for an excitation frequency of f.= f; = 1.0Hz. The corresponding responses are

presented in Figures 6 and 7.
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Figure 6 Response of the proposed non-linear oscillator to a harmonic excitation force of F.=0.05N

and f,=1Hz: (a) Displacements (b) Velocities.
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An essentially harmonic response is presented in Fig 6. The amplitude of y(t) does not exceed

the maximum value of Yyax =0.5m. Figure 7 verifies that the values of ky(t) remain within the

specified maximum and minimum limits.

Fig. 8a presents the Frequency Response Functions of the displacement x of the proposed non-

linear oscillator to a harmonic excitation force of F.=Fyax=0.05N. The FRF for x is in a very good

agreement to that of the linear negative stiffness oscillator. The maximum deviation is observed for a
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value of f,=0.4Hz. The corresponding responses are shown in Fig. 9, indicating a significant non-

linear behaviour, which requires further analysis.
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The FRFs of the forces in Fig 8.b and the waveforms in Fig 10 indicate that an adequate level of
elastic forces exist throughout the entire frequency range, able to counteract the inertial and the
external excitation forces. Consequently, a resonance phenomenon, which is inherent in the original

linear SDOF system, cannot emerge in the proposed oscillator.

Conclusion

Stable non-linear oscillators, based on a bi-stable element which operate around an unstable

equilibrium point can be designed, which exhibit an extraordinary damping behaviour. Contrary to
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Quasi-Zero Stiffness oscillators, this damping behaviour can be achieved, so that any level of a
required static stiffness can be maintained. Such an oscillator concept presents the potential for
numerous implementations in a large variety of technological applications, either as a discrete

vibration isolator, or in the form of periodic meta-materials and composite structures
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Real-time drive functions optimisation of the satellite by
using MLP and RBF neural network
(CON057-15)

Krzysztof Augustynek, Kornel Warwas

Abstract: The paper presents a method for determining optimal courses of drive
functions which can be applied during satellite orientation change maneuver in real-
time. Considered task has been realized in two steps. At first, a series of dynamic
optimisation problem have been solved using the Nelder-Mead algorithm in order to
calculate optimal driving functions. The optimisation problem requires the equations of
motion to be integrated at each optimisation step and it can’t be applied for controlling
the motion of the system in real time. Therefore, in the next step multilayer perceptron
(MLP) and radial basis function (RBF) networks have been proposed. The main task of
the networks has been consisted in choosing drive functions in such a way that panels
vibrations after maneuver are minimized in short time. Solutions of multiple dynamic
optimisation tasks form training set of the neural network. In the paper, results obtained
from dynamic optimisation, MLP and RBF neural networks have been presented and
compared.

1. Introduction

Vibration control is one of the most important problems in satellite design. The orbiting attitude
slewing or rapid rotational manoeuvres will introduce certain levels of vibration to flexible panels,
which disturb work of the system and can lead to the damage its elements. Therefore, designing a
control system which effectively suppress the induced vibration, creates a challenging problem for
satellite designers. In [1] time invariant and periodic controllers have been proposed for simultaneous
attitude control and vibration suppression using magnetic actuators. A comparative investigation
designing the satellite Attitude Control System by the Linear Quadratic Regulator (LQR) and Linear
Quadratic Gaussian (LQG) methods have been presented in [2]. In references [3, 4] adaptive fuzzy
sliding mode control incorporating with 1/O linearization have been applied on flexible satellite. Based
on 1/O linearization, decomposition method of MIMO (multi-input multi-output) system to single input
single output using the fuzzy control rules has been applied. Classical controller based on Euler degrees’
errors and two robust controllers of H» and p, by using internal feedback to resolve robust controller
design problem, has been presented in [5]. Another approach to supress vibration of the satellite during
its reorientation has been proposed in paper [6]. In this paper optimal torques have determined by

formulation and solution of dynamic optimisation problem.
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Many classical problems in satellite control use dynamic equations that are limited to rigid-body
motion. In many works flexibility of the solar panels is reduced to linear spring element which are
located in the joints [1, 2, 6]. Such assumption simplifies choice of a controller parameters. In [2] the
interaction between the fuel slosh motion, the panel’s flexible motion and the satellite rigid motion
during translational and/or rotational manoeuvre have been additionally considered. In papers [3, 4]
flexibility of the solar panels has been modelled by modal method. The complex spatial model of the
satellite is shown in [7]. In this work flexibility of the panels has been modelled by means of the Rigid
Finite Element (RFE) method [8]. The model presented takes into account flexibility of the joints.

In this paper model presented in [7] has been used to control a motion of the satellite during change
orientation manoeuvre. Optimal driving functions have been calculated by solving dynamic
optimisation task. Due to long time of single optimisation task calculation such approach is not suitable
for application in real controllers [9]. Those problem has been solved by properly prepared artificial
neural network which can be used in real-time systems. Training data for the neural network have been
collected by solving multiple dynamic optimisation tasks for various input parameters. In this paper
two kinds of the neural networks: Multilayer Perceptron and Radial Basis Function, have been

considered.

2.  Mathematical model of the satellite

In this paper it has been assumed that the satellite consists of central rigid body and four flexible
panels (arms) (Figure 1). Central body has six degrees of freedom in relation to inertial frame.

Generalized coordinates of this body are the components of the following vector:
go = [;(1) jO 70 G0 0 5 Z(1)]T o)

For discretization of the flexible panels modification of the rigid finite element method has been

used [7, 8]. In this method p link is replaced by a set of m‘® +1 rigid finite elements (rfe) connected

by m® massless and dimensionless spring-damping elements (sde).
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Figure 1. Discrete model of the satellite

Each rfe has three degrees of freedom in relation to preceding element in kinematic chain and its

generalized coordinates vector are given by:

g = [@(p,i) (P 5Z(Pvi)]T @
where: p=2,...,5,i=1...,mP.
Exception from this rule is rfe(p,0) which can only rotate in relation to preceding body as follows:

GO = [@(pm] ©)

Equations of motion are derived from Lagrange equations of the second kind [8]. Joint coordinates
and homogenous transformation algorithms were used for generating equations of motion of the

satellite with flexible panels. Equations of satellite motion have the following form [7]:
Aq =f (4)
where: A - mass matrix,

q - vector of generalized coordinates of the satellite,

f - vector including centrifugal, gyroscopic and Coriolis forces and forces which follow from

elastic deformations sdes.
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Components of the vector g are generalized coordinates of the central rigid body and rfes, on which
flexible links have been divided. In further consideration change orientation manoeuver of the satellite
will be analysed. Configuration of the system before and after rotation is presented in figure 2.

control points

>

<
@'

>

Figure 2. Initial and final configuration of the satellite in change orientation manoeuver
The motion of the satellite is realised by driving function «(t) . It means that angle of rotation of

the central body ¢® is known function of time «(t) :
o8 = a(t) )

3. Dynamic optimisation problem

The aim of the optimisation is the choice of the driving function that vibration of the flexible panels
after change orientation maneuver are minimized. Therefore objective function can be defined as
follows [11]:

Q(u) :ZP:AE‘” — min (6)
i=1

where: u - vector of decisive variables,

n, - number of control points,
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Aﬁd) - RMS (Root Mean Square) value of the summary displacement, velocity and acceleration in

i-th control point.

In considered case RMS value has a form:

tk
J‘(yiz + ?iz + 575 }jt

A\ 7
ot (7

where: ¥, - displacement of control point i in Y@ direction,
y; - velocity of control point i in Y™ direction,
y; - acceleration of control point i in Y ® direction,

te - time of the end of change orientation manoeuvre,

tx - time of the simulation.

Dynamic optimisation can be performed for different input parameters which can be written as follows:
X= [tE Pe ]T ®)

Decisive variables in dynamic optimisation problem are rotation angle about Z® axis of the central

body in some discrete time steps:
u=u()=[u ... u ... uy] )

where u; = a(t;) ,

te

t =i- ,
N+1

N - number of time steps.
Interpretation of the decisive variables are presented in [10]. It can be seen that optimal values of
decisive variables depend on the input parameters vector x.

It is assumed that rotation angle of central body should change in specific range:

Upmin SU < Upay (10)

min =

4. Neural networks

An artificial neural network is basically a computational system which receives an input, processes

the data, and provides an output [12, 13]. Designing the neural network requires choice of the topology,

57



performance (transfer) function, learning algorithm and criteria to stop the learning process. In order to
determine optimal driving function courses multilayer perceptron (MLP) and radial basis function
(RBF) [12, 13] networks have been used. Both neural networks constructed for this problem (figure 3,
figure 4) have three input signals which are time and angle of rotation of the satellite and coefficient,
which is necessary to map output signal with corresponding timestamp. Only one output is necessary
in considered case. It is rotation angle of the satellite in some discrete time which is connected with
decisive variable of dynamic optimisation task. After the input has been entered into the neural network,

the response is calculated using a transfer function.

Figure 4. Topology of RBF neural network

Input signals from training set of the neural network can be written as follows:

Q=la, - & . ], (12)
where: m=ng -N - number of rows in matrix Q which contains input signals from training set,

q = [t(Ej) o si]T - i-th row of input signals matrix,

j=0(i) -describe dependency between i-th row of matrix Q and corresponding j-th optimisation

task,
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np - number of optimisation tasks.

Driving function in discrete time t is determined in different manner for each type of neural

network. In the case of multilayer perceptron response (output signal) of the network can be calculated

according formula:

n(L-1)

yi=yla;)=f wa,njL g (a;)
=0

n(p1)

where: ¢{P(q;)= f ngf’,’l);b,(p’l)(qi) for p=n_-1...1,
1=0

0®(q;)=q; - input signals vector,

Wgﬁ) - weights of neurons in p layer for j=1,2,...n®® and 1=0,1,...,n"?

n® - number of neurons in p layer,

n,_ - number of layers in neural network.

(12)

As the transfer functions the hyperbolic tangent and linear functions were used, for the hidden and

output layer respectively. In RBF network each neuron in hidden layer is described by radial basis

function. In this case driving function can be obtained from formula:
k
y(Qi):sz -g;(a.c;)
j=1

where: w; - weights associated with j-th neuron,
g;(g;,c;) - base function of the j-th center,

k<m - number of centers c,

C=le, ... ¢; ... ¢ ¢ =(c,(”):1’2’3-coordinates of the j-th center.

In calculations the Gauss radial basis function has been assumed:

gj(qiicj):e_pj
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2
Qi —C; L. .
u , o; - shape coefficient for the j-th center,

where: p; = P i
]

3
||Qi _Cj"2 :Z[qi,l _Cl(j)]z .
=]

In order to train the RBF network the cumulative version of the iterative k-means algorithm was
used. At the next step the shape coefficients for the centers obtained were calculated using information
about position of other centers in the neighborhood (three closest centers) [13].

However, since the accuracy of the network response was not satisfactory (unacceptable errors
were achieved for the validation set) the basis function was changed and the training process was
repeated.

5. Numerical simulations and results

Algorithms related to formulation and solution flexible multibody system, its simulation and
optimisation have been implemented in the own program [7] written in the C ++ language. In order to
prepare and simulate neural networks also own programs have been written using Encog library [14]
and its .NET implementation.

Physical parameters of the satellite model were taken from [7]. On the basis of results of the
simulations it has been assumed division of the flexible panels into 4 rfes. Interpolation of the kinematic
input has been performed for m=9 . 4th order Runge-Kutta [15] method with fixed step has been used
for integration equations of motion. Step size used in calculations was 0.005 [s]. Time of single
evaluation of the objective function was 5 [s].

Results obtained from multiple optimisation tasks have been used as learning sets for MLP and
RBF networks. Each optimisation task has been solved by means of gradientlessness Nelder-Mead

method [15, 16]. During simulations end time t. and angle ¢ of rotation of the satellite was changed.
It contains data for tg from 1 [s] to 2 [s] with step 0,25 [s] and ¢ from 45° to 90° with step 5°.

It has been assumed that MLP network contains two hidden layers with 7 and 10 neurons
respectively. The network has been trained using Resilient Propagation [12, 13, 14]. RBF network
contains one hidden layer with 23 neurons. The transfer function for a radial basis neuron was Gaussian
function [13].

After the training process an acceptable accuracy of network response has been obtained. Figure 9
and 10 show courses of the drive function calculated from the optimisation, MLP and RBF for data

taken from learning set.
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Figure 5. Courses of drive function calculated for g =90°and a) tz =1[s], b) tz =2]s],
1) optimisation, 2) MLP, 3) RBF
Figure 11 and 12 show courses of the displacement tip of outer panel in local coordinate system of

the central body before optimisation, obtained from the optimisation, MLP and RBF network for data

taken from learning set.

Y12 [m]

a) b)
Figure 6. Courses of displacement tip of outer panel in local coordinate system of the central body for
@ =90° and a) tz =1[s], b) te =2[s],
1) before optimisation, 2) after optimisation, 3) MLP, 4) RBF

Figure 4 and 5 show results of RMS calculations for different time of maneuvers before and after

optimisation task and from MLP and RBF networks.
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Figure 7. RMS values of a) inner, b) outer panel tip displacement obtained for different time of

rotation t and ¢g =90°, 1) before optimisation, 2) after optimisation, 3) MLP, 4) RBF

It can be seen large convergence for displacement courses and RMS value obtained from
optimisation and neural networks. In order to numerically evaluate differences between courses
obtained from optimisation and neural networks integral error and the Pearson correlation coefficient
have been calculated [10]. Values of the coefficients for all training data are shown in Table 1.

Table 1. Comparison integral errors and Pearson correlation coefficients for courses obtained from

trained network

S [%o] R
te [s]
MLP RBF MLP RBF

1 0,5138 0.0064 0,9996 1.0000
1.25 0,4239 0.0112 0,9999 1.0000

15 0,5317 18.5094 0,9998 0.9997
1.75 1,3059 0.0145 0,9999 1.0000

2 0,5017 0.0102 0,9999 1.0000

After training neural networks can be used for simulation for input parameters different than in the

learning set. Results of simulations for different time of change orientation manoeuvre t. are presented

on figure 8.
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Figure 8. Courses of displacement tip of outer panel in local coordinate system of the central body for
@ =90°, a) tg =1.1[s], b) tg =1.9[s] 1) before optimisation, 2) MLP, 3) RBF

For both analysed cases the output signals obtained from the simulation by MLP and RBF neural
network are acceptable. Vibrations of outer panels, as in the case of dynamic optimisation, are
significantly smaller than before optimisation. Preparation of training sets and then the training process

are very time consuming, but the simulation using trained neural networks can be realised in real-time.

6. Conclusions

The paper presents algorithm of suppressing vibrations of the flexible elements of the satellite
during change orientation manoeuvre. Because optimisation problem in considered case is a time
consuming task and cannot be applied in order to control the satellite motion in real time. Application
of the artificial neural networks can be solution of this problem. In presented approach results obtained
from dynamic optimisation forms training set for the neural network. Results obtained from Multilayer
Perceptron and Radial Basis Function network have been discussed and compared.

It has been shown that a properly trained neural network can obtain driving function courses close
to those received from dynamic optimisation task. Application properly prepared and a trained neural
network enables not only interpolation but also extrapolation driving function courses for input data
from outside the training set. An essential feature of the neural network is that can give us results in
real time. Presented results show that properly trained Multilayer Perceptron and Radial Basis Function
network give results close to results obtained from optimisation. It is difficult to point which type neural
networks is better in considered case. The authors experience shows that MLP network is easier to
prepare and train than RBF network. Additionally MLP networks are more preferred by researchers

and more often used in technical issues.
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Although the analysis presented in the paper was concerned only with one type of a satellite and
maneuvers, the method presented can be used in the analysis of any flexible multibody system. In order
to control the stability in any conditions, the training set of optimal solution have to include results of

the direct optimisation for other possible types of maneuvers.
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Experimental and numerical studies on the fatigue wear of an
Mg-Al alloy with rare earth elements
(STA055)

Henryk Bgkowski, Janusz Adamiec

Abstract: Fatigue wear is the type of wear, wherein the local loss of cohesion and the
associated material losses are caused by fatigue due to the cyclic interaction of the
contact stresses at the surface layer. During fatigue wear changes are multiple
macroscopic elastic deformation, surface fatigue cracks arise in friction, typically
under the influence of multiple elastic-plastic deformation or plastic. The magnesium
alloys often occur casting defects and welding. These defects are repaired surfacing or
welding methods. Welding technologies may also be used for connecting elements
Mg alloys and to the regeneration operating after use. The most common reason for
rejection or construction casting cracks generated in the process or operating
conditions. The main difficulty in welding and weld Mg alloys is their tendency to
crack during the crystallization of the hot weld. Occurring defects arising in the
process influence on the ultimate service life under real conditions. Appearing cracks
or microcracks in the material may cause the nucleation of defects and their
propagation leading to the through cracks - particularly dangerous for the structure.
The study used WE43 casting magnesium alloys to determine the fatigue strength on
the stand bench for testing for unilateral bending and bilateral bending in a rotating
motion. Casting of magnesium alloys with rare earths, for example, yttrium,
zirconium, silver have high strength properties that are comparable with the properties
of titanium alloys, or steel. The study compared the effects of the appearance of
fatigue cracks (fatigue strength determination) based on the alloy composition,
morphology, structure, both in experimental (laboratory) and the simulation using the
FEM.

1. Introduction

Fatigue wear is the type of wearin which local loss of cohesion and the associated material losses are
caused by fatigue as a result of cyclic impact of the contact stresses in the surface layer and friction
associated components. Most often you add elements to magnesium alloys are aluminum, zinc
and manganese. These alloys are characterized by good machinability and mechanical properties at
ambient temperature, good corrosion resistance and low price. They are used for components which

are required of good impact strength and fracture toughness combined with sufficient strength [1].
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Figure 1. The application of magnesium alloy wrought: a) General Electric F110 engine [2],
b) a window frame AIRBUS A340 alloy AZ80 [3]

To increase the strength properties of the used heat treatment consisting of precipitation hardening.
The disadvantage of magnesium alloys containing aluminum, zinc and manganese is their low
resistance to creep, which limits the operating temperature to 125 °C. The addition of rare earth
elements allows to improve the creep resistance of magnesium alloys [4]. This enables the use of
alloys in automotive and aerospace, where the operating temperature of the gearbox housing is
175 °C, 200 °C engine block and pistons more than 300 °C [5]. Welding technology in magnesium
alloys are used for joining metal components wrought and cast in the connecting structures. Joints
made of magnesium alloy should have suitable properties to meet the requirements of the structure
which they made of. In the literature there is no information on the properties of welded joints of cast
magnesium alloys. There is therefore a need to define those properties in simulated conditions. To
increase the strength properties at elevated temperatures are introduced rare earths and zirconium [6].
An example would be the alloy WE43 used to a temperature of 300 °C, which, after extrusion and
heat treatment the obtained tensile strength Rm = 270 MPa, Re = yield strength of 195 MPa and an
elongation A = 15% [7, 8]. To study were used for casting magnesium alloys with rare earth elements.
The high strength properties are comparable to those of alloys of titanium or steel. Continuous
development of magnesium alloys has meant that current yields are used in many fields of
technology, and the maximum operating temperature is about 250 °C. The structure of the cast
magnesium alloy parts are common to casting defects and welding. These defects are repaired
surfacing or welding methods. Welding technologies may also be used for connecting the elements

Mg alloy and the repair of cast after use operating.
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Figure 2. The structure of the Mg alloy in the process of crystallization: a) without a eutectic point,

b) a small amount of the eutectic, ¢) with the amount of eutectic sufficient for the "healing"
of cracks resulting hot [9]

Appearing cracks or microcracks in the alloy material also misruns casting and shrinkage porosity
may causes the nucleation of defects and their propagation leading to a crack through - particularly
dangerous for the structure.In the study used a casting magnesium alloy WE43 to determine the
fatigue strength of the position to investigate unilateral bending. In this paper compared the impact of
the emergence of fatigue cracks (determination of fatigue strength) using fatigue tests and simulation
using Finite Element Method, depending on the morphology of the structure which determines the

propensity for cracking.

1.1. Test equipment and parameters

For the quantitative evaluation of the structure of welded joints investigated alloys after heat
treatment used software developed at the Department of Materials Science, Silesian University of
Technology.
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Figure 3. Detection of the grain boundaries of the home terminal material alloy WE43 after heat

treatment (T6)

Therefore, an important factor determining the sampling strategy will be the resultant of:
homogeneity of the chemical composition, size and shape of the casting and the technology of

welding or surfacing by welding.
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Figure 4. The structure of the weld joint alloy WE43 after heat treatment

The test machine is used for fatigue testing of samples of the tested metals (see figure 7). Test
samples are subjected to one-sided - pulsating loads during pure bending. Elements that come into
direct contact with the test sample rotate around its axis, so it can be said that the friction between
them and the sample is very small and the study followed practically at the one-sided bending (see

figure 5, 6).
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Figure 5. View of the machine: a) 1 - the inverter Ferwag 3000, 2 - screw set vices, 3 - the dial
gauge, 4 - sample loading mechanism 5 — AC rev counter, 6 - rev counter, 7 - three-phase
motor, 8 — slot Power RST 9 - vise, 10 - sample, 11 — table, 12 - protective casing; b) system

testing and bending moment diagram
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Figure 6. The view of the loading mechanism: 1 - the dial gauge, 2 - vise, 3 — sample

Figure 7. Sample

2. Results and discussion

Fatigue tests were carried out with a repetition of multiple in order to obtain fatigue strength
diagram Wohler. For comparison used ZRE1 alloy containing zinc in order to illustrate the position of
the fatigue curves in a Logsigma-LogN. It has been found that the joint of the WE43 alloy has a
higher fatigue strength by additives Yttrium (see figure 8).

Metallographic at the macro level on the fracture surfaces of the fatigue revealed the presence of
lines of fatigue characteristic for high cycle fatigue strength (see figure 9).
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Figure 8. Curves of fatigue strength

Figure 9. Surface farcture of fatigue

As a result of quantitative analysis of metallographic structure stereological WE43 defined
features needed to create a geometric model which is similar to the real structure. Simulation
calculations were carried out which showed that the places most likely to break are on the grain

boundaries (see figure 10).
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Figure 10. Distribution of stresses and strains in geometrical model of the structure WE43
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Figure 12.

Figure 13. Areas with higher risk for fatigue wear

FEM software is a comprehensive durability analysis and fatigue prediction. It provides a variety of
“crack-initiation” life criteria for the calculation of material fatigue and the prediction of structural
life.
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3. Conclusion

Based on the the tests results analysis of welded joints of the alloy WE43 after heat treatment T6
indicates that the structure of the connector is composed of a base material characterized by a
polygonal grain of the solid solution a-Mg, which is strain precipitation small dispersion intermetallic
phases narrow heat-affected zone (HAZ), in which the grains feature a small dimensions relative to

the base material, causing obtaining higher values of fatigue strength.
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Stability of underactuated multibody systems subjected to periodic
servo constraints
(CON082-15)

Laszlé Bencsik, Laszlé L. Kovacs, Ambrus Zelei

Abstract: Motion control of underactuated multibody systems involves a lot
of mathematical problems. This is mainly due to the fact that in case of
underactuated systems the number of independent inputs are less than the
degrees-of-freedom. Besides, the modelling of multibody systems is challenging
in itself. Flexible manipulators, cranes and robots with passive joints can
be mentioned as characteristic examples. Methods available in the literature
are often provided to solve specific problems of specific systems. The general
application of these method may lead to unstable dynamic behaviour. The
present work assumes a general multibody description and proposes the use of
periodic servo-constraints in order to enhance the dynamic properties of the
system.

1. Introduction

In the motion simulation of multibody systems it is a standard procedure to use the non-
minimum set of coordinates to describe the system [2]. Therefore between the dependent
coordinates geometric constraints should be considered which leads to differential algebraic
equations (DAE). Using this idea the control task is also can be formulated as an additional
set of constraints that are called servo-constraint [4]. While the geometric or kinematic
constraints are naturally satisfied, in some cases the servo-constrains cannot be fulfilled
by different reasons. Several publications [6,7] deal with the modification of the original
servo-constraints in order to get a realizable task. In those cases the original task is simply
modified using a linear combination of the newly selected set of servo-constraints considering
the internal dynamics of the system. An other possible approach is the periodic variation of
the servo-constraint. For underactuated robots the usefulness of the method was confirmed
in [5]. The aim of this paper is to investigate the dynamic properties, the applicability of
the periodic-servo constraint based control and to find the stable control parameters for the

periodic servo-constraints. In the numerical studies a service-robotic application is used.
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2. Problem Formulation

The equation of motion of an underactuated system can be derived using the non-minimum

set of descriptor coordinates resulting the Lagrange equation of the first kind in the form:

.. .
Mag + ¢I>q)\

Q-+ Hu (1)
¢, = 0, ©)

where M(q) € R™ " is the mass matrix, ®q(q) € R™*" is the Jacobian of geometric
constraints ¢ (q,t) € R™ and A € R™ is the vector of the Lagrangian multipliers. Matrix
H(q) € R™" is the control input matrix and u € R" contains the independent control
inputs. In addition, Q(q, q,t) € R™ denotes the remaining generalized forces. In similar form
with geometric constraints (2) the desired motion also can be formulated as an additional

constraint:

¢s(q,t) =0 ®3)

as a function of generalized coordinates and time, which called as servo constraint [4]. Using
the method of Lagrange multipliers [2], the geometric constraints (2) should be considered on
the level of acceleration in order to compute the acceleration @, and the Lagrange multiplier
A. As it is presented in [6] [9] additionally the servo constraints are also considered on the
level of acceleration, while the control input u should satisfy the constraints which can be

calculated as:

M & -H q Q
5, 0 O A= —b.q : (4)
Gy 0 o0 u —-Goqq—¢—Kpp, — Kpo,

In equation (4) the servo constraints are stabilized with a simple linear regulator where
Kp and Kp are the proportional and derivative gains respectively. It is quite similar to the

Baumgarte stabilization technique which is used in the solution of DAE equations of motion.

3. Periodic servo-constraints

Using the above explained task based formalism, the controlled- and the internal dynamics
of the system can be separated. The internal dynamics it often referred ad passive dynamics
which should be stable to ensure the stability of the system. However, the stability of the
internal dynamics depend on the controlled task. If the stability of the internal dynamics
can not be guaranteed, the original task (servo-constraint) should be modified slightly as it
is presented in [7] and [8]. This modification makes the control stable with an acceptable

violation of the original task. In reference [5] a different approach is introduced, when the
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Figure 1. The prototype and the planar model of the ACROBOTER platform.

servo-constraint is not simply modified but also periodically changed in time. In one pe-
riod the original servo-constraint is considered for realizing the desired motion, while in the
subsequent period (typically shorter) a modified servo-constraint is applied to stabilize the
unstable internal dynamics. Thus slightly modified servo constraints are applied to stabi-
lize the otherwise unstable internal dynamics. This modification makes the stable control
possible, and result in larger, but still acceptable, tracking errors. The goal of this paper is
to investigate dynamic properties and the advantages of the periodic servo-constraint based

control algorithm.

4. Stability and dynamics

The dynamics of the presented control approach will be investigated in case of service robot

wich will be briefly introduced in the following.

4.1. Service robotic example

The introduced method will be presented via the example of the motion control of the AC-
ROBOTER service robot [1] (see Fig. 1), which is a suspended pendulum like underactuated
manipulator. The mechanical structure of ACROBOTER can be divided into two parts;
the climber unit (CU) carries the swinging unit (SU), which hangs on the main cable (MC)
and three orienting secondary cables (SC) as shown in Fig. 1. The length of the cables are
adjusted by servo motors, and the positioning of the SU is assisted by ducted fan actuators.
Despite of the large number of actuators the system is underactuated. In order to under-

stand the behaviour of the control, the planar model of the system is investigated. The
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Figure 2. Servo constraint switching scheme.

planar model is shown on the right hand side of Fig. 1. While the model has five DoF and
the number of independent actuators is four only thus it is still underactuated. To describe
the geometry of the model depicted in Fig. 1 the most way convenient is to use Cartesian
coordinates q = [z2 Y2 T3 Y3 T4 y4]T, where the last four elements are the so-called natural
coordinates that belong to the planar rigid body that represents the SU. Thus, according
to [2], the mass matrix of the planar ACROBOTER model can be assembled as a constant
block diagonal matrix M = diag(Mcc Mgy). During the control tests the planar AC-
ROBOTER has to follow a linear path with horizontal orientation, when the CC is above
the SU with h - height. As it was mentioned the passive motion (lateral motion of the CC)
should be stabilized by periodically changing servo constraints. Using the servo-constraint

based formalism the modified task can be defined as:

Yoo — y3;y4 _ hdcc
R e it 5
s ystya _ ,d :
2 Ysu
Ys — Ya

In equation (5) the function -~y is responsible for the switching of servo constraints as it is
shown in Fig. 2. For [ time steps v = 0 the passive part of the motion is considered in
the servo-constraint set, while for k£ time steps v = 1 and the original task is realized in the

control scheme.

4.2. Stability investigation

In order to chose an effective switching pattern linear stability analysis was carried out.
Considering the discrete behaviour of the digitally controlled system a picewise solution of
the equation of motion should constructed for eigenvalue analysis. This solution is known
analytically if the system is linear, thus we have to linearize the system around the investi-
gated configurations. During the stability investigation it is assumed that the control forces

th

calculated at the n'® time instant are based on the (n —1)*" measured values which are held
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by a zero-order-hold (ZOH) until the end of the (n 4 1)* sampling instant. The stability
investigation is based on equation (2) where the input force u is calculated via the solution
of equation (4).

The equation of motion can be linearized around an arbitrary configuration and after

that the equation of the controlled system can be written in the general first order form:
x(t) = Ax(t) + Bx(tn-1), t € [tn,tnt1]- (6)

By using the state variables at the end of the n*® sampling interval the solution can be

calculated as:
X(tny1) = Aax(tn) + Ba(tn-1), (7
where Ag and By can be calculated utilizing the following property [3]

As B
eWAt _ d d , (8)
0 I
where At is the sampling time of the digital controller, and the matrix W can be constructed

as:

W = . )
(VI

Based on equation (7) the mapping z,+1 = Hz, can be composed where z, = [Xn—1,Xx]".

The control law is switched in time therefore the state-equation is also changed during the

control. The discrete mapping for the whole pattern (see: Fig. 2) can be constructed as:

k41
Zn+k+l = HHn+k+l,j Zy. (10)

j=1
From the computed eigenvalues p of the mapping (10) the avaraged eigenvalue for one time

step can be computed as:

p= "p. (11)

In the stability analysis the internal dynamics is stabilized for [ = 1 time step only. The
stability charts in Fig. 3 show the stable domains of operation with different switching
periods (k = 1...9) in the plane of the control parameters Kp and Kp. It can be concluded
that the area of the stable domains is the biggest, when & = 5. The fastest decay can be
achieved when k = 1, which means that in every second time step the original constraint is

repeated with the modified one.
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Figure 3. Stability charts in case of periodically switched servo constraints.

5. Simulation case study

We confirmed the results shown by the stability diagrams by numerical simulations of the
original non-linear system. In the first simulation scenario the control command is computed
using the original servo constraints only. In this case the position of the SU is controlled only
during the motion. In order to check the robustness of the control a horizontal perturbation
was applied on the CC at ¢ = 1.5s. The result of the trajectory tracking is shown on Fig. 4.
The violation of the servo-constraints clearly show that neglecting of the internal dynamics
can lead to unstable dynamics behaviour.

In the second simulation scenario the periodic-servo constraints are used. It means that
the horizontal displacement of the CC is used instead of the SU in the servo constraints at
certain periodic time instances. The pattern was chosen based on the presented stability
investigation (Sec. 4.2). The servo-constraints’ violation is presented in Fig. 5. With the

use of the same perturbation the results show that with the application of the periodic
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Figure 5. Simulation results with the periodic servo constraints

servo-constraints the investigated system can be controlled in stable way.

6. Conclusion

Present paper analysed the idea of periodic servo-constraints. Based on the stability analysis
it can be concluded that the presented approach can effectively enhance the dynamical
properties of the controlled system. The stability analysis was carried out in case of a
service robot example. The result of that is applied in case of trajectory following problem
which also shows that the application of periodic servo-constraints makes the original task

feasible in stable way. For real-life application the optimal switching pattern requires a
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further research in order avoid the numerically expensive stability investigation.
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Basic attractors and control
(CON263-15)

Bjorn Birnir

Abstract: In this talk we discuss the dynamical systems theory of dissipative
nonlinear partial differential equations (PDEs), on a bounded domain, and
connect it with the dynamical systems theory of ordinary differential equa-
tions (ODEs). A decomposition theorem says that attractors of PDEs can
be decomposed into a basic attractor (a core) that attracts sets of positive
measure, indeed it attracts a prevalent set in phase space, and a remainder
whose basin, up to sets that are attracted to the basic attractor, is shy, or
of zero measure. If the basic attractor is low-dimensional and the remainder
high-dimensional, then the dynamics can still be analyzed up to transients that
are exponentially decaying towards the attractor in time. The theory of basic
attractors also makes it possible to develop a basic control theory creating the
means to control instabilities in nonlinear PDEs. Thus basic attractors lead to
basic control.

1. Introduction

In this paper we will give an introduction to the theory of Basic Attractors and Control,
see [9]. We develop the dynamical systems theory of dissipative nonlinear partial differential
equations (PDEs), on a bounded domain, and connect it with the dynamical systems theory
of ordinary differential equations (ODEs). The latter theory was developed during the latter
half of the twentieth century and has revolutionized modern science and engineering.

The attempts to develop a dynamical systems theory for PDEs in the late twentieth
century, see [6,7,16,18,25], had some success. It was established that dissipative nonlinear
PDEs had finite-dimensional attractors. These are set of solutions that attract all other
solutions in the phase space of the PDEs as time becomes large. But a troublesome gap
remained between the dimension of the attractors obtained in estimates, see [25], and the
dimensions of solutions observed in experiments and numerical simulations. This prevented
a meaningful application of the theory. We explain how this problem was resolved and how
the analysis of the core of the attractors, called Basic Attractors, can be reduced to the
theory of ODEs and the bifurcation theory of their solutions, see [9].

John Milnor [23] had proven in 1985 that the attractors of ODEs have a decomposition
if the Lebesgue measure of their basin of attraction is taken into account. This raised the

question whether a similar decomposition could be found for the attractors of PDEs and
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whether the dimensions of their components that attracted positive measure in infinite-
dimensional space were possibly small. Only these components were expected to play a role
in most numerical simulations and experiments.

The first success in this direction was proving, see [7], that the breather solutions of the
damped and driven sine-Gordon equation attracted sets of positive measure by a cumbersome
projection onto a finite-dimensional subspace of the phase space of the PDE. The breathers
constitute the dynamically interesting part of the sine-Gordon basic attractor. The reason
why this was relatively complicated is that there is no straight-forward analog of Lebesgue
measure that can be defined on the whole of an infinite-dimensional space. However, in
1992 Hunt, Sauer and York [17], developed a notion of measure zero, shy, and almost every,
prevalent, in infinite dimensions. This set the stage for an elegant extension of Milnor’s de-
composition to attractors in infinite-dimensional space. After this development applications
of the theory to many different types of PDEs became possible.

The decomposition theorem, Theorem 1 below, says that attractors of PDEs can be
decomposed into a basic attractor (a core) that attracts sets of positive measure, indeed it
attracts a prevalent set in phase space, and a remainder whose basin, up to sets that are
attracted to the basic attractor, is shy. This offers an elegant closure of the gap discussed
above. Namely, if the basic attractor is low-dimensional and the remainder high-dimensional,
then the dynamics can still be analyzed up to transients that are exponentially decaying
towards the attractor in time. The notion of the basin of attraction has to be generalized
slightly and we do that by defining the catchment of a set below.

In [11,13] we illustrated the theory by an application to the viscous Moore-Greitzer
equation, see Chapter 7 in [9], describing the air flow through a jet engine. The viscous
Moore-Greitzer basic attractor turns out to contain the flow for the desired operation of the
jet engine, called design flow, but also two undesirable instabilities in the flow called surge
and stall. The complete qualitative description of the design flow and those two instabilities
is a great accomplishment of the theory.

The theory of basic attractors is however a perfectly general theory and in [9] we
lay the foundation for nonlinear heat, dissipative wave equations and dissipative nonlin-
ear Schrédinger equations. These details will not be repeated in the paper but we refer the
interested reader to Chapter 4 in [9].

In this paper we define and prove the existence of the basic attractor, following Milnor’s
[23] results in finite dimensions. The decomposition of the global attractor, into a basic
attractor and a reminder in infinite dimensions is proven. We refer the reader to [17] and [9]
where the concepts of shy and prevalent sets, that are used in the definition of the basic

attractor, are discussed in more detail. There we also give an example showing that there
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exist basic attractors of arbitrarily high dimensions. Finally, we construct a ”typical” basic
attractor that is low-dimensional, and a reminder that is high-dimensional, using the damped
and driven sine-Gordon equation in Chapter 5 in [9].

In [12,14], the first impressive consequence of the theory of basic attractors is explored
again by the example of the viscous Moore-Greitzer equation. The theory of basic attractors
makes it possible to develop a basic control theory creating the means to control the surge
and stall instabilities. Thus basic attractors lead to basic control, see [9]. This type of control
is discussed below at the end of the paper.

In [15] and [9], Chapter 11, we also show how to approximate the general solution in the
basic attractor by a finite basis of solutions from the basic attractor, these are called basic
approximations. We prove in this chapter that the basic truncation basis consists of the first
few Karhunen-Loeve (KL) [19] empirical eigenfunctions, when the motion is ergodic on the
basic attractor. This was first observed numerically in [10]. Thus basic attractors provide
an optimal low-dimensional truncation of the solutions to the nonlinear PDE and this also
explains why the KL analysis works so surprisingly well on low-dimensional attractors of
PDEs.

The numerical analysis of basic attractors has taken off in the last ten year with the
availability of better numerical and symbolic programs, such as Matlab and Mathematica,
see [9], especially in the engineering literature. Good examples are the papers on beam and

shell dynamics by J. Awrejcewicz [1-5,20-22] and his collaborators.

2. The Decomposition Theorem

A global attractor A of an ODE or a PDE is defined to be the omega limit set of an absorbing
set, see [9]. If the absorbing set is convex and the phase space of the dynamical system is
R™ or a Banach space, the global attractor is connected and compact, see [9]. The problem
with A is that it tends to be large and high-dimensional, see [9]. Thus it is desirable to
find a more restrictive notion of an attractor that permits a decomposition of A into more
manageable parts. The first step is to work with sets that are more general than basins,
namely sets that can also be closed or neither open nor closed and look for the omega limits
sets of these sets. In order to do this Milnor defined the realm of a set. Milnor gives the

following definition on page 179 in [23]:

Definition 1 A closed subset A C M (M a smooth compact manifold) will be called an

attractor if it satisfies two conditions:

1. the realm of attraction p(A) consisting of all points x € M for which w(z) C A, must

have a strictly positive measure; and
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2. there is no strictly smaller closed subset A" C A such that p(A’) coinsides with p(A)

up to a set of measure zero.

We want to generalize Milnor’s notions to infinite dimensions and the first step is to define

the generalization of the realm to infinite dimensions.
Definition 2 The catchment of a set A consists of all points , such that w(z) C A.

Catchment is the generalization of a realm of a set. Thus a catchment can be infinite
dimensional and in finite-dimensions the catchment becomes the realm if the set is closed.
However, catchment is slightly general than realm because it is also defined for open sets.
Next we have to generalized the notion of Lebesgue measure zero and ”almost every” to
infinite dimensions. The problem is that there is no analog of Lebesgue measure in infinite
dimensions. It is easy to see, [9] Chapter 5, that if there is a translation invariant measure
defined on a separable Banach space such that the measure of a ball of radius € > 0 is finite,
then either the whole space has measure zero or it is finite-dimensional.

Hunt, Sauer and Yorke [17], proposed that the notions of prevalent and shy could take
the place of ”almost every” and ”measure zero” in infinite dimensions. They made the
following definitions, see [9,17]. Let X be a Banach space, u a non-negative compactly

supported measure defined on the Borel sets S of X and S + x a translate of S by =z € X.

Definition 3 The measure u is transverse to S if u(S+x) = 0 for every x € X and p, with
(support p) < oco.

Definition 4 A Borel subset S C X is said to be shy if there exists a measure transverse to

S. Moreover, any subset of such an S is shy.
Definition 5 A Borel set S whose complement X \ S is shy is said to be prevalent.

It follows immediately from these definitions that if S is shy, so is every subset of S and
every translate of S by constant vector o € X. Every shy Borel set has also clearly a finite
transverse measure with compact support, see [9] Chapter 5, for more details.

Birnir gives the corresponding definition of a basic attractor B in [9]:

Definition 6 A closed and compact set B C X (X is a complete metric space) is called a

basic attractor if it satisfies the two conditions:

1. The catchment of B is not shy.
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2. There exists no strictly smaller closed set B’ C B such that catchment B C catchment B
up to shy sets.

Notice that this definition defines a more restricted notion of an ”attractor” than the global
attractor A.

The proof follows Milnor’s proof in [23] of the existence of the ”likely limit set”, that is
the basic attractor in finite dimensions. Some details missing in Milnor’s proof are supplied

below, see [7-9]. Recall the decomposition theorem (of a global attractor A) from [9]:

Theorem 1 Let A be the global attractor of a continuous map T, with a convexr absorbing
set, on a separable Banach space X. Then A can be decomposed into a basic attractor B and
a remainder C, A = BUZC, such that the catchment of B is prevalent, but catchment C \
catchment B is shy.

Proof:

1. Since X is separable there exists a countable cover of X by open balls {Ux, k € Q},
where Q2 C N is an index set. We will extract a subcollection
U= U,
keQ!
where we have excludes all balls Ug, k € Q\ ' that contain the omega limit set w(z)
of z in a set W that is not shy. If w(z) C Uy, Vo € Wy, k € @', and the Wy, are shy,
then W = Ukeg, Wi is shy, since a countable union of shy sets is shy, see Lemma 5.2

in [9]. Obviously, z € W implies w(z) C U’.

2. Consider the set B = X \ U’. This set is closed. Moreover, B C A, since A contains
the omega limit set of any set W C X, so if W N A = ) then trivially W C U’. Now

A is compact so B is compact.

3. The catchment of attraction of B is not shy because B contains the omega limit sets of
sets that are not shy. Moreover, if B’ C B, let x € B\ B’, then if W C catchment{xz} is
not shy, x € B by construction of 5. This shows that B is a basic attractor according

to Definition 2 and minimal as such.

4. We now define the remainder C to be C = A\ B. B can attract subsets of C, but
C cannot attract any points of B. Thus since A attracts all of X , we have that
X = catchment B U catchment C and the disjoint union becomes X = catchment BU
{catchment C \ catchment B}. This shows that catchment B should be prevalent
(infinite-dimensional almost every), whereas the catchment C, with the points that

eventually are attracted to B are removed, should be shy. We now prove this.
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5. Let D = {catchment C \ catchment B}. By the above, to show that catchment B is
prevalent it suffices to show that D is shy. Let W C D be so small that w(x),Vx € W
lies in a connected component of D. W must be shy because only shy sets are attracted
to C but not attracted to B. W can be chosen to be open in the relative (strong)
topology of D and since X is separable so is D. This means that we can cover D by a
countable union of shy sets and since, by Lemma 5.3 in [9], a countable union of shy

sets is shy, and a subset of a shy set is shy, we conclude that D is shy.

This finishes the proof of the Theorem.

3. Comments and Examples

1. In [8] Birnir uses the definition B = A\ U’ to get the compactness of B and in [9] that
the intersection of sets defining B can be made compact. The argument in the proof
above is an improvement due to B. Pego.! Also using a countable basis of open balls,
as Milnor does in his proof of Lemma 1 in [23], is adopted in the proof and removes

the need to consider a refinement of the collection of balls.

2. It is really a very straight-forward argument to show that B satisfies Definition 6. It

is both the minimal set in X with these properties and the maximal basic attractor.

3. To finish the proof of the decomposition one has to show that catchment B is preva-
lent and that catchment C \ catchment B is shy. It is not true that catchment B N
catchmentC = (). In general, there is an overlap of these sets. However, only shy set
have limit sets in C, that are not eventually attracted to omega limit sets in B. Thus
we get a decomposition of X, and one only has to show that catchment C\ catchment B

is shy. Since catchment C \ catchment B can be covered by shy sets it is shy.

Example 1: Consider the Example 5.1.1 in [9]. Here the global attractor A consists of a
hyperbolic point P at the origin, two sinks {Q1,Q2} at (£1,0) and two heteroclinic connec-
tions connecting the hyperbolic point to the sinks. Here B = {Q1, @2} and C consists of the
hyperbolic point P along with the two heteroclinic connections. The heteroclinic connections
themselves are attracted to the sinks. Thus catchment C = R?, including the catchment
of P that consists of its stable manifold W*(P) that has measure zero. We also see that

catchment B = R? \ W*(P) and

X = catchment B U catchment C = R* \ W*(P) UR? = R%.

!Private communication
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However, the disjoint union becomes
X = catchment B U {catchment C \ catchment B} = R*\ W*(P) U W*(P) = R,

because {catchment C \ catchment B} = W?(P). The last manifold has measure zero (shy),
showing that the Decomposition Theorem 1 applies.

To understand the construction of B in this example one has to consider a refinement of
the covering in Figure 1 (this can be considered to be a refinement by the smaller elements
of the countable basis for the topology). Consider Figure 1. The top figure shows a simple
cover of the global attractor A, the bottom figure shows a refinement of the covering. Now

in the construction of B above
U = Us UUs U Ug

and X \ U’ = U, U Uz, where X = R%. We refine the covering as shown by the bottom figure
in Figure 1 and get that

U'=UsUUs UUs U | Uy,
k=7
where {Us,7 < k < n} is a covering of the heteroclinic connections with small disks. None
of these disks contain an omega limit set so they get included in U’. In fact the omega
limit set of the heteroclinic connections are the sinks so they are not included in the cover
{Uk,7 < k < n}. This is the case, in general, for homo- and heteroclinic connections, they
get covered by a set {Uy} that contains no omega limit sets.

However, this is not the end of the story, we have to consider all the sets in the basis
of the topology and that includes the refinement where we let the diameters of the sets
{U1,Us,Us} shrink to zero. This gives

n(d)

U'=lim U$ UUs UUs U | J Uk.

k=7
Thus we get B = X\U' = limg_o UfuU¢ = Q1UQ2 and C = A\B = PU{heteroclinic connections}.
Example 2:? Consider the phase space of an ODE consisting of a saddle P with a homoclinic
connection encircling a source Q with the other part of the unstable manifold W*(P) going to
a sink Q. The global attractor A consists of the three stationary solutions {P, @, Q} and the
homoclinic and the heteroclinic connection. This includes the whole disk around Q that is

attracted to the homoclinic connection to P. A refinement of the covering of A similar to the

2This example is due to B. Pego, private communication.
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Figure 1. The refinement of the covering for Example 1. The top figure shows the original
covering of the global attractor A and the bottom figure illustrates the refinement of the

covering.
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one in Example 1 above shows that B = {P,Q}, and C consists of both the homoclinic and
the heteroclinic connections, including the punctured disk inside the homoclinic connection
to P and the source Q. In fact, this is a nice example showing the some of the points
of B, namely P, may be hyperbolic and not attract a prevalent set of their neighborhood.
The Decomposition Theorem 1 above applies and catchment C \ catchment B = Q, that is
obviously shy. Here the point is that the inside of the unit disk is attracted to the homoclinic
connection to P that eventually is attracted to P € B. The only set that is attracted to C
and not eventually attracted to B is the stationary solution Q It has measure zero.

Example 2 verifies the statement that homo- and heteroclinic connections do not attract
a set that is not shy in the sense of Milnor and Birnir (Definitions 1 and 2), unless these sets
are ultimately attracted to B. In fact, the argument given for Example 1 proves that these
manifolds are not a part of B. The same argument applies to unstable manifolds as long as
they are smooth lower-dimensional (codimension 1 or greater) in X, and form a part of a
homo- or heteroclinic connection in A.

In two dimensions, the situation is rather simple because of the Poincaré-Bendixson
Theorem, see for example [24]. The only omega limits sets of orbits are stationary solutions,
periodic orbits or cycles of homo and heteroclinic connections and their stationary solutions.
These connections cannot contain entire omega limit sets (the stationary solution is missing)
and the reduction of A to B is obtained by discarding the connections and the hyperbolic
stationary solutions, that do not attract a set of positive measure. Catchment C\catchment B
consists of the stable manifolds of the latter that have measure zero so the Decomposition
Theorem 1 applies.

Example 3: The system in R? consists of a source Q inside a stable periodic orbit that
attracts R? \ Q Here A is the periodic orbit and the disk inside it. B is the periodic
orbit, C consists of the open disk inside the periodic orbit. The refinement of the covering
in Example 1 shows that all the disks inside the periodic orbit are included in U’ (they
do not contain a omega limit set) and therefore excluded in the construction of B. Again

catchment C \ catchment B = @, that is shy.

4. Basic Control

Let us consider now the issue of controllability. In finite dimensional control theory, a system
is said to be controllable if for every two points xo, 1 € X and every two real numbers to < ¢1,

there exists a control function v such that the unique solution of the equation
&= F(z,u), z(to) =0 (1)

satisfies z(t1) = z1.
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In infinite dimensional spaces this notion of controllability is too restrictive. For practical
control applications one can never have more than finitely many control parameters, if for no
other reason, the fundamentals of computing require computer outputs to be finite. There
is therefore no hope that nonlinear evolution equations in infinite dimensional spaces will be
controllable in this strict sense in practical applications.

If an evolution equation has an attractor and a basic attractor, its solutions will converge
asymptotically to the attractor for all initial conditions and to the basic attractor for almost
all (prevalent) initial conditions. The simplest thing one could ask of the control is that
it makes all or almost all initial conditions give rise to solutions that converge to a given
component in the basic attractor. A more stringent requirement on the control would be
that it makes all or a prevalent set (almost all) of initial conditions initiate solutions that
converge to a given component in the global attractor. This requires one to have enough
control authority over the local unstable manifolds of the hyperbolic trajectories in the

attractor to make them attractive. Consider the following definitions

Definition 7 The equation (1) is basically controllable if for every bounded set M and
every € > 0, there exists a finite time T(M) and a control function u(t), such that for every

solution x(t) with initial data xo € M and any minimal component of the basic attractor B;
l(t) — Bl <
fort>T(M).

This definition say that given an initial point one can steer to any component of the
basic attractor in finite time. It is hopeless to get a finite T" for z, lying in a prevalent
(full measure) set in the infinite-dimensional space, for the reason discussed above. It is also
not wise to attempt to control every solution in the A-attractor, because in general it (C)

contains many hyperbolic solutions and their heteroclinic connections.

5. Conclusions

If the basic attractor is low-dimensional and the remainder high-dimensional, then the dy-
namics can still be analyzed up to transients that are exponentially decaying towards the
attractor in time, see for example [7,9,11,13]. The theory of basic attractors also makes
it possible to develop a basic control theory creating the means to control instabilities in
nonlinear PDEs. This has been implemented for the Moore-Greitzer equations describing
the flow through a jet engine, see [9,12,14]. But the theory also makes it possible to find the

optimal low-dimensional basis, where the dynamics can be captured by a low-dimensional
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system of ODEs, see [9]. Not surprisingly, this optimal low-dimensional basis turns out to

consist of the Karhunen-Loeve empirical eigenfunctions. The property that these modes cap-

ture a prevalent catchment in infinite-dimensional space, implies that their representational

entropy is maximal, see [9].
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Neuro-fuzzy control of structures with MR dampers
(CON253-15)

Manuel Braz-César, Rui Barros

Abstract: Over the last decades, soft computing based controllers have being widely
explored as an alternative to conventional control systems in many engineering
applications. The ability of Intelligent and adaptive control systems to deal with
uncertain systems and to change the controller behavior at different operating
conditions constitute decisive advantages over conventional control systems that
allows for the development of robust controllers for complex vibration engineering
problems. In this regard, this paper aims to analyze the performance of a neuro-fuzzy
controller in reducing seismic-induced vibrations in building structures a using a MR
damper. The plant is a three degree-of-freedom system, which represent a three-story
shear building structure. The semi-active control system is derived from an optimal
controller. This controller is used to command a MR damper located between the
ground and the first floor, i.e., in a non-collocated configuration. The data obtained
from the optimal controller is used as a reference to train a fuzzy based controller via
an Adaptive Neuro-Fuzzy Inference System (ANFIS). The uncontrolled response is
compared with passive and semi-active controlled responses in order to assess the
effectiveness of the proposed neuro-fuzzy controller.

1. Introduction

Soft computing methods represent a relatively recent modeling technique of control devices and
controllers that have been shown to be effective in dealing with complex and non-linear behavior of
structural control systems. ANFIS is a hybrid learning algorithm that combines the backpropagation
gradient descent and least squares methods to create a fuzzy inference system whose membership
functions are iteratively adjusted according to a given set of input and output data [1,2]. The
development of a neuro-fuzzy model of a control device or a neuro-fuzzy based controller typically
involve four main steps:
1. Definition of input variables and the corresponding fuzzy inference system (FIS)
membership functions (the FIS output is the desired control signal);
2. Selection of experimental or artificial data sets to generate training and checking data;
3. Use of ANFIS optimization algorithm for training the FIS membership function
parameters to model the set of input/output data by mapping the relationship between
inputs and outputs in order to generate a fuzzy model of the systems;

4. Validation of the resulting fuzzy model.
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ANFIS system training procedure is summarized in the flowchart shown in Figure 1. The process
begins by obtaining a training data set and checking data sets. The training data is used to find the
premise parameters for the membership functions (MFs are dependent on the system designer). A
threshold value for the error between the actual and desired output is determined. The consequent
parameters are found using the least-squares method. If this error is larger than the threshold value,
then the premise parameters are updated using the gradient decent method. The process end when the
error becomes less than the threshold value. Checking data set can then be used to compare the model

Load training/checking data
FIS model generation

|

Select ANFIS parameters
(MFs, epochs, size step, etc.)
|

v

Training ANFIS model

with the actual system.

Training finished?

Get and plot training results

I
v

Test ANFIS with checking data

Checking finished?

Get and plot testing results
(view ANFIS structure)

Figure 1. Flowchart of ANFIS training.
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This paper aims to analyze the performance of a neuro-fuzzy controller in reducing seismic-
induced vibrations in building structures a using a MR damper. The plant is a three degree-of-freedom
system, which represent a three-story shear building structure. The semi-active control system is
derived from an optimal controller. This controller is used to command a MR damper located between
the ground and the first floor, i.e., in a non-collocated configuration. The data obtained from the
optimal controller is used as a reference to train a fuzzy based controller via an Adaptive Neuro-
Fuzzy Inference System (ANFIS). The uncontrolled response is compared with passive and semi-
active controlled responses in order to assess the effectiveness of the proposed neuro-fuzzy controller.

2. Numerical model

Consider a semi-active controlled system subjected to an earthquake ground motion with a control
force applied to the first mass (or the first DOF, x;) as illustrated in Figure 2. The control force
provided by a MR damper intends to reduce the response of the system and can be achieved placing
an actuator between the base and the first mass. The damper force can be changed using a control
system comprising a controller that monitors the system response and computes the required damping
force that should be applied to the system changes the system response in order to improve its
structural performance. An effective semi-active control system involves an appropriate control
algorithm that can take advantage of the dissipative properties of the control device, i.e., the MR
damper [3,4]. There are several approaches available in the literature to control semi-active devices

including soft computing techniques such as neuro-fuzzy controllers.

7:;(1(1‘)%@—‘—”(1(2 [—'Xz(z [—>x3(t)
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Figure 2. Schematic representation of a 3DOFs system under earthquake excitation - Semi-active

control with a MR damper at the first floor.
The equation of motion of the controlled structure can be defined by a state space formulation as
#(t) = Az(t) + Bf(t) + EZ (¢) 1)

where matrix A represent the system matrix
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0 I
A= (2)
-M'K -M'C
B is an additional matrix accounting for the position of the control forces in the structure and f is a
column vector with the control forces. The location of the control forces is defined by a location

matrix I" within B. In this case there is only one control force applied to the first mass and therefore, it

follows that
r={10,0} ®)
and then
1 T
B = 070707__7070 (4)

m

Finally, E is the disturbance vector that represents the location of the earthquake excitation and is
given by
E={0,00-1,-1-1} ©)
The response of the system can be determined using the state space output vector
y(t) = Cz(t) + Df(t) + Fi (1) (6)

where Xg(t) represents the seismic excitation loading. If the system displacements, velocities and

accelerations are required, then

I 0
0
c= o 1 |, D= @)
. ., {—l}
"MK -M'C

where A represents the location of the earthquake excitation (i.e., the seismic acceleration).

In this study, the structure will be subjected to the El-Centro ground motion (1940 N-S
component with a peak acceleration of 3.42 m/s2). Since the mechanical system seeks to represent a
small-scale building, the earthquake signal needs to be decreased to represent the magnitude of
displacements that would be observed in experiments tests. Thus, the time was scaled to 20% of the
full-scale earthquake time history as shown in Figure 3.
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Figure 3. Time-scaled El-Centro NS earthquake ground motion (0.2t).

The mass (kg), damping (Ns/m) and stiffness (N/m) matrices of the model structure are given by

100 0 0 175 =50 0 12 -6 0
M = 0 100 O ,C=] =50 100 0 [, K=| -6 12 -6 107 (8)
0 0 100 0 =50 50 0 -6 6

The structure is equipped with a semi-active control system comprising a MR damper (Lord
Corp., RD-1005-03 model) located between the ground floor and the first floor. The numerical

formulation and the corresponding model parameters are presented in Table 1 [5].

Table 1. Modified Bouc-Wen model - Parameters of the RD-1005-3 MR damper.
Modified Bouc-Wen model

’—PV ’—PX
Bouc-Wen
Vs
. £ F(t) = ¢+ k(s —,)
-
L K
MW— .
e F— 1 .
= p— [az + ¢t +k (z —y)]
W L
n—1 n
4(t) = =Bla)| 2] )| - ra] )] + A
Current independent ALl | Almm™] | y[mm™] | ko [N/mm] | fo[N]
parameters 10.013 3.044 0.103 1121 40 2
o) = —826.671" + 905.141" + 412.521 + 38.24 [N]
Current dependent ¢ (I)= —11.73I° +10.511° +11.02] + 0.59 [N.s/mm]
parameters ! , \
¢ (I) = =54.40I" +57.031" + 64.571 + 4.73 [N.s/mm]
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The MR damper can operate in two modes: as a passive energy dissipation device, i.e., without a
control system (the properties of the actuator are constant during the simulation) and as a semi-active
actuator whose control action is being commanded by a neuro-fuzzy based controller. In this case, the
modified Bouc-Wen model was selected to simulate the behavior of the MR damper.

Besides, the first-order time lag involved in the current driver/electromagnet during a step
command signal must be included in the numerical model of the device, which in this case is defined
by a first order filter (= 130 sec™).

Next, the results of the a neuro-fuzzy semi-active control system are compared with the
uncontrolled, passive OFF and passive ON responses to evaluate the efficiency of the semi-active
control scheme in reducing the structural response.

Using the state space formulation, the uncontrolled response of the 3DOFs system under the
earthquake ground motion is displayed in Figure 4. It should be noted that the response was obtained
with a high excitation level of the El Centro earthquake achieved by scaling up the amplitude of the
earthquake signal in 150%.
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Figure 4. Uncontrolled responses of the 3DOFs system.
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3. Neuro-fuzzy controller

The fuzzy logic based controller was designed using ANFIS to find the nonlinear map that best
fits the expected response of the control system. The neuro-fuzzy controller was developed based on
the numerical results of the LQG controller whose response is used to define the training data set for
the neuro-fuzzy optimization procedure with ANFIS. Floor accelerations and the displacement across
the MR damper are the responses of the controlled system used by the LQG controller to determine
the desired control force. The control signal is determined from the predicted control force using an
inverse Bingham model of the MR damper. The system responses and the desired control signal were
recorded and then used to train the neuro-fuzzy controller.

The data sets for training and validation were obtained exposing the LQG controlled system to a
set of amplitude-scaled versions of the El Centro NS earthquake excitation (i.e., 100 gal, 200 gal, 335
gal and 503 gal seismic accelerations). The LQG controller combines a LQR algorithm with a
Kalman filter estimator. Identically distributed Gaussian white noise is used to simulate acceleration
noise measurements. Regarding the LQR controller, the state gain matrix K is tuned through the
weighting matrices Q and r. In the present example different configurations of these parameters were
evaluated by measuring the effect of each combination in the system response. The following

weighting parameters provided the best performance in reducing in the structural response
Q= . R=r=5x10" 9)

The observer gain L must be adjusted to achieve the required performance. A high gain allows
the filter to follow the observations more closely while a low gain follows the predictions more

closely. This is accomplished by setting

Q =¢I, R =rI (10)

w w e’ v vm
where I, and 1, are identity matrices related with the number of excitation inputs and measurement
signals, respectively. A common approach is to set one of the tuning parameters and adjust the other
parameter until the result is satisfying. In this case l= 1 (xg) and 1= lx4 (X, Xg, Xp, X3).

The recorded velocity data and the control signal from the LQG controller were used to define
the training data for the fuzzy controller. The first and third floor velocities are the FIS inputs while
the command current represents the fuzzy outcome. An initial, increasing and decreasing step sizes of
0.12, 1.20 and 0.8, respectively during 200 epochs are the parameters involved in the ANFIS
optimization procedure. The optimal number of membership functions (MFs) was defined through a
trial-and-error process. In this case, six bell-shaped MFs were used to model each input variable (first

and third floor velocities). The resultant fuzzy surface is shown in Figure 5.
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When the first and third floor velocities are large and have the same signs, the required control
signal is also large. When both velocities are large but have opposite signs, the fuzzy controller

delivers the lowest control signal. Besides, the minimum damping force requirement is located around
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Figure 5. Fuzzy surface of the neuro-fuzzy controller.

the central zone comprising small floor velocities.

4. Numerical

A set of numerical simulations was carried out to obtain the response of the three DOF structure
using the MR damper in a passive OFF mode (zero voltage/current input), passive ON mode

(maximum value of the operating voltage/current) and semi-active control mode. A Simulink model

analysis

of the semi-active control system is shown in Figure 6.

Displacements

Displacenents 3rd floor velocity
EathQuake AP y Velocities Velocites 1stfloor velocity
Signal
State-Space
Accelerations Accelerations st floor displacerrent
Response selection (Fuzzy)
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[ o e
Damper force
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Figure 6. Simulink model of the semi-active control system.
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Figure 7 displays the structural response of each floor obtained with the proposed fuzzy based
control system along with the uncontrolled response of the third floor during the numerical
simulation. As can be seen, the proposed semi-active control system achieves a good performance in
reducing the structural responses using only floor velocities as the reference (input) signals to
compute the control action. In fact, the main advantage of this fuzzy logic based control system is that
only the first and third floor velocities of the structure are required to determine the desired control
signal. This means that the damping force generated during the control process does not need to be
monitored, as happens in other controllers such as the clipped-optimal algorithm.
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Figure 7. Structural response with the fuzzy logic controller (FLC).

The damper force and the control signal of the semi-active control system are shown in Figure 8.
As can be seen, the proposed fuzzy controller provides intermediate levels of control current instead
of the bi-state control signal used in many semi-active controllers allowing intermediate damping
states over the full range of operation of the device. Generally, the results show that the proposed
fuzzy logic controller is capable to determine with sufficient reliability the required control action to

reduce the response of the 3DOFs system.
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Figure 8. Damper force and corresponding operating current (Semi-active control — FLC).

The hysteretic behavior of the MR damper during the numerical simulation is also characterized
in Figure 9. As can be seen the proposed fuzzy based controller explores the operating range of the
actuator and globally, the hysteretic loops are in line with those found with the other controllers
although in this case presenting a more irregular shape.
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Figure 9. RD-1005-03 MR damper control force (Semi-active control — FLC).

The main drawback of designing fuzzy controllers is related with the definition of the
membership function parameters and the inference rules that relate the inputs with the desired control
output. Structural systems usually include several sources of non-linearities and/or uncertainties that
hinder the development of simple control rules based on human knowledge about the system
behavior. In these cases, soft computing techniques such as ANFIS or genetic algorithms (GAs) are
most appropriate to find the best set of fuzzy rules or adjustment of a set of fuzzy parameters in
accordance with a given training data for a desired control action.
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The evaluation criteria are based on a comparison of the peak responses of each controlled
system to those of the uncontrolled system and passive modes. The results of this analysis are
summarized in Table 2. The results show the effectiveness of the proposed fuzzy based controller in
reducing the response of the structure. In this case the fuzzy controller outperforms the passive
control modes in almost all peak responses (with exception of the 1% floor acceleration, although with
a significant reduction compared with the uncontrolled case). The results also show that using the MR
damper in a semi-active control mode results in lower peak drifts compared with the passive ON
configuration namely in the two upper floors.

Table 2. Peak responses under the time-scaled EI-Centro NS earthquake (0.2t).

Control strategy z(cm) g(em/s) | i(em/s”) | drift(em) | f(N)
0.695 27.09 1305 0.695
Uncontrolled 1.251 45,78 1736 0.581
1.587 54.02 2272 0.371
_ - 0518 20.02 999 0518
P%SE';’E Bl\gﬁg-l{/l\?gn 0.907 34,51 1358 0.443 166.4
1.191 42.79 1791 0.292
Do Modified 0.171 7.77 613 0.171
aé?\'l"e Bogcj\/'\fen 0.423 19.36 1066 0.253 1048.9
0.560 25.58 1366 0.208

I || 0164 (4%) | 7.07(-9%) | 739 (0.21) 0.164
“ZZ>E AOI\?'FCI g)on”o 0.410 (-3%) | 17.59 (-9%) | 963 (-0.10) 0.247 909.8
0.529 (-6%) | 23.64(-8%) | 1285 (-0.06) 0.194

Note: Values under parenthesis are the percentage of reduction with respect to the passive ON case.
Negative numbers indicate a response reduction. Passive OFF represents zero current input and
passive ON represents the maximum operating current.

5. Conclusions

As can be verified, both passive and semi-active control systems are effective in reducing the system
response. In this case the semi-active controller allows a more efficient management of the control
forces with a better performance in reducing the structural response. It can be concluded that the
proposed semi-active strategy is an efficient control approach outperforming the passive control
modes. This study reveals the patent advantage of a semi-active fuzzy based control system over a
fully passive system in increasing the level of seismic protection through the reduction of structural
responses, at least in this non-collocated control system in which one MR damper is being used to

control the lateral motion of the upper floors.
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Vibration control of asymmetric structures using MR dampers
(CON252-15)

Manuel Braz-César, Rui Barros

Abstract: This paper is devoted to study the effectiveness of semi-active control
systems with MR dampers to reduce lateral-torsional responses of irregular structures,
in particular plan asymmetric building structures. Basic concepts and the analytical
formulation of asymmetric structural systems are initially provided. Then, several
numerical simulations comprising a two-story, one bay building structure excited by
an earthquake ground motion will be used to demonstrate the effectiveness of a non-
collocated passive and semi-active control systems in mitigating seismic-induced
vibrations. The passive configurations are accomplished using the MR damper as
passive energy dissipation devices while the semi-active configurations make use of
the controllable nature of this type of actuators. The numerical results achieved with
uncontrolled and passive configurations are compared with those of several semi-
active controllers to evaluate the performance of each control scheme in reducing the
coupled lateral-torsional response of the plan asymmetric structure due to seismic
loading.

1. Introduction

In general, building structures are irregular and complex systems that usually present plan and
elevation asymmetries as a result or their stiffness, strength and/or mass distribution. In such cases the
control system must be designed to deal with coupled lateral-torsional vibrations produced by wind or
earthquake loads. Plan asymmetries generate correlated plan translations and rotations that lead to an
uneven deformation distribution demand among resisting planes namely at the building edges. The
significantly different deformations of the structural elements increase force and ductility demand
leading to different damage levels in these elements, which result in structural systems with
asymmetrical distribution of resistant capacity (i.e., large capacity in some load-resisting planes). In
this context, it has been shown that supplemental energy dissipation systems represent an effective
approach of reducing the magnitude of both plan translations and rotations in irregular building
structures [1-6].

In this regard, the variable damping provided by MR dampers constitutes an important feature to
develop enhanced control systems specifically designed to reduce the correlation between translation
and rotation motions. In fact, several studies had already been conducted to investigate the
effectiveness of these semi-active actuators to control lateral-torsional coupled responses of
asymmetric building structures [7-9].
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The present paper is intended to provide an insight into the seismic response control of irregular
building structures in order to complement the research work undertaken in this thesis about semi-
active control with MR dampers. Thus, the main objective consists in evaluate the effectiveness of
MR dampers to mitigate the response of a seismic-excited asymmetric structures namely asymmetric-
plan systems. Initially, basic concepts and the theoretical background about the dynamic behavior of
irregular building structures are provided. The operation of a semi-active control system with MR
dampers for single and multi-story buildings with asymmetric plan is then presented. A set of
numerical simulations is developed to evaluate the effectiveness of MR dampers in mitigating
correlated translation and rotation motions of a two-story, one bay building structure with one-way
asymmetric structural plan under an unidirectional earthquake ground motion. In this case, two MR
dampers installed between the base and the first floor (i.e., in a non-collocated configuration) with a
symmetrical distribution with respect to the earthquake loading direction are employed as passive and
semi-active control devices. The results of the passive and semi-active configurations are compared
with those of the uncontrolled case. Finally, the effectiveness and performance of each control system
is analyzed and evaluated emphasizing the main advantages and limitations of each methodology in

controlling seismic response of the structure.

2.  Numerical model

In order to investigate the effectiveness of semi-active control systems for irregular structures, the
following presents a numerical study of a two-story asymmetric structure under unidirectional seismic
loading whose response is being controlled through two MR damper located between the base and the
first floor. The present numerical example consists of a reduced scale model that represents a two-
story three-dimensional building structure subjected to a unidirectional seismic excitation as shown in
Figure 1. The floor diaphragm can be considered rigid in its own plane and therefore the dynamic
analysis is conducted using a lumped mass model where the whole story mass is lumped at the floor

level. The properties of the lumped mass structure are given in Table 1.

Table 1. Parameters of the two-story building structure.

Parameter Value Parameter Value
Aspect ratio of the floor slab Damping ratio for the 1% 0
(1,/1) 0.75 and 4" modes (C) 2%
Lumped mass of the first floor, 1750 kg Polar mgment of inertia 3646 kg-m?
m; (2* floor), 14
Lumped mass of the second Polar moment of inertia 2
floor, m, 1750 kg (2™ floor), 1, 3646 kg-m
Lateral stlffn_ess c_)f each 1050 KN/m Lateral stlffn_ess Qf each 355 KN/m
column (x- direction), k; column (y- direction), kyi
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Figure 1. Representation of the two-story building under unidirectional seismic excitation - Passive

and semi-active control with two MR dampers at the first floor.

The simulations are conducted using the modified Bouc-Wen model for the MR dampers and a
clipped-optimal LQG controller. The performance of the control system is evaluated by comparing
the responses due to El Centro earthquake excitation (1940 N-S component) for passive and semi-
active configurations with the corresponding uncontrolled response. Note that the mass and stiffness
properties were predefined in such a way that the building structure represents a reduced-scale model
(1:2). Thus, the seismic signal was scaled in time by a factor of 0.5 to adjust the seismic signal to the

magnitude of structural deformations that would be observed in experimental tests (Figure 2).
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Figure 2. Time-scale EI-Centro NS earthquake ground motion (0.5t).

109



Due to the rigid diaphragm approximation, the response of the structure is described by three
DOFs per floor, i.e., two orthogonal translations and a rotation about the vertical axis producing a six

DOFs system. Consequently, the displacement vector can be expressed as

(t),9,(1),0.()} &)
where x(t) and y;(t) denotes the relative displacements of the center of mass of the ith floor in the x-
and y- directions, respectively, and 0;(t) is the vector of rotations of the ith floor about the vertical
axis. The asymmetric configuration of the two-story building structure is achieved by adding an
eccentric point mass m,= 250 kg in both floors as shown in Figure 3. The resultant system has a
symmetric mass distribution on the y- direction and a non-symmetric distribution with respect to the
X- axis, which is characterized by the mass eccentricity e, depicted in Figure 3.

2.0 2.0

ly: 3m

l.,I/. = 4m
Figure 3. Floor slab with asymmetric mass distribution.

The equation of motion of the two-story building structure (n= 2, where n denotes the number of
floors) subjected to unidirectional earthquake excitation ¥y (x- direction) and comprising two control

devices (m= 2, where m are the number of control forces) can be expressed as
MX(t) + CX(t) + KX(t) = —~MAZ (t) + Tf(t) )

where M, C and K are the mass, damping and stiffness matrices, respectively. The seismic loading is

applied in the structural system using the location vector

A ={1,00100} ®)

The force vector describing the two control forces is given by

r={r@.r.0} @
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and the correspondent location matrix can be expressed as

1 1
0 0
N EYERYE -
0 0
0 0
0 0

Since the slab has a rigid body motion, the mass matrix can be determined defining a lumped
system with two masses with mass eccentricities y;= e, and x;= e,= 0. Furthermore, the additional
point mass m, has a negligible rotational inertia and therefore the mass matrix is expressed in
accordance with the displacement vector as

— ; -
ml:L' + mla 0 _mlaey : 0 0
0 m, +m 0 1 0 0 0
Y la 1
1
-m, e 0 I +m e 0 0 0
M= |-mmmtlem oL e ©)
0 0 0 :m2f1: + mZu 0 " y
1
0 0 0 ! 0 Moy, +my, 0
1
o
i 0 0 0 ! my,e, 0 12 + my,e,

where m; and |; represent the lumped masses and moments of inertia of the ith floor, respectively

(with i= 1, 2). The stiffness matrix is expressed in accordance with the displacement vector as

K +K 0 0 =K. 0 0
zl z2 : z2
0 Kyl + Ky2 0 i 0 —Ky2 0
0 0 K, +K, i 0 0 -K
K = ___________________gl____gz>_:F ____________ 02_ @
—KI2 0 ! KzQ 0 0
|
0 —Ky2 0 ! 0 Ky2 0
|
L 0 0 Koy 1 0 0 —Ky |
where
2 2 2 2 8
2 2
Kll = Zkll7 Kz/i = zkyi’ Kei = zkuyb + Zknyl ( )
i=1 i=1 i=1 i=1

are the stiffness coefficients (the coordinates x; and y; can be expressed in terms of the in-plane
dimensions of the floor slab I, and l; in the x- and y- directions, respectively). The damping matrix
can be constructed from the mass and stiffness matrices using the so-called proportional damping (or

Rayleigh damping) which can be expressed as
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C=aM+ BK 9)
where a and S are coefficients that can be determined from two vibration modes of the system (in this
case, a = 0.476685 and p =0.000671). The state space equation of the controlled structure can be
defined as

A(t) = A=(t) + Bf(1) + Ei (1) (10)

where A is the system matrix, E is the input vector that accounts for the location of the earthquake
loading, B is an additional matrix accounting for the position of the control forces in the structure and

f is a column vector with the control forces, which are given by

0 I 0
A= , B= ,
-MK -MTC -M'T
(11
r 0
r={rmrm}, B=
-1
The response of the system can be determined using the state space output vector
y(t) = Cz(t) + Df(1) + Fir'g(t) (12)
where matrices C, D and F are computed as
1 0
0 0
C = 0 I , D= , F= (13)
} ; -M'T -2
-M K -MC

in the case of displacements, velocities and accelerations of each floor/mass are being monitored.

3.  Numerical Simulations

Next, a set of numerical simulations is carried out to determine the responses of the two-story
asymmetric system. Initially, the response of the uncontrolled structure was obtained from Equation
10 by setting f.= 0 (i.e., no control forces). The response of the uncontrolled system will be used as
the reference signal to evaluate the performance of the passive and semi-active control systems. A
new numerical simulation was carried out to obtain the responses of the structure for the passive OFF
and passive ON modes with the MR damper. In this case the actuators act on the first floor/mass in a
passive control mode (i.e., as passive energy dissipation devices) producing two passive control
forces f,; and f; along the x- direction. The control devices are used to reduce the lateral-torsional
response of the structural system. The modified Bouc-Wen model was selected to simulate the
behavior of the MR damper (RD-1005-03). The numerical formulation and the corresponding model
parameters are presented in Table 2 [10].
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Table 2. Modified Bouc-Wen model - Parameters of the RD-1005-3 MR damper.

Modified Bouc-Wen model
Y >

Bouc-Wen
‘F F(t) = cj+ k(z—1,)
ST

LI kON\/\/
—>
L E— - wrgi ko)

W o
M

NAANRNRRNRNRRRRRNN

(t) = —B|(0)] (0] 20|~ y(0)| (1) + At

Current independent ALl | AImmT] | yImm7] | ko [Nfmm] | fo[N] | n
parameters 10013 | 3.044 0.103 1121 40 | 2

o(I) = -826.671" +905.141" + 412.52] + 38.24 [N]

Current dependent c, (I)

= —11.73I" +10.51I° + 11.02 + 0.59 [N.s/mm]
parameters

¢ (I)==54.40I" +57.031" + 64.571 + 4.73 [N.s/mm]

The Clipped-Optimal (CO) algorithm represents a well-known semi-active control strategy for
MR dampers. This classical controller has been shown to be very efficient in estimating the control
signal allowing it to explore the variable damping force of these semi-active actuators. The basic idea
is to append n force feedback loops to induce each device to produce approximately a desired control

force [11-14]. In fact, this control strategy combines two controllers:

e A primary controller that includes an optimal control unit which is responsible for
determining the optimal or desired control forces of an ideal active control system that

should be applied to the structure to reduce the system response;

e A secondary controller or bi-state selector (clipping system). Since only the current/voltage
applied to the current driver of the MR damper can be directly controlled, this controller has
the function to generate the corresponding control signal in the form of a bi-state control
output by clipping the optimal control forces. This accounts for the non-linear nature of MR
dampers ensuring that they only produce dissipative forces (i.e., by adapting the ideal

control action to the semi-active nature of the actuator).
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In this case the primary controller uses a Linear Quadratic Gaussian (LQG) regulator to compute
the optimal control forces. The LQG controller combines a Linear Quadratic Regulator (LQR) with a
Kalman filter or Linear Quadratic Estimator (LQE). The Kalman filter is used to reconstruct the state
vector based on a few output measurements of a noisy system and then the LQR component is used to
compute the optimal input signal based on the estimated state vector. The observer gain L must be
adjusted to achieve the required performance. A high gain allows the filter to follow the observations

more closely while a low gain follows the predictions more closely. This is accomplished by setting
Q =qI, R=rI 14)

where I, and 1, are identity matrices related with the number of excitation inputs and measurement

signals, respectively. Finally, the LQG controller is a combination of a Kalman filter (or a LQE) with

a linear quadratic regulator (LQR), i.e.,
z=(A-LC)i+ Bu+ Ly
u=-Kz

where K and L are the LQR and LQE gain matrices, respectively that need to be adjusted to obtain the

(15)

desired control action. The solution is based on the separation principle in which the full state
feedback controller (i.e., the LQR) and the Kalman filter are designed independently and then
combined to form the LQG compensator.

The selection of Q,, and R, depends on the level of accuracy attributed to the model and the
measurements. For an accurate system model measured with poor sensors one should probably select
Q. to be larger than R, while for a poorly modeled system with accurate measurements one should
probably choose R, to be larger than Q,,. A common approach is to set one of the tuning parameters
and adjust the other parameter until the result is satisfying. The key is to have a Kalman filter that
removes as much noise as possible without being to slow to adapt to changes.

The secondary controller is used to convert the control forces estimated by the primary controller
into a bi-state control signal (bang-bang/on-off controller) to command the MR actuators. The
damping forces generated by the MR dampers are dependent on the local responses of the structural
system and therefore the devices cannot always produce the desired optimal control forces.
Consequently, only the control voltage/current can be directly controlled to change the damper force
and a force feedback loop is then incorporated in the control algorithm to make the MR damper to
generate approximately the desired optimal control force. To achieve this objective, the following
command signal algorithm is applied

/s f-2<0

= ’ (16)
0, otherwise

MR
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When the MR damper is delivering the desired optimal force, the operating voltage/current
should remain the same. If the magnitude of the damper force is smaller than the magnitude of the
desired optimal force and the two forces have the same sign, the voltage applied to the current driver
is increased to the maximum level. Otherwise, the commanded voltage is set to zero. The algorithm

for selecting the command signal for the ith MR damper can be stated as

o=v m[(s-1)s] ()

max

where V. is the saturation voltage/current of the MR damper, f; is the desired optimal control force,
f; is the measured damper force and H is the Heaviside step function.

Hence, the clipped-optimal LQG control algorithm is a semi-active controller that combines a
LQG method with a bi-state selection unit. The linear optimal controller is used to compute the
desired control force f based on the measured structural responses y and control force vector f applied
to the structure through the semi-active device. Next, a secondary controller comprising a clipping
unit generates a bi-state control signal based on the optimal force calculated by the first controller so
that it can be adapted to the dissipative nature of the MR damper allowing this actuator to generate
approximately the desired control force [11-14]. To illustrate the application of the type of control
scheme, in the present example it is assumed that acceleration measurements and displacement across
the dampers are the only state variables available to design the optimal controller. A probable location

of the accelerometers is depicted in Figure 4.

Y22 Y12
[] [+ [(F————-— o> -———— 14—
X22 X12 X12
y y
eZ 6Z
m, x m x
Vs i me i i [mas
- [] oA ———— {7
X2,1 X441 X1,1

Figure 4. Location of the measurement sensors in each floor (Eight accelerometers and two LVDTS).

The translational and rotational response of the asymmetric structure is described by four
accelerometers on each floor, two on the x- direction and two on the y- direction, with a total of eight
accelerometers. Additionally, two displacement sensors (e.g., two LVDTS) are used to measure the
displacements across the two dampers, which represent the displacement of each corner of the first

floor slab in the x- direction. These sensor measurements define the output response vector

T
=z L,z L E L E L L E L E L L 18
/y {’K117J‘1.2’3‘1_17’E127y1.1’y1.27,zZJ’,L‘227y2.17y2.2} ( )
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The Kalman gain L is calculating by adjusting Q,, and R,. It is assumed that each sensor has
identically distributed and statistical independent Gaussian white noise and therefore the covariance
between the measurement noise and the process noise. Since the measurement noise is equal and
independent for all outputs, R, is a diagonal matrix. Then, Q,, is tuned through g, until the LQE
output is adequate. Likewise, the weighting matrices Q and r of the LQR controller must be adjusted
in order to determine the state gain matrix K. In the present example different configurations of the
weighting matrix Q and the control parameter r were evaluated by measuring the effect of each
combination in the system response. The following weighting parameters provided the best results in
reducing the structural responses of the asymmetric system

Q= ; R=r ; r=2x10 (19)
0 0 0 1

On this basis, the proposed LQG controller for the two-story building structure has been modeled
and simulated in Matlab/Simulink as shown in Figure 5 (the bi-state selector is within the Clipped
LQG block). As can be seen, the controller uses the floor accelerations and the displacements across
the dampers as the system outputs to compute the control signal. Indeed, a semi-active control
strategy based on acceleration feedback seems to be more appropriate for structural control
applications instead of full-state feedback or velocity feedback controllers.

" Accelerations (LQB
Displacements X

Displacenents (LQB

e X =AdBu Velocities X ot fe2

EarthQuake AMP y=CxDu X_dot ot Tl

Signal X_goLic:
State-Space X fc2l
Accelerations X ot -
- x fel
Output (LQG)/MR dampers W
x fclie
< Fel x fc2i«
X_dot fclie
BE= consle
Damper force
< F2  curent fclle Qortrall m « o
AVRL
curent_fc2(« Contral2 AR
MR dampers Clipped-LQG
measurement

noise

Figure 5. Block diagram of the clipped-optimal LQG controller.
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The evaluation criteria are based on a comparison of the peak responses of each controlled
system to those of the uncontrolled system and passive modes. The results of this analysis are

summarized in Table 3.

Table 3. Peak responses under the time-scaled El-Centro earthquake (0.5t).

T T I q ] 6 | drift AG/h F(N)
(cm) | (cm/s) | (cm/s®) | (rad) | (radss) | (rad/s?) | (cm) | (rad)

1.005 | 28.30 | 813 |8.6e-4| 0.028 | 0.901 | 1.005 | 8.6e-4
1.652 | 42.76 | 1211 |1.4e-3| 0.041 | 1.395 | 0.658 | 5.2e-4 -

Control strategy

Uncontrolled

Passive | Modified | 0.933 | 25.61 | 728 |7.6e-4| 0.024 | 0.805 | 0.933 | 7.6e-4 | 213
OFF |Bouc-Wen| 1.523 | 39.40 | 1100 |1.2e-3| 0.036 | 1.227 | 0.603 | 4.6e-4 | 183

Passive | Modified | 0.540 | 15.03 | 462 |3.8e-4|0.0125| 0.513 | 0.540 | 3.8e-4 | 1546
ON Bouc-Wen | 0.857 | 24.43 | 837 |6.3e-4|0.0199 | 0.691 | 0.367 | 2.5e-4 | 1459

Clipped-Optimal 0.527 | 1355 | 531 |3.3e-4|0.0119 | 0.524 | 0.528 | 3.3e-4 | 1421
LQG 0.819 | 23.77 | 729 |6.0e-4|0.0191 | 0.738 | 0.346 | 2.7e-4 | 1416

Note: The first and second lines represent the peak responses for the first and second floors, respectively
(first and second MR damper in the case of the damper force). Passive OFF represents zero current
input and passive ON represents the maximum operating current.

4, Conclusions

Regarding the passive control mode, it can be seen that the passive OFF configuration has almost a
reduced effect in the system response (around 10%). The passive ON mode has a major effect in the
system response that results in peak responses being significantly reduced, especially the torsional
motions (around 55%). As to be expected, the maximum passive control action is achieved by
keeping the MR damper permanently switched on, which is clearly observable in the results of the
numerical analysis.

Generally, the LQG controller is able to reduce both translational and torsional responses of the
asymmetric structure, offering significant performance gains in controlling the torsional motion of the
floor decks. Although in some cases the passive configuration performed slightly better than the semi-
active system, the latter present overall the best performance. The proposed controller presents a
performance improvement in reducing the peak responses exhibiting the best overall performance
when compared with the passive configurations. The maximum ratios of the peak responses attained
with this controller are generally smaller than that of passive ON configuration, with the significant
exception of the angular acceleration of the second floor. Besides, the peak control force achieved by

the clipped-optimal LQG algorithm has the lowest value (1416 kN).
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Multi-time scale nonlinear interactions of two coupled forced
oscillators
(CON138-15)

Simon Charlemagne, Claude-Henri Lamarque, Alireza Ture Savadkoohi, Pierre
Abdoulhadi

Abstract: Nonlinear interactions between two coupled oscillators at different
scales and states of time are discussed. We study a class of two degrees of
freedom coupled nonlinear oscillators. One of them is a linear master system
while the other one is a nonlinear energy sink, that is excited by a sinusoidal
periodic force. The aim is to control and/or to harvest the vibratory energy
of the main oscillator by the slave oscillator that is under external sinusoidal
force and possesses very light mass (compared to the first one) and nonlinear
potential(s). Fixed points of the system at fast time scale provide a three di-
mensional invariant which depends on the external forcing amplitudes while
detected stability borders explain bifurcation(s) of the overall system during
energy exchanges between two oscillators. Modulations of the system at slow
time scale around its invariant at fast time scale lead to predictions of equilib-
rium and singular points that permit to trace periodic and strongly modulated
responses of the system during extreme energy exchanges between two oscil-
lators. Detected invariant, equilibrium and singular points at different scales
and states of the time provide useful tools for designing a controller and/or a
harvester oscillator.

1. Introduction

Vibratory energy exchanges between coupled oscillators can be endowed for passive control
and/or energy harvesting. Energy transfer of main structural systems can be carried out via
coupling linear systems, known as Frahm or tuned mass dampers [1], or nonlinear systems
such as nonlinear energy sink (NES) devices [2,14]. The transfer of the vibratory energy
of main structures to the NES is carried out via nonlinear vibratory interactions of two
systems that is accompanied by bifurcations [13]. Most of past studies are based on the
assumption that the NES possess purely smooth nonlinearity, mainely cubic, with no linear
part. Some works are carried out which consider nonsmooth nonlinearities for NES systems,
such as vibro-impact NES [3,4,10] or nonsmooth NES [5-7,12,15]. In the current study,
we try to enlighten the vibratory energy exchanges between a vertical forced main linear
oscillator and a coupled vertical forced NES with nonsmooth potential. Organization of

the paper is as it follows: Mathematical model of the considered system and its initial
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treatments which include changes of the time domain and system variables, complexification
and implementing the Galerkin’s method are represented in Sect. 2. The time multi-scale
behaviors of the system which allows to detect the invariant manifold, its stable areas and
equilibrium and singular points are discussed in Sect. 3. Comparison between analytical
results and predictions versus numerical ones are presented in Sect. 4. Finally, the paper is

concluded in Sect. 5.

2. Representation of the system and its re-scaling process

The mathematical model of the system under consideration is depicted in Fig. 1. The
overall system is under gravity loads, i.e. g. It consists of a main oscillator with the mass,
damping and rigidity as M, C' and K, respectively which is under external periodic excitation
namely fo1 sin(21¢). The main system is coupled to nonsmooth NES with a very light mass
m < M that is under external excitation as fo2 sin(€2t+6). The NES possesses a nonsmooth

potential, F’, which is defined as (see Fig. 2):

Ki(ys —ya+01) if —Ay <1 — 42 < =61
ka(y1 — y2 — 02) if Ag >y —yo > 6o

F'(y1 —y2) = ¢ Ki(y1 —y2 + Ay) if g — s < —As (1)
Kj(y1 —yz2 — Az) if Y1 —y2 = Ao
Bo if —01 <Y1 — Y2 < 02

y
“K%
L;x
=,
A | S J?2
Tl 1 o

foi(t)

Figure 1. The model of the system: fo1 (t) = fo1 Sin(Q]_t), fog(t) = fo2 Sin(QQt + 9).

The dissipation scenario in the NES depends on its potential. Governing equations of
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Fl(2)

Figure 2. Graphical representation of the potential of the NES.

the systems are summarized as:

(M +m)yi + Cyjr + c1(yr — o) + AV(F' (y1 — y2)) (1 — 42) + Kyr + F'(y1 — y2)
= forsin(Qt) + (M 4+ m)g
mya + c1(ya — y1) + E1V(F' (y2 — 31)) %2 — 1) + F'(y2 — y1) = foz sin(Qat + 0) +mg

()
where

Eiif —A1<y1—y2 < =61
ky if As 2 y1 —y2 = 62

V(F'(y1 —y2)) = § K if Y1 —y2 < =44 (3)
Ké lf y1 — y2 2 AQ
0 if —01 <Y1 — Y2 < 02

. . . . K
We are interested to scale system equations at the new time domain 7' =t o The
m

system 2 reads:

y1 + areyi + aze(yi — y2) + azeV(F) (Y1 — y2) + y1 + eF(y1 — y2) = efisin(wiT) + v
€y + az2e(yo — Y1) + a3eVF (Y2 — y1) + €F(y2 — y1) = efesin(wT + 0) + ey

(4)
where € m < 1, aje ¢ ag€ ‘ ase 4
= , Q1€ = ———— 426 = —————, =
m+ M k(m + M) km+ M) Jk(m + M)
fo1 fo2 M+m M+m 4 kb K]
efi K7€f2 K’wl 1 K , W2 2 K , k1 K’kQ K’ 1 K’
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K} B M+m
KZZ?Z»Bo:%,W:%,M:w+ae,w2:w+aeand
%(yl — Y2 + 01) if —A1<y1—y2 <=1
Mp—gp—8) i DMazyi—ye >0
Flyr —y2) =4 Sl(yr —ya+ A1) if Y1 —ya < —Aq (5)
%(M‘W—Aﬂ if Y1 —y2 = Ao
By if =01 <y1—y2< I
% if “Ai<y1—y2< -8
Mot Ar 2y —y2 =62
eVE(y1 —y2) = % if Y1 —y2 < =4 (6)
X if y1 — y2 = Ag

Let us introduce center of the mass and relative displacement of two oscillators as the new

variables of the system equations:

v+ ew
A (7)
w=y1—y2 — y2=7

The Egs. 4 will take following form:

U+ (0 +ew) + l%re(v + ew) = €(f1sin(wit) + fasin(w2T + 0)) + (14 €)y
W+ (0 + ) + 7 (v + ew) + (1 + €) (aztr + azVF () + F(w)) (8)
= efisin(wit) — fasin(w2T + 6)

Extended version of complex variables of Manevitch [8] are introduced to the system as it

follows (A1, A2 € R) [12,15]:

H1e™t +iAr =B + iwv ()
9

Poe™t +iAy = i + jww
We endow the Galerkin method using a truncated Fourier series (constant terms and first
harmonics). We are interested to analyze the system around a 1 : 1 resonance, so we set:
w=1,w; =w+oce and wy = w + oe. The time T is divided to different scales, namely fast
(1o = T') and slow (71 = e79) time scales. A time multi-scale method [9] is used to study

system behaviors at each scale (or at each order of € parameter).
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3. Time-multi scale behaviors of the system

Constant terms of Fourier series at fast and slow time scales provide A; = v and Az =
v(2+ o). First term of Fourier series at fast time scale provide the invariant manifold of the

system which can be represented in general manner as:
N1 = F(N2, A2,a2,a3, K1, Ka, k1, k2, A1, Az, 61, 02, fa) (10)

where ¢1 = Nie™ and ¢ = Noe™2. It can be seen that the invariant of the system
depends on applied external force on the NES, i.e. fa. The stable zones of the invariant
can be detected via perturbation of Ny and A2. A typical invariant for some given system

parameters is presented in Fig. 3. At slow time scale, the system equations are analyzed

Figure 3. Invariant manifold of system with fo = 0.5.

around the invariant manifold; this study provides some tools for detection of equilibrium and
singular points of the system. Equilibrium points correspond to periodic regimes and singular
points are signatures of possible strongly modulated responses (SMR) of the system [11]. The
system at fast time scale reads:

ON>  hi(Na, \2)

8T1 72N229(N2,)\2)
OX>  ha(Na, As) (11)

91 2NZg(Na, Xs)

Equilibrium points are those which provide hi(N2, A2) = h2(N2, A2) = 0 and g(N2, A2) # 0.
Singular points are those which satisfy h1 (N2, A2) = ha(N2, A2) = g(N2, A2) = 0.

4. A numerical example

We set following mathematical examples of numerical data: a1 = as = a3 = 0.2, § = 0,
01 =02 =05, A1 = Ay =1, k1 = ko =01, K1 = Ko =15, 0 = 0.1, ¢ = 1073,
fi = 1 and fo = 0.1. We take the direct numerical integration of the system 4 via the
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(b)

Figure 4. The invariant manifold of system and added numerical results (green line).

Unstable zones of the invariant are represented by blue line.: a) 3D view; b) 2D view.

2000 3000 5000 7000 5000 %000 o000

(a) (b)
Figure 5. Time histories of N2 and X2: a) Na; b) Xa.

ode45 function of the Matlab package. Following initial conditions are assumed for the
system: (y1(0), y2(0),%1(0),y2(0)) = (2 + w10, y20,0,0) where y10 and yaz¢ are the unforced
equilibrium states of the main oscillator and the NES due to their weight. Different views of
the invariant manifold of the system and obtained numerical results are illustrated in Fig. 4.
Time histories of N2 and A2 are depicted in Fig. 5. These figures show that the system faces
SMR. This means that it possesses singular points. Positions of equilibrium and singular
points of the system are given in Fig. 6. It is seen that the system possesses five singular
points namely, points no. 1, 2, 3, 4 and 6 and one equilibrium point namely no. 2 which
is in the unstable zone of the invariant. All of singular points are on the border between
stable and unstable areas. Looking at time history of N2 in Fig. 5a we can conclude that

the system jumps between points 1 and 3 or 5 and 6.

5. Conclusions

Time multi-scale behavior of two forced vertical oscillators are studied. The main forced

oscillator which is supposed to be linear is coupled to a forced nonsmooth nonlinear energy
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Stable

Figure 6. Positions of equilibrium and singular points: g¢(N2,A\2) = 0 (magenta),

h1(N2,X2) =0 (red), h2(N2,A2) =0 (blue)

sink. Studying the system at fast time scale reveals its invariant manifold which in addition
to mechanical parameters of the system, depends on the applied force on the nonlinear
energy sink. Further studies at slow time scale provide useful information about positions of
equilibrium and singular points. The goal of all of these treatments and studies is to tune all
equilibrium and singular points (periodic and strongly modulated regimes) which leads to the
design of forced nonsmooth nonlinear energy sink for passively controlling main oscillators
and/or harvesting their vibratory energy. Potential applications of the developments can be

control of vertical oscillations in bridges or vehicles.
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Nonlinear elastic waves in a fibre-reinforced composite
with an imperfect interface
(ASY148-15)

Vladyslav V. Danishevskyy, Julius D. Kaplunov, Graham A. Rogerson,
Nikolai A. Kotov

Abstract: The propagation of nonlinear elastic anti-plane shear waves in a
unidirectional fibre-reinforced composite material is studied. A model of structural
nonlinearity is considered, for which the nonlinear behaviour of the composite solid is
caused by imperfect bonding at the “fibre-matrix” interface. A macroscopic wave
equation accounting for the effects of nonlinearity and dispersion is derived using the
higher-order asymptotic homogenization method. Explicit analytical solutions for
stationary nonlinear strain waves are obtained. This type of nonlinearity has a crucial
influence on the wave propagation mode: for soft nonlinearity, localised shock (kink)
waves are developed, while for hard nonlinearity localised bell-shaped waves appear.
Numerical results are presented and the areas of practical applicability of linear and
nonlinear, long- and short-wave approaches discussed.

1. Introduction

Elastic waves propagating in heterogeneous solids can undergo the effects of nonlinearity and
dispersion. We study a problem for which the nonlinear behaviour of a composite is associated with
imperfect bonding conditions at the interface between constitutive components. This is an example of
structural nonlinearity, with the nonlinearity directly related to the presence of a microstructure.
Dispersion can be classified as geometrical or structural. Geometrical dispersion is typical for wave-
guides and finite-size bodies (e.g., waves in beams and plates). Structural dispersion may be caused
by the heterogeneity of a composite solid, with successive reflections and refractions of local waves at
the matrix-inclusion interfaces leading to scattering of the overall wave field.

Nonlinearity induces a pumping of energy form the low- to the high-frequency part of the
spectrum, with higher-order modes generated and continuous localization of energy occurring,
making the wave front steeper. In contrast, dispersion provides scattering of energy and decreases the
slope of the wave front. When nonlinearity and dispersion act together, they may balance the
influence of each other. In such a case, stationary nonlinear waves of permanent shape and velocity
can propagate.

The propagation of nonlinear strain waves in elastic solids has been intensively studied [1-3].

Many authors considered homogeneous systems, with dispersive properties mainly determined by
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geometrical factors. At the same time, the effects of structural dispersion, related to the scattering of
nonlinear waves by the microstructure, were not studied in great detail.

In this present paper, we apply the asymptotic homogenization method (AHM) to the modelling
of anti-plane shear waves propagating in a fibre-reinforced composite material with imperfect
interface bonding between the matrix and fibres. The effect of imperfect bonding is predicted by
assuming that the displacement jump across the interface is related to the interfacial stress by a certain
cohesion function. We specifically study a weakly nonlinear interface, with a cohesion function
represented by a power series expansion in terms of non-dimensional displacement jumps.

According to the AHM, physical fields in a spatially periodic heterogeneous medium are
represented by a two-scale asymptotic expansion in powers of a small parameter »=1/L , where |

is the size of the unit cell and L is the typical wavelength. This leads to a decomposition of the final
solution into global and local components; the latter are evaluated from a recurrent sequence of cell
boundary value problems (BVPs). Application of the volume-integral homogenizing operator allows
us to obtain a homogenized constitutive equation that describes the macroscopic behaviour of the
medium. From its conception, the AHM was intended for the determination of quasi-static properties
of heterogeneous media and structures [4]. In the last years, taking into account higher-order terms
with respect to 7 extended the area of applicability of the homogenized models and provided a
mechanism to predict the effect of structural dispersion [5, 6].

The paper is organized as follows. In Section 2, an asymptotic model of the imperfect bonding is
proposed and the input BVP introduced. In Section 3, the higher-order asymptotic homogenization
procedure is developed and the macroscopic nonlinear wave equation is obtained. In Section 4, the
analytical solution for stationary nonlinear strain waves is derived in terms of elliptic functions. The
interplay between the effects of nonlinearity and dispersion is analysed in Section 5. Section 6 is

devoted to the conclusions.

2. Asymptotic model of the imperfect bonding and input BVP problem

Let us consider a unidirectional fibre-reinforced composite consisting of an infinite matrix 0" anda
periodic square array of cylindrical inclusions Q@ see figure 1. It is supposed that geometrical and
physical nonlinearity can be neglected, with the nonlinear behaviour of the composite caused by
imperfect bonding at the matrix-fibres interface Q.

We study anti-plane shear waves propagating in the plane x;x, . The governing wave equation is
as follows:

™ aZU(”)
o

V" = p : @
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Figure 1. Fibre-reinforce composite structure with a distinguished unit cell.

where 4" is the shear modulus; p" is the density; u™ is the displacement in the direction
orthogonal to the plane x,x,; V, =(8/0x,)e, +(8/0x,)e, ; e,, e, are the Cartesian unit vectors.

Here, and throughout this paper, the upper index (n) refers to different components of the composite
structure, n=1,2.

Let us consider the case of imperfect bonding at the interface Q. The equilibrium state implies

the equality of tangential stresses, thus:

o'=o"=

o? at aQ, )

where o = 4" (au(“)lan); dlon is the normal derivative to A6Q. Weakening the bonding

between the matrix and fibres leads to a jump in the displacement field across the interface. We

suppose that the displacement jump Au”=u® —u® is related to the interfacial stress o~ as follows:
o'=f(Aau") at oQ, ®)
where f (Au*) is the so-called cohesion function [7, 8]. If the interface exhibits a weakly nonlinear

behaviour, the cohesion function can be assumed in the following form:

* +\3
* « AU «[ AU
o ='ulh+'u3(hj at o0Q, 4

where h is the thickness of the interface. From the mathematical point of view, expression (4) can be

considered as the first terms of Taylor series expansion of f (Au*) in powers of Au”/h . The shear
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deformation is symmetric, therefore, expansion (4) includes only terms of odd powers. The

coefficients 4, , u, can be interpreted, respectively, as the linear and the nonlinear shear modulus of
the interface. We invert series (4), introduce non-dimensional bonding parameters a = hy(l)/(lyl*) ,

A=) 1)1/ 1£)? , and finally let h—0, & —0, 1 — 0. Then expression (4) yields
- * \3
u® —y® :“'G(n‘“ﬁ'{au)] at aQ. (5)
u u

The case a=0 corresponds to perfect bonding, o —>o — to complete separation of the
components. At =0 the interface is purely linear, whilst any increase in \,6’\ increases nonlinear
effects. The nonlinearity is soft for <0 and hard for 5>0.

The input BVP includes equations (1), (2), and (5).

3. Higher-order asymptotic homogenization
Let us introduce non-dimensional variables t=u/U, n=n/L, X, =X, /L, k=12, where U is

the displacement amplitude and L is the wavelength. The input BVP (1), (2), (5) reads

2:—(n)
u‘")vw‘“):p(”)faat”z ! ®)
0 =)
g 7
on " e ! @
Y o aa®)
a® U()=a77 = —-ano = at oQ, 8)
n n

where n=1/L, =g (U/L), V,=L"V,.
The ratio U /L indicates the magnitude of the elastic strains. We suppose that the size | of the
unit cell is smaller than the wavelength L . Hence, the non-dimensional variables 7 and & may be

considered as natural small parameters characterising, accordingly, the rate of dispersion and the rate

of nonlinearity.

Let us introduce so-called fast y, =X, and slow X =X coordinate variables. The spatial

derivatives are then given by V., =V, +77V , where V =(8/0y,)e,+(d/0dy,)e, . The solution is

sought as the asymptotic expansion:
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0" =u, (R )+ 7w (R, Y )+ 720 (R Y )+
Here the first term u, represents the homogenized part of the displacement field; it varies

“slowly” on the macrolevel and does not depend on the fast coordinates. The next terms ui(”) ,

i=1,2,3,..., provide order ;' corrections and describe local oscillations of the displacements within

each unit cell. Since the composite structure is periodic, the functions ui(") satisfy the periodicity

condition:
u™ (%, y)=u (X, v, 21), i=1,23,... . )

Splitting the BVP (6)—(8) with respect to 7 , we obtain the recurrent sequence of local BVPs:

n n n n n azl‘II(E)

,U( )(ijui(,) +2V, ,Vyui(J) +V§Ui( ))z p( )2 atiZZ , (20)
au®  au® au? e

1) i1 4 ZH =, i1 7 at oQ 11
" ( an om ) " \Tan  om ! ()

® ) ® 0
W -y = g aui;1 +8ui s 8ui;1 +(;‘ui at o, (12)

on om on om

where i=1,2,3,...; uf"l’=0; o/om is the normal derivative to 0Q written in terms of fast

variables.
Due to the periodicity condition (9), the local problems (9)—(12) are considered within a
distinguished unit cell of the composite structure. Let us replace the outer square contour of the unit

cell by a circle of the same area. This simplification is well known in the theory of composites [9].
The accuracy of such an approach is known to be good, when the volume fraction ¢ of the fibres is

relatively small. Solutions of the nonlinear local problems (12)-(15) are sought through the

asymptotic expansion in powers of §. The term u{") is evaluated with accuracy O(&), the terms
ug” , uf” —with accuracy O(5 °).

Next, we apply to equation (10) at i=4 the homogenizing operator J.j(-)dyldyz over the unit

cell domain. As a result, the macroscopic nonlinear wave equation is obtained. Reverting back to the

dimension variables u=u,U , x, =X, L , the macroscopic wave equation reads

143



6%u

WY AV, (V,0) VO (8t )= p (13)

where g, , u,, u, are the effective elastic coefficients. The parameter , is the linear shear
modulus; the parameters u, and g, account, respectively, for nonlinearity and for dispersive
properties. For g and u,, explicit analytical formulas are derived, while u, is evaluated by
numerical integration over the unit cell. It should be noted that z, , u, , u, are always positive.

The analysis of numerical examples shows that the obtained solutions for s, , u, , w, provides

a good accuracy at ¢ <0.5...0.6 . However, for most real composites materials the volume fraction
of the fibres does not exceed 0.4...0.5.

For the composite structure under consideration, the anti-plane shear problem is transversely
isotropic in the long-wave limit, when the wavelength is essentially larger than the size of the
microstructure, 1/L—0. If the wavelength decreases, the composite material exhibits anisotropic
properties and the parameters of elastic waves become dependant on the direction of propagation [5].
In this paper, the simplification of the geometrical shape of the unit cell implies the axial symmetry of
the local problems. Therefore, the derived approximate solution is transversely isotropic and the
macroscopic wave equation (13) is invariant to the direction of the wave propagation. A comparison
of the obtained results with a solution derived by the Floquet-Bloch method [5] has shown that

equation (13) provides a good accuracy at 7=1/L<0.4.

4. Analytical solution for stationary waves

Let us consider a stationary plane wave propagating with a permanent shape and velocity in the

direction of the wave vector k. In such a case the solution meets the following condition:
u(x,t)=u(&), where & is the propagation coordinate, £=e, -x—vt; v is the phase velocity and
e, is the unit wave vector. Let us define the strain of the wave profile as follows f =du/d¢ and
introduce non-dimensional variables f=f/F, ¢=&/L. Here F is the amplitude of the strain
wave and L is the wavelength. After routine transformations, equation (13) reads:

2

f +af +bf®=0, (14)

2

where a= g (1-v* /3 )/ (10 ?), b= BFw, 1 (3um *), v, is the effective phase velocity in the

linear long-wave limit, v, = 1/,ul lp .
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The type of nonlinearity (soft or hard) has a crucial influence upon the shape and properties of

elastic strain waves. For soft nonlinearity ( S <0 ), the exact periodical solution of equation (14) is:

f=Zsn(x¢s), (15)

1
2
where x is the propagation variable, x=4K(s), sn(-) is the elliptic sine, K(s) is the complete
elliptic integral of the first kind, s is the modulus of the elliptic functions that is determined form the

transcendental equation: sZK(s)Z:—ﬂFzyz/(384772/13), 0<s<1. For the phase velocity v we
obtain: v2/v¢ :1—16(1+52)K(s)2 T T

For hard nonlinearity ( >0, the solution takes the following form:

f=Zcn(xg.s), (16)

1
2
where K (s)° = BF*u, /(384n°11,), v*/V3=1-16(1-25")K (s)' ° sy 4, .

The magnitude of the modulus s determines the intensity of nonlinear effects. The limit s=0
corresponds to the purely linear case: f =(1/2)sin(27¢) at f<0; f=(1/2)cos(27¢) at B>0;
VIVE=1-47°0" 1/ 1y,

At the opposite limit, s=1, solutions (15) and (16) describe localised solitary waves. In the case
of soft nonlinearity, a shock (so-called kink) strain wave appears (figure 2, a): f =(1/2)th(</A),
N ==24u’ [(F?B 1,) . V* /NG =1-2un° /(14A” ) . Here the parameter A can be treated as the
width of the localised wave. The kink wave propagates with a velocity lower than the velocity v,
associated with the linear long-wave limit: v <v, . This is the so-called subsonic mode. The increase

in the amplitude F leads to a decrease in the width A and the velocity v of the wave.

If nonlinearity is hard, the localised solution takes the form of a bell-shaped wave (figure 2, b):
f=[2ch(¢1A)]", A°=24u”/(F*Bu,), V2/vs =1+ ugn’ [(14A”). In this case a supersonic
propagation mode is realised, i.e. v>v, . When the amplitude F grows, the width A decreases and

the velocity v increases.
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Figure 2. Localised nonlinear elastic strain waves; a — soft nonlinearity, b — hard nonlinearity.

5. Interplay between nonlinearity and dispersion

As an illustrative example, let us consider a composite material consisting of the aluminium matrix
(1" =27.9GPa, p" =2700kg/m?) and nickel fibres (' =75.4 GPa, p®® =8940 kg/m®). The
volume fraction of the fibres is ¢’ =0.4. The following magnitudes of the bonding parameters are

assumed: «o=0.1,

B|=10°. Basing on the solutions obtained in Section 3, the effective elastic
coefficients are evaluated: z, =33.1GPa, y, =21.6 GPa, w,=0.119 GPa.
Figure 3 displays the parametric dependence of the modulus s on the amplitude F and the

dispersion parameter 7 . The domain of elastic strains is restricted by F <107, a regime typical for
most engineering materials.

The presented results show how the phenomena of nonlinearity and dispersion compensate the
influence of each other. The increase of the amplitude F (at a fixed value of 7 ) leads to the growing
of the modulus s and, therefore, the intensity of nonlinear effects increases. In contrary, the decrease
of the wavelength and the increase in n (at a fixed F ) is followed by the decrease of the modulus
s, so the influence of nonlinearity is reduced.

The numerical analysis of the obtained solutions (15), (16) has shown that nonlinearity has a
noticeable influence on both the wave shape and velocity if s>0.6. As follows from figure 3, in this

case 77<0.2 and, consequently, the solution can be evaluated utilizing the long-wave approach. On
the other hand, the homogenized equation (13) lacks accuracy for 7>0.4. Then $<0.34, which

means that the wave shape and velocity are very close to the linear case and, consequently, an
approximate solution may be found utilising the linear theory. This analysis is particularly important,

helping to estimate the domain of practical applicability of linear and nonlinear approaches.
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Figure 3. The modulus s characterising the intensity of nonlinear effects.

6. Conclusions

The paper presents analytical solutions that describe the propagation of nonlinear elastic anti-plane
shear waves in a unidirectional fibre-reinforced composite material with imperfect bonding between
constitutive components. It should be emphasised that this type of nonlinearity has a particularly
strong influence upon the propagation mode and the shape of the strain waves. In the case of soft
nonlinearity, localised shock (kink) waves appear, while in respect of materials with hard nonlinearity
the localised solution takes the form of bell-shaped waves.

The analysis allowed us to estimate the domain of applicability of the different approximate
theories used for the modelling of elastic waves in heterogeneous solids. It is shown that nonlinear
waves can be adequately described within the long-wave framework (such as the AHM). When
dealing with the propagation of short waves, with wave length commensurable with the scale of the
microstructure, nonlinear effects become very small. In such a case, an approximate solution may be
obtained using the linear Floquet-Bloch theory. This conclusion is true, if the strain amplitude F
does not exceed 107 , which is typical for many solids.

The results presented in the paper can be applied to facilitate the development of new efficient
methods of acoustic diagnostic and non-destructive testing in various branches of engineering.
Measuring the characteristics of nonlinear waves allows us to receive much more precise information
about the internal structure and defects of solids. This is sometimes that may be not possible within a
linear framework. We also remark that the propagation of localised nonlinear waves is accompanied
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by an essential concentration of mechanical energy. The obtained solutions can help in the

development of new criteria for the dynamic failure of heterogeneous materials and structures.
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Analytical predictions of a flexible rotor in journal bearings with
adjustable geometry to suppress bearing induced instabilities
(STA268-15)

Fadi Dohnal, Bastian Pfau, Athanasios Chasalevris

Abstract: In the past it was shown that a journal bearing with adjustable
geometry is capable to improve the vibration behaviour of rotor systems during
run-up as well as at steady-state operation. For this purpose, the bearing
properties were changed in time by varying the shape and clearance of the
bearing periodically. The focus of the present contribution is on exploiting
parametric anti-resonances that allow shifting the bearing instability to higher
rotor speeds. Stability maps for a simple flexible rotor are computed and
compared to analytical predictions resulting from a perturbation calculation.
These analytical predictions allow the determination of design parameters that
influence the stability of variable geometry bearings.

1. Introduction

The destabilizing effect of journal bearings in rotor systems with flexible shafts can lead
to large vibration amplitudes when the so called ”oil-whip” phenomenon occurs. Various
concepts of fixed geometry journal bearings exist to avoid these vibrations, at least at the
operational range of speed, and at their majority incorporate elliptical multi-lobe geometry
or tilting pads, [12]. The bearings of fixed elliptical geometry provide better stability char-
acteristics at higher speeds by increasing the effective eccentricity of the journal. In recent
past, active and controllable journal bearings have been developed and nowadays are still
increasingly found in the literature. The current state of research on controllable oil film
bearings can be found in [16]. Many of the existing active and controllable bearing concepts
incorporate movable or flexible bearing pads. Other concepts apply external forces on the
bearing shell or the journal, for example magnetic in [8,9] or piezomechanical in [15,19],
without changing the bearing’s clearance geometry. Furthermore there are also bearings
that utilize an active oil injection as suggested in [16]. In most of the cases, a classical PID
controller is used for control.

In this paper, an actively adjustable journal bearing, which is capable to change the fluid film
thickness and thus the effective stiffness and damping properties of the bearing, is investi-
gated. Very recently, the concept of passive adjustment of bearing clearance was theoretically

investigated [2] and experimentally validated [4]. A journal bearing of variable geometry [2—4]
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is a plain cylindrical journal bearing separated in two symmetric semi-cylindrical parts, one
movable and one fixed. The principle of operation is based on the passive displacement of
the movable part as the rotor-bearing system approaches a critical speed. The increment
of the journal whirling amplitude leads to the increment of the fluid film dynamic loading,
and after exceeding a preloading force, the bearing moving part is displaced mounted on a
spring and damper configuration. As the system approaches a critical speed and the bear-
ing moving part is passively displaced, the variation of the effective stiffness and damping
characteristics of the fluid film is achieved, leading to variational stiffness and damping prop-
erties during resonance and thus the suppression of resonance vibration amplitude [11]; up
to 50% amplitude decrement was noticed in both theoretical and experimental studies, with
the energy dissipation on the damper mounting the bearing moving part to be much less
than this dissipated due to the damping properties of the fluid film.

In the present investigation, the fluid-film thickness is varied under the semi-active displace-
ment of the bearing moving part at a constant frequency and amplitude. These two control
parameters are tuned properly in order to achieve a so-called parametric anti-resonance
which leads to the suppression of the self-excited vibrations. A parametric anti-resonance is
a specific parametric combination resonance which does not lead to a parametric instability
but enables an increased dissipation of vibration energy. The beneficial effect of a parametric
anti-resonance on self-excited vibration was discovered by TONDL in his pioneering work [18].
This concept was then transferred to general dynamic systems [5], was interpreted physically
as an energy transfer between the vibration modes of the original system, and was validated
experimentally in simple systems including a flexible rotor. A recent summary on this topic
can be found in [6].

A flexible rotor mounted on bearings whose dynamic properties are controlled semi-actively is
investigated. Such a concept was proposed for active magnetic bearings in [7] and validated
theoretically and experimentally. It allowed the operation of active bearings beyond the
stability limit of the implemented PID controller. The very same concept is extended here
to fluid-film bearings with adjustable geometry. This allows to operate the rotor well beyond
rotor speeds which are associated with the oil-whip instability. This idea was investigated
numerically in an initial study in [14].

In the present paper, the journal bearing fluid film properties are varied harmonically in
time by changing the clearance of the bearing under the semi-active displacement of the
bearing moving part. This control introduces a parametric excitation in the original system.
Changing the clearance harmonically results in a periodic change of the dynamic properties
which are theoretically expanded into FOURIER series. Corresponding stability charts are

generated by employing the FLOQUET method and compared to analytical predictions which
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are extracted from a perturbation technique.

2. Adjustable journal bearing

The journal bearing considered here is a lemon-bore bearing in horizontal construction design
as shown in figure 1. The sliding surfaces (the segments) can be moved along the vertical
direction. This adjustment leads to a change of the bearing clearance and consequently to a
change of the preload factor § which is a measure for the geometrical deviation from a cylin-
drical bearing. Typical values for lemon-bore bearings are in the region of § =50%...75%,
see e.g. [10,17]. The effective stiffness and damping properties of the fluid film change due to

this geometric adjustment. In this investigations, the preload factor is changed harmonically,
8(t) = Smean + AJ sin(Qpt) . (1)

Herein, 0mean expresses the setting for the underlying lemon-bore bearing with fixed ge-
ometry. For the present study this parameter is fixed to a value of 65%. A more detailed

description of the bearing geometry can be found in [14]. The calculation of the bearing

z

Figure 1. Principle of the adjustable journal bearing; a movement of the upper segment is

shown.

forces is performed for both individual segments by numerical integration of the REYNOLDS

differential equation of lubricating film theory, see e.g. [12],

L9 (1300, 0 (130p\ _( (00 0k
R 90 (h &9) irr (h 8:10) = 0o (Q o9 T2 8t> ! )
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which describes the pressure distribution p(d,z) in dependency of the segment radius Rs,
the bearing width B, the gap function h, the angular speed €2 and the oil viscosity 7oi:.
In general, the fluid-film forces that act on the journal depend on the position and on the
velocity of the journal which can be expressed by the nonlinear relationship, F = F'(e, 9, é, 19)
If an equilibrium position exists, the fluid film force can be linearized which yields
AF, b2z by Ay, k2 kay Awr,
= + . (3)
AF, by> byy Avr, ky>  Kyy Avrg,
Equation (3) contains the stiffness coeflicients k;; as well as the damping coefficients b;;.
Both depend on the preload factor ¢ and thus depend on the time ¢. For simplicity, the

letter A is neglected hereinafter.

3. Rotor model

The dynamic model of the rotor system consists of a JEFFCOTT rotor, see figure 2 for more
details. This model represents a simplification of real-world rotors but it is sufficient to show
the main physical phenomena. The rotor consists of a flexible, massless shaft (stiffness k)
with a centered disc (mass mg) and two journals (each mass mz) mounted at its ends. The
bearing forces are acting on the journals and are indicated. All masses are assumed to be
balanced. A constant rotor speed 2 is considered. The coordinates are given by ww and
vw for the disc center and wy, and vy, for the journals in the z- and y-direction. Applying

NEWTON’s second law together with (3) yields the equation of motion for the linearized

system,
I ms 171 Wy 1 I 171 wWw 1
ms W vw
+ +
2my wr, 2b.. 2b.y wr,
L 2mz 1L i}L ] L 2byz 2byy 1L i)L ]
- . . O]
k —k ww 0
k —k VW 0
—k k+2k..  2ksy wr, 0
I ~k  2ky: k+2ky | | v | [0

or in matrix notation

Mi+Bg+Kq=0. (5)
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The physical and geometrical properties of the rotor system are listed in table 1.

'F Figure 2. JEFFCOTT rotor with bearing journals.
z

Note that the matrices B and K are time-dependent and can be split into a constant and a
time-periodic part. Furthermore, in the context of fluid-film bearings and rotordynamics, the
coefficient matrices for displacements and velocities, B and K, are in general not symmetric.

However, they can be split into symmetric and skew-symmetric matrices,
A — AO + At — A;ym + Agsytn + Aiym + A?Syln. (6)

The index 0 denotes the constant part and the index ¢ the time-dependent part of the

corresponding system matrix.

4. Numerical stability analysis

FLOQUET theory is applied for investigating the stability regions of the dynamic system in
eq. (5) by numerical means. The stiffness and damping properties are functions of the preload
factor § as well as the SOMMERFELD number So. In the present analysis the movement of
the segment is considered to be quasi-static, which means that the coefficients are assumed

to be independent from the segment velocity. Although the movement of the upper bearing
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segment in figure 1 (see also eq. 1) is harmonic, the resulting variation of the effective stiffness

and damping coefficients is in general not harmonic, but periodic with period T,
K(t) = K(t+T), B(t) = B(t+T). (7)

A typical variation of a direct stiffness coefficient together with an approximation by a
FOURIER series of different orders is shown in figure 3. The visualization shows that a

FOURIER series of third order resembles the sample shape sufficiently well.

exact

FOURIER series 15% order
FOURIER series 24 order
FOURIER series 3"4 order

0 /2 T 3m/2 2

Figure 3. Example periodic variation of a stiffness coefficient due to a harmonic movement

of the upper bearing segment in figure 1: exact and approximation by FOURIER series.

Figure 4 shows the stability domains for the exact periodic bearing characteristic as well as for
the approximation by a FOURIER series of first order. In comparison to the exact calculation,
there is a gap between the stability domain of the underlying system with fixed bearing
geometries and the stability domain created by the parametric anti-resonance. Consequently,
the stability domain is sensitive at smaller rotor speeds to higher order coefficients. Above
the speed of instability of the time-invariant system, which is here at Q/wg & 2, a large
stability domain exists for a certain combination of control frequency and amplitude due
to a parametric anti-resonance. The minimum control amplitude strongly depends on the
rotor speed. For rotor speeds slightly above the instability speed, a high amplitude has to be
chosen in order to achieve a simply connected stability domain at a fixed control amplitude
within the full speed range.

The analytical analysis in the following section is focused on the analysis of the system with

a truncated FOURIER series of order 1 which is shown in figure 4 on the right hand side.
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Figure 4. Stability body for (left) full model and (right) for truncated FOurier series of

first order (see figure 3). Dark area depicts a stable system.

5. Analytical stability analysis

The analytical approximation of the stability boundary in the parameter space of the trivial
solution is outlined in the following. The derived analytical predictions allow the determi-
nation of design parameters that influence the stability of variable geometry bearings. The
non-conservative system can be rewritten in state space notation as

I o0]. 0 I

7= z or Bz = (Ao + Ay)z (8)
0 M -K-N -C-G

Consider the corresponding eigenvalue problem and the adjoint eigenvalue problem [13]
\Bu = Aous, ANBTv; = Al'vy, i=1,2,...,2 (9)

wherein A; are the eigenvalues and u;, v; the right and left eigenvectors of the system in

eq. (8). These eigenvectors are biorthogonal and can be normalized to satisfy
UZ'TBU,]‘ = 5ij7 /U,L-TA()U,]‘ = AZ(SZ] (10)

Since the coefficient matrices in eq. (8) are real, the eigenvalues are real or complex conjugate
pairs. For the specific rotor system with variable bearings considered here, the system
possesses 3 complex conjugate pairs and 2 real eigenvalues (see figure 5). Two of the complex

conjugate pairs are almost identical. Candidates for the parametric anti-resonance are the
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Figure 5. Specific eigenfrequencies of the system listed in table 1.

parametric combination resonance of summation or difference types (|w; Fw;|/k), at least for
the dynamic systems considered so far in the literature. For the present system it was found
that the region of parametric anti-resonance is approximated best by the stability boundary
curve of a parametric resonance frequency (2w;/k). This stability boundary curve is derived
briefly in the following. The stability boundary curves at parametric combination resonance
frequencies will be presented elsewhere.

For one pair of complex conjugate eigenvalues, the complex conjugate eigenvectors u;, v;

can translated to real-valued eigenvectors,
U= [R{uw} {uw}], V=R{vi}, -S{vi}]. (11)

Applying these eigenvectors in the normalization in eq. (10) still diagonalizes the coefficient

matrix B but the coefficient matrix Ao becomes a block-diagonal matrix of the form
PN ~ ; i
VTAU = g (12)
—Bi o

This matrix can be transformed to an equivalent dynamic system of second order by the

similarity transformation

1o | B 1 o 0 1 3)
i Bi| =B o] |—eu/Bi 1/B; —(af +87) 20
and
1 0 1 0 _ (14)
KX 5i_ _*ai/ﬂi 1/8;
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Note that the relation o + 37 = |\i| = w; holds. The similarity transformation allows to
express the pair of complex conjugate eigenvalues and eigenvectors by an equivalent dynamic
system of second order. The original system in eq. (8) becomes finally of the form (for

complex conjugate eigenvalues)
Zi + €043 + w?zi = —¢€ (Ri]’é‘j -+ Qiij) sinQt — ¢ (Sijz’j + Pijzj) cos Qt (15)
Herein, the small parameter € was introduced and the following relations hold:

€0i = =20y
£Qijsin Qpt + ePij cos Upt = v, (K; + Ny )uy, (16)
eR;; sin Qpt + €555 cos Qpt = V?(Ct + Gy)u;
Herein, u;, v; are the right and left eigenvectors from eq. (11 that were weighted with
coefficient matrices of the similarity transformation in eq. (13). The stability condition for
such a general time-harmonic system is derived by applying the averaging method in the

quasi-periodic case [20]. In the present discussion a detuning of first order in ¢ from a

parametric resonance frequency is introduced

2&),’

Qp = + e0; +O(52) (17)

which leads to the resonant terms for the coefficients Qii, Pii, Rii, Sis (see [6] for more
details). The analysis at parametric combination frequencies is not presented here. The
stability boundary for a parametric excitation in the vicinity of 2w;/k is found from the
coefficient matrix of the underlying slow dynamics of the perturbed system and employing

the ROUTH-HURWITZ conditions [1] which lead to

wiSii + Qi — 2wiOi > 0 (18)
erit _ ! — 4,202 S, )2 Rii — Pii)2?
cof™ = o V40202 + (WiSii + Qui)? + (wiRii — Pi) (19)

Herein, ©;; is the modal damping and the coefficients Qi:;, P;; and Ri;, Si; represent the
parametric excitation that is proportional to the displacements and velocities in the modal
space. For the specific system parameters listed in Section 3, the coefficients Qi;, P;; are
dominant which simplifies eq. (19).

The comparison between the numerical results shown in figure 4 and the analytical prediction
in egs. (19) and (17) is summarized in figure 6. The dashed line shows the natural frequency
ws in dependency of the rotor speed. The thin solid line shows the stability boundary
©;; = 0 of the system with fixed bearings geometry (Ad = 0). The thick solid line shows the
analytical prediction of the stable region according to egs. (19) and (17) for k = 2.
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Figure 6. Stability charts for different control amplitudes A§ extracted from figure 4 for
the truncated FOURIER series, overlayed with the analytical prediction according to egs. (19)

and (17) for k = 2. The green area depicts a stable system.

6. Conclusions

A simple rotor supported by journal bearings with adjustable geometry is investigated. Due
to a harmonic, semi-active adjustment of the bearing clearance, the fluid-film properties alter
periodically in time. Tuning the frequency and amplitude of this adjustment, a parametric
anti-resonance is achieved at which self-excited vibrations are successfully suppressed. Em-
ploying this concept, the rotational speed can be increased far above the stability limit of
the originally time-invariant system without becoming unstable. Calculations using FLO-
QUET’s theorem as well as an analytical prediction confirm the enhanced stability domain.
The analytical stability analysis will be extended to higher orders of the FOURIER series. An

experimental verification is ongoing.
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A. Appendix

Table 1. Physical and geometrical properties of the rotor system.

Mass of the disc mg=2kg
Mass of a journal myz =0.25kg
Stiffness parameter k=1.85-105N/m
Static load Fstat=(ms+2myz)g = 245N
Bearing width B=27mm
Radius of the segments Rgs=27mm
Radial clearance (for §=0) hn=Rs—Rz=132.3-10"%m
Relative gap Y =hn/Rs=4.9-1073
Oil viscosity Noir = 1.3 1073 N/(m?2s)
Reference angular velocity wé =2Fstat/(hnmg)=92.7-1031/s?
Reference SOMMERFELD-number Sog = Fstat w%/(B 2Rs Moitwo)=0.5
Dimensionless stiffness parameter k=2Fstat/(hnk)=1
Dimensionless mass parameter n=2mz/mg=0.25
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Galvanometer scanning for high-end biomedical and
industrial imaging applications
(CON097-15)

Virgil-Florin Duma*

Abstract: Galvanometer-based scanners (GSs) are the most utilized devices for high-
end applications, such as biomedical imaging — for example in Confocal Microscopy
or Optical Coherence Tomography (OCT). We present in this paper our previous and
current studies on GSs, regarding several aspects: (i) a comparison of the
performances of the most utilized scanning regimes (i.e., triangular, sawtooth, and
sinusoidal); (ii) several rules-of-thumb extracted from the experimental studies and
from the mathematical modeling concerning the optimal use of GSs in OCT; (iii)
optimal custom-made scanning functions to achieve the highest possible duty
cycle/time efficiency of the scanning process. Recent progress in our groups regarding
the construction of handheld scanning probes using GSs are pointed out. An overview
of a range of imaging applications of such devices in OCT - as we have performed in
biomedical clinical and industrial environments - concludes the paper.

1. Introduction

Laser scanners are one of the most utilized optomechatronic devices for biomedical imaging (e.g., for
Confocal Microscopy (CM) and Optical Coherence Tomography (OCT)), as well as for industrial
manufacturing and Non-Destructive Testing (NDT) applications. Although more than forty different
configurations of laser scanners were developed since the early 1970s, only five types of such devices
are essentially in use nowadays [1, 2]: oscillatory (galvanometer-based or resonant), polygonal,
refractive (i.e., with Risley prisms), holographic, electro-, and acousto-optical.

The most utilized — since the early 1990s — are the galvanometer scanners (GSs), while the
others have mostly niche applications that are imposed by their different advantages and drawbacks.
Thus, polygon mirror (PM) scanners [3, 4] provide the highest scanning speeds from all mechanical
scanners, therefore they are employed for example in broadband laser sources scanned in frequency
for the fastest variant (i.e., Swept Source) of one of the established biomedical imaging techniques:
OCT [5-7]. Risley prisms are employed in applications that range from satellite positioning to raster
scanning in CM [8] or to endoscope scanning probes in OCT — as such devices have high scanning
speeds (although with complicated scan patterns [9]) and they can be miniaturized. Holographic
scanners can also provide a fast scan, but they can only be utilized with the light wavelength with

which they have been created, therefore they cannot be used for broadband lasers like those necessary
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for low coherence techniques such as OCT. Acousto- and electro-optical scanners do not have
mechanical inertia therefore they can operate in the MHz region in terms of scan frequency, but their
resolution is quite low [2].

In contrast to all the solutions above GSs have good performances for all the scanners
characteristics, with no major drawbacks; this actually gives their employability. Thus, GSs have a
good positioning position, they provide a good scanning frequency and speed, and are sufficiently
compact at reasonable costs per axis. Their technology is mature in most respects, regarding [10]:
motors, bearings, mirrors, sensors, control structures, and testing. These advantages have imposed
them for example for lateral scan in a multitude of biomedical imaging techniques, including CM,
OCT, two photon or multi-photon microscopy [6]. All these techniques gave in return a strong feed-
back to further develop and improve not only GSs, but all scanning devices [11].

However, GSs still have issues, especially in the area of their scanning algorithms. This provides
an active avenue of research nowadays for the optimization of their parameters and programming. In
this respect, the aim of this paper is to present some of our main contributions in this field of work
regarding GSs, especially utilized in high-end applications - with a definite focus on OCT. We shall
also point out briefly some of these applications on which we have worked on recently, both in the

biomedical field (in particular, for dentistry) and in NDT for materials study for industry.

2. Optimization of the most utilized galvoscanning regimes

From a constructive point of view a GS is an electric motor with an oscillatory element (i.e., a moving
magnet) which has on its shaft a mirror to deflect a laser beam to a desired position (Fig. 1). The shaft
also has spring elements (e.g., flexure bearings) and a damper, as well as a position sensor system
which provides its current angular position 4(t) to a closed-loop control structure.

Galvomirror (J) =~ &£/ Objective lens

Fixed

= — e
magne Ty —
g ' -Xa T~
- -H Optical
=~ axis

Mobile/ S

Incident

! Damper (c oscillator Emergent
fixed laser per () ] elementy oscillatory
beam Spring (k) laser beam

Figure 1. Galvanometer-based Scanner (GS) - principle scheme. Notations: 6(t), scan angle; 6,
angular scan amplitude; x(t), position of the scanning spot; x,, amplitude of the linear scan;

H, total scan amplitude; L, distance from the galvomirror axis to the objective lens.
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One of the most incorrect assumptions when using GSs in a high-end application is that the
output signal (i.e., the current angular position of the galvomirror) will match perfectly the input
signal. Actually, this is approximately true only for very low scan/oscillatory frequencies, for which
one may consider that the stop-and-turn of the GS shaft (with the mirror attached to it) can be done
almost instantaneously. However, as the scan frequency in increased, mechanical inertia begins to
play a more significant role and the mobile element of the GS actually needs a certain time to
decelerate and stop from a given speed, as well as another finite time interval to accelerate to another
value of the scan speed. This is at least the case of two of the most utilized scanning regimes, i.e.,
triangular (Fig. 2a) and sawtooth (Fig. 2b). The non-linear portions of the output signal/scanning
function that are thus produced become more significant when increasing the scan frequency f=1/T
(where T is the time period of an oscillation) and/or the scan amplitude 6,, (Fig. 1). We have made a
detailed study [12] to characterize these phenomena and to compare the duty cycle of the GS for the
three most common scanning regimes which are shown in Fig. 2a-c.

The duty cycle (or the time efficiency of the scanning process) is defined as the ratio between the
“active” time (i.e., the interval within a time period T for which the scan is performed with a constant
speed) and the period T. There is a theoretical/ideal duty cycle #, (of the input signal) equal to 100%
for the triangular scan (Fig. 2a) if bi-directional scan is used for the application) and which varies
from 50% to 90% for the sawtooth scan (Fig. 2b) - where the former value characterizes a triangular

uni-directional scan):

(d) ©)

Figure 2. Input and output scanning signals of a GS: (a) triangular, (b) sawtooth, and (c) sinusoidal

input signals; (d) triangular and (b) sawtooth output signals.
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The output signal is characterized by an effective duty cycle » which takes into account the non-
linear portions of the output signal (Fig. 2d, e) produced by mechanical inertia (or directly the non-

linearity of the input signal itself when sinusoidal scan is utilized). For the first two scanning regimes:
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where At’ is the return time of the galvomirror, increased with regard to the At return time of the input
signal (Fig. 2b) due to the non-linear portions produced by mechanical inertia. For the sawtooth scan,
this phenomenon is even more complicated by the fact that the entire output signal (Fig. 2d) “shifts”
towards a triangular shape, as we have documented in detail, developing two appropriate
mathematical models and deducing the expressions of # in [13].

From the multi-parametric study on # with regard to the scan parameters #,, f;, and 6,, several
conclusions can be drawn in order to optimize the scanning regimes, including the following [12, 13]:

(i) Triangular scan is the one that can provide the highest possible effective duty cycle (i.e., the
largest time t’, (Fig. 2d, e) with a constant scanning speed per an oscillatory period T). In OCT
imaging, this means that the OCT image is not distorted at reasonable scan frequencies and
amplitudes — with limits that we have studied — see for example Fig. 3, as well as Fig. 7 [12].

(if) However, as a natural tendency of GS users, 7, is increased to have time for an imaging with
higher resolution for example in OCT, therefore At is decreased for a certain period T=1/f; of the
scanning process. The problem is that, as we have demonstrated [13], this does not produce the
desired effect; in fact it produces, for fs roughly higher than 200 Hz, a saturation of the device from
this point of view. Therefore sawtooth scan, although theoretically convenient (it provides
theoretically the longest available time with a constant scan speed, i.e., t;=n; T), is in practice strongly
affected by the non-linearity of the scanning function, especially since the speed of the return portion
(Fig. 2b and e) is significantly higher. In this respect, based on our work in [12], other groups thus
obtained corrected OCT images of large scanned samples (e.g., retina) by eliminating the distorted
portions of each individual scan [14]. The sawtooth scan is also disadvantageous from a mechanical
point of view due to the high stress inflicted on the mobile equipment; this leads on short term to
heating of the device (thus affecting its functionality) and on long term to a decrease of its life time.

(iii) Sinusoidal scan is excellent from the mechanical point of view (in contrast to the above

sawtooth regime), because the acceleration and then the deceleration are actually continuous (Fig. 2c).

164



The major consequence is the capability of a certain GS to function only up to a certain maximum
scan amplitude 6y, at each scan frequency for sinusoidal, as well as for triangular and sawtooth scan
— for each type of GS (fee for example the testing results in Fig. 3); at scan amplitudes higher than
6im the system looses stability and chaotic vibrations are being recorded. Looking from another angle,
one may say that the GS can work at a double limit scan frequency (i.e., 2 kHz for the GS we have
tested - Fig. 3) for sinusoidal with regard to triangular scan. The issue is that exactly this aspect
affects the optical performance of the device: the non-linearity of the signal produces the smallest 7 of
all three scanning regimes and this results in long distorted portions on the OCT images (Fig. 17,

[12]).

Limit scan amplitude [V]

| ra

500 1x10° 1.5x10° 2x10°
fs

Scan frequency [Hz]

Figure 3. Limit (i.e., maximum achievable) scan amplitudes 6;;,, that a tested GS [12, 13] is capable to

achieve at each scan frequency f; — example of a testing for sinusoidal input signals.

Distortion is important not only for individual images (i.e., B-scans/transversal sections into the
sample for OCT), but also for the case when larger samples have to be imaged, as pointed out above.
In this latter case, one must collate individual B-scans to obtain a mosaic image. If the margins of the
B-scans are distorted (as it is the case with sinusoidal or sawtooth scan, and even with triangular, for
higher f frequencies), those portions have to be discarded, and the individual B-scans have to be
slightly overlapped; otherwise a grid of lines (which represent wrecked images) will appear on the
large, mosaic image. We have studied these aspects in detail in [13], using Gabor Domain Optical
Coherence Microscopy (GD-OCM) [15] and produced several mathematical models for the different
scanning regimes in order to achieve these goals. OCT images were finally produced (Fig. 6 and 7,
[13]), demonstrating the validity of these mathematical models and validating the expressions of the

effective duty cycle deduced for the different cases of scanning input signals.
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3. Custom-made scanning signals for GSs

A method to increase the duty cycle of the GS is to program in the input signals a non-linearity
defined by a certain function [1, 2, 10]. The input signal will therefore be linear (on the constant
speed portions) plus polynomials of different orders or sinusoidal-type of different equations. The
statement in the literature is that the optimal signal (i.e., the one that produces the highest effective
duty cycle #) is the linear plus sinusoidal [10]. As this was contradicting our observations, we have
begun to approach this problem in detail [16], starting — for a GS in open loop - from the classical
differential equation of the movement of the oscillatory element of the GS:

1 +cO+k0=T, (1), 3)

where J is the axial mass inertia moment of the mobile element (including the galvomirror); k is the
elastic coefficient; c is the damping coefficient (Fig. 1). Equation (3) can also be written as:

0+ 2Ew,0+ 026 = TaJ(t) (4)
where
k c
w. = |— and — (5)
K RPN

are the undamped angular frequency and the damping ratio of the system, respectively.

We have demonstrated [16] that, from the possible equations of the non-linear portions of the GS
input signal, the most appropriate ones to provide the maximum effective duty cycle # are the
parabolic and the sinusoidal one. In Table 1 we deduced the expressions of # and of the maximum
inertia torque of the GS for the two scanning regimes above. Due to the space limitations we do not
provide here the details of the mathematical calculus, as they have been discussed in [16].

One may see that if the Eqgs. (6) and (7) are compared one may conclude that, as pointed out in
the literature [10], the linear plus sinusoidal scanning function is the one that provides the highest 7.
However, in order to be rigorous one has to complete the analysis with the values of the maximum
inertia torque of the GS. Thus, one may see from Eqs. (6) and (7) that, although # (for the sinusoidal
non-linearity) is slightly higher that #, (for the parabolic non-linearity) with regard to different values
of the parameter r=0,/0,,, one may see that, for a certain scanner (i.e., characterized by a certain
parameter Ti — Eq. (11b)), the values of r that can be reached for each scanning regime are different.
Therefore, in order to make a proper comparison one must eliminate the parameter r from the Egs.
(6), (9a), and (11b); in a similar way the parameter r has to be eliminated from the Egs. (7), (10), and
(12b). The final expressions of the effective duty cycle # for the two scanning regimes are therefore
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the ones in Eq. (11a) and (12), respectively. In Fig. 4 the two characteristic graphs of these effective

duty cycle are presented, as well as the difference between the two values of # for the two scanning

regimes — all with regard to the scanning parameter Ti, which includes, as shown by Egs. (9a), (9b),

and (11b), all the different constructive and functional parameters of the GS.

Table 1. Comparison of the two main triangular-type scanning functions x(t) of the GSs analyzed [16]

with regard to r = X, /H -

Parameter Linear plus parabolic (p) Linear plus sinusoidal (s)
Function
4t I 1 (7
Duty cycle n, 1- T o2_¢ ©) 12 >
) -r -
(theoretical) 1+ arctan
r r
MaXIT;L:qmu:anertla CV” where  (92) cvt 2 2 (10)
o 1-r 1-r
Tmax = ‘]emax (8) J
= (9b)
AHL[L+(H /L)
Duty cycle T -1 1
. — , (11a) n, =
effective Mo s
( ) Ti+l 1+ 2 arctan
where T, =T, /Cv? (11b) i =2 i~
(12)
1
np (Ti) LA
15 (T) g 5 7\
— . E rﬂllf
An (Ti) 1y
— S Anngn
l’I:
0 5 10

Ti

Figure 4. Comparison of the duty cycle for the two main triangular-type (linear plus non-linear)

scanning functions: (p) linear plus parabolic; (s) linear plus sinusoidal — conclusion of the

study in [16].
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The conclusion that can be reached is therefore that the linear plus parabolic scanning function
always provides the highest possible 7 of the GS.

An essential remark is that, while in [16] we have considered this equation from the particular
(and somehow less utilized) case of a GS in an open loop, in [17] we have also demonstrated that this
equation can be applied approximately for the more common and useful case of a GS with a closed
loop, because of the practical values of the parameters of the control structure of the GS. The
discussion in [16] can thus also be applied for the most useful case of closed-loop GS structures.

4. Handheld scanning probes with 1D GSs for OCT

In order to move the technology from lab to clinic, mobile OCT units are being made and they have to
be equipped with handheld scanning probes with different types of infrared laser scanners [18-22].
We have designed such a family of probes equipped with 1D GSs [21, 22]; thus, they are capable to
produce OCT B-scans/transversal images into the sample.

Figure 5 shows one of the variants of the handheld probe developed for OCT. Its main
components are: (0) optical fiber; (1) fiber collimator; (2) mount adapter for the fiber collimator; (3)
XY mini-translation stage; (4) compact 6-way cage cube; (5) mount of the GS (manufactured in the
university workshop), which also has the role of heatsink for the GS; (6) 1-D GS; (7) lens tube (with a
1.5" diameter); (8) lens objective for infrared (9) handle; (10) cover. Details of the Thorlabs™
components we have used in our devices were pointed out in [21], where we included their codes — to
allow for their easy reproduction in any photonics lab, as well as a discussion on their weights and

costs.

5. Applications in biomedical imaging and in NDT

The initial testing of the handheld probes (in their different variants) was presented in [22], as
performed in the lab on different types of materials, as well as on healthy volunteers from the team —
in typical OCT investigations of skin and teeth. Ex vivo applications in the clinic, for example with
investigations of the oral chords, the larynx, and the tympana were presented in [20] as part of the
investigations carried on in the Ear-Nose-Throat (ENT) Department of the Northwick Park Hospital
(part of London North West Healthcare NHS Trust, London, UK).

Another variant of the same probe is being used, both ex vivo and in vivo, in the Dental Medicine
Department of the Victor Babes Medicine and Pharmacy University of Timisoara. We have presented
from these dentistry applications investigations of metalloceramic dental prostheses, for which the
hidden defects beneath the surface of the dental construct can be determined, both in position and
magnitude [21]. Other in vivo investigations are taking place, related to real time investigations of the

remaining dentin thickness during the drilling process. B-scans (i.e., transversal sections into the
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sample, as provided by the OCT system when employing a 1D scanner are sufficient for such
applications: the dentist can thus monitor the drilling process to avoid the penetration of the dentin
towards the pulp chamber - as we have recently demonstrated [23]. Also, after the dental procedures,
such an inspection using the OCT system coupled with the handheld probe allows for identifying the
hidden defects in the interface between the tooth and sealant, as pointed out in the literature [24] and
as we have demonstrated ex vivo [25].
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Figure 5. Variant of a handheld scanning probe for OCT with a 1D GS: (a) assembly of the probe; (b)
section through the probe with the laser beam emerging the fiber and directed through the
collimator (1) on the galvomirror of the GS (6) and through the objective lens (12) towards

the sample.

An essential remark is related to the fact that, because our probes are not equipped with 2D
scanners like other configurations which have dual axis GSs [18] or MEMS [19], volumetric

reconstructions of the probe are not achievable in this way. However, for specific applications as
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pointed out above, cross-sectional capabilities into the probe are sufficient for the clinic specialist,
who actually provide the third direction of scanning him/herself, by sweeping the sample to inspect
the tissue — or, for example, a certain dental work.

The same aspect is valid for numerous industrial applications, for example in NDT. In this
domain we have recently demonstrated that 10 um resolution OCT can successfully replace the 4 nm
resolution, costly and time consuming Scanning Electron Microscopy (SEM) for the study of metallic
fracture, brittle of ductile [26]. The advantage of OCT in this respect is not only related to costs, but
also to the fact that mobile OCT units can be carried out into the field, while for SEM investigations
samples have to be collected and carried to the lab.

When handheld probes are being utilized with OCT mobile systems, they also allow for
investigations in situ, in real time, around the objects, to investigate all the areas on interest, with
results that can be obtained and analyzed on the spot. This direction of work impacts all types of
accidents (especially planes), but also incidents like pipe ruptures or turbine failures, for which it is
essential to investigate if the materials utilized for the various mechanical parts have been designed
properly and if the right materials, with the optimal properties have been used. All these are possible
by being able to spot the difference between ductile and brittle fracture, as we have demonstrated
possible using OCT [26].

6. Conclusions

We presented a brief overview of some of our main contributions on GSs optimized from a dynamic
point of view with regard to the oscillatory movement of their mobile element (which includes, as the
essential element to the scanning process, the galvomirror — Fig. 1). The duty cycle of these laser
scanners was maximized for both common and custom-made input signals in order to optimize the
effective duty cycle of the GS and to eliminate distortions from the OCT images. Collated mosaic
OCT images could also be obtained based on these studies [13].

Handheld scanning probes for OCT were developed, in different configurations, equipped with
such optimized 1D GSs. They were applied so far in biomedical imaging in different clinical
environments and with different OCT systems [20, 21], thus demonstrating the versatility of our
handheld probes, besides the fact that they are simple, easy-to-assemble, light weight, and low cost
[21, 22]. Future work with such probes includes both NDT and biomedical applications — the latter
especially in dentistry, for both hard [21-23, 25] and soft tissue [27]. Other probes for OCT, with 2D
GSs and MEMS are currently under development in our groups, while different, more challenging
scanners are being considered for application as well, for example Risley prisms [8, 9].

Another direction of work is related to further improvements of the control structures of GSs, in

order to obtain either improved precisions or speeds [17]. This research topic is integrated in our
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general direction of work on laser scanners with improved, optimized characteristics applied for high-

end applications [11].
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Estimation techniques for uncertain dynamical systems
with bilinear and quadratic nonlinearities
(CON019-15)

Tatiana F. Filippova, Oxana G. Matviychuk, Elena K. Kostousova

Abstract: The problems of estimating reachable sets of nonlinear control sys-
tems with uncertainty in initial states and in the system parameters are studied.
The initial states are taken to be unknown but bounded with given bounds. We
assume that the nonlinearity in the system may be generated by the presence
of nonlinear functions in the right-hand sides of the corresponding differential
equations, which are either bilinear (with uncertainty in the elements of related
matrices) or quadratic or else a combination of these types. We present two
approaches to solving the problems of estimation of reachable sets of uncertain
control systems. The first approach is based on the procedures of ellipsoidal
state estimation of optimal control theory under uncertainty. The second one
develops the polyhedral estimating techniques. We elaborate procedures and
numerical schemes for the construction of external and internal estimates of
reachable sets of the systems under consideration. Also we present the mod-
ification of the above state estimation approaches for the case of nonlinear
dynamical systems with impulse controls. The numerical algorithms and ex-
amples of constructing the ellipsoidal and polyhedral estimates for studied
nonlinear systems are given.

1. Introduction

The paper deals with the estimation problems for uncertain systems in the case when a
probabilistic description of noise and errors is not available, but only bounds on them are
known [1,2,10-12,14,15]. Such models may be found in many applied areas ranged from en-
gineering problems from physics to economics as well as to biological and ecological modeling
when it occurs that a stochastic nature of the errors is questionable because of limited data
or because of nonlinearity of the model. The solution of many control and estimation prob-
lems under uncertainty involves constructing reachable sets and their analogs. For models
with linear dynamics under such set-membership uncertainty there are several constructive
approaches which allow finding effective estimates of reachable sets. We use here two of the
most developed approaches to research in this area. The first one is based on the ellipsoidal
calculus [2-5,10,11,13] and the second one uses the polyhedral techniques [8,9] which may
be considered as some extension of interval analysis [6,7,15].

In this paper the modified state estimation approaches which use the special structure

of nonlinearity of studied control system are presented. We assume here that the system
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nonlinearity is generated by the combination of two types of functions in related differential
equations, one of which is bilinear and the other one is quadratic. We find here set-valued
estimates of related reachable sets of such nonlinear uncertain control system. The algorithms
of constructing the ellipsoidal and polyhedral estimates for studied nonlinear systems and

numerical simulation results related to the proposed techniques are given.

2. Uncertain systems with bilinear and quadratic nonlinearities
2.1. Problem formulation

Let us introduce the following basic notation. Let R™ be the n-dimensional vector space,
comp R” be the set of all compact subsets of R™, R™*™ stands for the set of all real n x m-
matrices, z'y = (z,y) = >, T:y: be the usual inner product of z,y € R™ with prime as
a transpose, ||z| = ||lz]|2 = (2’x)"/?, ||z||e = maxi<i<n |zi| are vector norms for z € R,
I € R™*™ be the identity matrix, tr (A) be the trace of n X n-matrix A (the sum of its
diagonal elements). We denote by B(a,r) = {z € R" : |z — a|| < r} the ball in R with a
center a € R™ and a radius r > 0 and by E(a,Q) = {x € R" : (Q ' (x—a), (r—a)) < 1} the
ellipsoid in R™ with a center @ € R"™ and with a symmetric positive definite n X n-matrix Q.

Consider the following system
T =At)x + f(x)d +u(t), =o€ Xo, tE [to,T], (1)

where z,d € R", ||z|]| < K (K > 0), f(z) is the nonlinear function, which is quadratic in z,
f(z) = 2’ Bz, with a given symmetric and positive definite n x n-matrix B. Control functions
u(t) in (1) are assumed Lebesgue measurable on [to, 7] and satisfying the constraint u(t) € U,
for a.e. t € [to,T], (here U is a given set, U € compR"™). The n X n-matrix function A(t) in
(1) has the form

A(t) = A° + A' (1), (2)

where the n x n-matrix A° is given and the measurable n x n-matrix A'(t) with elements

{a'P(®)} (4,5 =1,...,n) is unknown but bounded, A'(t) € A",

©J
Aty e A=A+ A", A" = {A={a;; }eR™" : |ay;|<cij, i,5=1,...n}, t€[to,T], (3)

where ¢;; >0 (i,7 =1,...n) are given.

We will assume that Ay in (1) is an ellipsoid, Xy = E(ao, Qo), with a symmetric and
positive definite matrix Qo and with a center ao.

Let the absolutely continuous function z(t) = @ (t; u(-), A(-), z0) be a solution to dynam-

ical system (1)—(3) with initial state o € X, with admissible control u(-) and with a matrix
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A(-) satisfying (2)—(3). The reachable set X (¢) at time ¢ (to < t < T') of system (1)—(3) is
defined as the following set

X(t)={z € R" : Jwo€Xo, Ju(-)eUd, FA()eA, x=ux(t)=a(t;u(-),A(-),z0)}.

The main problem here is to find the external ellipsoidal estimate E(a™(t), Q% (t)) (with
respect to the inclusion of sets) of the reachable set X (t) (to < t < T') by using the analysis
of a special type of nonlinear control systems with uncertain initial data.

We need further some auxiliary results on the properties of reachable sets for different

types of dynamical systems.

2.2. Bilinear systems

Bilinear dynamic systems are a special kind of nonlinear systems representing a variety of
important physical processes. A great number of results related to control problems for
such systems has been developed over past decades, among them we mention here [3,11,13].
Reachable sets of bilinear systems in general are not convex, but have special properties (for
example, may be star-shaped). We, however, consider here the guaranteed state estimation
problem and use ellipsoidal calculus for the construction of external estimates of reachable
sets of such systems.

Consider the bilinear system
:ifIA(t)iE, to StST, o € X :E(GO7Q0)7 (4)

where x,a9 € R", Qo is symmetric and positive definite matrix. The unknown matrix
function A(t) € R™*™ is assumed to be of the form (2) with the assumption (3).

The external ellipsoidal estimate of reachable set X' (T) of the system (4) can be found
by applying the following theorem.

Theorem 1 (See [3]). Let a™(t) and Q1 (t) be the solutions of the following system of

nonlinear differential equations

d+ = A0a+, a+(t0) = ao, (5)
QT =A"Q" + QA" + Q" +¢7'G, QT(t0) =Qo, to<t<T, (6)
_ . 1/2
¢= (" (@)@, (7)
. . . 1/2792
G = diag {(n —0)[ > cilal |+ ( max > QpaCinciaTinTia) /2 }7 (8)
=1 TTIdg p,q=1
the mazimum in (8) is taken over all oy; = +1, 4,5 = 1,...,n, such that ¢;; 0 and v is a
number of such indices i for which we have: c¢;;j =0 for all j =1,...,n. Then the following
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external estimate for the reachable set X (t) of the system (4) is true

X(t) CE(a*(t),Q"(t), to<t<T. (9)

Corollary 1. Under conditions of the Theorem 1 the following inclusion holds
X(to+0) C (I+0.4) Xo+01(0) B0, 1) C Ea* (to+0), Q" (to+0)) +02(0) B(0,1), (10)

where a7 0;(0) = 0 foro — +0 (i =1,2) and (I +0A) X = U U {z + cAx}.
TEX) AEA

2.3. Systems with quadratic nonlinearity

Consider the control system of type (1) but with a known matrix A = A°
:t:AOx—i—f(a:)d—i—u(tL xo € Xo = E(ao,Qo), to<t<T. (11)

We assume here that u(t) € U = E(a, Q), vectors d, ao, @ are given, a scalar function f(z)
has a form f(z) = ' Bz, matrices B, Qo, Q are symmetric and positive definite. Denote the
maximal eigenvalue of the matrix Bl/QQOBl/2 by k2.

Theorem 2 (See [4]). The following inclusion is true for any t € [to, T
X(t) C E(a*(t),r ()BT, (12)

where functions a™ (t), 77 (t) are the solutions of the following system of ordinary differential

equations

" (t) = AT (O)+((a" (1)) Ba" () +r (t)d+a, to<t<T, (13)
# (1) = max {V' (2 ()BY(A° + 2d(a” (1) BYB™Y + ¢~ (" (1)) B'*QB))1}
Ay 1/2

+a(rt ()t (1), q(r) = ((nr) ' (BQ)) 7, at(to) = a0, 7 (to) = k7. (14)

Corollary 2. The following upper estimate holds true
X(to +0) C E(ay (), Q" (0)) + 0o(0)B(0, 1), (15)
where 0~ o(0) — 0 when o — 40 and

at(0) =a(o)+oa, a(o)=ao+ (A0 + ayBaod + k>d), (16)
QT ()= " +1DQ) + (p+1)0"Q, Qo) =K (I +oR)B™" (I +0R), (17)
R=A"+2d-a}B,
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~ 1 n
and p is the unique positive root of the equation = with a; > 0 (i =
; p+ai  plp+1) (

1,...,n) being the roots of the following equation |Q(o) — a02Q| =0.

Numerical algorithms basing on Theorem 2 with related examples are given in [4].

2.4. Estimates of reachable sets for bilinear-quadratic control system

Consider the general case (1)—(3) of the system dynamics and here we take Xo = E(ao, Qo)
and U = E(a, Q) where matrices B, Q and Qo are symmetric and positive definite.

Theorem 3 . The following external ellipsoidal estimate holds

X(to+0) C E(a™(to+0),Q"(to + o)) + o(c)B(0,1) (18)
where 0~ o(a) — 0 for ¢ — +0 and where

a*(to + o) = a(to + o) + o(a+ apBao - d + k*d), (19)

Q (to+0)=(p ' +1)Q(to + o) + (p + 1)o°Q, (20)

with functions a(t), Q(t) calculated as a*(t), QT (t) in Theorem 1 but when we replace
matrices Qo and A° in (5)-(8) by

Qo=kKB"" A°=A4°+2d-a}B (21)

2 1 n
respectively, and p is the unique positive root of the equation = with
; p+ai  plp+1)

a; >0 (i =1,...,n) being the roots of the following equation |Q(to + o) — a02Q| =0.

Proof. Analyzing both results of Theorem 1 and Theorem 2 and of their corollaries and
using the general scheme of the proof of Theorem 2 in [4] we obtain the formulas (18)—(21)
of the Theorem.

The following iterative algorithm is based on Theorem 3.

Algorithm 1. Subdivide the time segment [to, 7] into subsegments [t;,¢;+1] where
ti=to+ih (i=1,....,m), h= (T —to)/m, tm =T.

e Given Xy = E(ao,Qo), find the smallest k& = ko > 0 such that E(ao,Qo) C
E(ao,k*B™') (k? is the maximal eigenvalue of the matrix BY/2QoB'/?).

e Take 0 = h and define by Theorem 3 the external ellipsoid F(a1,Q1) such that
X(t1) C E(a1, Q1) = E(a"(to + 0), Q" (to + 7).

e Consider the system on the next subsegment [t1,t2] with E(a1,@1) as the initial
ellipsoid at instant ¢;. Next steps continue iterations 1-3. At the end of the process we will
get the external estimate E(a(t), Q(¢)) of the tube X (¢) with accuracy tending to zero when

m — Q.
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~

v\) S
VX

Figure 1. (a) Reachable sets X(t) and their external estimates E(a*(t),Q*(t)) for
t = 0.02;0.08;0.14;0.2;0.26;0.32. (b) Trajectory tube X(¢) and its ellipsoidal estimating tube

E(a*(t),Q*(t)) for the bilinear-quadratic control system with uncertain initial states.

Example 1. Consider the following control system

T T2 + u1,

5 5 xo € Xp, to <t <T. (22)
c(t)er + 21 + 3 + u2,

T2

Here we take t¢ = 0, T = 0.4, &y = B(0,1) and U = B(0,0.15),
bounded measurable function c(¢) satisfies the inequality |c(t)] < 1 (o < t < T). The
reachable sets X (t) and their external ellipsoidal estimates F(a*(t), @ (t)) calculated by the

the uncertain but

Algorithm 1 are given in Figure 1.

3. Impulsive bilinear-quadratic control system

Consider the following control system (to < ¢ < T, z € R")
dz(t) = (Az(t) + ' Bz - d + u(t))dt + Cdo(t), A(t) = A° + A'(t), A'(t) e A*,  (23)

where B is positive definite and symmetric matrix, A° € R"*"  parameters d,C are n-
vectors, d, CER™, the set A" is defined in (3). Here the impulsive function v : [to, T] — R is

of bounded variation on [tg, 7], monotonically increasing and right-continuous,

k
te\[iarT] o(t) =sup{ »_|v(t:;) —v(ti-1)| | to<ti < ... <ty =T} <y,
o i=1
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We assume also Xo = E(a,k*’B™Y) (k # 0), u(t) € U = E(a,Q), and consider the following

differential inclusion

% i GH(T,Z), Z(to)zl’o E.)('()7 T(to) =to, to S’I]ST—F/J, (24)
r
C A 'Bz - d+E(a,Q
H(r2) = U 5 (=) z+ 2 Bz-d+E(a,Q) ) (25)
0<v<1 0 1

Denote the reachable set of the system (24) as W(to + o) = W(to + 7;to, Xo X {to}).

Theorem 4 . The following inclusion holds true for o > 0 :

v o\o o.v) = E(a*(a'71/)7Q*(o'7y))
Wito + )QOSLVJSW(tO, V) + 0(0)B(0, 1), Wto,0,v) o

where limy_, 1o 0710(0) =0 and
a*(o,v)=a(o,v)+o(1-v)(a’ Ba - d+k*d+a)+ovC,
Q*(o,v) = (p ! + 1D)Q(ovv) + (p+ 1o (1 - 1)°Q,
with functions a(o,v), Q(o,v) caleulated as a™ (to + o), QT (to + o) in Theorem 1 but when
we replace matrices Qo and A° in (5)~(8) by Qo = k*B~", A°(v) = (1—v)(A°+2d-a)B) re-
= 1 n

“p+Xi  plp+1)
with \i = Xi(o,v) >0 (i = 1,...,n) satisfing the equation |Q(o,v) — Ao?(1 —v)?Q| = 0.

spectively. Here p = p(o,v) is the unique positive oot of the equation

Proof. The above generalization is based on a combination of the techniques described
above and the results of [5].

The following lemma explains the construction of the auxiliary differential inclusion (24).

Lemma 1 (See [5]). The reachable set X(T) is the projection of W(T + ) at the
subspace of variable z: X(T) = m.W(T + p).

The following algorithm basing on Theorem 4 may be used to produce the external
ellipsoidal estimates for the reachable sets of the system (23).

Algorithm 2. Subdivide the time segment [to, 7" + ] into subsegments [t;,t;+1] where
ti=to+ih (t=1,...,m), h= (T + p—to)/m, tm =T + p. Subdivide the segment [0, 1]
into subsegments [v;, vj41] where v; = thy, he = 1/m, v9 =0, vy, = 1.

e Take o = h and for given Xy = E(ao, k>B~') define by Theorem 4 the sets W(to, o, v;)
(i=0,...,m).

e Find ellipsoid E.(wi(c),01(c)) in R™™* such that W(to, o, i) C Ee(wi(c),01(c))
(i=0,...,m). At this step we find the ellipsoidal estimate for the union of a finite family
of ellipsoids [5].
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e Find the projection E(a1,Q1) = m.E-(wi(c),01(0)) by Lemma 1.

e Find the smallest k1 > 0 such that E(ai,Q:) C E(a1,kiB™"') (k7 is the maximal
eigenvalue of the matrix B1/2QlBl/2).

e Consider the system on the next subsegment [t1,t2] with E(a1,kiB™") as the initial
ellipsoid at instant ¢;.

e The following steps repeat the previous iteration. At the end of the process we will
get the external estimate E(a™(T), Q" (T)) of the reachable set of the system (23).

Additional discussions of the approach and numerical examples may be found in [5].

4. Polyhedral estimates for dynamical systems with bilinear nonlinearities

Consider the system similar to (1) with d =0
T = A(t) x + u(t), CL‘(to) =0 € X, te [tO,T}. (26)

The constraints for controls u(t) and for unknown matrix functions A(t) € R"*"™ in (26) are

defined here as
u(t) € R(t), t€ [to,T], (27)

A(t) € A(t) = {A € R™ " A(t) < A < A(t)} = {A| Abs (A — A(t)) < A1)}, ”

A=(A+A))2, A=(A-A)/2, tec]t,T). 2%)

Here Xy, R(t) are given convex compact sets in R", the set-valued map R(t) is continuous,

the matrix functions A(t), A(t) are continuous. Matrix and vector inequalities (<, <, >, >)
are understood componentwise.

We need here and below some additional notations and definitions. Let eiz(O7 ...,0,1,0,

..,0)’ be the unit vector oriented along the axis Oz; (the unit stands at i-position), e =
(1,1,...,1)". Tt is more convenient in this section to use the notation with upper and lower
indices A = {a/} = {a’} for the matrix A with columns a’. Denote Abs A = {|a!|} for a
matrix A = {a{}; diag 7 denotes the diagonal matrix A with a! = m; (m; are the components
of the vector 7); det A is the determinant of A € R™*™; [|A|| = maxi<i<n D 7", |la?| is the
matrix norm for AER™*™ induced by the vector norm ||z co.

By a parallelepiped P(p, P, 7)CR"™ we mean a set such that P = P(p,P,7) = {z €
Rz =p+3 01 p'mi&, ||€]lc < 1}, where p € R™; P = {p'} € R"*" is such that det P # 0,
lp*]]2 = 1 (the normality condition ||p’||2 = 1 may be omitted to simplify formulas); = € R",
m > 0. It may be said that p determines the center of the parallelepiped, P is the orientation

matrix, p* are the “directions” and 7; are the values of its “semi-axes”.
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By a parallelotope Plp, P] C R™ we mean a set P = Plp,P] = {x € R"| = = p + P(,
l¢lo< 1}, where p € R™ and P = {p'} € R™™ m < n. We call a parallelotope P
nondegenerate if m=n and det P#0. Each parallelepiped P(p, P, 7) is a parallelotope P[p, P]
with P = P diag m; each nondegenerate parallelotope is a parallelepiped with P = P, m = e.

We call P an external (internal) estimate for X CR™ if P D X (P C X).

Assumption 1. The set Xo = Po = P[po, Po] = P(po, Po, 7o) is a parallelepiped, the
sets R(t) = P[r(t), R(t)] are parallelotopes, where R(t) € R"*™, m < n; r(-), R(:) and A(-),
A(-) are continuous vector and matrix functions.

The main problem of this section is to find some external Pt (t) = P(p™ (t), PT(t), 7T (1))
and internal P~ (t) = P[p~ (t), P (t)] polyhedral estimates for reachable sets X'(t): P~ (t) C
X(@t) CPH@), t € [to, T).

In [8], the following system of ordinary differential equations was obtained for external
estimates of X (t) in the form of parallelepipeds P (¢t) = P(p*(t), P(t), 7" (t)), where P(t)

is a fixed matrix function:

+ .
W PPyt 4 P@ — )2k r pt(t) =po, BT, (29)
dr _ o) 4 g 17 + =
W = (‘I’ + o )/2+AbS(P R)e, ™ (to) IAbS(P(tQ) Po) o,

where <I>§i) = max (:I:Pil(AfPPfl)x + Abs (P~1)A Abs )

el

x=p" + Pdiagn ™t & EF = {¢|€€E(P(to, I,¢)), &=%1}, i=1,...,n,

(3

(30)

i

the symbol E(P) denotes the set of all vertices of a parallelepiped P=P(p, P, ), namely
the set of points of the form z =p+3°7_, pric, ¢ € {-1,1}.

Theorem 5 (See [8]). Let Assumption 1 be satisfied and P(t) € R™*™ be an arbitrary
continuously differentiable function such that det P(t) # 0, t € [to,T]. Then the system
(29), (30) has a unique solution (p*(-),7(:)) on [to,T], and the parallelepipeds P*(t) =
P(pt(t), P(t), 7" (t)) are the external estimates for the reachable sets X(t) of the system
(26), (27), (28): X(t) C Pt (1), t € [to, T).

The following differential system was obtained in [9] for internal estimates of X'(¢):

P _

=A@y +r(), p () =po, tE€[to,T) (31)

dﬁ% — A(t) P~ + diagv(t, P73 J(t) - B(P™) + ROT(), P~ (to) = P,

vi(t, P73 0) =@l (t) - my,(t, P7), i=1,...
n(t, P~) = max{0, Absp~ (t) — (Abs P )e},
B =diag3(P™)-P~, Bi(P7)=1/(¢"(AbsP )e), i=1,...,n,

y Ty

(32)
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AN

(a) (b)

Figure 2. (a) Some external and internal polyhedral estimates for X(t) in Example 2.

(b) The initial set Py, two external and several internal estimates for X(T) in Example 2.

(the operation of maximum is understood componentwise). Here I'(t) € R™*™ is an arbitrary
Lebesgue measurable matrix function satisfying ||I'(t)|| = maxi<i<m 57—, V| < 1, ae.
t € [to,T], and J = {j1,...,jn} is an arbitrary permutation of numbers {1,...,n} or even
a measurable vector function J(-) with values J(t) being arbitrary permutations of numbers
{1,...,n}. Let G and J be the sets of all such functions I'(-) and J(-) respectively.

Theorem 6 (See [9]). Let Assumption 1 be satisfied, Po be a nondegenerate parallelotope
(det Py # 0), and J(-) € J, T(-) € G. Then the system (31), (32) has a unique solution
(p~(:), P~(+)) at least on some subinterval [to,T1] C [to,T], where 0 < Ty < T, and we
have det P~ (t)#0, t € [to,T1]. The corresponding nondegenerate parallelotopes P~ (t) =
Plp~(t), P~ (t)], t € [to,T1], are internal estimates for the reachable sets X (t) of the system
(26), (27), (28): P~ (t) C X(t), t € [to, T1].

Assumption 2. Either R(¢) are singletons for all ¢ € [to,T] (in this case the function
u(-) = 7(-) may be assumed to be measurable) or I'(:) € G is such that R(t)['(t) = 0,
t € [to,T).

Corollary 3. Under conditions of Theorem 6 and additional Assumption 2 the system
(31), (32) has a solution on the interval [to, T, and we have det P~ (t) # 0 and P~ (t) C X (t)
for any t € [to, T].

Note that Theorems 5 and 6 describe the whole families of estimates, where P(-), J(-),
and I'(-) are parameters.

0 1 N 0 0

Example 2. Consider the system (26)-(28) in R? with A = , A=
02 0 02 0
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R = P((0,1)',1,(0,1)), Po = P((1,1),1, (0.4,0.7)"), to = 0, T = 0.7. Fig. 2 presents a
series of external and internal polyhedral estimates for reachable sets of the system found
using Theorems 5, 6.

Additional details and discussions of the approach and also other numerical examples of

polyhedral estimates may be found in [8,9].

5. Conclusions

The paper deals with the problems of state estimation for uncertain dynamical control sys-
tems for which we assume that the initial state is unknown but bounded with given con-
straints and the matrix in the linear part of state velocities is also unknown but bounded.
We study here the case when the system nonlinearity is generated by the combination
of two types of functions in related differential equations, one of which is bilinear and the
other one is quadratic. The problem may be reformulated as the problem of describing
the motion of set-valued states in the state space under nonlinear dynamics with state
velocities having bilinear-quadratic type. We present here procedures and numerical schemes
for the construction of external and internal estimates of reachable sets of the systems under

consideration.
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Motion control of unstable mechanical systems
(CON092-15)

A.M. Formalskii

Abstract: The paper is dedicated to the designing control for objects that may have
desired working regimes unstable without additional guidance. The control signal is
assumed limited in absolute value. The motion equations of a multi-link pendulum
mounted on a moving base, on a wheel or a cart, are designed. Under some
conditions, mathematical model allows separation of equations that describe only the
pendulum motion. The task of stabilizing a single inverted pendulum mounted on a
wheel is solved. So called «inertia wheel pendulumy is studied. A control algorithm is
proposed and tested experimentally to translate this pendulum from any initial state
into the top. Other modes of motion are realized by other proposed algorithms. The
double pendulum with stationary suspension joint is considered. The control torque is
applied in the inter-link or in the suspension joint. The control algorithms to ensure
global stabilization of the inverted pendulum are designed. The problems of optimal
swinging and damping are also discussed. A problem of stabilizing of a ball on a
straight or curvilinear beam is studied. The goal is to control the voltage applied to the
drive so that to stabilize the unstable equilibrium with maximal basin of attraction.
The degree of instability of the above considered systems equal to one or two. For
maximizing attraction basin of this kind systems, all control resources must be spent
on the suppressing the unstable modes. The problem of gyroscopic stabilizing of the
upright unstable position of a robot-bicycle is investigated theoretically and
practically.

1. Multi-link pendulum on a movable base
Here we consider a plane motion of an n-link pendulum that is mounted via a joint on a moving base
—a wheel (see Figure 1) or a cart (see Figure 2).

Consider initially an n-link pendulum on a wheel. The wheel can roll without slipping over a
horizontal plane. The pendulum links can move in the same vertical plane with the wheel. M denotes
the wheel mass, R its radius, p its radius of gyration with respect to wheel center (center of mass) O.
The first link of the pendulum is connected to the wheel by a joint O (Figure 1). The links are
numbered in sequence, as they are connected to each other further away from point O, and the joints
are numbered likewise. The movement of wheel center O along the horizontal axis is denoted as x,
and x =—Rf,. The mass of the k-th link is denoted as m, , the length of this link — as 1, , the radius of

inertia with respect to the k-th joint — as r, . Let the center of mass of each link be located on the seg-

ment that connects its ends (joints), and the distance to this center of mass from the k-th joint be b, .
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At joint O a control torque L is applied to the first link. If L >0, this torque tends to turn this
link counter-clockwise. The same (in absolute value) torque, but directed clockwise, is applied to the

wheel. All joints are considered ideal (frictionless).

Y B! Yoo
X
j 7
Figure 1. Multi-link pendulum on a wheel. Figure 2. Multi-link pendulum on a cart.
The kinetic energy of the wheel T, and of the k-th link T, can be presented as
l 2 2\ 2
To=5M(R*+07)fy" ey

Tk :;m{(RBo"'iliBiCOSBij +(§IiBiSinBi) +

. @
2R3 c0sp, + 25 U cos(p, )+ |
i=1
The potential energy IT and the virtual work 8W of torque L are (g is the gravity acceleration)
n k-1
H:kag(ZIicosBi+bkcos[3kJ,6W=L(6[31—6[30). 3)
k=1 i=1

Using relations (1) — (3) to build up the Lagrange’s function £=T —1IT, the n+1 equations of

motion of the system can be derived. Angle (3, enters in the equations of motion only as its second
derivative f§,. Let q:HBO, BTHT be the vector-column of generalized coordinates of the whole

system, B =HB1,...,BnHT — the vector-column of generalized coordinates of the pendulum. Then the

motion equations can be written as follows:
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A(ﬁ)q+B(B)HqZH—GHsinBH=Q. 4

Here A(B) is the symmetric matrix of kinetic energy, its dimensions are (n+1)x(n+1):

N Cosﬁl Ay COSBZ . aon COSBn

* a, a, COS(Bl_Bz) -4, COS(Bl_Bn)
A(ﬁ): * * 8 -y COS(Bz _Bn)

* * * . a

nn

aOO:M(R2+p2)+RZZn:mi, aOS:R(bSmSJrISZn:mJ (s=1..,n),

i=1 i=s+1

n n
a;=rim +I2> m, ajS:IJ(bSmSJrISZmI] (i,s=1...n)

i=j+1 i=s+1

0 _a015in'31 —8p SinBZ : —8on Sian

0 0 a‘lZSin(Bl_Bz) . alnSin(Bl_Bn)
B(ﬁ): 0 _a125in(l31_l32) 0 . aanin(Bz_Bn) '

0 _ain Sin(ﬁl_Bn) _aZnSin(BZ_Bn) . 0

T

|=lpz B . B

G :%diag(O, 81, By )

T T
: |

[sinB|=]sinB,, sinB,, ..., sinp,| Q=|-L L 0 ., 0

The first column in matrix B(B), as well as in G, is zero. This is natural, since the motion
equations do not involve angle B, or its velocity p,. Note that equations (4) include the second
powers of generalized velocities 5, and do not include their products; and the submatrix of the n-th

order that is in the right-bottom corner of matrix B(B) is skew-symmetric. Relatively simple

structure of equations (4) is a result of the choice of generalized coordinates: angles B, of the link

deviation from the vertical were chosen, and not the inter-link angles. Solving equation (4) for the

highest order derivatives yields
G=A(B)"[Q-B(B)|a’|+G[sinp]]. 5)
The last n equations in system (5) involve only angles B, (k=1,2,...,n) with their derivatives.

These equations can be separately written as a system

B=F(B.B.L). ®)
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If torque L applied in joint O does not depend on wheel turn angle 8, and its angular velocity B,

system (6) describes exclusively the motion of pendulum. System (6) is different from the known

system of equations used to describe motion of an n-link pendulum on a stationary base [1]. In

particular, it includes equivalent moment of inertia of the wheel M (R2 +p2) , and with n=1 the

squared angular velocity of the pendulum 2 (see the next Subsection).

Unlike the wheel-based pendulum, torque L applied in joint O of the pendulum on a cart does
not influence directly on the cart motion. To derive motion equations of this system, the angular

acceleration 3, in equations (4) must be replaced with linear acceleration X of the cart using relation
B, = —%/R, and the first element —L in column-matrix Q must be set equal to zero. To make use the
expressions for coefficients of matrices A(B), B(B) , the value of R must be set equal to one, and p

— to zero. Excluding acceleration X from these equations yields a system of n equations like (6).

1.1. Single-link pendulum on a wheel

With n=1 the original system consists of a wheel and a single-link pendulum mounted on it (see

Figure 3). For simplicity instead of notations B, and B, we use here ¢ and f respectively. The device

Figure 3. The pendulum with wheel-based pivot.
shown in Figure 3 can be considered as a plane model of “Segway” or “Solowheel” [2] with person
on it. This system has two degrees of freedom. Parameters m, r, and b will be respectively mass of

the link, its radius of inertia, and distance from point O to its mass center. Introduce non-dimensional
time t and non-dimensional torque p as rztﬂlgb/r, p=L/mgb. In considered particular case
equation (6) becomes scalar equation of second order. This equation involves only angle B. It

contains parameters of the pendulum, but also parameters of the wheel M, R, and p. This scalar

equation can be rewritten as the system of second order:

B=w, (1-d*cos’B)o +d’w’sinBcosp—sinp=(1+e’cosp)u. (7
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2 2
Here d? :L[Ej <1, ¢? :m—Rb. Prime mark ' represents
M(Rz+p2)+mR2 r M(R2+;)2)+mR2

differentiating with respect to non-dimensional time t.

If wheel mass M — oo, then equations (7) convert into motion equations of a “regular”
pendulum with stationary pivot. System (7) is different from these equations.

We assume that the absolute value of control torque L is limited by constant L, with L, <mgb

L <Ly (|1 <p po=Ly/mgb<1), (8)

The set of piecewise-continuous functions p(t), each of them complying with inequality (8),
will further be denoted as W, so W ={u(t): |u(t)| <p,} . With p(t) =0 system (7) has equilibrium

B=0, ©=0. ©)

Linearization of system (7) about its equilibrium (9) yields the following equations:

pf=w, a’o'-B=cu. (120)
where a®>=1-d?>0, c=1+¢e*>1. With p=0, one of the eigenvalues of system (10) is positive
(/a), the other one is negative (-1/a). A second order system (10) can be transposed into a system
of two first order equations in Jordan form

y'=y/a+uc/a, y=p+ap, (11)

’=-z/a—pc/a, z=B-ap. (12)
Equations (11) and (12) describe the behavior of “unstable” variable y corresponding to positive

eigenvalue (1/a) and of “stable” variable z corresponding to negative eigenvalue (-1/a)

respectively. When a =1, ¢=1 equations (10) — (12) lead to equations for the regular pendulum.

1.2. Domain of controllability

Consider a set P of initial states, where for each state there exists an admissible control function
u(t) eW , that moves the system (11), (12), into its equilibrium y=0, z=0 (B=0, p'=0). Such
set P is called domain of controllability [3]. This set is bounded only with respect to the unstable

coordinate y [3]. It is described by the following inequality:

<(1+€”)u, - (13)

<cp,, or ‘[34— 1-d’o

ly| <cny, or |B+ap’

Interval (13) of axis y is illustrated in Figure 4. Figure 5 illustrates on the plane of variables

B, B domain of controllability P and domain of controllability Q for the regular pendulum. It is
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worth to compare these domains. Stripe P is wider than stripe Q, because ¢>1 and O<a<l1.

However, domain Q does not lie inside domain P.

~ctly ) ity v
Figure 4. Domain.of controllability with respect to variable y.

Remember also, that domains P and Q were built for linear equations, and linearization is valid

only for values 3 and B’ that are close enough to zero. And for close-to-zero values of  and (or) B’

domain Q lies inside domain P. See that rhomb I1,, with four vertices (£p,,0), (0,%u,) lies

entirely inside rhomb I1,, , with four vertices (+cp,,0), (0,£cp,/a) (Figures 5, 6).

P \ cMy fa

\ My
AN

_Cl'lo _H'O B

-H, \Q
—cly/a \ —an,/a

Figure 5. Domains of controllability P for the Figure 6. Rhombs TT, and IT,, inscribed
wheel-based pendulum and Q for regular one. into controllability domains P and Q.

Thus domain of controllability Q of the regular pendulum is in a sense smaller than domain of
controllability of the pendulum on a wheel. Thus, the wheel-based pendulum is easier to stabilize.
This is reasonable, since in the latter case the torque generated by the motor actuates not only the
body of the pendulum, but also the wheel, accelerating the pivot (the wheel center O) and contributing

even more to system stabilization. Rhombs IT, and IT, are drawn to illustrate (symbolically), that in

the neighborhood of the origin B=p'=0 domain Q lies inside domain P. Inequality (13) can be
written in terms of original parameters of the device. Using this inequality, it is possible to evaluate
the influence of various parameters on the controllability domain. These evaluations are helpful, for

example, when constructing a transportation device like Segway, Solowheel.
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1.3. Maximizing domain of attraction

The unstable motion mode of system (11), (12) can be “suppressed” by means of control function that

is effectively a linear feedback with saturation, that is nonlinear feedback:

~Ho when vy <—p,,
pu=p(y)=1w  when |y|<u,  y<-Yc. 14
Lo when yy>p, .

Under all initial conditions —cp, < y(0) <cp, the solution to system (11), (14) y(t) >0 as
T—»00. Then, in accordance with relation (14), p(t) > 0. And then solution z(t) to equation (12)
for any initial value z(0) converges to zero. Thus, the trivial solution y(t) =z(t)=0 to system (11),
(12), (14) is asymptotically stable under initial conditions —cp, < »(0) < cu, , regardless of initial
condition z(0) . As t— o0, function |y(t)| —> oo, if |y(0)| > cp,. If y(0)=+cp, then y(r)=zcy, .
Hence the domain (basin) of attraction B of the coordinates origin y=0, z=0 for control function

(14) coincides with domain of controllability P: B =P . As usual, domain of attraction is understood
as a set of initial coordinate pairs y(0), z(0), from which a controllable system converges

asymptotically to a desired state.
To summarize, for maximizing domain of attraction B for system (11), (12), all resources of
control must be spent on suppressing the unstable mode. And it is possible to maximize the domain of

attraction using linear with saturation feedback.

1.4. Domain of controllability for nonlinear system and time-optimal control

Expressions (13) describe the set P of initial states from which linear system (10) can be translated to
the origin B=0, w=0. Now the task is to build in stripe —x <8 <= of the phase plane (B,») a set
D of states from which nonlinear system (7) can be translated to equilibrium =0, =0 without
oscillations about position == . The task of finding such a domain is important for investigation of

motion of a device like “Segway”, because when a passenger is stabilized on such a device, any large
angular deviations from vertical are unacceptable. And, of course, angular deviations greater than

n/2 are impossible. The sought domain of controllability D is apparently symmetric with respect to
point =0, w=0. Figures 7 and 8 illustrate domain of controllability D for non-linear system (7).
Domain D is built numerically with parameters d =0.8, e=0.5, p,=0.5. Curve lines are the

borders of controllability domain D, straight lines in Figure 7 are the borders of controllability domain
P (13) of linear system (10). The borders of domain D are build using first integrals of system (7)
with pw=+p,. At Figure 7 one can see that domain P (13) in the neighborhood of the desired
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equilibrium (9) encloses a “considerable” part of exact domain D. Figure 8 illustrates the controlled

time-optimal motion inside domain D of the system. Switch curve is noted as K.

Figure 7. Controllability domain D of the Figure 8. Time-optimal motion trajectories
nonlinear model and P of the linear one. of a wheel-based pendulum.

2. Pendulums with stationary pivot

Here we consider several systems, which contain single- or double-link pendulum on the motionless
base. Control algorithms are suggested for relocating the pendulum from its bottom stable
equilibrium, into the top unstable one.

2.1. Pendulum with a flywheel

Figure 9 illustrates the pendulum designed in Institute of Mechanics of MSU by head of Mechatronics
Lab Anatolii Lenskii. The pendulum can rotate in vertical plane. The data used in the control system
includes angles and angular velocities of the link rotation and of the flywheel rotation with respect to
the link. Figure 10 illustrates the structure of the pendulum. Link OC is connected to the stationary
support at point O. The axis of the joint is perpendicular to the pendulum movement plane (that is the
drawing plane). Such device with a flywheel is often referred to as «inertia wheel pendulum» [4].
Applying Lagrange’s approach of the second kind, one can derive the motion equations of the
pendulum. Angle ¢ of the flywheel rotation is a cyclic variable, because the center of mass of the
flywheel together with motor is located at the end of the pendulum link, at point C. Thus, equations of

motion contain only the angular velocity of the flywheel ¢ with respect to the pendulum link OC.

The value of angle ¢ is of no interest for the problem of controlling pendulum oscillations. The

equation that describes only the oscillations of the pendulum can be separated from the mathematical
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model of the pendulum with flywheel. It should be noted, however, that this equation does contain the

parameters of the flywheel. This is similar to the problem of controlling a wheel-based pendulum.

Figure 9. Photo of the pendulum: Figure 10. Diagram of the pendulum with
1 — pendulum link, 2 — pendulum axle, 3 — flywheel, flywheel: O — pendulum support joint,
4 — flywheel axle, 5 — electric DC motor. C — flywheel center, 1 =0OC .

2.2. Local stabilization of the pendulum in the top equilibrium with maximal domain
of attraction

The equations of the motion have only one nonlinear component — sinf . Angle B is assumed close to
zero during the process of local stabilization. Then substituting for function sinfp its argument
transposes these equations into approximate linear equations. This linear model (of third order) has
one positive and two negative eigenvalues. If the voltage supplied to the motor is limited then the
domain of controllability of the top equilibrium is bounded. Using similar procedure as for the wheel-
based single-link pendulum, we extract from the motion equations “unstable” Jordan variable. Using
linear saturated feedback of kind (14) it is possible to obtain (in linear approximation) maximal
domain of attraction. The more the domain of attraction at a local stabilization, the easier it is to build
control, providing a global stabilization. Rotating the flywheel to stabilize the pendulum in the top

position is similar to swinging arms by a person trying to keep from falling backwards or forwards.

2.3. Translating the pendulum from the bottom equilibrium into the top one

To move the pendulum from its bottom stable position to the top unstable equilibrium it must first be
given a swing, and then when it reaches the topmost position, it must be “caught” and stabilized.

Switching control law with voltage p applied to the motor as

H=—pSignp (15)
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makes the pendulum swing. The swinging stops as energy E of the pendulum reaches value E; — its
potential energy in the top equilibrium. After the desired energy level is reached, it is kept by
pumping under control p=k(E - Eo)signB (until pendulum gets into the domain of attraction). Then

control like (14) stabilizes pendulum. Figures 11 and 12 show numerical and practical experiments.

Figure 11. Numerical experiment. Figure 12. Practical experiment.

In both Figures, angle B is shown in radians, angular velocity dp/dt — in radians per second,

flywheel angular velocity o — in rotations per second. In the numerical experiment pendulum reaches

the top equilibrium at 5 s, but in practical experiment —at 7 s.

2.4. Double-link pendulum with limited torque applied in elbow

Plane double-link pendulum is shown in Figure 13. Control torque L is applied in inter-link joint D.
Initially we consider the inter-link joint angle o as a limited in absolute value control parameter.
Behavior of this parameter is found in order to translate pendulum from the lower stable equilibrium
to the top unstable one. The control torque acts like a servo system to track the designed angle a. The

difference between the designed angle o and the real one is used in the feedback (PD-controller).

Figure 13. Double pendulum.

To design the control law stabilizing the top unstable position we linearize the motion equations
of the pendulum near this position. Two eigenvalues of linearized system are positive and two —

negative. The system of equations is reduced to Jordan form. Two motion equations corresponding to
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unstable modes are separated from the system. The control law is designed to suppress the unstable
motion modes. By this way we achieve maximal as possible domain of attraction (in linear
approximation). The designed control contains the unstable Jordan variables only. This feedback is
linear one with saturation. Figure 14 illustrates the process of translating the pendulum from its stable
lower equilibrium into unstable top one. The top plot shows the time dynamics of angle ¢, the next

one — dynamics of angle a, the third one — torque L, the bottom plot — full energy E of the system.

Figure 14. Translating the double pendulum from the bottom equilibrium to the top one.

3. Ball on the beam

The problem of stabilization of the so-called “beam-and-ball system” is considered. The ball can roll
without slipping on a beam. The beam may turn about its pivot point that is located below it. Thus the
beam is similar to an inverted pendulum. A torque is applied in its pivot. In equilibrium the beam is
located horizontally, and the ball is in the middle of the beam, just above its pivot point. Without
control this position is unstable. The system has two degrees of freedom, and it is controlled by only a
single torque. It is required to build a feedback in such a way that the basin of attraction of the
unstable equilibrium would be maximal possible. We consider the curvilinear beam. More exactly, it
is a part of a circle. If the radius of this circle is large enough, that is, the curvature is small, the
linearized model has one unstable motion mode. If the radius of this circle is small enough, there are
two unstable modes. In this latter case, the system is more difficult to stabilize than in the first case.
Problem of stabilization with large basin of attraction is solved in both cases — with one unstable
mode and with two unstable modes. Numerical experiments have been successfully performed.

4. Robots-bicycles with system of gyroscopic stabilization

Figures 15 and 16 show two bicycles designed in Institute of Mechanics of MSU by A.V. Lenskii.
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The control torque is applied to the gyrostabilizer to support the unstable upright position of the

Figure 15. Bicycle with one steering wheel: Figure 16. Bicycle with two steering wheels:
1 — gyrostabilizer, 2 — light detector array. 1 — gyroscopic stabilizer, 2 — video cameras.

bicycle. We have designed the control torque as a function of bicycle tilt angle, front wheel velocity,
steering angle, precession angle, precession angular velocity. Numerical and practical experiments
have been successfully performed using this control law.

5. Conclusions

Different concrete systems containing unstable object are analyzed. The control input signal is
assumed restricted. Maximal basin of attraction of the desired operating regime is achieved by using
all available resources of control to suppress the unstable modes of motion. The control algorithms

are developed, discussed, tested numerically and in some cases experimentally.
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Influence of nonlinearity simplifications in a reference model of a motor
vehicle on the automatic control of the vehicle steering system during
a lane-change manoeuvre
(CON266-15)

Mirostaw Gidlewski, Dariusz Zardecki

Abstract: The automation of lane-change manoeuvre is fundamental to the
automation of motor vehicle driving and it is also the subject matter of scientific
works. One of the major parts of our project was the synthesis of a controller that
would control an active steering system during the lane-change manoeuvre.
Theoretical deliberations and simulation examinations have been based on
a mathematical model of the vehicle motion and the controller. The model of the
object controlled includes a detail description of the dynamics of motion of a two-
axle truck, where nonlinearities and three-dimensional nature of the vehicle motion
are taken into account. The model of the controller, founded on the Kalman theory
of the linear-quadratic systems, has been based on a “highly” simplified linearized
reference model of motor vehicle’s dynamics. The subject of this paper is an
analysis of the influence of nonlinearity simplifications in the reference model of
vehicle motion (on which the controller operation is based) on the control quality.
The effects of the simplifications are evaluated with the use of sensitivity indicators
based on simulated time histories obtained for models with various degrees of
simplification. This work may be interesting both for researchers who are engaged
in sensitivity analysis of nonlinear models and for specialists working in the field of
mechatronic control systems.

1. Introduction

The present-day motor vehicle becomes more and more automated. As regards the tasks related
to the active safety, the systems that prevent vehicle wheels from locking up while braking and
stabilize the vehicle motion during rapid turns have become mandatory in new vehicles. Various
driver assistance systems, facilitating vehicle driving in road traffic conditions or even automating the
performance of some vehicle manoeuvres carried out with low speeds, e.g. parking, are increasingly
often offered as over-standard equipment. Works on systems that are to automate traffic manoeuvres
at high drive speeds, such as e.g. overtaking or obstacle avoidance, are being carried out at many
research centres. The manoeuvres of this kind are difficult for being automated, because the
automation requires in this case the controlling of an object whose dynamics is unstable and

susceptible to changes in many parameters and whose trajectory is subject to strict limitations.
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Usually, a traffic manoeuvre constitutes a sequence of elementary lane-change manoeuvres.
Therefore, the automation of the process where a motor vehicle moving with a high speed changes the
traffic lane is perceived as fundamental for the automation of complex traffic manoeuvres.

The issue of controlling the angle of turning the road wheels during a lane-change manoeuvre is
addressed by numerous scientific studies and publications. Usually, they are based on a vehicle
steering concept that covers planning the vehicle path and following the predicted course in a tracking
process where appropriate sensors and regulating devices are employed [3, 5, 10, 11, 12]. The vehicle
path planning is sometimes treated in such cases as a problem of parametric optimization for the
heuristically assumed form of the function of shape of the desired vehicle path (sinusoid segment,
composition of arcs, line segments, etc.). At the vehicle path optimization of this kind, not only short
manoeuvre duration time, smoothness of the path, or reduction of the feeling of jerks, but also the
possibilities of good realization of the manoeuvre in a tracking process should be taken into account
(the shape of the vehicle path affects the regulation errors). The regulation systems proposed in such
publications are based on the structures and algorithms that are known from theory.

Within project No. N N509 568439, work was undertaken on employing an active steering
system for automatic driving of a motor vehicle (medium-capacity motor truck provided with
a driving stability system and road monitoring systems) in situations of accident hazard caused by an
obstacle having suddenly sprung up. In an authorial concept of a system to control the steering wheel
turning angle in the line-change manoeuvre [7, 14], a proposal has been made to use simplified
linearized reference models describing the dynamics of vehicle motion in the control system. Such
models are used for the generation of the desired vehicle path and for the synthesis of regulating
devices. Thanks to their simplicity, the models can be effectively used in the algorithms of the real-
time controller. The control method having been developed was satisfactorily verified at many
simulation tests, during which the controller having been modelled successfully controlled the motion
of the vehicle, which was modelled in great detail.

This paper presents formal grounds for the said linearization and its effects for the quality of the
control process. In its essence, the problem presented concerns an analysis of the structural sensitivity

of the reference model being simplified by linearization.

2. Concept of the control system for the lane-change manoeuvre

The control strategy is based on decomposition of the process into time-related phases (Fig. 1).
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Phase 1 Phase 2
Transposition Stabilization
(lateral dissplacement) (angular positioning)

Fig. 1. Concept of decomposition of controlling the lane-change manoeuvre into time-related phases

The control process decomposition as shown above is consistent with the vehicle driving
practice followed by experienced drivers. In the first phase of the process, the controlling may be
done in a partly-open system (“blindly”, “just quickly”) by generating an appropriate turn of the
steering wheel. The precision of this phase of the manoeuvre should be ensured by the previously
identified reference model. During this phase of the control process, corrective controlling will also
take place. The steering wheel turning angle is adjusted within this correction on the principle of
regulation based on comparing the curve representing the variable that describes the vehicle
transposition according to the reference model with the curve representing this variable actually
measured. In the second phase, the control process is run in a closed system, on the principle of
regulation based on comparing the curves representing the angular position of the vehicle.

According to the concept adopted, the two-phase control process (transposition and angular

stabilization) is carried out in one switchable control system (Fig. 2).
Swithing

Yrt) - ‘
-# Regulator 1
Reference Fansposiion A3, (t)

signal

generator | Sug(t) | l—] ;H(t)

based on »bang-bang” type stering 5|gnal VEHICLE
reference (here the most sharp form)
model stabilization ABu(t) y(t)

t
M@—o Regulator 2—/

Swithing '_I _________________________________ i

signal

K CONTROLLER

Fig. 2. Block diagram of the automatic control system

Y(t)
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The block diagram of the system shows the main system components. Based on the reference
model, the generator unit generates reference signals, which represent time histories of dpr(t)
(steering wheel turning angle), Ygr(t) (lateral vehicle displacement relative to the initial vehicle
position), and yg(t) (vehicle yaw angle relative to the road centre line). The signal of primary
importance is the “bang-bang” control signal 6ur(t) [1], applied as an input to the vehicle system and,
in its simplest form, being a combination of Heaviside step functions. The response curves Yg(t) and
yr(t) are used as inputs to the regulating systems, correcting the vehicle path.

In the first phase of the control process, the transposition system is on (activated) and the angular
stabilization system is off (deactivated); in the second phase, these connections are reversed. The
switching over takes place when the centre of vehicle mass reaches a position where the obstacle
avoidance is ensured.

The curve representing the reference lateral displacement Yg(t) is determined by generating
a control signal 84r(t) whose parameters would be such that the acceleration and velocity values
calculated for the reference model could be within their acceptable limits and that the final state could
be achieved before the acceptable time limit. In the case that the reference model has the form of
a system of linear equations of motion (which is obtained by appropriate linearization of the initial
reference model), the control parameters can be determined in a relatively simple way, thanks to the
Laplace transformation and properties of the transforms, ensuring the calculation results to be
obtained in real time. The reference curve of the vehicle yaw angle is obviously represented by
equation yg(t) = 0.

The algorithms of the regulating devices (Kalman regulators [2]) are also based on the
knowledge of the reference model in its linear version [1, 7, 14].

The algorithms prepared for the controller generating the reference signals and the signals to
correct the road wheel turning angles constitute a basis for the controller of an active steering system.
In the simplest design, the time history of the steering wheel turning angle d4(t) may be then treated
as a scaled curve representing the road wheel turning angle 8(t). In more sophisticated versions,
corrective members may be introduced for the dynamics of the steering system to be taken into
account.

The reference model is extremely important for the functioning of the control system. For good
results to be obtained by using such a model, it must be not only well matched to the system but also
well identified by vehicle equipment. However, the model identification is a separate issue, which is

not covered by the scope of this paper.
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3. Reference model and its transformations and simplifications

The reference model plays a key role in the synthesis of controlling the process of changing the
traffic lane by a moving motor vehicle. For the notation to be simplified, the index R will be omitted
and the process will be analysed as if the control input were applied directly to the steered wheels.

To start with, the known “bicycle model” was adopted as the initial reference model [2, 9]. It
derives from the Boltzmann-Hamel equations, which describe the dynamics of motion of
a nonholonomic system (here: a planar system consisting of a single-mass solid on pneumatic tyres)
in “quasi-coordinates”, adopted as the linear velocity and angular velocity in moving (local)

coordinate system [6, 8].

Fig. 3. Idea of the “bicycle model” of a motor vehicle

Symbols adopted to represent the variables and model parameters:

t — time (t = 0 means the instant when the control system is switched on)

3(t) — time history of the front wheels turning angle

w(t) — time history of the vehicle yaw angle relative to the road centre line

Q(b) — time history of the angular velocity of the vehicle yaw motion (Q(t) = y/(t))
uU(t) — time history of the lateral vehicle velocity in the local coordinate system

\% — linear longitudinal vehicle velocity (constant) in the local coordinate system

X(t), Y(t) - time histories of the global coordinates of the centre of vehicle mass

m — vehicle mass

J —vehicle moment of inertia relative to the vertical axis going through the point
representing the centre of vehicle mass

a,b — distances of the front and rear vehicle axles, respectively, from the projection of the
point representing the centre of vehicle mass

Ka, Kg — coefficients of tyre resistance to sideslip for the centres of front and rear wheel axes,

respectively
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At an assumption that the vehicle moves on a flat road with a constant velocity and the steered
wheel turning angles are sufficiently small to assume that the interaction between them and the road
surface may be linearly described as an effect of the action of road reactions reduced to the centres of
the wheel axes, the equations of motion describing the dynamics of the plane motion of the vehicle

body solid in the local coordinate system have the form:

2
mU (t) + kAJ Ke (1) + MY+ KaB=KeD oy s0t) @
2 2
30(t) + K" +KeD” gy kAa\; KePy (1) =k sa(t) ()]

The following equations transform the velocities from the local moving coordinate system to the
global system fixed to the road:

t
w(t) = j Q(t)dt (3)
0

X (t) =V cos(y(t))-U (t)sin(w(t)) Y (t) =V sin((t))+ U (t) cos( (1)) (4,5)
The trajectory of the centre of vehicle mass Y(X) in the global coordinate system is defined by
the equations:

t

t
X(t)= J X(r)dz = J.(V COS(y/(r))—U (T)Sin(l//(’[)))d’[ ®
0

0

t

t
Y () = [Y(9)dr = [ sin () U (2) cosly () e Y
0

0

From now on, equations (1-7) will be treated here as the “initial reference model”.

For small and short-duration disturbances to the motion (and such are the control signals dealt
with during an obstacle avoidance manoeuvre), the linearization of the transformation equations may
be allowed (such an assumption aimed at simplifying the model will be the main subject of the further
sensitivity analyses). At this simplification, the following will hold, according to the expansion into
a Taylor series:

cos(y (1)) ~1 sin(y (1)) =y (t) 89

U®sin(y (1) =0 U (t)cos(y (1) =U (1) (10,11)
Hence, based on (4-5):

X(t)=V (12)

Y (1) =V (t)+U(t) Y(t) =V (t) +U (1) (13, 14)
as well as:

U =Y®) -Vt U =Y (®) -V (t) (15, 16)

Having substituted (1-2) to the equations of motion and having simplified the result, we obtain:
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D)~ (kn + kg I (D) = kS0 (17)

" Ky +Kg o kja—k
mY (t) + 2By (t) + AZ_"8B
(t) v (t) v

2 2
) +wu}(t) —(kna—kgby(t)+ k‘\aT‘kaY' (1) =k,as(t) (18)

The trajectory of the centre of vehicle mass Y (X) may now be defined by the following:
t t t

X (1) = [ X(r)dz = [vdr =vt Y (1) =JY(T)dz‘ (19, 20)
0 0 0

Equations (17-20) will now be treated here as the “simplified reference model”.

In the initial reference model, equations (1, 2, 3) are linear; therefore, both their sides may be
subjected to the Laplace transformation. For zero values of variables U(t) and Q(t) as the initial
conditions, a notation of the reference model partly in a transmittance form, regarding transforms with
operational variable “s”, will then be obtained.

1

U(s)=Gys(s)5(s) () =Gqy(s)5(s) g (s) = gﬁ(s) (21,22, 23)
where the transmittances will have standard forms:
Gus(5) = GusolTuss+1) Gy (5) = S0 (Tass+1) (24, 25)

1252 +2&,Tys +1 Tes? +2£Tos +1

and the “transmittance parameters” present there will be described by formulas:

Ty =V \/ mJ . (mlks? + keb?)+ 3 (ks + k) (26, 27)
kakg (@+b)* =MV?(ksa—kgb) ’ 2JmJ (kAkB(a+b)2—mVZ(kAa—ka))
o - lkks@sbp-mvikal o 3K,V (28, 29)
Y0 Kakg (@b —mv2(k,a—kgb) Kakg(@+b)o—mV?ksa
Gaso = Kikp @+ DY Top = —Tav (30, 31)

Kakg(a+b)? —mv 2 (k,a—kgb) kg (a+b)

Due to nonlinearities being present in equations (4) and (5), the Laplace transformation and
operational calculus are inapplicable to them.

In the simplified reference model, all the equations are linear; therefore, they may be subjected
as a whole to the Laplace transformation and appropriate transmittances defining the relationships
between transforms of time histories of individual quantities may be determined. For zero values of
variables Y(t), U(t), y(t), and Q(t) as the initial conditions, an equivalent notation of the simplified

reference model in a transmittance form will then be obtained.

?(S) = GYS (S)S(S) \T/(S) — GW(S)S(S) _ GQSS (S) 6(5) (32, 33)
where
Gs(6) = GoyeV (1257 + 25T,541) [ s b ke(a+b) (a4, 35, 36)

sZ(Tozs2 +2§0Tos+l) kg(a+b) v J
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The transmittance equations provide a basis for analysing the vehicle behaviour following

a rapid turn of the vehicle wheels once to the one side and then to the other side. The analytic form of

the input 8(t), its transform §(s), and appropriate transmittances being known, the simple relations

known from the operational calculus may be used to analyse the response. Let us consider this for the

input signal 8(t) being a combination of step functions representing a jerk of the steering wheel in
both directions, with holding the wheel for a while in the extreme positions (Fig. 4).

(1),

&o

Y

=+¥

T T

Fig. 4. Time history of the test jerk of the steering wheel in both directions
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This confirms the known fact that a jerk of the steering wheel in both directions will cause the
vehicle to change its traffic lane. From the vehicle steering concept point of view, it is very important
to notice that if the reference model is followed then the vehicle in steady state will move on the
changed traffic lane with a zero yaw angle! Obviously, due to random disturbances and model
imperfections, the vehicle having achieved the steady state of motion may actually move along
a rectilinear path with a non-zero yaw angle, but this is a matter of a next correction.

For the planned lane change Y, to be achieved, the control pulse duration time T and amplitude
8o should be appropriately chosen, with simultaneously taking into account the values of the
amplification parameter G5, and vehicle velocity V. The relations determined on the grounds of the
simplified reference model constitute very simple and “quick” calculation tools for the selection of
vehicle control parameters.

The reference model proposed may be used for controlling both the trajectory of the centre of
vehicle mass (the first phase of the control process) and the vehicle yaw angle (the second phase).
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4. Sensitivity analysis of the reference model being linearized

In the classic analysis of structural sensitivity of models of dynamic systems [4, 13], parametric
and asymptotic methods are employed. When the initial reference model is linearized, its structure is
simplified “abruptly” by disregarding the higher-order members in the model expansion into a Taylor
series. Therefore, an analysis of the model sensitivity to linearization is based on a series of
simulation experiments, where the simplification effects are evaluated by comparing the output
signals of the initial model and the simplified model. For the comparison to be more specific,
sensitivity measures are also introduced, including integral indicators, which express the
discrepancies between the output signals of the nominal (initial) model and of the model having been
changed (linearized) [13] (Fig. 5).
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In the repeated calculations, controller operation having an effect on a real object controlled, i.e.

Fig. 5. Schematic diagram of sensitivity analysis. Example index: (44)

a STAR 1142 motor truck, was simulated. The model of motion of such a vehicle [6] was built with
taking into account the multi-mass structure of the moving system, three-dimensionality of the
motion, and nonlinearities in the suspension system characteristics and in the processes taking place

in the tyre-road contact zone. The model was verified experimentally.
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The calculations were repeated for many different sets of data describing the vehicle and the
controller. The example results shown (Figs. 7, 8 and 9) represent the manoeuvre carried out in
difficult conditions, i.e. on a slippery road (u=0.3) and with a speed of V = 16.7 m/s (60 km/h) and

V =22.2 m/s (80 km/h). The index values were determined according to equation (44).
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Fig. 8. Results of calculations carried out for the purposes of sensitivity analysis, V = 60 km/h
Curves for the initial reference model
Curves for the linearized reference model
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Fig. 9. Results of calculations carried out for the purposes of sensitivity analysis, V = 80 km/h
Curves for the initial reference model
Curves for the linearized reference model

5. Conclusion

The test results collected from many simulation experiments show that the impact of
linearization of the reference model on the controller output signals Yg(t) and yg(t) and on the curves
Y(t) and y(t) representing the effect of the control process is very small. This means that the
parameters defining the signal of the steering wheel turning angle may be quickly and quite well
selected on the grounds of simple algebraic equations and similarly, the generation of reference
signals may be successfully based on an effective linearized reference model.

The controller sensitivity to changes in the parameters of the object modelled, i.e. its sensitivity
to identification imperfections, remains a separate issue, which requires extensive research. The
research carried out to date (yet incomplete) show that properly designed regulators can improve the

control effect, even if the parameters of the reference model have not been perfectly identified.
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Dynamics and control of vehicle with vision based
navigation system
(CON300-15)

Robert Gtebocki, Mariusz Jacewicz

Abstract: Navigation is a major challenge for the operation of an autonomous vehicle.
This paper deals with the problem of pose estimation for real-time vision based
navigation system. The delays introduced by guidance system into the control system
of an unmanned vehicle were tested. Presented method is able to estimate the target
pose with high accuracy and does not require any landmark on object. The result of
numerical simulation was presented. Experimental results showed that the proposed
method of navigation introduced a small delay in the control system. Created system
is also robust to occlusions and light variations. The approach will be further
evaluated and tested in the continued work.

1. Introduction

The problem of pose estimation of known object is one of the most significant issues in vision
navigation. In the last twenty years there were some famous texts about this problem. A lot of modern
tracking methods are applicable to pose estimation problem but they are high computational cost.
This paper describes the results of analysis, implementation and testing of simulation intended for
vision-based guidance, navigation and control applications such as rendezvous and docking of
satellites. In this document markerless local features based tracking system has been studied. It was
done under the randezvous of satellites on Earth orbit project.

Autonomous randezvous is necessary for space programs. Navigation for proximity operations
requires very accurate measurements without human involvement. A servicing satellite is sending to
capture target object and perform servicing tasks. There must be a high level of autonomy of system.
System focus on all phases of randezvous. It was assumed an image of an object taken by a calibrated
camera in each step of time is known, and was assumed a 3D representation of an object model is
known. It was proposed a solution for tracking 3D rigid objects that is based on local features and
promises better computational performance. Proposed method is more accurate than other methods
presented in literature because is more stable and robust on the tracking failures. This is very
important issue because of implementation this method on satellite hardware. Projected system is also
cheaper than other proposed earlier solutions. Introduced approach has been tested on real images. It

was shown that achieved high tracking performance.
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2. State of the art

In the literature the problem the relative pose estimation of two objects is well known for a years.
First approaches to visual tracking were published in the late 1980s and were based on tracking of the
outer contour of a target [1]. Contour-based trackers also gained significant attention upon initial
inception, but received slightly less research in the mid-1990s. A lot of existing algorithms for pose
estimation and tracking are based on fiducial markers. In some cases, it is worth to add fiducials like
LEDs or markers, to the target object to simplify the registration task. It this case it is assumed that
one or more fiducials are visible at all times [2]. The 3D positions of the fiducials in the world
coordinate system are assumed to be known. This approach [3], [4] in case of satellites is impractical
because many existing satellites have not these fiducial markings. Three-dimensional model-based
tracking systems have been investigated by several research groups. Pose computation is achieved by
minimization the distance between 3D model edges and the corresponding edge features in the image.
Achieving model projection in the image has limitations. The most weakness of approach based on
3D model is reliance on high detailed geometric model. There are problems when objects are made
with cylindrical, spherical and complex shapes as it is often in case of satellites. This makes the
system very fragile. Moreover when the object is complex there are achieved low frame per second
rates. First, the system must either be initialized by hand or require the camera to be very close to a
specified position. To reject outliers algorithms such as RANSAC (Random Sample Consensus) are
implemented to achieve robustness to illumination conditions. Active sensors like LIDAR (Light
Detection and Ranging) were used for automatic relative pose estimation. These sensors are
expensive. Camera sensors are cheaper and can provide accurate capabilities to obtain relative pose.
The use of the interface ring used to attach the satellite to launch vehicle has been proposed for
capturing the satellite. This has a disadvantage because it is restricted only for proximity operations
where the target satellite is visible from the interface side. Capturing should be performed
autonomously because there are communication delays between on-orbit systems and ground. Feature
matching computer vision approaches have been developed but they are very computational intensive
and cannot be used during whole mission. Critical sensitivity to illumination, relative orientation and
occlusions of target had been observed. Learned database is also used on Orbital Express and the
algorithms are based on edges in this case. Lepetit suggested for tracking objects in 3D by using
corner features with a single camera. This approach was robust to camera displacements and partial
occlusion. Drawback of this method was camera should be close enough to one of key frames and
there is a real problem when then tracking must be initialized again for example after tracking failure.

Proposed system deals with all three stages of satellite randezvous from far proximity operations
to the last stage, contact. Limitation of these methods lies in their long execution time. Moreover, the

existing approaches are very computationally expensive. It is much better to rely on naturally present
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features, such as edges, corners, or texture. This makes tracking far more difficult: finding and
following feature points or edges can be difficult because there are too few of them on many typical
objects.

3. Proposed method

In this section the proposed solution was described. The problem of pose estimation is formulated as
follow: Given model of the object and a calibrated camera, find the pose of the object with respect to
camera.

Presented method of solution is applicable to monocular camera systems. There are given photos
of known object which is seen from different camera locations. Unknown are the six parameters that
can describe relative pose of two objects: three coordinates x,y,z which describes the linear
translation of object in relation to camera and three angles of rotation @, 0, ¥ (roll, pitch, and yaw)
which describes the mutual angular orientation of two objects in space.

O3 Yt

Ocye

Oczc

Ocxc
Figure 1.  Pose estimation problem [3]

There were defined two main coordinate systems. Both are right hand side (clockwise) oriented
Cartesian coordinated systems. The first one is camera coordinate system. The origin O, of this
coordinate system is located in optical center. The O.x. axis of this coordinate system is oriented
downward, the O,y axes is oriented on right and the O;z; axis completes the right handed
coordinate system (Figure 1). The position of each pixel on photo is given in camera coordinate

system. The second one is model coordinate system. The origin O, of this coordinate system is
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located on the surface of object. O,x,, axis is oriented in front of the target, the 0,y axis on right

and the 0yz,, axis completed the coordinated system. Origin of this coordinate system is translated

X

from origin of camera coordinate system by vector t = [y] in Cartesian coordinates. The down scripts
Z

C by coordinates means that coordinates are referred in camera coordinate frame. Down subscripts M
means that coordinate are in model coordinate frame. The image plane is parrarel to the O x. and
0.y axes of camera coordinate system at distance f from the optical center. Object is rotated and
displaced with respect to camera coordinate system.

The equation of mapping 3D points in camera coordinate frame to an image plane in
homogenous coordinates is defined as follow:
Xc
Yc (1)
Zc
1
a,, and a,, are the scale factors in the u — and v — coordinate directions. They are proportional to

Uu a, s u, O
v] = [0 a, vyg O
1 0o 0 1 0

the focal length f of the camera: a,, = k,,f and a,, = k, f, where k,, and k,, are the numbers of pixels
per unit distance in the u and v directions [5]. The camera internal parameters are known. This was
designated in camera calibration process. In most 3D tracking methods, the internal parameters are
assumed to be fixed and known, which means that the camera cannot zoom, because it is difficult to
distinguish a change in focal length from a translation along the camera Z-axis. In visual system for
servicing satellites it was assumed that there will be two cameras. First camera will be operated when
the object is far. Second camera will be operated when the object will be near. For additional details
about camera models the interested reader is referred to the photogrammetric literature.

Then small letters u and v describes the coordinates in image plane. Coordinates in image plane
and 3D space were described in homogenous coordinates.

The coordinates of points of object are referred in model coordinate frame so before mapping on

plane they must be transferred to camera coordinate frame. This is defined as follow:

Xe=[y 1% @

[R t] is the 3x4 external parameters matrix, and corresponds to the Euclidean transformation
from a world coordinate system to the camera coordinate system. R represents a 3x3 rotation matrix,
and t a translation. Unknown are R and t, left side and last vector on right are known. A rotation
matrix R can always be written as the product of three matrices representing rotations around X, Y,
and Z axes. The angular orientation of object was parametrized by using of Euler angles. There is
singularity when the coordinate frames are rotated mutual by pitch angle equal /2, but is invalid on
this developments stage of the system. So in expanded form the equation (2) is defined as follow:
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The proposed method work in such manner as described downwards. At first, a photo of real
object is taken. Next there are detected local features on this photo. A local feature of object is usually
associated with a change of image properties simultaneously, although it is not necessarily localized
exactly on this change. To handle as wide as possible a range of viewing conditions, feature point
extraction should be insensitive to scale, viewpoint, and illumination changes. The local features of
the object are extracted by using of SIFT (Scale Invariant Feature Transform) detector and descriptor
proposed by Lowe [6]. Algorithm extracts features and is for object recognition based on local 3D
extrema in the scale-space pyramid build with difference-of-Gaussian filters. First the location and
scale of the keypoints are determined precisely by interpolating the pyramid of Difference-of-
Gaussians used for the detection. The input image is successively smoothed with a Gaussian kernel
and sampled. The difference of Gaussian representation is obtained by subtracting two successive
smoothed images. The Gaussian kernel and its derivatives are the only possible smoothing kernels for
scale space analysis. To achieve image rotation invariance, an orientation is also assigned to the
keypoint. It is taken to be the one corresponding to a peak in the histogram of the gradient
orientations within a region around the keypoint. All dig levels are constructed by combining
smoothing and subsampling. The local 3D extrema in the pyramid representation determine the
localization and the scale of the interests points. This method is quite stable under viewpoint changes,
and achieves an accuracy of a few degrees. An image is transformed into a group a local features. On
the exit of this algorithm there is known the two dimensional vector of coordinates of each feature
and the second vector which contains the radius of each feature and the angle of orientation in
radians. It represents the left side on equation of mapping (1).

Next, similar to the previous step, the local features of the object from model of target are
extracted. During an offline training stage, a database of interest object points was build. Their
positions on the object surface are known. Images in which the object has been manually registered
were used for this purpose. At runtime, SIFT features are extracted from the current frame, matched
against the database, resulting in a set of 2D/3D correspondences.

The next task is the pose estimation of the object. It was assumed earlier a set of point
correspondences with model points and image points. The object pose can then be estimated from
such correspondences. The unknowns are the translation vector t and rotational vector R. They have
been found iteratively by using POSIT algorithm. This algorithm estimates pose uses a scaled
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orthographic projection, which resembles the real perspective projection at convergence. Such
approximation leads to a linear equation system. This gives the rotation and translation directly and
there is no the needs of a starting pose. A scale value is introduced for each correspondence, which is
iteratively updated. More details about POSIT algorithm can be found in [7].

Automatic segmentation of vehicle from the background and from other vehicles is assumed to
be a priori made. Purpose of this step was to distinguish foreground object from the stationary

background.

4. Experiments

This section described experiments which were made. Experiments were tested in Matlab software.

It was used a set of photos of real object. It was presented the tracking results of the real object.
Experiments were conducted on various image sequences and show advantages of the chosen
approach. The main goal of experiments was to obtain the measurements of position and orientation
of object and check how accurate is algorithm. Others goals were to confirm the robustness to varying
occluding conditions. Experiments were tested as follow. It was used a plane with example image,
which was mounted on mounting stand, which can be precisely translated and rotated due to camera
coordinate frame. The object was placed on calibration grid so measured parameters were compared
with proposed methods. Typical object was shown on image below. It was used low cost camera. The
source of light was fixed. It was provided uniform illumination for all the positions of tested object.
There were measured of position and one rotational degree of freedom on ground. Next the result of
ground truth measurement was compared with calculated results. It was expected that ground truth
measurements should be very close to calculated results. Expected translation error should be below a

few millimeters. Similar, rotational error should be less than 4 degrees.

Figure2.  Exemplary object which had been tested
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These internal parameters can be estimated during an offline camera calibration stage. Camera
was calibrated the using Caltech calibration method. The motion pattern is visible in the figure. The
ground truth error varies around 1mm in space.

The six plots present results for a first chosen example. The camera has a distance of
approximately 220 mm to the object. At the beginning the object is not moving. Next the object is
moving manually till second 37. The object was constrained and not moved along x and y axes. On
the x axes of first three plots there is given time in seconds and on y axes the measured translation in
millimeters. On the next plots on x axes there are given, similar as upper figures, time and on y
orientation in degrees. Green line shows ground truth and blue line shows the measurements.
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Figure 3. Tests results of the first experiment. Position and orientation of the object.

Ground truth (green line) should be very close to measured results for all degrees of freedom. On
the first plot (upper left) there was presented the linear translation of object along x axis of the camera
coordinate system. Vision based measurement indices that there was a translation about 6mm. It may
be caused by camera mounting. On the second plot there was presented linear translation along y axis.
In reality there was no translational motion along y but from vision system measurements one can see
that maximum difference for y axis is about 9mm. Possible cause of this errors is nature of presents
method. There is possible to try reduce the errors if better correspondence generation algorithm will
be obtained. On third plot error for z axis is about 85mm, which is much more than for x and y axis.
This is measured in direction perpendicular for image plane and it is distance from camera coordinate
system and the object. It was expected that this error should be smaller. Next three plots presents

rotations around three axes of object coordinate system. In ground truth measurements there were no
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rotation about x and y axes. Four plot presents that there was a rotation about 3deg. On the fifth plot
there is small error 3mm between both ground truth rotation and vision based measurement. In the
case of rotation around z axis there was quite small error. After 5 second error is three times bigger
than at the beginning. The peak at 34 second is caused by software because one frame was lost during
simulation.

There results were as expected. It worth nothing that rotational errors were with negative sign.
Translational errors were under ten millimeters for x and y axes and bigger for z axis.

Next, there was conducted second experiment. Object was moved but in other manner as in first

experiment. The object was moved mainly along z axis, from position far too closer from camera.
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Figure 4. Tests results for second case.

Similar as in the first case there are presented six plots. First three presents linear translations
along axes of camera coordinate system and three presents angular orientation of object. First plot
presents linear translation along x axis. There is significant error between both measurements. At the
end of simulation difference is about 100mm which is very big value. This is caused by mounting of
camera. There were small motions caused by imperfectly camera to ground. On the second plot both
lines green and blue are very close because object was constrained on y axis and could not pitch and
yaw. On the next three plots there are presented measurements for angular orientation of object. For
roll motion there is error about 2 degrees. Very similar results were obtained for pitch. For both vision
based measurements there is a peak in 6 second. There is no cause of this error. The sixth plot
presents yaw. In this case maximum error is about 5 mm.
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The experiments take about 13ms per frame on modern CPU. It was shown that introduced
method is able to run in real time. The camera bed should be more precisely screwed because it
introduced serious problems. There were achieved good results. It is planned to still work on

proposed method. Only for planar object results are presented.

5. Conclusions

This paper describes the results of analysis and testing of a pose estimation system intended for vision
based navigation for satellites flying in formation. Presented technique of pose estimation is able to
run in real-time. The presented method gives a good results and will be developed and implemented
in the future research process for satellite flying when the mission need that one satellite approach to
another. Offered method is more accuracy than other described methods. The promising results of
numerical simulation have been obtained. Approach will be further evaluated and tested in the
continued work. In this paper only first step of all system was presented. There is planned to still

work on all system.
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On the synchronization in power-grid models of Kuramoto-like
oscillators
(STA156-15)

J.M.V. Grzybowski, E.E.N. Macau, T. Yoneyama

Abstract: In the context of power-grid models based on Kuramoto-like oscillators,
synchronization is defined as the matching of the angular velocities of the oscillators,
such that synchronized oscillators evolve most likely out of phase but with equal
angular velocities. As such, coherence is usually measured by means of an order
parameter in the interval [0,1], which is a function of synchronization quality and
persistence over time. In this paper, we present analytical results on the critical
coupling in networks of Kuramoto-like oscillators which allow us to evaluate them
against an order parameter defined as the normalized sum of absolute values of
phase deviations of the oscillators over time. The investigation of frequency
synchronization over the subsets of the parameter space of the synchronization
problem for power-grid models of Kuramoto-like oscillators is carried out, from
which we conclude that the analytical results are rather tight and in good agreement
with those observed in the numerical simulations.

1. Introduction

Power grids are large scale distributed dynamical systems whose functional structure resembles that
of a living organism in the sense that a great number of subsystems work together and rely on each
other to keep in motion a larger system that integrate, interconnect and make sense of them all at
once. The coupled generating units have similar functions and are part of large network structures
whose stability and robustness are closely related to the individual characteristics of the generators
and consumers, to the characteristics of the couplings among them and to the topology of the network
through which they are wired together [1][2]. Recent studies show that insights into the topology and
dynamics of power-grids can be gained by means of theoretical studies that consider models of
electrical generators coupled according to network structures that reproduce the topological and
electrical interactions existing in real power-grids [3]-[12]. The transition from a synchronous state to
a incoherent state, for example, can be studied from the viewpoint of complex networks of Kuramoto-
like oscillators [13] by means of a formal analogy between the paradigm of Kuramoto oscillators and
a transmission/distribution grid with generators and consumers. In this context, models that reproduce
the dynamical and structural properties of power-grids can enhance and sharpen the identification of
unnoticed mechanisms and properties that favor or disfavor stability and robustness characteristics of

the in real power-grids.
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The object of study here, the Kuramoto-like oscillator, was proposed as a formal analogy
between electrical generators/loads and the celebrated Kuramoto model [3]. Since then, a number of
studies considered the model to investigate synchronization and stability issues in power-grids [3][6],
having concluded that the model retains important characteristics of the real system. It was
recognized that the order parameter as formulated to study synchronization in the orignal Kuramoto
paradigm is not suitable in the context of power-grid modeling, since in the latter case
synchronization is defined somewhat differently, i.e., on the basis of quality and persistence of
frequency matching among the oscillators.

In this paper, we consider the generator/machine model proposed in [3] and previous studies on
the Kuramoto model [14] to develop analytical expressions for the critical coupling strength in
networks of Kuramoto-like oscillators that model power grids. The analytical results are then
evaluated against an order parameter based on the ideas on partial synchronization presented by
Gomez-Gardefies et al. [15]. The numerical results obtained by evaluating the order parameter over
subsets of the synchronization problem are shown to be rather tight and in good agreement with those
obtained from the analytical expressions. The paper is divided as follows: Section 2 presents the
Kuramoto-like model with bimodal distribution and the measure of coherence based on those
presented in [15]; Section 3 presents the results and Section 4 summarizes the paper and discusses the

main points.

2. A model for synchronous electrical generators and loads

Consider a network of N oscillators with dynamics given by the Kuramoto-like model,

proposed in [3], such that the equations of the jth oscillator can be written as
0]- =,
_ (1)
&, =—aw; + P+ P, > A,sin(6, - 0))
k=1
where ¢, and ; are functions of time and denote the phase and frequency of the jth oscillator,
j=12,.,N, a>0 is a damping parameter related to the power dissipation by friction, P; is the
power delivered by (P, >0) or consumed by (P, <0) the jth node, B, is the maximum capacity

of the transmission line between two nodes and A;, is the entry of the symmetric adjacency matrix

A atrow j and column k that is equal to one if nodes j and k are linked or to zero, otherwise.

As one considers a network of coupled generators (P, >0 for all j), the synchronous state can be
taken as o (t) =, (t)=---= o, (t) which means that the frequencies of all the oscillators are

matched. Now consider a more general situation in which generators (P, >0) and loads (P, <0) are
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running counterclockwise and clockwise, respectively. Following [4], consider the condition

@;=0,0; =, j=1..,N for some constant angular velocity ,, such that equation (1) becomes
N

0=—am, + P+ P, > Aysin(A,) where A =6, —6; is a constant. It was shown in [4] that the
k=1

summation of N equations in this form for all j yields the synchronous speed «, =ZP]./5N .
Note that for perfectly balanced generation/load condition in the power system the equality ZPj =0

holds and yields «, =0.

In the context of power-grids, it is relevant to measure synchronization quality and persistence over
time since deviations in angular velocities from the nominal value can give rise to instabilities.
Further, being synchronization a global phenomenon in an interconnected power-grid the
synchronization between any couple of oscillators in the network matters, regardless they are directly
linked through a power line or not. Recall that all elements in an electrical circuit are electrically
coupled to each other even if they do not belong to the same branch or even to neighboring branches.
Finally, recall that, as long as the definition of synchronization given above is concerned, the
synchronous angular frequency is not required to be constant, as to allow for time-varying

generation/consumption PJ. (t). This allows the interconnected grid to slightly adjust is speed

according to the generation/load balance condition to which it is subjected at any given time. This fact
breaches an assumption commonly made in this kind of study.

It was shown in [4] that the lower bound to the existence of a synchronous manifold to coupled

Kuramoto-like oscillators is given by P,;ax = max{‘aws - Pj‘/dj} where dj =ZAjk ,k=1..N,is
J K

the degree of node j . This indicates that the variance in the distribution of P, has to be compensated

with stronger coupling or increased connectivity. This can be also seen as one looks for the coupling

strength ¢ at the onset of synchronization for a fully connected network. Consider the deviation

equations ¢9| —éj given by

@ -y =-a(a _wi)+(Pi_Pi)+Pmax{25in(ei -9)+ i (Si”(gk ~6)+sin(0) _gk))} &)

k=1k=#i,

and, following [14], calculate the maximum of equation

E=2sin(6,-6)+ i (sin(6, —6,)+sin(6; -4, )) 3)

k=L k=i, j
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with respect to the phase angles &, ,, 6, , then either 6, =6, or 26, =6, +0,. In case 6, =0, ,
there is power flow, and this case is not of interest. For 26, =6, +6; the function E given by
equation (3) reaches a maximum and, following [14], the optimal solution (Hj -6, )Opt gives the

maximum of E and allows the coupling P, to be minimum reads

—(N=2)+4(N-2)"+32

(0,-6 )Opt = 2arccos 5 @
such that
Epex = 25in(6) —Q)Opt+2(N—2)5in(91 _Hi)opt ®

The behavior of E_,, as a function of the number of oscillators is depicted in Figure 1. Note that

E,x —>8 and (6’j —6@)—>7t as N —>oo. Regarding the numerical order parameter largely
applied to evaluate the quality and persistence of coherent behavior, note that, a constant value of
AG, (t) = ¢ indicates that the phase difference between two oscillators is constant, which means that
the frequencies are matched. In this case, the parameter equals one.

On its turn, time-varying A&, (t) indicates that frequencies are not matched, thus resulting in a non-
negative value less than unity. As the phase differences A@(t) are computed for every pair of
oscillators over the network in a matrix with entries Aé’jk (t) , the mean value can be regarded as a

measure of the overall state of network synchronization and it gives the overall quality and
persistence of synchronization. It follows that the level of coherence in the power-grid model can be
accessed by means of an parameter I, given as

3 1 N N 1 (et i(o,-a,)
T (N_l)zz( jim L[ dt‘D ©

At—>+o At It

where T, e[O,l], r, =0 for totally incoherent or intermittent states, r, =1 for perfectly matched

angular velocities over time while intermediate values I, 6(0,1) depict levels of intermittent or

partial synchronization. The order parameter (6) can be calculated within subsets of the plane
coupling strength vs. variance and presented in the form of coherence maps in the parameter space,
from which the behavior of synchronization in diverse network structures and parameter subsets can
be studied.
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Figure 1. Evolution of the optimal phase difference (Hj -6, )Dm and of the term E__ as a function of

the number of nodes N for a fully connected network. Note that E,_, —8 and (Bj -6, ) — 7 as

N—>ow.

25
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e

Coupling strength

Figure 2. Density diagram for the order parameter as a function of coupling strength P, and the arc
length y for a couple of mutually coupled Kuramoto-like oscillators with B, =1, P, =—1 and initial
conditions @,(0) = w,(0)=0.
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Figure 3. Density diagram for the order parameter as a function of coupling strength P, and the arc
length » for three Kuramoto-like oscillators with consumer-generator-consumer coupling and
B =-1 P, =2, B, =-1 for the initial conditions e, (0) = o, (0) = &,(0)=0.
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Figure 4. Time evolution of two mutually coupled Kuramoto-like oscillators with
c=15, R, =1 P, =-1. The value of the coupling strength, obtained by means of equation (11), is the

minimum for which synchronization between such oscillators can be maintained.
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3. Results

As (6,-6,)—(6,-6)_ then E —E,, . Let us consider equation (4) and admit E =E,,, for

op!

the purpose of finding P, for the synchronization onset. Further, let us denote @, — @; = Aw; and

we obtain the linear ODE Aw; +adAw; = (Pi -P; )+ P .o Emax Whose solution is given by

max —max

R-P, PE
= ] +M+a)oe“"t (7)

o (24

for some arbitrary integration constant @,. As t— oo, the exponential term vanishes and one can

rearrange the equation such that

o2, ~(R-R)
E

‘max

P, > Max i, j=1..,N ()

Equation (8) gives a lower bound for the B, required for synchronization. Considering B, P,
as constants, then we can approximate the value of P, by evaluating the upper bound of the
deviation in angular velocities, Aw,,, . Consider that the angular velocity for a given oscillator will

have a value in the interval [, @], Where @, =min(w), @, =max(e), i=1..,N.

Further, one can refine that interval by observing that for weak coupling each oscillator will rotate

with angular speed corresponding to its natural frequency as t — oo, that is, @ =P/« . On the other

hand, for strong couplingand t >, @ =a, = ZPi/aN such that one obtains
i

>R -NP
= max|—+—— |
i aN

Aw,

max

)

from which the value of P, from equation (8) can be estimated for a given network of coupled

generators/consumers. Note that as @, ; eventually evolve to the same value, equation (2) becomes

0

(-r)cfasn(o-a) 35 (an(a-a)ssn(o,-a) (10)

k=1k=i, j

and we find P, > ‘(PI -P; )‘/Emax which is the value below which synchronization between nodes i

and j cannot be maintained. Further, if the injected/consumed power B,k =12,..,N belongs to a

compact set [14], then
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_P.
P max min 11
> 22 (an

max

is the minimum coupling gain that allows synchronization to be maintained. In the following, we
compare the results derived in this section to those of numerical simulations. The integration was
performed using the 4™ order Runge-Kutta algorithm and h=5x10" as time step.

In Figure 2 and Figure 3, we explore the behavior of the order parameter as the oscillators are

subjected to different initial conditions on the angle. Towards this end, we define y as the length of
the shortest arc in the cycle that covers the geodesic distance between any two initial condition angles
of the oscillators. Thus, for example, if 4,(0)=7/4, 6,(0) = z/3, 6,(0) = /2, then the shortest arc
lies in a clockwise subtraction, y =7z/2—7z/4=7/4. The conditions under which the simulations
were performed are informed in the figure captions. The numerical simulation shown in Figure 4

illustrates this result in a network of mutually coupled Kuramoto-like oscillators, for P =15,
=02, PR=2PR=-1 and initial conditions corresponding to (o —Q)Om and

@, =0,k=12,..,N. Note that this is the critical coupling value given by equation (11) for the
maintenance of synchronization in the case when all the frequencies are matched. As Aw(0) =0 the
reasoning behind equation (11) holds and the oscillators remain synchronized over time, as shown in
Figure 4. On the other hand, diverse numerical simulations for P, below that threshold showed that
synchronization is lost as t — oo, which is also the case when P, =15 and Aw~0. Now, for the
same setup, as we consider equation (8) and notice that P,/ =10, P,/a =-5, then it follows that
w,=2.5 and from (8) and (9) one obtains P,, >2.25. As it can be observed from the numerical

simulations in Figure 2 and Figure 3, all the values observed in the numerical simulations are in
agreement with those obtained by means of the analytical expressions (8) and (11). As one considers
larger networks of oscillators that are not fully-connected (which breaches the assumption made for

the calculation of E it was observed that the value of the critical P,,, increases relatively to the

max !
value estimated by the expressions (8) and (11). This case will be further investigated and treated

separately somewhere else.

4. Final remarks
This work investigated a couple analytical expressions to determine the critical coupling for
networks of Kuramoto-like oscillators. Rather than assuming that the oscillators are

currently synchronized in order to derive an expression for the critical coupling, we simply
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observe that their angular velocities shall lie within a compact set with known boundaries.
The theoretical expressions were evaluated along with an order parameter for
synchronization quality and persistence in power-grid models. The parameter follows the
general idea of the order parameter from the Kuramoto model, except for it considers some
of the specificities of power-grid models such as the existence of two types of nodes, i.e.,
generators and loads, and a definition of synchronization based on matching the values of
angular velocities. The parameter allows the investigation of stability over the parameter
space of power-grid models. Further insights can be gained from the exploration of the
relations between coherence and the parameters from the model and the coupling network.
The numerical simulations were used to validate the theoretical development and it was
observed that for small networks the behavior of the critical coupling determined in the
analytical expressions closely matches those obtained through numerical simulations for
small networks. On the other hand, it was observed in preliminary studies that this
matching is not so tight for larger networks. As shown along the reasoning and examples,
this approach is a suitable tool for the study of synchronization in power-grid models of
Kuramoto-like oscillators and it can hopefully help enhance the comprehension of real

features of power-grid dynamics.
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Dynamical load of welds after micro-jet cooling
(STA265-15)

Damian Hadrys

Abstract: Goal of that paper is new welding method on example welding of one grade
of steel (ferritic steel). The joining of steel elements by welding is very popular [1-7].
The main reason of paper was investigate about possibilities of achieve a very high
plastic properties of welds for particular conditions of maintenance of welded steel
constructions. Steel construction needs to present high plastic properties to support
dynamic load (impact conditions). A way to improve of plastic properties of welds,
especially for impact loads is welding with micro-jet cooling. It is a new method of
welding. In this method the microstructure of weld presents the high content of
acicular ferrite (AF) in weld metal deposit (WMD). It is a guarantee of high values for
the plastic properties [8, 9]. Micro-jet cooling is an innovative method of forced
cooling immediately after welding. In this paper the number of micro stream of the
cooling gas influence is presented in order to obtain high impact resistance.

1. Introduction

Micro-jet cooling is an innovative method of forced cooling. This method of cooling could be used to
cooling of weld area immediately after welding procedure. Micro-jet cooling allows to decrease of
heat transfer to material of welded elements. Main goal of this method is fact of obtain high AF
amount in WMD. This fact corresponds with high mechanical properties of welds. Welding with
micro-jet cooling allows to obtain welds with better mechanical properties in comparison to ordinary
welding method [10, 11]. The percentage of AF, and consequently the plastic properties of the weld
can be controlled by several variables: type of gas, the number of micro-streams, and distance
between device and weld sample, among others.

In standard Metal Inert Gas welding process (MIG) were usually gettable higher amounts of grain
boundary ferrite (GBF) and site plate ferrite (SPF) fraction. In welding with micro-jet cooling both
structures (GBF and SPF) were not dominant. During cooling of weld time of GBF and SPF
formation has been reduced. Because of weld cooling it is too short time to formation great amount of
GBF and SPF. This allowed to reduce amount GBF and SPF with increase the amount of ferrite AF in
WMD.

A simplified method to analyze the behaviour of welded components under impact load is the

coefficient of restitution. This coefficient describes the absorption of impact energy by the structure.
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Moreover, it can describe, which part of impact energy is recovered during the return (second phase
of impact), i.e. which part of impact energy is transformed to plastic strain or it is returned to elastic
strain. Coefficient of restitution R was introduced by Newton. For full plastic impact R=0, and for full
elastic impact R=1. During real impact it is obtained an elastic-plastic mixed behaviour, when 0 <R <
1[12].

Coefficient of restitution is used to impact analysis. It strongly depends on relative impact
velocity. When velocity after impact is smaller than velocity before impact it means that decrease of
kinetic energy of system. This variation in kinetic energy is related with irreversible plastic
deformation, heat and vibrations [13, 14].

2. Experimental procedure

Coefficient of restitution R, can be determined by different methods. One of ways to restitution
coefficient calculation is experimental procedure. During the experimental method, in order to obtain
several impact energies four pendulum heights and two different mass are used to calculate the
coefficient of restitution (equations 1 to 4).

M ="Mz M)

)
o 1 1+M [
M M \h, o
lim R = lim & +1+M [h _ /h,
L L L ©)

where:

m; — mass of pendulum [kg],

m, — mass of specimen + mass of test stand + mass of foundation [kg],
h; — height of pendulum drop [m],

h, — height of pendulum reflect [m].
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Test stand (Fig. 1), specimens and impact conditions was selected before the investigation. The
test procedure have been carried out on single-blow impact testing machine with modified pendulum.
It was used a test stand mass of 700 kg and a pendulum of 20 kg. Test stand has been fixed to the base
(foundation), i.e. my—oco. For all data two height have been registered: height of pendulum drop (h1)
and height of pendulum reflect (h,).

[—

o

5]

[
= 4

—

R =

e e e e e e e e o A,
e

R
A
S
S
N
A

Figure 1.  Detail of experimental procedure:

1 — pendulum, 2 and 3 — registration device, 4 — specimen.

During the test procedure, the pendulum has been dropped from height h;, and the specimen was
deformed due the impact energy, while the pendulum return to height h,. Impact energy and
pendulum velocity values used during tests are presented in table 1. The Figure 2 shows the
permanent angle measured in order to evaluate the plastic strain after the impact. During the test, the

specimen was supported at the ends, and the impact force was positioned in the middle length of the

specimen.
Table 1. Impact conditions during experimental procedure.
Pendulum height h; Impact energy Impact velocity
[m] [ [mis]
1.61 315.9 5.6 m/s
1.56 306.1 5.5 m/s
1.41 276.6 5.3m/s
1.22 239.4 4.9 m/s
0.91 178.5 4.2 m/s
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Figure 2. Detail of angle measure to evaluate the plastic deformation.

3. Specimens

Specimens have been made with S235JR steel. This is a grade of steel on steel constructions. It is one

of the most popular steel grade. Chemical and mechanical properties of this steel it is presented in

next tables (Table 2 and Table 3). Five types of specimens were used in this work:

specimens without weld,

specimens welded with traditional MIG method (without micro-jet cooling),

specimens welded with MIG method, but using micro-jet cooling with one micro stream
jet,

specimens welded with MIG method, but using micro-jet cooling with two micro stream
jets,

specimens welded with MIG method, but using micro-jet cooling with three micro stream

jets.

Table 2. Chemical composition of used steel.

Chemical element Content [%]

C 0.17

S 0.035

P 0.035

Si 0.10-0.35
Mn 1.40

Cu 0.55

Ni 0.12
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Table 3. Mechanical properties of used steel.

Property Value
Yield stress 235 MPa
Tensile strength 380 - 520 MPa

16 %

Elongation, Asy

MIG welding with micro-jet cooling is presented in figure 5.

Figure 3 shows welded specimens used in investigations and Figure 4 shows arrangement of
micro stream jets. Welding of specimens was done with micro-jet cooling, with argon as micro-jet
cooling gas. The main data about parameters of welding process were shown in table 4. Apparatus for

Figure 3. Dimensions of the specimen.
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Figure 4. Localization of the micro-jet cooling stream jets (3 cases); the grey arrows indicate the




Table 4. Parameters of welding process

Parameter Value

Diameter of wire 1.2 mm

Electrode classification G2Sil/ ER70S-3

Standard current 220 A

Voltage 24V

Shielding welding gas Ar

Micro-jet cooling gas Ar

Micro-jet cooling gas pressure 0.4 MPa

Diameter of micro-jet cooling stream 40 pm
1(A)

Number of tested 2(8+0)

o . 3(A+B+C)

micro-jet cooling stream . ) . .
Situated in equilateral triangle
with sides 6 mm (Fig. 4).

Weld geometry butt weld, gap 1.2 mm

Welding position PA

Number of passes 1

Figure 5. Apparatus for welding with micro-jet injector.

All tested welding processes were chosen with micro-jet cooling conditions which are presented

in figure 6. It was possible to get precisely weld cooling conditions especially in range 800-500° C.
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Figure 6. Changes of weld temperature during welding with and without micro-jet cooling.

4. Results and discussion

There were tested and compared various welds were made with ordinary MIG method and with
welding with micro-jet cooling. Welding with micro-jet cooling technology were done with different
number of micro-jet cooling stream jets. The computations have been carried out with five level
impact energy/velocity. The results are the average of five tests.

Figure 7 shows the evaluation of the restitution coefficient in function of the impact energy for
five kind of specimens. The value of restitution coefficient has decreased when the impact energy has
increased. This results does not depend on the type of specimen. Specimens without weld have had
the largest values of restitution coefficient. The smallest value of restitution coefficient has been
reached for specimens welded without micro-jet cooling.

Furthermore, it could be observed that the number of micro-jet cooling stream positively
influence the results of impact test. Higher number of micro-jet cooling streams allow to obtain a
higher value of restitution coefficient. However, this influence is not very significant.

Figure 8 shows the evolution of the plastic strain in function of the impact energy. It was
observed that the plastic strain increased when the impact energy is growing. Specimens without weld
present the smallest plastic strain. Higher plastic strain has been reached for specimens welded with
traditional MIG method (without micro-jet cooling system). Moreover, it was observed that the

micro-jet system has positive influence on plastic strain.
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Figure 7. Evaluation of the coefficient of restitution in function of the impact energy.
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Figure 8. Evaluation of the plastic deformation after impact.
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For lower impact energy, 178.5 J and 239.4 J, the results were very similar for all kind of
specimens. But for impacts with higher energy, 276.6 J, 306.1 J and 315.9 J, cracks were observed for
specimens welded without micro-jet cooling. For specimens welded with micro-jet cooling, were not
observed any cracks or fissures. Also the increase of the number of micro-jet cooling stream
positively influence the results. Moreover, this effect is positive, but the influence is not significant.

Reduction of plastic strain is a desirable property of micro-jet cooling application for welding.

5. Conclusions

Coefficient of restitution for welded specimens with different levels of impact energy were used. It
was observed that the value of restitution coefficient decreased when the impact energy increased.
Minimum values of restitution coefficient has been reached for specimens welded without micro-jet
cooling system.

Poor values of the plastic strain are presented by the specimens without weld. The highest plastic
strain has been reached for specimens welded with traditional MIG method, without micro-jet
cooling. The presence of the weld has adversely affected the plastic properties of the material
element. Plastic properties of the weld in this case are not good. The reason for this is the appearance
of the weld and HAZ. It is observed that the use of micro-jet welding influences positively on the
plastic strain.

This innovative welding process using the micro-jet cooling and shows good results related with
the welding plastic properties. On the basis of this investigation it is possible concluded that:

e micro-jet cooling could be treated as an important element of MIG welding process,

e micro-jet technology in welding could improve plastic properties in the welds,

e argon could be treated as a micro-jet gas in welding process,

e agreat number of streams of the micro-jet cooling has positively influence in the welding
process, i.e, increasing the number of micro-jet streams promotes the cooling intensity,
and consequently it is reduced the plastic strain of the weld.

Further research of welding is needed, especially for other materials, for other elements geometry
and others applications (exposure to vibration, impact energy absorption, maintenance of construction

at low temperature).
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Vibro-impact dynamics of two rolling heavy disks along rotate
circle with constant angular velocity
(BIF125-15)

Katica R. (Stevanovi¢) Hedrih

Abstract: Under the authors’ use Petrovic’s elements of mathematical
phenomenology, especially mathematical analogy between kinetic parameters of
central collision of two bodies in translator motions and central collision of two
rolling different disks, new original expressions of two outgoing angular velocities for
each of rolling disks after collision are defined in author previous papers. Using this
new and original result of vibro-impact dynamics of two rolling heavy different disks
on the rotating circle trace in vertical plane in period of series of collisions is
investigated. Use series of the elliptic integrals, new nonlinear equations for obtaining
angles of disks positions at positions of collisions are defined. Phase trajectories of the
disks in vibro-impact dynamics are theoretically presented. Two cases of vibro-impact
dynamics when phase portraits contain trigger of coupled singularities and homoclinic
orbit in the form of number “eight” as well as in the case without that trigger of
coupled singularities are discussed. Phase trajectory branches of both rolling disks in
period from initial positions to first collision between rolling disks are presented..

1. Introduction

Non-linear differential equations of non-linear dynamics of a rolling heavy disk along rotate circle,
with constant angular velocity, about axis in three different positions are derived and presented in
author’s Reference [1]. From comparison between these three nonlinear differential equations, some
conclusions of nonlinear dynamics of rolling heavy disk along rotate circle with constant angular
velocity about different axis in three different positions are pointed out. For two cases, first that axis
of the circle rotation is vertical and central and second that axis is vertical and eccentrically,
corresponding equations of phase trajectory portraits depending of kinetic parameters of the system,
are obtained. Existence of trigger of coupled singularities [2-7] and homoclinic orbit in the form of
number “eight” depending on system kinetic parameters and appearance of the bifurcation of relative
equilibrium positions are investigated. For the case that axis of the circle rotation is vertical and
central, functional dependence between angle of disk relative arbitrary position on rotate circle and
duration of time are derived [1]. For obtaining this solution, an elliptic integral [8] is derived. For
solving elliptic integral, a transformation is introduced and functions under the elliptic integral are
developed in three series along angle of disk relative arbitrary position on rotate circle [1]. By use

obtained functional dependence between time of disk rolling and angle of disk relative position,
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discussion of different period duration of rolling disk oscillations along rotate circle trace about
vertical central axis is done depending of initial conditions and constant angular velocity of the circle

rotation.

2. Non-linear differential equation of a rolling heavy disk motion along rotate circle

in vertical plane about vertical central axis

In Figure 1, a model of the heavy homogeneous rolling disk, with radius I' and mass M , and axial

mass inertia moment for centram axis _erz , along rotate a circle trace, with radius R, which
o=
2

rotate with constant angular velocity Q about central vertical axis, in vertical plane is presented.

Taking into account that: 5,  _ 3Mr? s axial mass inertia moment of the disk for the momentary
’ 2

2
axis of disk relative rotation-rolling along rotate circle, wp o = (Ej ¢2 is angular velocity of
relative rotation-rolling along rotate circle, then partial non-linear differential equation of the heavy
rolling disk along rotate circle with constant angular velocity 9= =constat about

central vertical axis is in the following form (for details see Reference [1] ):

1
p+0Q° — g - ! cosg )sing=0 W
i [
el L1 (R=r)2% | -Cre 41
QZ
or $+-—(A—cosp)sinp=0 2
K

s

a* b* c*
Figure 1. The rolling heavy disk along rotate circle line, with constant angular velocity, in
vertical plane: a* and b* Plan of forces and velocities for the central axis of circle rotation; c* Plan of

forces and velocities for the eccentrically axis of circle rotation.
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where the following denotations are introduced: Jor _ 2 iz 4r2 2 _Jem for radius of axial

M P,rel Crel Porel M
R 2 _ - . i2
mass inertia moment, K_[ C_;. +1J for coefficient of the disk rolling, 0 g [ c.;. +1|R-r) for
r r
reduced length of the corresponding rolling pendulum and , _ 9 . In comparison between
(R-rjo?

obtained nonlinear differential equation (1) for considered case of rheonomic and relative nonlinear
dynamics of a heavy thin rolling disk alog rotate circle with constant angular velocity
9 =0 =constat about central vertical axis and corresponding nonlinear differential equation of a
heavy mass particle moving along a rotate circle curvilinear trace in vertical plane about central axis
(see References [4, 18]) it is easy to identifies a mathematical analogy (see Reference [20-23]).
Analogous kinetic parameters between dynamics of these systems are: for system with disk

A= — 9 andfor analogous system with mass particle ; _ 9 ;and for system with disk @

(R - F)QZ RO2 -
and for analogous system with mass particle Q2.
As details about singularities and stationary points of nonlinear differential equation (1) or (2) are

known from published classical literature [4, 18, 19 ], then, there these results are listed: 1* for the

case that 1 >1, then, one set of singularities ¢, =S s=0,+1,+2,43,.... exists, and these

singularities are alternatively stable and unstable, starting by stable singular point in zero point

@ =0, and next p_,, =2kz .k =+1+213,.... as a type stable center, and next unstable saddle

type singular pointin Pt =7 and next Ps-ak1 = (2k +1)7 . k =+1,+2,+3,....; and 2* for the case

that 1 <1, then two sets of singularities exist; first set consists of singular points ¢ =Sz

$=02L+2.53.. \hich are all unstable, saddle type and second set consists of singular points

(s =Farccos A +2s7 s :O'il'iz'ig'““, all stable, center type. Two singular points of stable

=+arccosA+2szr s=0,+1,+2,+3,..

centre type, in pair, from second set ¥s ~and one unstable saddle

type singular point Ps-ak = 2kz Kk =0,£1%2,%3,.... from first set build series of subsets each of a
trigger of coupled singularities .

On the basis of previous results, a conclusiion appeared: coeficinet of rolling of the rolling disk along
rotate circle haven’t influent to the structural stability of set of system singularities. From the

expression of A it is visible that structural stability of set of system singularities and existence of
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trigger of coupled singularities depend of difference (r—r) between radius of rotate circle and radius

of the disk, and of angular velocity Q of circle rotation about vertical central axis.

2.1. Equation of phase trajectory of the non-linear differential equation of a rolling
heavy disk motion along rotate circle about vertical central axis

By multiplying corresponding terms of nonlinear differential equation (2) with 2¢dt = 2d¢ it is

possible to produce integral in the following form:

2

20 </1(003go0 —C0s¢)— %(cos2 @, —C0s? (p)> =0 ©)
K

P*~ i+
where ¢, angle of initial relative position of disk mass centre C on rotate circle, and ¢y is initial

angular velocity of disk mass centre C relative rotation about rotate circle centre O .

19
AT NI AN *

©

/7R

! |":|"“,|/

b:i: - 20 X 20
Figure 2. In phase plane (¢,), two phase portraits of nonlinear dynamics of a rolling disk along
rotate circle with constant angular velocity around vertical central axis for different kinetic

parameters: a* for A > 1 without trigger of coupled singularities and b* for A <1 with a trigger of

coupled singularities and an homoclinic orbits in the form of number eight.
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In Figure 2, in phase plane ((/'J,(p) , two phase portraits of nonlinear dynamics of a rolling disk along
rotate circle with constant angular velocity around vertical central axis for different kinetic parameters

are presented. In Figure 2.a*, phase portrait is for 4 >1 without trigger of coupled singularities and

in Figure 2.b*, phase portrait is for A <1 with a trigger of coupled singularities and an homoclinic
orbits in the form of number eight.

In Figure 3, parametric transformations of homoclinic orbits of phase portrait of a rolling disk
nonlinear dynamics on rotate circle with constant angular velocity about central vertical axis are
presented. In Figure 3.a* parametric transformation of hmoclinic orbit in the form of number eight is
presented, with limit process of the bifurcation one stable point into trigger of coupled singularities |
opposite disappearance of trigger of coupled singularities and appear a stable threefold singular point.
In Figure 3. b* and c* layering of homoclinic orbits coursed by parametric variations with two limit
cases a separation new homoclinic orbit in the form of number eight from other homoclinic orbit, or
appearance homoclinic orbit in the form of number eight from stable singular point centre type by
bifurcation and appearance trigger of coupled singularities with a no stable saddle point and two
stable centre type singular points.

From equation (3) of phase trajectory of a rolling heavy disk moton along rotate circle with constant
angular velocity about vertical central axis is possible to obtain relation betwee time t duration of
rolling disk motion from initial position to arrbitrary position on rotate circle determined by angle of

relative position ¢ in the following form (for detail see Reference [1]):

[
= I 200° 1
~ \/gbé— <i(cos<p0 —cosg)— E(cos2 @, — €08 (/7)>
K

Let’s introduce the following denotations:

QZ
o yELE
@, = \/(pé——(zzos% —cos’g,), k'=—EK
K ,
o’ o’ (o
0= —— (24 1) =g~ (2405, — COS? 9, )+ ~— (22 1)
K K K
_ K* 1 1 (5)

ey e e
Doz = “’0\/<1+ (ksz>mm

and the integral (4) obtain the following form:

u= “1)+sin?2
2 [m 2) udu (6)

i JWJ)—] e e k)

t
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Obtained integral is elliptic integral and by use theory of special functions, this integral is possible to
solve approximately by developing expressions with roots by series [8] and approximate value of
elliptic integral obtain the following form::

< 2 : o1 @)
o Tl ] g 2o
@, . (mﬂinz%) n=0( n "ol n =

or taking into account only first three terms in each of three series:

El

u= [MHinZQ]

2

- @)
tr = 1+%k“u4 ;ik8u8><1+ k 2u? +;—3kmu“><1+ k,2u? +;—3k“u“>udu

3. Collision of two heavy rolling disks along rotate circle trace

3.1. Kinematics of two heavy rolling disks along rotate circle trace

In the case that rolling disks are with different dimensions, and masses and axial mass inertia moment
for instantaneous axis of tolling along rotate circle trace, plan of impact pre-central-collision and
outgoing post-central-collision relative angular velocities and component relative velocities at impact

point le in collision are presented in Figures 4. See explanation in Reference [24].

P ais
V C2immpact
T2,n,0ytgoing

5 .
C2outgoing

Vo i :
T ’./r.lnmu)u(’l‘

2.tang,impact
- ) (D/’Z,uulgumg
® Pl,outgoing - Wpy Jdmmpact

Plimmpact

Circletracerollin P,

Figure 4. Plan of relative angular velocities and component velocities in pre- and post-central-

collision of two rolling heavy rolling disks along rotate circle trace in vertical plane [24]
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3.2. Dynamics of central collision of two rolling disks along rotate circle trace

Let’s start with theory of dynamics of central collision between two rolling disks, with mass M, and
M, , and axial mass inertia moments J, and j,, for corresponding momentary axis of rotation in
rellative rolling along rotate circle trace with pre-impact (arrival) angular velocities

Dpyjmpact = @Pl(to) and e mact = E)Pz(to). Mass ceneters C, and C, of the dosks move relative
transtatory with pre-impact (arrival) velocities Vg, .. =V,,(t,) and Ve 2impact = ch(to). Relative

angular velocities @P“mpm = @Pl(to) and @PZimpact = @Pz(to) we denote as arrival, or impact or pre-
impact relative angular velocietis at the moment T, (see Figures 4). At this moment t, of the

collision start between these relative rolling disks, contact of these two disks is at point le , in which

both disks posses commont tangent plane —plane of contact (touch). In theory of collision, it is

proposed that collision takes very shorth period time (to,t0 +z'), and that 7 tend to zeo. After this
short period 7 bodies-two relative rolling disks in collisoon separate and outgoing by post-impact-
outgoing relative angular velocities @1 outgoing :@Pl(to +r) and @szoutgoing = J)Pz(to +z-). Mass
ceneters C1 and C2 of the disks relative move transtatory with post-impact (autgoing) translatoor
velocities \701.outguing = \701(t0 + r) and Ve 2.ougoing = \7C2(t0 + r)- These relative translator velocities is

possible to express each by corresponding relative angular velocity and radius of the corresponding

disk [1,24]. Taking into account that translator motion of two bodies in central collision is simpler
motion of two bodies, defined by corresponding inertia properties expressed by mass, M, and M, ,
of each body and also by corresponding translator pre-impact velocity, \71(t0) and \72(t0) at the
moment before collision and by post-impact-outgoing translator velocities \71(t0 + r) and \72(t0 + r)

it is possible to establish a analogy with collision between two rolling balls. Explabation is in
following form. Also, rolling balls along horizontal strength trace is simple rotation motion defined

only by inertia properties in the axial mass inertia moments J_, and J_,, for corresponding
momentary axis of rotation in rolling along trace with pre-impact (arrival) angular velocities
Bpyimpact = @p (1) @nd B impact = Dp ,(t,) and corresponding outgoing post-impact-outgoing angular
velocities E)Pl,outgoing = a_jPl(tO + T) and a_jPZ,outgoing = a_)PZ(tO + T)'

Using Petrovic’s theory of elements of mathematical phenomenology and phenomenological

mappings [20-23] in parts of qualitative and mathematical analogies, in the Reference [20-23] author
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indicate a qualitative and mathematical analogy between system translator dynamics and central
collision (impact) dynamics of two bodies in translator motion pre-impact and post impact dynamics
phenomena and system rolling two disks dynamics and central collision (impact) dynamics of two
rolling disks in rolling motion pre-impact and post impact dynamics phenomena. On the basis of this
indicated qualitative and mathematical analogies, it is possible list analogous Kkinetic parameter of

these systems. The axial mass inertia moments J_ and J,, for corresponding momentary axis of

rotation in rolling two disks along circle trace are analogous to the bodies masses M, and M, of

two bodies in ollision in translatory motion. On the basis of Petrovi¢’s theory [20-22] and qualitative
and mathematical analogies considere in previpus author’s Refreneces [24] , post-cebntral-collision

ougoing angular velocities of the rolling diss are in the following forms:

1+k 9

wPl(t0+T):a)Pl(t0)_ +J (wpl(to)_wpz(to)) ®
1+=PL

1+k 10

0l +7) = 00, 6)+ 3 (0t~ 05 1) to
1+=F2
‘]Pl

Angular momentum (moment of impulse) of impact dynamics of two relative rolling disks pre-

central-collision and post-central-collision relative motion in the the following relation:

J P1@P1(IO)+ J Pza_jpz(to ) =J Pl&)m(to + T)+ J Pzépz(to + T) 1D
and coefficient of the restitution of rolling disks relative central collision is in the form:
k=% (t +7) _ Dpy(to +7) = @5y (t, +7) (12)
2 (to) a)Pl(tO)_ a)PZ(tO)

as ratio between difference of relative angular velocities of rolling disks post-collision and pre-

collision kinetic states.

3.3. Kinetic parameters of the relative rolling heavy disks along rotate circle trace

around vertical central axis

For obtaining posistion of the rilling disks at frst central collision we use expression (9) fr functional
dependence between time rolling both disks from vorresponding initial Kinetic states to the kinetic
state at position of first folliein, taking into accoubt that angles determining diks positions are coupled
by geometrical relation: Central angle coordinate of relative position of the disks in state of central

collieions are in the following relation: ¢, impactk = Phimpact.k + ., where angle S depend of
geometrical parameters of circle line radius R, and of the both disks radiuses: r, and r, and is

Rorf +Roef (ol o All-2-D 4.
2R-1)R 1) 20D

Aproximate nonlinear equation for obtaining angles ¢, .., and @, . =g, . + pof relative

defined by expression in the form:

p=arcc
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positions of two rolling disks at rotate circle trace around vertical central axis with constant angular
velocity, taking into account expression (8) for each disk, that is t =t

1,impct,1
pl
Aj\/\ ’

N Lougoing 1 (P] Jouigoing, 1 ’(Pl«()lllgoiﬂg.l )

2,impet1 18 1N the

following form:

=N

N[ 0. |,0~¢|.(; )

Limpact, €P Limpact,1? (W dmpact,1 )

// F:,gz | / \

2 outgoing,l (pluulgling. 1> (pl,ullgoiug.l )

i N‘)() 2.()’(‘52.0)

AN / /P

N:()(PZ,U““%L(I)

.\
N 2impact, (p 2.impact,1? P 2.ompact, )

Figure 5. Phase trajectory branches in phase portraits of two rolling disks for relative motion in
interval between initial configuration and configurations of pre-first-collision and post-first-collision
between two rolling disks
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1~ 1.3~ 1 1-3 1 1-3
- .[ 1+§k24u" +—4k28u5><1+ Ek,ﬂzu2 +ﬁkm‘§u“><l+ Ek}mzu2 +ﬁkﬁyg‘u“>udu ~ (13)

= [M+sin2¢‘"'“"azt“‘+ﬂ]

1~ 1.3~ 1 1-3 1 1-3
~ <1+§k2“u“ +ﬂk28u5><1+ Ekuvfu2 +ﬁku‘;‘u“><l+ Ek,.zvzzu2 +ﬂknv;‘u“>udu
Up= EM+s|n2m]

2
where corresponding denotations are used in accordance with expressions (5) for each of the rolling
disks.

In Figure 5, phase trajectory branches in phase portraits of two rolling disks for relative motion, in
interval between initial condition configuration and configurations of pre-first-collision and post-first-
collision between two rolling disks with vibro-impact dynamics [24-26] on rotate circle trace with
constant angular velocity around vertical central axis, are presented.

4. Conclusions

In this paper, in short, basic theory and basic kinetic elements of vibro-impact dynamics of collision
between two rolling heavy disks, different radii and dimensions, on rotate circle trace are determined.
By these kinetic elements and parameters as well as theory of two rolling disks central collision are
defined all necessary for research in analysis nonlinear dynamics of all successive impacts of these

rolling disks.
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A tracking controller design for a space target interception
(CONO071-15)

Elzbieta Jarzebowska, Barttomiej Pilarczyk

Abstract: Paper presents model-based tracking controller design for a free-floating
space robot within scenario of intercepting an object. Such missions are of interest
due to growing number of objects needed to be removed from space. Free-floating
mode requires spacecraft thrusters to be off and conserved linear (LM) and angular
momenta (AM). LM and AM conservation generates respectively holonomic and
nonholonomic constraints. Also, free-floating implicates underactuation which is
a2nd order nonholonomic constraint, so the robot is a multi-constraint system.
Although there already exist control algorithms of underactuated robots, there are still
open issues since control is mission- and robot-specific. Motivation for this research is
the potential significance of its results in the future. The growing space exploration
results in more space debris and requires sophisticated services. Service tasks and
removing debris endangering satellites need to be performed by specialized robots.
Paper presents a space robot control oriented dynamics. Mission scenario consists of 3
parts: estimation of target’s properties; controller design to track and intercept an
object; move to the graveyard orbit. Simulation results of the theoretical control
development for a robot intercepting non-tumbling object are shown.

1. Introduction

The paper presents some results on designing model - based tracking controllers for a free - floating
space robot dedicated to perform maintenance tasks. The focus of this research is on capturing
objects, e.g. debris in space. We design a mission scenario for intercepting small debris in space and
move it safely to the graveyard orbit or vehicle disposable containers. Such missions are of a
significant interest due to a growing number of debris and other space objects needed to be removed
from space, as well as due to asteroids which, when captured, may be promising sources of raw
materials.

A free - floating operation mode requires spacecraft thrusters to be turned off and the system linear
and angular momenta are to be conserved. The condition of linear momentum conservation generates
the holonomic constraint on a robot. However, due to the angular momentum conservation space
robots are nonholonimic control systems. The free - floating mode implicates that a robot is
underactuated. In control setting, the underactuation is treated as a second order nonholonomic
constraint, so the free-floating space robot is a multi-constraint control system [1, 2].

Control properties of space robots, as mentioned earlier, and kinds of missions for them make the
control design interesting and quite challenging. Although there already exist algorithms which allow
controlling underactuated robots and manipulators [4, 5], there are still many open problems and
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room for new research in this area, since controls are usually dedicated to specified missions and
space robots performing them.

Motivations for taking this research are then the potential significance of its results in the future, in
the face of constantly growing interest in conquest and exploration of space. The growing space
exploration by a man results in generation of more space debris and requires sophisticated services
[3]. The latter ones are often delivered by astronauts, like in Extra Vehicular Activities (EVA). Debris
moving in space may cause danger for operating satellites and need to be removed successively.
Small debris, which are of interest of this paper, can be captured by space robots using the robot
hands, leashes or nets, and the bigger ones require removal including docking of the space robot to
the debris, flying in formation maneuver and then, bringing the debris, e.g. to Earth.

Both, services in space and debris removal need to be performed by specialized space robots. Also,
this research, through a development of new control strategies for space robots may provide a new
insight into nonlinear control methods for missions in space.

The paper presents a development of space robot control oriented dynamics. Based upon the
dynamics a model based controller is to be developed to serve a debris interception mission. The
mission scenario consists of three main steps: (a) estimation of debris motion using long and short
range distance cameras, sizing and approximating inertia of the moving target; (b) design of a
controller to track and intercept the moving object; (c) safely move to the graveyard orbit.

This research provides a theoretical control development for approaching, capturing and acquisition
of an object. The assumptions are that the space robot is supposed to track and capture an object of a
relatively small size with respect to that of the robot, and which does not tumble. The theoretic
development is illustrated by mission simulation studies.

The research contribution is two—folded. Firstly, intercepting a slowly moving, non-tumbling object,
may provide us some insight into the selection of simple and effective control algorithms for this
mission. Secondly, a space robot dynamics after an object interception may be monitored.
Specifically, the research results may provide a better insight the space robot stable motion due to an
object size, weight and kind of motion. Additionally, the results may contribute to a control theoretic
basis for future applications in space or for ground manipulators when an extra load in intercepted or

one of their actuators fail.

2. Control mission protocol

A mission of capturing a moving target, precisely its very end part, consists of approaching the object,
following it, capturing and getting away. The main assumptions and objectives taken into

consideration during the control mission protocol design are as follows:
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- The space robot dynamics is control oriented, developed w.r.t. The center of the mass of the
whole system.
- The space robot is supposed to track and capture an object of a relatively small size with

respect to that of the robot, and which does not tumble.

The debris weight is small comparing to that of the robot. Intercepting an object adds
additional mass to the system what may significantly change its dynamics and move it out
of its orbit. We assume that the debris weight does not affect the robot motion.

The debris is assumed to move with relatively low speed.
The debris inertia can be determined:

1. The debris motion is monitored and estimated with the help of cameras. It is
assumed that image processing algorithms allow obtaining information from the
still picture, as well as from a live video feed. Thus, the size of debris can be
determined.

2. The debris mass can be approximated based upon its dimensions, volume, and
assuming its density.

3. Adistance from the robot — using stereo vision or a depth camera it is possible to
determine the distance and its change with respect to the robot. Based on that,
relative motion of the debris can be approximated.

- The motion of the debris can be estimated using cameras so the robot can follow it, track it
and grasp by the end effector.

- The research scope as presented does not cover launching of the robot and putting it in the
orbit. It is assumed that the robot can reach the debris and it may approach to it at the
reachable distance.

The assumptions stated above allow us to distinguish the phases interesting for the research, i.e.
approaching, intercepting and moving safely away with the debris to the mission destination. Also,

they enable performing the dynamics and control analysis using data delivered by on-board devices.

3. Dynamics model of the space robot

The space robot adapted in this paper is a space manipulator consisting of a base and two arms, see
Figure 1.

Although the vehicle is assumed to be three dimensional, certain limitations to its motion are applied.
The joints can rotate only around the z — axis. Geometric and inertia robot parameters are provided in
the Table 1.
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Figure 1. Representation of the space robot model

Tablel. Physical parameters of the space robot

Body No. aj [m] li [m] m; [m] l; [kg m?]
0 1 0.5 40 6.667
1 1 0.5 4 0.333
2 1 0.5 3 0.250

The space robot motion is described by the joint coordinate vector q = [qo, 01, g2]" . The symbols Cq,

C,, C, denote centers of mass of each body in the system. Vectors po, p1, p, define positions of the

centers of masses, where p; = /& 5, {J'. Also pg is a position vector for end effector of the robot arm.

Conservation of the angular momentum for space vehicles results in the non — holonomic constraint.

This condition requires the sum of angular momenta of all the bodies in the system to be constant. If

the engines are turned off, we may assume this sum to be zero. Taking into account the applied

notation, the angular momentum vector depends upon the angular positions g and the angular

velocities (dg/dt). Thus, the formula for angular momentum conservation can be written as follows:

K=K, +K;+K, :(D(qovq1qurqovq1rqz)

266



Although, the model of the robot is three — dimensional, the motion of the robot is limited, i.e.
rotation only around the z — axis is available. Therefore, equation (1) can be written in a simplified

form:

Ki=pxmp, + 1 0, @

Where I is the inertia tensor of the i-th body and w;; is the angular velocity component of the i-th
body around the axis perpendicular to the plane in which the motion occurs. Angular velocity of each
body can be written as the sum of time derivatives of the rotational angles:

@y =0y, @0, =0y + Gy, 0, =Gy +G; +0, ©)

Kinetic energy of the space robot has the form:

T = O.5[mi(Xi2 + Yiz) + licu mlz] @

where X;,y;, z; are the linear velocities of the centres of masses of the robot components. licy is the
moment of inertia around the centre of mass of the system. Its location is as follows:

Ly =L +md? =1 +m (x> +y7) 5)

Total kinetic energy of the system can be then computed as follows:

T= O-S[mO(Xo2 + yoz) + locm a)oz + ml().(lz + ylz) + liem a)lz + mz().(z2 + yZZ) + loem 0)22] (6)

The motion of the system is described by the Lagrange equations of motion:

M(a)i+C(a,q)g=7+J, 4 @

Matrices M, C and J are derived directly from equation (4). Furthermore, the unknown Lagrange
multipliers are decoupled from the control momenta which results in the reduced form of the
equations. This procedure is applied to general non — holonomic systems in order to obtain dynamical
control models for them. The equations decoupling results in

Mlz(Q)q2+C12(qrq2)QZ :T""]lTl ®)

Mzz(q)qz ""sz(qqu )qz =7,G, = D(q)qz ©)

Where q; = [q0] and g, = [qy, 92]". Equations (8) and (9) state the system's dynamical control model.
They are used for computation. Calculations are conducted in MatLAB 2008a. To summarize the
variables used in the equations : K; are the angular momenta of each body, ®(qj;, dg; is the the known
function of joint coordinates and their derivatives with respect to time; T is the system's Kinetic
energy; Q; is the vector of generalized forces and A is the unknown Lagrange multiplier. Generalized
forces are equal to the control torques z;. In this research only the angles q; and g, are controlled.

Orientation of the base, qy, is not controlled. Thus, 7o = 0 and the only acting torques are z; and z,,
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4. Results of a space robot simulation

The Wen — Bayard control algorithm is the computed torque type. It requires the complete knowledge
of the system dynamics. However, its significant advantage over some of other algorithms, e.g.
computed torque, is that the mass matrix does not have to be non — singular.

Throughout this research two experiments have been performed. In the first one, the end effector of
the robot followed an object along a circular trajectory. In the second experiment, the end effector
followed the object moving on a spiral trajectory. Below, the research results are presented. They
were obtained via implementation of the Wen — Bayard algorithm. The error function, e = e(t), is
defined in equation (10).

e(t) = a(t) — a4 (1) (10)

Equation (11) defines the formula for the computed torque:

7 =My, (@) + Cop 0y, G )y — K€ - K.e (11)

Robhot following the circular trajectory

yim]

X

Figure 2. Robot motion tracking a circular trajectory

Figure 2 shows the motion of whole system while tracking the object moving along the circular

trajectory.
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In the following figure tracking of the circular trajectory is presented in detail. Black line is the

desired trajectory to be followed and the crosses show the way of the end effector.

ylm]

. 1.6 1.7 1.8
x[m]

Figure 3. End effector tracking a circular trajectory

Figure 4 shows the motion of whole system while tracking the object moving along the spiral
trajectory.
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Robot following the spiral trajectory

y[m]
(o]
[y*]

T

x[m]

Figure 4. Robot motion tracking a spiral trajectory

In the following figure tracking of the spiral trajectory is presented in detail. Black line is the desired

trajectory to be followed and the crosses show the way of the end effector.
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Figure 5. End effector tracking a spiral trajectory

It can be seen that the Wen — Bayard algorithm produces worse tracking performance but its
significant advantage is that the inertia matrix does not have to be non-singular. It is of the essential
value when capturing debris, since they change inertia properties of a robot-debris system. This is the
main reason for applying the Wen — Bayard algorithm for our preliminary capturing mission analysis.

5. Conclusions

Control design for space robots flying in formation or capturing moving objects, what is in fact
formation flying when a robot and an object objects are of comparable masses is a challenging task.
Presented research shows the simulation results of controlling the space vehicle capturing the debris.
Although, the computations were time consuming, the results are promising. It is also noteworthy,
that the control algorithm can applied to track various types of trajectories. Therefore the results
obtained in this research are good starting point for further missions and control strategy development

for on — line computations.
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Sliding mode control for a class of distributed parameter system
with fractional order derivative
(CON131-15)

Jingfei Jiang, Dengqing Cao,Huatao Chen

Abstract: In this paper, the tracking control of the fractional order wave equa-
tion subject to persistent external disturbances is studied in Hilbert spaces.
First, the second-order sliding control: twisting fractional order sliding mode(2-
SM) controller is designed for the infinite dimensional setting and applied for
addressing the asymptotic state tracking of the fractional order perturbed wave
equation. By introducing the adaptive control law, the unknown bound of the
external disturbances is dealt with. Next, based on fractional order extension
of Lyapunov direct method, the relative theorem involved in the paper for the
proof of the stability is proved. Then, the control algorithms are extended to
globally asymptotically stabilize the fractional order uncertain wave equation
through choosing the appropriate Lyapunov functional. And the infinite dimen-
sional treatment retains the main robustness features against non-vanishing
disturbances similar to those possessed by its finite dimensional counterpart.
Finally, numerical simulations are presented to verify the viability and effi-
ciency of the proposed fractional order controller.

1. Introduction

It is well known that many systems and industrial process in practical engineering are gov-
erned by functional and partial differential equations or, more general, equations in a Hilbert
space, and these systems are often described with a significant degree of uncertainty. Thus,
the vibration control of such systems is very important and this leads to a study on the
design of the robust controllers for these systems with distributed parameters. With the de-
velopment of the practical engineering application of viscous-elastic material, much attention
has been drawn to the study of fractional order damping. Actually, many of the physical
laws are necessary to be described in terms of fractional calculus [1]- [3]. Therefore, the
robust control problem of a distributed system with fractional order derivative has attracted
the attention of scientists and engineers from many fields such as mathematics, physics and
engineering [4]- [5].

The fractional order control of a distributed parameters system is concerned with a
control of a fractional order system for which the system dynamics is defined with partial

fractional differential equations, or, more general, equations in a Hilbert space. In process
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control, a variety of methodologies are emerged that address the control of nonlinear dis-
tributed parameters system. Sakthivel et al. [6] considered a class of fractional order neutral
control systems governed by abstract nonlinear fractional order neutral differential equa-
tions. Feliu-Batlle et al. [7] proposed a new method for controlling main irrigation canals
with variable dynamical parameters based on robust fractional order controllers. For the
past years, the study of sliding mode control for the distributed parameter systems had been
a hot spot topic and the interest involved in the sliding mode control approach had been
extended to infinite-dimensional dynamic systems such as distributed parameter systems.
Li [8] studied the sliding mode control problem for distributed parameter systems (DPS).
YURY [9] addressed the Lyapunov-based design of second-order sliding mode controllers in
the domain of distributed parameter systems, Pisano et al. [10] illustrated the generalization
to the infinite dimensional setting of the well-known finite-dimensional controllers, namely,
the power-fractional controller and two second-order sliding-mode control algorithms. Up to
now, there are few achievements involving the control of the distributed parameter system
with fractional order derivative via sliding mode approach. Pisanol et al. [11] developed
sliding mode control approaches to stabilize a class of linear uncertain fractional-order dy-
namics. Guo et al. [12] studied the numerical solutions for fractional partial differential
equations. Motivated by the application of viscous-elastic material in engineering and the
challenge in the design of control strategies for distributed parameter systems, the main
purpose of this paper is focused on the control problem of a class of distributed parameter
system with fractional order derivative.

The rest of the paper is outlined as follows. In Section 2, basic definition and preliminar-
ies for the control of the wave process are elaborated. In section 3, the twisting 2-SM control
algorithm with the adaptive law is designed for the fractional order wave equation and shows
that it guarantees the asymptotic tracking control for the fractional order uncertain wave
equation. At last, simulation examples are presented to illustrate the effectiveness of the

proposed method.

2. Basic definition and preliminaries
2.1. Definition and notation

There exist many definitions of fractional derivative and fractional integral [2]- [3].

The well-known definition of fractional order integration

() = ﬁ/o (t— )" a(s)ds, 0 < q<1 (1)
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and the well-known definition of fractional derivatives

SDIx(t) = ﬁ/o (t —s) 9/ (s)ds, 0 < q < 1. (2)

The Sobolev space is denoted by W"2(a,b) = {u € L*(a,b) : D*u € L*(a,b), V|a| < 1}
and the square integrable functions space denoted by La(a,b) = {z : ||z(")||2 = 1/ fab 22(T)dt}
(the detain is listed in [14]). Furthermore, Lo (a,b) is a subspace of Lz(a,b) with the norm
12()]loo = maxa<i<p 2(t).

A class of uncertain infinite-dimensional systems whose solution (y, y:) is defined in the
Hilbert space H = L2(0,1) x L2(0,1) is governed by a perturbed version of the hyperbolic

PDE commonly referred to as the wave equation:
“Diy(@,t) = 0*yas (@, 1) + O1y(2, 1) + u(z, t) + (1) 3)

where 1 < a <2, z € [0, 1] is the one dimensional space variable, ¢ > 0 is the time variable,
and (y,y:) € H, (t > 0), is the state vector with the norm ||(y, y¢)||# = ||y(-, t)||2+]|y: (-, t)]]2-
The coefficient v? € R stands for the elasticity, u(z,t) is the distributed control input and
P(z,t) € L2(0,00) represents a distributed uncertain disturbance source term.

The initial conditions (ICs)
y(@,0) = po(x) € W*(0,1), we(x,0) = @1 (x) € W**(0,1) (@)

are assumed to meet the boundary conditions (BCs) imposed on the system (3).

Consider Dirichlet BCs
y(0,) = yo(t) € W*2(0,00), y(1,t) = y1(t) € W**(0,00). (5)

The solution of the above boundary value problem (3) and (4)-(5) is defined in the mild

sense (see Curtain, [14]).

2.2. The control of the wave process

The control task is to make the scalar field y(z,t) follow a given reference y"(x,t) or make
the position y(z,t) and the fractional order velocity ©D]y(z,t) to exponentially track a
priori given reference signal y"(x,t) and its fractional order velocity ©Djy"(z,t) in the
Ly—space, regardless of whichever admissible disturbance ¢ (x,t) affects the system. Fur-
thermore, assume the reference signal is required to be smooth enough and such that
Yyir (1) € L2(0,1), yz, € L2(0, 1).

The reference y" (x,t) should be selected in accordance with Dirichlet BCs.

yr(O,t) =o(1), yr(Lt) = yl(t) (6)
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The deviation variable e(x,t) = y(z,t) — y" (z,t) is eventually driven to zero in Ly—norm by
the designed controller. By the differential manipulations, the dynamics of the error variable

is then written as follows:

CD?@(:C,t) = Uzezl(mv t) + 916(1’,t) + elyr(xv t) - CDatyT(xat) + U(ZC,t)

2 r (7)
The corresponding ICs is listed in the following:
e(x,0) = go(x) — o (@), ex(x,0) = p1(z) — ¢i(x) (8)
and Dirichlet BCs
e(0,t) =0, e(1,¢) =0. (9)
Then, the equation (7) can be divided into the following system
“Diy =y,
“D}ys = v*Y1za(,t) + 0191 (2, 1) + 019" (2, ) — CD*y" (2, 1) + u(z,t) (10)

+ (2, t) + v Y5, (2, 1)

where v = /2 and y1(z,t) = e(z, t).
The following assumption is about the disturbance.
Assumption 1 The unknown disturbance satisfies the following inequality for the positive

constant K.

lP( Do < K1, (11)

Lemma 2.1 Let z(t),y(t) € L2(0,1) be continuous and derivable functions. Then, for any
time instant t > to, the following inequality holds

DY (x(t)y(t) < () Dy(t) + y(t)° D7 x(t) (12)
Proof. Obviously, the following inequalities hold for 0 < v < 1,

SO DT < a0 D7 (t), SED O <y D).

%CD” [2(t) +y(0)]* < [2(t) +y()]7 D7 [x(t) +y(b)].

Thus,
DY (2(t)y(t)) < @(t)° D y(t) +y(t) Dz (t),

which completes the proof.

The stability of the system (10) can be dealt with according to the following theorem.
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Theorem 2.2 Let x = 0 be an equilibrium point for the non-autonomous fractional order
system (10). Assume that there exists a Lyapunov function V (t,z) satisfying the following
conditions:

1) V(t,x) is positive definite;

2) CDYV (t,x) is negative definite;

3) V(t,x) has an infinite upper-bounded;

4) V(t,z) is radially unbounded;

where v € (0,1). Then, the system (10) has global asymptotic stability;

Proof. According to the definition of class— K functions, we can give new descriptions about
the conditions 1), 2) and 3), that is, if V (¢, x) is positive definite, then, there exists lass—K
function 1 such that

n(llzl]) < V(¢ 2).

If CD”V(t, x) is negative definite, there exists lass—K function 73 such that
DV (t,x) < —ys([=])))

and when V (¢, z) has an infinite upper-bounded, then, there exists lass— K function 72 such
that

V(t,z) < v2(llzl]).
By fractional order extension of Lyapunov direct method of the Theorem 6.2 in [15], the

system (10) is asymptotically stable. Now, we focus on the global stability.
From the condition 4), the following equality holds

Jim i (Jf]) = o0

which implies the lass—K function 7; is radially unbounded, then, there exists a constant
R such that y2(r) < 71 (R) for Vr. In addition, the constant r can be arbitrarily large, thus,
the equilibrium point is global asymptotic stability. Then, the proof is completed.

3. The design of adaptive control of the wave equation
Assume that the state vector (y,D7.y) is available for measurements. Then, y1,y2 are

also available for feedback. In order to stability the error dynamics (10), the distributed

controller is designed as follows:
U = Ueq + Ui,
Ueq = CDatyT(x7 t) - 'UQy;x(l', t) - 91’y1($, t) - elyr(m7 t) — Ty,
ui = —Aisgn(y1) — Aasgn(yz) — Kisgn(yz),
DV Ky = pu||y2ll2, K1(0) = Ko.
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Assume that the positive constant K5 is unknown and estimated by the adaptive law. p; is a
positive constant and Ky > 0 is the initial value of the update parameters K. The controller
can be viewed as the sum of two components: a distributed feedback component, and a
feedback component consisting of a distributed version of the finite dimensional twisting 2-
SM controller [16]. Because of the non-smooth of the controller (13), the precise meaning of
the solutions of the uncertain error dynamics (3) and (4)-(5) under the controller (13) can be
defined in the generalized sense as a limiting result obtained through a certain regularization

procedure [13]. The definitions [10] are listed as follows:

Definition 3.1 An absolutely continuous function y°(-,t) € L2(0,1), defined on [0,7), is
said to be an approzimate d—solution of the system(3) and (4)-(5),(13) if it is a strong
solution of the corresponding boundary value problem with a continuous approrimation u‘s(-)
substituted for the discontinuous control input (13) such that |[u’ — u||z < & for all y1,y2 €
Ly(0,1) subject to ||y1]l2 > 6 and ||yz2||2 > &, respectively, where § > 0.

Definition 3.2 An absolutely continuous function y(-,t) € L2(0,1), defined on [0,7), is
said to be a generalized solution of the system(3) and (4)-(5),(13) if there exists a family
of approximate 6— solutions y5(~, t) of the corresponding boundary value problem such that
lims—o |[4° (1) — y(t)|]2 = 0, and lims_o || Dy (-,t) — CDVy(-,t)|]2 = 0, uniformly in
teo,7).

Lemma 3.3 Given the nonlinear uncertain system (10) with the control law (13), the gain

K has an upper-bound, i.e. there exists a positive constant K* such that
Ky < K"Vt >0 (14)

Proof. Suppose y2 # 0, it follows from (13) and ¢ is bounded that Ky is increasing and
there exists a time ¢; such that R’l (t1) > 0. As the gain Kl is getting large enough for
t > ti1, y2 is decreasing. Then, there exists a finite time t2, such that y» = 0 and R’l (t2)
admits a bounded value which implies that there always exists a positive constant K™ such
that K, (t) < K*,for all t > 0. The proof is completed.

Consider the error dynamics (10) along with the BCs and select the following Lyapunov

functional:
1 1 1 1
r 1 1 1 . .
V(t) = ?1/ yfdx+§/0 y%dm+§u2/0 yfzdm—i—ﬂ/o (K1 — K*")?dx

0
1
+ A1 [ [yilde
0
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Taking its derivative with respect to time along the solution of the system (10) under the

controller (13) and by the Lemma 2.1, we have

1 1 1
“DIV(t) STl/ y1y2d$+/ ychzyzdﬂﬁ-i-vQ/ Y12.° DY yroda
0 0 0

1

1 [ . A
+E/ (K1 — K )DZKlder)q/ y25gn(y1)dx
0 0

1 1
=r / y1y2dz + / Y20 Y1o0 + 0191 + 01y +u+ ¥+ 0 yh, — “ D%y da
0 0

1 1 1
00 [ D Nneda+ B [ (R = K lallado + Au [ psgn()da
0 0 0
1 1 5 .
= 7“1/ n1y2dz +/ Y2[V Y1ee — T1y1 — A1sgn(yr) — Aasgn(yz) — Kisgn(y2)+
0 0

1 1 1
Yldz + v° / 1125 D7 1y1ada + % (K1 — K")||y2||2dz + A1 / y2sgn(y1)dx
0 0 0

1 1 1 1
= UQ/ YoY1zzdr — M1 / y2sgn(y1)de — Az / |y2|dx + / y2[—K1sgn(y2)+
0 0 0 0

1 1 1
Vo +° [ D nedo+ 2[Ry~ K allade + M1 [ gsgn(un)de
0 0 0

1 1
<= [ llde+ [l -+ Ralde = 221K~ K el
0 0

1 1 1
<o [pldot [ el K0 do = [l - Rolda
0 0 0

BN Ry - K[yl
w

* 1 * -
= —(A2 — [K" + Ki])|IV|yz2lll2 — [%Hysz = [ly2ll2]| K* — Ki

Assumption 2 X\ > |K* + K|, p1 > p.
According to Assumption 2, “D]V(t) < 0 which implies that the error dynamics (10) is
stable and the Lyapunov functional V(¢) is a non-increasing function of time along error
dynamics (10), i,e

V(t2) <V (t1),Vi2 >t >0

Denote Dr = {(y1,y2) € H : V(y1,y2) < R}. It is clear that once an arbitrary R > V(0)
is fixed, the resulting domain Dpg is proved to be invariant for the error system trajectories.
For the subsequent analysis, we will take into account that the states (y1,y2) belong to
the domain Dpg starting from the initial time ¢ = 0 on. Then, it follows from the Lyapunov
function V (t) and the definition of D, that ||y2||3 < V2R||yz||2 and fol yiyadz > — L[|y |13+
2l[3] hold.
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Now consider the augmented functional

Vi)=V() + K/l Y1y2dx

T1

1 v? 1 - . L
= Tl I3+ MlIVIRTIE + G el + el 8+ 511K = KB+ K [ g,
0

where K is a positive constant. Since

- r 1 v? 1, -~ "
V(O 2 T+ MUV + g lell+ S llnel B+ 511K = K7
K
—5[Hy1\|3+||y2\|§]
T1 K 2 1 K 2 v? 2 1 5 *112 2
=[5 — Flllwnllz + 5 = Flllv2llz + 5 llyizllz + 5= | K1 — K7||2 + AV |
(5 = S lllwllz + 5 = Fllallz + S llyall2 2#” |2 [V 1alll2

Assumption 3 > K, 1 > K.

According to Assumption 3, the augmented functional V(t) is positive definite within the
invariant domain Dg and it turns out to be radially unbounded as R — oo, then V/(¢) can
thus be used as a radially unbounded Lyapunov functional to analyze the global asymptotic

stability of the error dynamics.

1
DIV (t) < —(A2 — | K"+ K1])||[V]wzlll2 — [%Hy2|l2 — |ly2|l2]| K™ — Ki] +K/ yada
0

1
+ K/ 1 DY yoda
0

* M1 * >
—(A2 = [K™ + K1])[|V/]y2l[l2 — [?Hy2||2 — lyall2)| K* = K:| + K||y2l|3

1
+ K/ Y1 [0* Y120 — T1y1 — Aisgn(yr) — Aesgn(yz) — Kisgn(yz) + ¢]dz
0

* H1 * >
—(A2 — [K +K1|)Hv|y2||\2*[7\|y2|l2*\|y2||2]\K — Ki| + K||y2|3
1 1 1
+KU2/ ylylmdaz—KanﬂHg—K)q/ |y1|dw—K)\2/ y1sgn(y2)dx
0 0 0

1 A
+ K/ y1[Y — Kisgn(yz)]dz
0

* M1 * >
<R —|K +K1|)H\/|y2||\2—[?Hy2|l2—\|y2|lz]\K — K|+ K||y2|I3
1
+ Koyranaly = Ko?llysol 3 = Krallnl = Ko [ oo
0
1 . 1
+K/\2/ |y1|d:c+K\K1+K1|/ ly1|dx
0 0
< —(A2 — |[K* + Ki| = V2RK)|[\/]y2ll2 — Kv*||y1a]|5 — [KX — KXs
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=K1Ky K1l — Kl - B2 el = )~ Ko

Assumption 4 X\; > |[K* + K1| + V2RK and A\ > X2 + |K1 + K7|.
According to Assumption 4, CD;’ V (t) is negative definite. From the Theorem 2.2, it implies

that the convergence of ||y1||2 and ||yz||2 to zero as t — co. The conclusion is completed.

Theorem 3.4 Consider the system (10) along with the ICs and BCs, and whose parameters
and external disturbance satisfy assumption 8 and 4. Then, the distributed control strategy
(13) guarantees the exponential decay of the La— norms ||y1(-,t)||2 and |ly2(-,t)||2 of the
solutions (10).

4. Numerical simulation

In what follows, the Caputo derivative is discretized in terms of the L2 approach [12]. Con-
sider the perturbed equation (7) with (¢, z) = sin(wt) and the reference profile y" = 0. For
the controller (13), the simulation results are in the following.

Figure 1,2 and 3 show the results for « = 1.1, 1.6 and 2, respectively with the value of the

Figure 1. The solution y(z,t) of the controlled wave equation under the controller with

a=1.1.

parameters « = 1.8, V. =1,r1 =1, A\; =15, Ay =6, p1 = 0.2, § = —2 in controller (13).
Comparison of the Figs show that the fractional order derivative @ — 1 exhibits diffusion
response, while the fractional order derivative o — 2 exhibits wave response. Therefore,
when a = 1.6, both diffusion and wave response can be observed in Fig.2, which means

that the solution of the system (10) continuously depends on the fractional order derivative.
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Figure 2. Left plot: the solution y(z,t) of the controlled wave equation under the controller

with a = 1.6. Right plot: distributed control u(z,t) at the time ¢t = 0.03.
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u(z,t10)

Figure 3. Left plot: the solution y(z,t) of the controlled wave equation under the controller

with a = 2. Right plot: distributed control u(z,t) at the time ¢ = 0.03.

Figure 2 and 3 illustrate the solution converges to the given reference profile as confirmed in

Theorem 3.4. Then, from the figures, we can see that the proposed adaptive sliding mode
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control law guarantees the stability of the system (10) and verifies its viability and efficiency.

5. Conclusion

In this paper, the twisting control algorithm has been designed for a fractional order un-
certain wave equation. The resulting scheme has been applied to solve the tracking control
problem for the fractional order uncertain wave equation subject to persistent external dis-
turbances. The main contributions can be summarized as follows:

(1)The control algorithms are extended to globally asymptotically stabilize the fractional
order uncertain wave equation under boundary condition by means of appropriate Lyapunov
functionals. And the infinite dimensional treatment retains the main robustness features
against non-vanishing disturbances similar to those possessed by its finite dimensional coun-
terpart. The finite time convergence of the proposed algorithms is proved by fractional order
extension of Lyapunov direct method.

(2)The adaptive law is introduced into the twisting 2-SM control algorithm for the unknown
bound of the uncertain component.

(3)At last, numerical simulation is presented to verify the efficiency of the proposed fractional

controller.
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Non-linear dynamics of a vibration harvest-absorber system
(BIF084-15)

Krzysztof Kecik and Andrzej Mitura

Abstract: Energy harvesting (also called power harvesting or energy scavenging) is
the process of transforming ambient energy (kinetic energy, vibrations, radial energy
etc.) into useful electrical energy. This paper proposes a novel concept of the harvest-
absorber device. The system consisting of three main parts: main system (modelled as
simply oscillator), a pendulum (absorber) and an electromagnetic harvester device.
This conception allows energy recovery, when the pendulum swinging or stay in
equilibrium. This paper analyzes the concept of using a vibration absorber for possible
energy harvesting. The primary goal is to vibration absorption and the secondary goal
is to harvest energy out of the dynamic vibration absorber at the same time.

1. Introduction

The undesirable vibration exists in many engineering constructions. In practice it is very difficult to
avoid vibration. It usually occurs because of the dynamic effects or construction problems i.e.
manufacturing tolerances, rubbing, rolling, etc. The vibration control in mechanical systems is a
crucial problem, by means of which vibrations are suppressed or at least attenuated. However, in
some examples the mechanical vibration can be useful. For example, we generate vibration in
different aspects: ultrasonic machining (drilling or milling), ultrasonic cleaning baths, rock drills and
pile drivers, energy harvesting. The two main aspects of vibrations are: their reduction and their use in
practice. In this work we present dynamical vibration absorber which is dedicated to vibration
reduction and energy recovery at the same time. Both effects are described by the proposed a new

quality indicators.

1.1. Vibration absorbers

The vibration of a mechanical system can be reduced by an additional flexible part (secondary
system) tuned to the proper frequency. The system is often called Dynamical Vibration Absorber
(DVA) or Mass Damper (MD). The physical phenomenon governing the vibration attenuation
involves the energy transfer from the primary system to the vibration absorbers.

The history of the DVA starts with the absorber mass created by a volume of water in the hull of
the HMS Inflexible (British ship) in 1883 [1]. The secondary mass the sloshing of the water in the
hull acted to cancel the forces from the waves, resulting in the stabilization of the ship’s deck so that
the guns were able to track targets more effectively. The DVA based on mass-spring structures
(without damper) was introduced in 1909 and formally patented by Fraham in 1911 as “Device for
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Damping Vibration in Bodies” [2]. Since their invention by Frahm, the DVA have been extensively
used to mitigate vibrations in various types of mechanical systems. A very well-known practical
application is the so-called Stockbridge damper [3], widely used to reduce wind-induced vibrations in
overhead power transmission lines. In a remarkable engineering application, a 400-ton absorber has
been designed for Citicorp Center [4], a 274-m high office building in New York City, for
suppressing primarily the contribution of the first vibration mode in wind induced oscillations.

Despite of efficacy of the linear vibration absorber its effectiveness is limited to the close
neighborhood of a vibration mode, and its inability to damp out several modes of a multi-degree-of-
freedom system (MDOF) primary structure and its incapacity to mitigate the vibrations of a nonlinear
primary structure [5]. These frequency limitations developments of nonlinear vibration absorbers
(NLVAs) which are effective in a larger frequency range due to the frequency-energy dependence of
nonlinear oscillations. One of the most popular pendulum vibration absorbers (PVAs) including the
autoparametric vibration absorber (AVA) [6], which is probably the earliest passive device that makes
use of a purely nonlinear response for vibration suppression [7]. The conception of AVA based on
attaching the absorber to the primary system in such a manner that it experiences a parametric base
excitation, and therefore, the absorber frequency is tuned around one-half of the troublesome
frequency value [8].

In this paper we propose an autoparametric pendulum absorbers with added electromagnetic
mounted in the absorber. Such conception allows simultaneously vibration reduction and energy

recovery.

1.2. Energy harvesting

Energy Harvesting (EH) is the process by which energy is scavenged from ambient sources and
transformed into an utilizable form. The EH is a not new conception. One of the earlier systems used
the motion of water in the waterwheel or wind in a windmill as a way of generating useful power
(Wright, 2006). Nowadays EH view is the process of extracting small amounts of energy/power from
the environment to power small autonomous devices like sensor networks and mobile electronics.
According to their specific harvesting mechanism, vibratory energy harvesters can be classified
into the four main categories: Electromagnetic Energy Harvesting (EEH), Magnetostrictive Energy
Harvesting (MEH), Capacitive Energy Harvesting (CEH) and Piezoelectric Energy Harvesting (PEH).
The EEH harvester based on the magnetic induction generating power through relative motion
between a coil of wire and a magnet. Generally, the magnitude of energy harvested depending on the
size of harvester system. The PEH harvester builds up a voltage differential across their ends when
they are subjected to mechanical deformation. The CEH harvester based on the changing capacitance

of vibration-dependent capacitors. The MEH based on magnetostrictive materials, which are a class
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of materials which deform physically or strain due to a change in the magnetization state of the
material.

Other categories based on achieve relative velocity between the coil and the magnet. Linear
harvesters feature the magnet moving along a straight line relative to the coil. Rotational harvesters
use magnets mounted on a spinning rotor with stationary coils mounted around the rotor. A pendulum
harvesters feature the magnet on a pendulum moving relative to a stationary coil. Beam-based
harvesters attach either a magnet or a coil to an elastic beam.

2. Model and problem formulation

2.1. Mechanical model of a vibration absorber

In this section the model of harvest-absorber system is presented. This model has three main
elements: the main system (I) which vibration should be eliminate, the absorber-pendulum (lI), and
electromagnetic harvester device (I11). The main system is modelled as simply oscillator composed of
mass mjy, a viscous damper (c;) and a linear spring (k;). The oscillator is excited in kinematic way by
linear spring (ky) which end is harmonically moved according a periodic function x,. Scheme of

harvest-absorber system in Fig. 1 is shown.

m;

main system (I)

—

ANANANAANN

absorber (1)

Figure 1. Physical model of harvest-absorber system.

The pendulum (mass m, and length 1) is attached to the oscillator and can perform swings, rotation
and stay in equilibrium. The damping coefficient of the pendulum is denoted as c,. Such system (the
oscillator witch added the pendulum) is called an autoparametric system [9]. It characterized by very
complex dynamics including chaotic behavior [10].

To energy recovery the third system is proposed. Inside the pendulum the movable magnet (mg) is

applied. This moving magnet is “suspended” due to magnetic levitation. Detailed description of

299



magnet in next section is presented. The displacement of magnet denoted as r, the oscillator’s
displacement assumed as x, and the angular pendulum’s displacement ¢. The position of magnet

according of the pendulum suspension point is z.

2.2. Electromagnetic harvester device

Electromagnetic harvesting operates using Faradays Law of induction; a changing magnetic flux will
induce a voltage in a closed loop of conductor. In practice, this is usually accomplished by moving a
magnet and a coil relative to each other to produce an AC voltage in the coil. The scheme of
electromagnetic harvester device in Fig. 2a is presented. It consists of four main parts: a one fixed
magnet, a one adjustable magnet which position can be set, a movable magnet which is suspended in
magnetic field by levitation phenomenon and a coil which is wrapped out of the pendulum.

a) b)

movable

magnet b

:

coil/8

adjustable
magnet

Figure 2. Scheme of the harvester mounted in the pendulum (a) and equivalent electrical circuit (b).

The electrical part is presented as a circuit (Fig. 2b), where Egy, is electro-motive force. The electrical
part coil is modelled as a series connection of inductance L. and resistance R.. The electrical circuit is
completed by a load resistor R,.

Creating a mathematical model we take into account mechanical and electrical parts. Moving
magnets induces electromotive force Egy which produces current in the coil. As a result of the
interaction current and magnetic field, an electro-dynamic force (Lorentz force) Fye acting on moving
elements is generated. The fundamental relations describing electro dynamic force Fyez and
electromotive force Ey, are described by equivalent equations [11]

Fue=Eqy =a-i=a T, Q)
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where o is coupling coefficient. The magnetic levitation of moving magnet is replaced by nonlinear
spring (ks). This modification is based on the literature [12], [13], where it is suggested to use an

equivalent linear (for small displacement) or nonlinear spring (for larger displacement).

2.3. Equations of motion of a harvest-absorber system

The mathematical model of harvest-absorber system was obtained using classical Lagrange’s

equations of the second kind and introduced in [14]. The total kinetic energy T of mechanical systems

equal
1 1 1. . e 1 1 1 . 2
T ==mx* + =mx° + = 1,0° + mgxssing + =m,f* + =mx> + =m,g° (z+r) —
2rnl 5 20(9 2 ¢23 oM 23@( ) @
—M,FXCOS @+ Myp(Z +r)Xsin e,
where Iy means the mass inertial moment. The total potential energy V equal
V =m,gx+m,g(X+Ss—5C0sp)+ Mg (x+2—(z+ r)(:05q;)+%klx2 +%k2(x— %) +
©)]
+£k3r2 +Fyel.
2
The dissipation function is defined as
1 ., 1 .
D= ECIXZ + ECZQZ. (4)

The final equations of motion are obtained in the form:

(my+m, +my )X+ (psing + p* cos)| s +m, (z+1) |+ my(2f¢sing - cosp) + kx +cx =k, X, (5)
(I0 +my(z+ r)2)¢+(5<+ g)[ ms+my(z+r)]sing+2mgr(z+r)+cp =0, (6)

m,f* —m,Xcos g — myg? (R+1) + K, —m,g cose + ai = 0. (7

The gravity force in equation (5) is not included, because this force is balanced by static preload in
springs. The excitation function X, (kinetic excitation of the main system) assumed as harmonic,
based on laboratory rig

X, = Q/k, sin ut ®)

where o is the frequency, Q is the amplitude of force excitation.
The equation describing the electrical system can be written in standard form

Li+(R +R)i=ar, 9)
where i denotes the generated current. The total resistance denoted as R;, which is a sum of R; and R..
The harvest-absorber system has four degree of freedom: three mechanical and one electrical. To

numerical calculation all equation (5)-(9) are investigated.
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3. Numerical study

3.1. Bifurcation analysis

The numerical calculations have been done in Matlab software 2015a. The simulation data of
mechanical’s system has been taken from a laboratory rig [8], [9]: m;=0.65kg, m,=0.265kg,
s=0.0425m, k;=1600N/m, k,=1100N/m, c,=10Ns/m, c,=0.01Nms/rad, 1,=0.000496kgm? The
electrical device parameters have been adopted from the literature [1, 7]: m;=0.02kg, z=0.0375m,
ks=2000N/m, L.=0.001H, R=120092, a=3.5N/A (or 3.5Vs/m). The initial conditions are fixed as:

90 =7/2,0 =x0 =%X0 =r0 =r 0 =0. The all numerical simulations have been done

nearly the main resonance region (w=41rad/s).

The bifurcation analysis give us an overview of system dynamics and form of motion. The
recovered energy depends on velocity of the magnet. However, the motion of the magnet is coupled
with the pendulum and the oscillator motion.

100

80

60

40 1

Sirad/s)
o

=60

-B0

N
0 0005 001 0015 002 0025 003 0035 004 0045 0.05
x,(m)

Figure 3. Bifurcation diagram for the absorber (pendulum), for w=41rad/s.
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Figure 4. Bifurcation diagram for the harvester (magnet), for w=41rad/s.

The influence of xo on the pendulum and the magnet behavior are shown in Fig.3 and Fig. 4,
respectively. The increase of the kinetic excitation can change solution form: swinging into chaotic
behavior, chaos into rotations, and rotation into chaos. Analyzing the results in both diagrams, we can
conclude that occur two chaotic regions located for x, 0.0206m-0.0344m and x, 20.0478m-0.05m. In
these regions, velocity of the magnet (and energy harvesting) is higher. After crossing the value of x,
2~0.0345m we observe, that pendulum perform full rotations up to x0<0.0477m. It should be
highlighted that the pendulum swinging for x, from 0.0081m to 0.0205m. Note, that rotation
frequency of the pendulum is equals to magnet’s frequency. Analysing the obtained results in both
diagrams, we can conclude that the dynamics of the system strongly depend on the values of kinetic

excitation.

3.2. Vibration absorption and energy harvesting description

To describe electiveness of vibrations absorption and energy recovery two coefficients are proposed.

The first is vibration reduction index &, defined as the maximal displacement of the main system

with (¢ 0 =7/2) and without (¢ 0 =0) activation of the nonlinear absorber (the pendulum

stopped)

& =abs X, /X (10)

max !
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where Xnax and Xpax - Mean maximal displacement of the oscillator with and without activation of the
absorber, respectively. If the absorber doesn’t work, then it poses additional mass of the main system.
The smaller value of & means higher level of vibration reduction.

The second &, called the current gain index, defines level of recovered energy

g =absi, /i, (11)
where i and i s describe maximal recovered current for the system with and without activation of
the absorber, respectively. Its higher value means greater energy harvesting.

The two parameter analysis & (blue line) and & (orange line) versus X, is shown in Fig.5. The
smaller value of & is observed for nearly entry and exit in the first chaotic zones. This means, that the
swinging and rotation regions are most appropriate to the dynamic vibration elimination. The
maximal reduction of vibration by the absorber equals about 40 percentages. The most dangerous

region for vibration reduction is chaos.

1.1
0.9
ui "y
0.7+
0.5 : : : : : : . : 0
0 0005 0.01 0015 0.02 0025 0.03 0035 0.04 0045 0.05
X, (m)

Figure 5. Influence of x, on the vibration absorption effect (blue line) and energy harvesting (orange
line), for @=41rad/s.

For &, we observe, that the most promising regions from energy harvesting point of view are chaotic

zones (especially the second chaotic zones) and rotation area. In these regions, the value of current

gain index is a several times higher. Please note, that the pendulum swings (x, from 0.0081m to

0.0205m) cases a slight decrease of &, compared to semi-trivial solution (region where the pendulum

stopped X, from O to 0.008). This is due by appearing force reaction between the magnet and the

pendulum.
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Figure 6. Influence of » on the on vibration absorption effect (blue line) and energy harvesting
(orange line), for x,=0.035m.

The influence of the frequency of excitation (w) on vibration absorption (blue line) and energy
recovery (orange line) is shown in Fig. 6. The high energy harvesting level is observed nearly
resonance region w~30-55rad/s. Note, that in this region the vibration absorption is observed, too.

However, in resonance region increase of vibration level (&) can apper.

4, Conclusions

This work comprises of problem vibration reduction and energy recovery at the same time. We
propose the harvest-absorber model, based on classical oscillator-pendulum system with added
harvester device. The harvester causes that system is much more complicated and has a four degree of
freedom.

The obtained results shows, that chaotic region is most promising for energy harvesting.
Especially, the second chaotic region looks promising for EH. In this region, angular velocity of the
pendulum is about two times higher compared to the first chaotic region (Fig.3), but current gain
index is four time higher (Fig.5). However, in such region the vibration absorption is poor.

Seeking a compromise between EH and DVA can be note, that in the small part of rotation region
(%,=0.034-0.037) occurs satisfactory vibrations elimination and inconsiderably increase of EH.
The next step of the investigations is experimental verification and optimization to find

compromise between DVA and EH.
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Dynamics of a double-wing aerodynamic pendulum in a flow
(STA128-15)

Liubov Klimina, Anna Masterova, Vladislav Bekmemetyev, Boris Lokshin,
Andrey Holub, Ching-Huei Lin

Abstract: A problem of motion of a double-link aerodynamic pendulum is considered.
Each link is connected with a wing that interacts with a flow. A dynamic model of the
system is built. Dependences of equilibrium positions on the system parameters such
as wing pitch angles and a ratio of areas of the wings are obtained. The problem of
stability of equilibrium positions of the system is studied. In some special cases the
regions of stability of equilibrium positions in the parameter space are described. It is
shown that all equilibrium positions are unstable in a certain range of parameter
values. Undamped oscillations arise that can be used for converting medium flow
energy into electrical energy. Numerical and analytical study of undamped
oscillations behavior is conducted depending on the ratio of the wing areas.

1. Introduction

One of urgent tasks of wind-power and hydro-power engineering is the development of new types of
power plants that convert the energy of the flow into mechanical one, while in comparison with the
existing power plants, it is desirable to solve the following engineering tasks: to develop a mechanism
that does not require to be aligned with the flow direction, as well as to develop a device using the
oscillatory motion of blades.

Specifically, the first property is possessed by, for example, the Darrieus-type wind turbine; the
development of the plants possessing the second property had been recently begun by the Institute of
Mechanics of MSU [1].

This work represents the next stage of the examination of the system, which can later become a
prototype of the power plant, which possesses both of the said properties.

System of a similar type was previously considered in [2]. Also a prototype was constructed and
tested in the wind tunnel of the Institute of Mechanics of MSU. The test results, as well as analytical
conclusions [2], showed the possibility of using such system as wind-receiving device.

The main differences between the system discussed in this paper and in [2] are the presence of an
additional wing and the possibility of varying the setting angles of both wings.

Analogously to [3], the presence of additional wings can be used in such system to increase the

aerodynamic torque at the stage of spin-up of a wind-receiving element.
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2. Statement of the problem

We consider a wind-receiving device representing a double pendulum with two blades in a steady

horizontal air flow.

2.1. Reference frame, kinematics, inertia characteristics

We consider the motion of a pendulum with two links in the horizontal plane Oxy (Fig. 1). The
pendulum is a system of two solid bodies, each of which consists of a holder OO, (0,0,) and a

rigidly attached wing of a mass m; (mj), respectively, at a setting angle 6, (6, ). The first link of the

pendulum rotates about a fixed axis O, the second link is connected to the first one in the point O, by
the joint. The wings are symmetrical flat plates interacting with the medium flow. The flow velocity
is constant. Let Jo be a moment of inertia of the first body relative to the axis of rotation, Jg - moment
of inertia of the second body relative to its center of mass G. Assume that the aerodynamic load can
be reduced to forces directed through the centers of pressure of plates (C, and C,, respectively).

y“

_ 33 >
—
Vv

Figure 1. Thecase ¢,=0, 6,=0.

Let OO]_ = I, O]_G = IG! OC]_ = |C1| O]_C2 = Icz.
Orientation of the pendulum is described by two angles: ¢, , the angle between the axis Ox and
the first link, ¢, , the angle between the axis Ox and the second link. To account for the influence of

the medium, introduce the following angles that are called angles of attack: o, - angle between the

velocity \7C1 of the point C; relative to the flow and the first plate, «, - angle between the velocity
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\7CZ of the point C, relative to the flow and the second plate. The introduced variables satisfy the

following kinematic relations:

Ve, cos(a, —6;) =V cosg

Ve, sin(ey —6,) =Vsing, +1c ¢, o
Ve, cos(a, —0,) =V cosyp, + ¢ sin(e, — )
ch sin(er, — 6,) =V sing, + |c19.91 cos(, — @) + Icszz

2.2. Description of external forces

During the movement of the pendulum we consider only the aerodynamic forces, neglecting the
influence of friction. We represent the aerodynamic force applied to the plates at their centers of
pressure Cy, C,, as the sum of resistance force D and lift force L . According to the quasi-static
model of aerodynamic effect ([4, 5]), these forces are defined by the following relations:

> NS, - = Ve, S,
D, =—Cp () %Vq; D,=-C, (O‘z)%vcz;
@
NS, = Ne, Sy
[ =Cu@) 22V, | L, =Culo) =22[6, V|

Where p — density of the medium, S; (S,) — characteristic area of the first (second) plate, €, —
unit vector rising vertically. In the analytical calculations for small angles of attack we assume

Co(w)=C D0+g(a2) , Clle)=Ca+ g(a3) — coefficients of the corresponding forces. Note that

for any kind of an airfoil the following inequalities are satisfied: C,, >0, C,>0.

2.3. Dynamic equations of the system
We use angles ¢, and ¢, as generalized coordinates; than, ¢, u ¢, - corresponding generalized

velocities. We designate by dash the derivative with respect to the non-dimentional time 7=Vtl™*.
We write down the equations of motion of the system in the form of Lagrange equations of the second
kind:
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o+ by ercos o, =, = (g))’sin p, — ¢, |=

=—x, Cpley)ov, [aia,ol’ +sin cpl] +C, (oy)ov,cosg, +

+Cp ()Y, 0] + a5 COS(i2, — ) +sinp, |+

+C(a,)V, 3,05 5in(2, — ) +COs | @)
) +b,[0/c0s @, — oy + (@)’ sin @, — ¢, | =

=%V, &oloy)|ae) +¢/cos(p, — @) +sing, |+

+C, () [cos, —isin(p, — )] }

Here we introduced the following notations:
a =1, a,=1", k=1, 0=aS8,";

108, I*a,pS,

2 2

_ m,ka,| m,ka,|

T mpe
(0] 2

2 Js+ml%k?’

b=

Xl  Jg +myl%alk? Jo +myl?’

v, = |(—aplsing, =1 ag{cosg,)|, v, =||(—p{sine, — 2, sine, — L ¢l c0sp, + a0, €05, )| -

The kinematic relations (1) in non-dimensional variables take the following form:
| —awising, —Lagpicosg, ||cos(ay —6,) = cosg,

| —awesing, —Lagp/cosg, [sin(a, —6,) =sing, +agp]

H —]sin, —ayp,sing, —1,¢]cosy; + ayp, CoSp,
= 0S¢, + ¢, sin(p, — ©,)

| Celsing, — a0} sine, —1g/cos e, + ayp; cos, Pin(a, —6,) =
=sing, +aw[Cos(y;, — ;) + a,¢;

‘COS(aZ —0,)=

4)

Equations (3) combined with (4) form a closed system.

3. Equilibrium conditions

We write down the equations of balance for the obtained system (3):

o Cplay)sing, +C (a))cosp, +Cp(ay)sing, +C (ay)cosy =0, )

Cp(ay)sing, +C (ay)cosp, =0. (6)

Note that in equilibrium positions the formulae of angles of attack will take a relatively simple

form: oy =, +0,, o, =, +0,.
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Fig. 2,3 show the curves that represent numerical solutions of the equations (5) and (6) in some
special cases. The intersection of curves, where both conditions of equilibrium are satisfied
corresponds to the stationary solutions of the system.

(=]
(=]

3

(/-

—& —w [F=04=8=0]

Figure 2. Geometric interpretation of the conditions of equilibrium.

3.1. The case of one wing

Let’s examine the case o = 0, which corresponds to the absence of wing located closer to the axis
Oz.

=]
W

//
L7

[—GB—&] [ 4= | 6=7

Figure 3. Geometric interpretation of the conditions of equilibrium in the case of o =0 .
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In the case of o = 0 the relationship between steady values of angles ¢, , ¢, and parameter 6,

(the only constructive parameter remaining in the conditions of equilibrium) can be analytically
obtained from equations (5) and (6) (Fig. 4):

—arctan [

CL(O‘z)]

b(a,)

o = ; @, =@ +NT, nez; )

Ci ()

o(,)

Ci ()
Co (0‘2)] . ®)

7 —arctan [

0, =0, + arctan[

In the expressions (7), (8) the instantaneous angle of attack can take any value from —7 to =
and represents a variable parametrizing the relation between the pitch angle of the single wing and

steady-state values of the angles of the pendulum links.

-1

Figure 4. Relation between the steady-state values of the angles of links from the pitch angle 0,

in the case of absence of the first wing (i.e. when o =0).

Thus, when o =0 angles ¢, and ¢, are either equal or differ by 7. It means that the
pendulum in a steady position is either fully extended or folded, and the resultant aerodynamic force
is directed along the holders of the pendulum. Specifically, when 6,=0 we receive

erp, € (0,0),(0,m),(m,0),(m,m) .

There is a range of values ¢, , ¢, (Fig. 4), that do not become positions of equilibrium under

any given 0, . It is a certain range of angles in the vicinity of /2, where the lift force can become

equal to zero. The uncompensated resistance force pushes the pendulum out of such positions.
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3.2. The case of two wings
Let o=0. Direct substitution displays that when 6, =0, steady-state values
o ey € (0,0),(0,7),(w,0),(m,7) are preserved. When 6,=6,=0 no other positions of

equilibrium appear (we don’t consider case of o < 0). In a range of setting angles 6, =0, =0

presence of additional positions of equilibrium is possible, as illustrated, for example, in Fig. 2b.

4. Investigation of the stability of equilibrium in the case of 6, =0,=10
Let's examine the case of 6, =0, =0.
We investigate the character of stability of solutions «;,¢, € (0,0),(0,7),(w,0),(7,7) in the
first approximation. Using Hurwitz criterion, we see that the equilibrium positions
o, € (0,m),(m,0),(m,m) are unstable for any admissible values of the parameters, and the
necessary and sufficient conditions for the asymptotic stability of the equilibrium ¢;,o, = 0,0
have that form:

2
P, = Coo +Cu "oaaxx, + Cpp +Ch oxa+x, + Cpo —bCl x4 >0

, ©)
Ay = py(P,Ps — PPs) — PoPs > 0.

Here, the following designations are used:

p,=1- blbz;
P, = (Cpo + CL)(ao +x +a,x, — b, —a,b,x,);
p; = X1X2[U a,+a, Cp+C, ’ +Cu Cpo+Cpy 3, +1};

2
P = XiX:|0 oo +Cus "+ Cop Cog +Cyy |

The character of stability of the equilibrium ¢;,, = 0,0 depends on the constructive

parameters, but does not depend on the value of the wind speed (see (9)).
If at least one of the coefficients p, and A, is negative, than equilibrium ¢/, = 0,0 is
unstable.

Coefficients po, p1, Ps, P4 are positive with all the possible values of parameters of the model.
Coefficient p, can be both positive and negative depending on the values of parameters of the model.

Specifically, when value of the coefficient b, is sufficiently large, coefficient p, will be negative, and
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therefore all four existing equilibriums will be unstable. In the case of instability of all the possible
equilibrium positions the undamped motions appear in the system (regardless of the direction of the
wind speed). Such oscillations of two-link pendulum can be used to convert the flow energy into
mechanical or electrical energy.

We conduct a more detailed numerical study of the conditions (9), depending on the

parameters o and k for fixed values of the other parameters: S,=0.02m’, 1=04m, a =1,
a,=18, p=12kg/m’,m,=02kg, J,=0.01kgm*, J;=0.005kgm*, C,,=0.01, C, =5,

0, =0, =0 (fig. 5.

0.4

0.1

Figure 5. The domain (grey color) of asymptotic stability of the equilibrium (0,0).

From Fig. 5 we see that for any value of the parameter o there exists sufficiently large k, with

which the equilibrium position ¢;,, = 0,0 becomes unstable.

5.  Numerical integration of equations of motion

The results of numerical integration allowed us to confirm the obtained analytical results. Fig. 6

shows an example of numerical integration of the trajectory of the system for the set of parameters

that corresponds to the point k,o = 2,0.004 of the Fig.5 (all equilibriums are unstable, so
undamped oscillations should present) with V =3m/s and with following initial phase speeds:
¢©!/=02 u ¢, =0.1. In numerical calculations for simplicity we use the following formulae:

Co(@)=sin*a+0.01, C, (a)=sin2« .
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Figure 6. An example of numerical integration of equations of motion.

Numerical integration confirms the possibility of presence of undamped oscillations in the
system. It is shown that deflection angles of both holders from the flow direction can vary in a limited
range, which indicates of a possibility of using this two-link pendulum as a wind-receiving element of
a power plant of nonrotational type. The advantage of such systems is a possibility of additional

isolation of working parts from the influence of environment.

6. Conclusions

The paper considers the problem of motion of two-link aerodynamic pendulum, each link of which
contains a wing attached to it.

A mathematical model that describes dynamics of such pendulum is built. The equations of
motion are devised. The relation between equilibrium positions of the system and the parameters such
as pitch angles of the wings and wing area ratio is described. The problems of stability of stationary
modes of the system are examined. Regions of stability of the obtained steady-state solutions in a
parameter space are described in some special cases. That led to the conclusion that it is possible to
select the parameters in such a way that all the equilibrium positions of the system are unstable. Thus,
the undamped oscillations are possible in the system which can be used to convert the energy of the
wind flow into electrical energy. The numerical integration of the system was conducted, which

revealed some specific features of its behavior.
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Research on dynamics of car suspension system
in MSC.Adams software
(CON276-15)

tukasz Konieczny, Rafat Burdzik, Jan Warczek

Abstract: The paper presents results of investigation on dynamics of car suspension
system. The research was conducted in MSC.Adams software. The Adams/Car
module enables designing of subsystems and simulation research of individual
elements of suspension system. The paper presents result of investigation on the
impact of vibration damping on vehicle dynamic in an Adams Car Ride module. The
Multi Body System (MBS) of Fiat Seicento was designed. The examined system of
the complete vehicle consists of 49 kinematic degrees of freedom. There are 42
gruebler count, 40 moving parts, 6 cylindrical joint, 9 revolute joint, 4 spherical joints,
5 translational joint, 2 convey joint, 8 fixed joint, 4 hook joint, 1 inline primitive joint,
1 inplane primitive joint, 5 perpendicular primitive joint, 10 motions and 2 couplers.
Simulation research in Adams/Car/Ride module allows testing vehicle dynamics
forcing by excitation of the plate of test stand. Virtual model of the vehicle was set on
four servo-motors exciters. It allows using different combination of excitation of
individual actuators. In the previous research the damping characteristics of the front
shock absorbers were determined on special test stand. Thus the simulations was
conducted for shock absorbers in different technical conditions (for new one and
shock absorber with 50% loss of oil). As the results vertical, lateral and angular
vibrations were determined. The results of preliminary tests were targeted at
describing precise estimates of the technical condition of the shock absorber built in
the vehicle.

1. Introduction

The ADAMS software (MSC.Software) is a commercial software for building a multibody structural
models. Modular design allows using of applications with different focuses, such as rail, aviation and
motor vehicles. Models with a large number of freedom degrees of the components are built with
mass concentrated on the assumption that the system is composed of a rigid (or deformable) bodies
combined in a specific way (spherical, sliding, rotary connection), moving under the action of the
forces and moments of different types (concentrated or distributed forces, the contact forces).
Complex multibody systems are automatically generated by the Lagrange equations of motion of the
second kind in absolute coordinates. Integral procedures used to solve differential-algebraic equations
include multistep algorithms with variable row and a variable-and fixed-step and one-step algorithms.

The first one comprises multi-step algorithms of variable order as well as those of variable and
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constant step. The second group comprises one-step algorithms, and among them the ADAMS
software applies the Runge-Kutta-Fehleberga (RFK45) method. The Adams/Car module enables
building and simulation-based examination of individual car subsystems such as, for instance, the
suspension, steering or driving system as well as their combinations forming a complete car. The
program contains an extensive library of structural solutions applied in cars. The geometry and
relationship data of individual components stored in libraries, and software operation on a standard
user level can be brought down to defining positions of constraints in space. The software is
compatible with various CAD programs, thus enabling import of elements created in other
applications. Professional software allows to develop complex models with a high degree of
complexity and solve various problems (dynamic, thermal, etc.). These models require an appropriate
definition of the necessary parameters (mass, stiffness, damping) as well as material parameters .The
simulation tests significantly accelerate and reduce the cost for solving complex set of issues

associated with the vibration diagnostics of machines and devices [2,9,10-12,16-19,22].

2.  Full car model

The study was conducted for the vehicle model of Fiat Seicento. The front suspension subsystem
model consist of: 19 moving parts (not included ground), 3 cylindrical joints, 4 revolute joints, 4
spherical joints, 2 convel joints, 8 fixed joints, 2 hooke joint, 1 inplane primitive joint,
5 perpendicular primitive joint, 10 motions and 2 couplers. The view of McPherson front suspension

system is presented in Fig.1

Figure 1. View of McPherson front suspension
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Suspension subsystem model of was placed on the plates forcing displacement of the specified range.
Examples of the changes in angles (camber, caster and kingpin inclination) as a function of plate
displacement are presented in Fig.2. The values obtained during the simulation are consistent with

the technical data of the vehicle which confirms the correct kinematic parameters of the model.

|| ——camber ange rightiineel Certer Vertical Travel vertical_right
— —Caster angle right\Wheel Certer Vertical Travel vertical_right
== = *ingwin inclination angle right'vheel Certer Vertical Travel vertical right

=50
500 400 300 200 00 oo 10.0 200 0.0 400 0.0
Analysis: wer2_single_travel Length (mm) 2014-01-30

Figure 2. Subsystem on a test stand and sample angle changes (camber, caster and kingpin inclination)

as a function of plate displacement.

Adams/Car /Ride module used in simulation allows to test vehicle dynamics forcing the position of
the plate of the test stand. Virtual model of the vehicle was set on four servo-motors. They can control
any combination of excitation of individual actuators (displacement and amplitude, phase between
extortion, etc.) and determine all kinds of vibration (vertical, lateral, angular). The study was
conducted for selected parameters of the test rig. The model has been identified. View of full car
model on rig test stand and real car on test platform is presented on Fig. 3. The results obtained
during the test of kinematic harmonic extortion on the wheels of the vehicle and the simulation model
are shown in Figures 4 and 5.
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Figure 3. Fiat SC on test stand a) model, b) real car
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Figure 4. Acceleration on the plate: a) the simulation research (b) - the measurement of the test stand
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Figure 5. Acceleration on the wheel a) the simulation research (b) - the measurement of the test stand
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The qualitative comparison of the received acceleration time charts of simulation model of the
vehicle in the Adams / Car (Fig.4a and Fig. 5a) and the time charts of accelerations obtained from
experimental studies on the test stand (Fig. 4b and Fig. 5b) confirms the correct identification of the
model. The small quantitative differences (differences in the amplitudes of acceleration) may result
from the adoption of the theoretical values for some parameters (moments of inertia of the wheels and
whole vehicle, location of the center of gravity of the body).

3. Results of research

The technical condition of the shock can be examined on indicator shock absorber test stand.
Such an examination can plot the work graph of the shock absorber (force versus displacement) as
well as the velocity graph (force versus linear velocity) and determine damping characteristics
(Fig.6).

Determination of the damping characteristics can be achieved in two ways. In the first one, the
basis of designated force-displacement diagram at a constant stroke and variable angular velocity. In
the second approach, the angular velocity is constant and the value of the stroke is changed [1,3-8,13-
15, 20,21,23].

@2 ’ 05 1 15 2 25 3 35 4 45 5
[ 9 e wef3]
Figure 6. Indicator test stand and time realization of recorded force and displacement signals.
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The damping characteristic is determined assuming a value for the maximum damping piston
velocity (separately compression and decompression). Determination of the damping characteristics
is based on the average value of force in the point of maximum velocity. Last step of determining
damping characteristic is joining the points determined for different linear velocity (average line for
close loop). Damping characteristic is presented of Fig 7.

i
/)

fryatel
i)

velocity [m/s]

Figure 7. Force vs. velocity diagram and damping characteristic (black line)

Effect of damping were obtained by changing the damping characteristics of the shock absorber.
Designated damping characteristics of the front shock absorbers were determined on presented test
stand. The damping characteristic of effective new front shock absorber is marked in blue color, and
the red color is front shock absorber characteristics of the 50% loss of oil (Fig.8). Similarly, the rear
shock absorber characteristics in varying condition was determined.
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Figure 8. Damping characteristic: blue- new shock absorber, red — shock absorber with 50% loss of

oil.

Adams/Car /Ride module allows to test vehicle dynamics forcing the position of the plate of test
stand. Virtual model of the vehicle was set on four servo-motors. They can be control any
combination of excitation of individual actuators (displacement and amplitude, phase between
extortion, etc.) and determine all kinds of vibration (vertical, lateral, angular).

The simulation research was conducted with excitation forces on each wheel in front and rear
suspension (Fig. 3a). Test time was 10 [s], the amplitude of displacement 6 [mm], the frequency was
increased in the range 0.1-20 [Hz]. The results presented in Fig.9. refer to comparisons of vibration
displacements at excitation wheel for new shock absorber and for shock absorber with 50% loss of

oil.
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Vibration displacements at excitation wheel for new shock absorber (a) and for shock
absorber with 50% loss of oil (b): red color —displacement of plate, blue color —
displacement of front wheel, green color — displacement of rear wheel
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4. Conclusions

The result of the investigation presents that for a new and damaged shock absorber vibration
displacements in the low-frequency excitation do not show major differences. It is associated mainly
with a small value of the amplitude of excitation (6 mm). When excitation frequency are increasing
vibration amplitudes for shock absorber with oil loss are also increasing. This is particularly visible
for the suspension with damaged shock absorber in area of resonance frequency of unsprung masses.
The results of preliminary tests are targeted at describing precise estimates of the technical condition
of the shock absorber built in the vehicle. This applies to the configuration possibilities of individual
actuators and excitation to obtain additional information (eg phase angle) in the evaluation of the
technical condition of the shock absorber.
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Dynamics of two coupled 4-DOF mechanical linear sliding
systems with dry friction
(BIF304-15)
Angelika Kosinska, Dariusz Grzelczyk, Jan Awrejcewicz

Abstract: The paper introduces a model of two identical coupled 4-DOF mechanical
linear sliding systems with dry friction coupled with each other by a linear torsional
spring. The appropriate components (bodies) of the coupled systems are riding on two
separated driving belts, which are driven at constant velocities, and stick-slip
vibrations can be observed. In this case the physical interpretation of the considered
model could be two rows of carriages laying on the guideways and coupled by an
elastic shaft, which are moving at constant velocity with respect to the guideways as a
foundation. From a mathematical point of view the analyzed problem is governed by
eight nonlinear ordinary second order differential equations of motion yielded by the
second kind Lagrange equations. Numerical analysis is performed in Mathematica
software using the qualitative and quantitative theories of differential equations. Some
interesting non-linear system dynamics are detected and reported using the phase
portraits and the Poincaré maps. Next, power spectra obtained by the FFT technique
are reported. The presented results show periodic, quasi-periodic, chaotic and hyper-
chaotic orbits. Moreover, synchronization effects between the coupled systems are
also detected and studied.

1. Introduction

The question of stick-slip vibrations caused by dry friction is still opened. The fundamental laws of
stick-slip phenomena based on dry friction dynamics have been promulgated in the pioneering
experiments of Rabinovicz and in the works of Baumberger et al [7]. Firstly, a concept of nonlinear
dry friction should be explained. The force, which is required to start the movement of an object, is
called the static friction force, but the kinetic force is essential to maintain a constant velocity during
the movement of the body. A sufficient condition for stick-slip is that the static coefficient of friction
is higher than the kinetic coefficient of friction [10]. Stick-slip phenomena are expected during
contact interaction at low-velocity friction. The considered stick-slip phenomenon depends on
frequency of vibrations, a relative humidity and load. Stick-slip phenomena occur in everyday life, for
instance, from earthquakes, through brake systems (when car is started to move from stationary state)
[11], to nano-devices showing up in the scale above several microns. Examples of scientific literature
devoted to sticks-slip vibrations in system can be found in the references [1, 3, 5, 6, 8, 9].

Different models in micro- and macro-scale are used for description of stick- slip phenomena. In this

work an 8 degree-of-freedom model is used. The body consists of two identical subsystems coupled
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by torsion spring. Every subsystem rides on two separated belts which are driven at constant velocity.
Bearing in mind principles of relativity one can say that the bodies are moving because of immovable
belts. In this case the real interpretation of model may take place in a mine, where two rows of
carriages fixed to guideways are moving at constant velocity. As a nonlinear (in stick—slip regime)
system, the spring—slider model is very sensitive to weak external impacts,
which on a large scale manifests itself in phenomena of induced seismicity, triggering and
synchronization effects [2]. The considered in this work mechanical system can be treated as an

extension of the mechanical model presented in the paper [4].

2. Mechanical Model

The considered 8-DOF model (two coupled by torsional spring 4-DOF mechanical linear sliding

systems with dry friction) is shown in Fig. 1.
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Figure 1. The 8-DOF model with dry friction.
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The presented system can be considered as a planar system in the Cartesian coordinate system (in

the Earth's gravitational field with the gravity coefficient g ) with horizontal axis x and vertical axis
v . Dynamics of the considered system can be described by the following variables: x;;, v =x;,
Vi Zn=Yns Prs @ =9¢rs Xpps iz =X X Vin =X Y Zm =y @i O =i
X125 Vio =Xy, - The masses my, my; can rotate about the pivot axes S (moments of inertia about
the pivot point S of the mentioned masses are /;, Ij; ). The entire system is characterized by lengths
I, g (i=12,.,6) and springs with stiffness coefficients kpy, &y, kpyo ki,
(i=124,5,6;j=3,45,6). Moreover, two additional masses m1;,, my;, are laying on the appropriate
belts as a foundation, which are moving with a constant velocities v;, and vy, respectively.
Between the mentioned masses my,, my, and appropriate belts dry friction forces occur as a
functions of the relative sliding velocities vy — x5, vyg — X2 » respectively.

Equations of motion of the considered system have been derived using the Lagrangian method

(the second kind Lagrange equations) [4] and they are as follows
d(oT) or oV
— | = |-—=+==0,, 1
iy ooy, 0
where: ¢ - vector of generalized coordinates, @, - vector of generalized non-conservative force

acting in the system, 7' - total kinetic energy of the system, }/ - total potential energy of the system,
¢t -time.
In this case dot means differentiation with respect to time ¢ . For presented previously 8-DOF model

with dry friction, vector ¢ is reads:

T
‘I:[xns yn. Pr> X2, *m. Ym. @u xIIZ] . 2)

Simultaneously, @,, can be described by the following vector

0,= [0, 0, 0, Fgy, 0,0, 0, FfrII]T' (3)

The friction forces Fg; and Fjy are equal to the product of nonlinear kinetic friction
coefficients 14, (vig —X12), py (vio —X72) (associated with relative velocities of every subsystems)
and the normal forces N; =mjyg —(kp3,yn —kp3plp3er). Ny =mypg — (ks v —kpsylpzen)
which press the masses mj, and mp, to the first belt and to the second one, respectively. It should

also be noted that in numerical calculations the values of the normal forces N; and Nj can be less
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than zero, greater than zero or equal to zero. In the case of N;,N; >0, the friction contact between
masses mj,, my, and the appropriate belts moving with velocities v;q, vy occur. In turn, the
case N;,N; <0 means a loss of friction contact between the masses mj, , m, and the appropriate
belts. This is why in our mathematical model we use a discontinuous step functions describing these

phenomena, and defined as follow

1 for N;>0,
0 for N;<0.

1 for NH>O,
0 for NHSO.

1(N1)={ I(NII):{ 4)

Finally, forces Fj;; and Fjgy; have the following form

Frr(vio =X, y1,91) =
=y (vio = Xp2) - [mpag = (kpzyyn — kp3ylpzep))- 1mypag — (k3 v = kpzyliaer),

)

FanOpo =Xy yim-on) = ©)
=tk Viro = *12)  [mpag — (ks vy — ksylis@i))- 1mppag — (kyzyym — ks ylis@in)-

Total kinetic energy T of studied model has the following form:
LIS ST SR IRPT S S S 2 ooy Lo 1 2 7)
=—mp (X +yn) 5 L@ +—mppXpp + = my (K + Vip) + 5 L@ +— myaXips -
2 2 2 2 2 2
Since small values of angles ¢;and ¢ are taken into consideration, the total potential energy V’

has the following form

1 2,1 2

v =5k11x(x11 +iner —xp2) +Ek12x(x11 +iner—xp)" +

1 2, 1 2,1 2
+Ek13y(yll_ll3¢7l) +Ek14x(xll_112(pl) +5k14y(y”—114(/’1) +

1 2, 1 2, 1 2
+Ek15x(xll+115(p1) +5k15y()’11—116¢’1) +Ek16x(x11_112¢1) +

1
+5k16y(yll +1p00p) +mpgyn +

3

1 2, 1 2
+Ek111x(x111 +lner —x2) +5k112x(x111 +Hnor —xp2)” +

1 2 1 2 1 2
+5k113y(y111_1113¢11) +5k114x(x111—1112¢’11) +5k114y(y111_1114(/’11) +

1 2,1 2,1 2
+5k115x(3‘111+1115(ﬂ11) +3k115y(y111_1116(p11) +Ek116x(x111_1112(p11) +

1 2 1 2
+Ek116y(y111 +0m)” +mppgvm +Eks((p1 —en)
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Computing the partial derivatives — 2 50 20 based on (1), we obtain
q

d(oT ) oTr oV
dt " oq° o4
mpip + (kpe + ko +kpay +kpse + ke )xn +

Kk +kpaad iy = kraxdpn +krsylis = kpexd12)er = (kg + ko) xp =0,
mpyp +(kp3y +kpgy + ks, + ke )y +

+ (k33 —kpaylia —kisylie + ke ylp7)op + mpg =0,
Liop + (ki + ko = kpaxdpy + kpsilps — kel po)xn +
+(=kp3ypliz —kpaylia —kpsylis + kpsyli)yn +
2 2 2 2 2 2 2 2 2
+ (kpieliy + kpoxliy + kp3ylis + kpaxdip + kpaylia + kpsilps + kps s + kel ia + krsylin)er +
= (kp +kpp)lnxp + k(op =) =0, (€)
myyXpy = (kpiy + kpax)xp — (ki + ko )lngyr + kg + ko )xpp =
=y (vio —Xp2) -[mypag — (k3 v — kp3ylpzep)]- Lmpag = (k3 yn — ks ylper),
mun X+ (ki + ko + kay +kppsy + ke )X +

+ (kI'['lxl[Il kol = kiaxn + kysyliys = kel 20 — ki + ko)X =0,
min ¥+ (kysy +kay +kisy + kirey )y +

+(=ki3yls —kpaylna —kirsylie + kireylmr7)on + ming =0,
Inon + kidin + ko in = kpaslio +kpselns — ke i) xm +
+(=ky3ylys —kpaylna —kisylie + kireylir) ym +
2 2 2 2 2 2 2
+(knadin + kioxdin + ksl + kpadin + kpaylina + kyseis + kisylire)on +
2 2
+hyexlina + kpeylir)on — kg + ki )linxy + k(o — 1) =0,
myppXpy = (ki + ko)X — ke + ko )linen + ki + ko)X =
=t (Vo = %12) (M8 — (ks vin — ks ylp3em)]- 1myng — (ks v — kipsylpzen)-

3. Non-dimensional form

We introduce non-dimensional time r:t/ mypy (k. + ko), non-dimensional coordinates

Xn=xn/ln> Yn=yn/ln> Xpp=xp/ln > Xm=xm/ln > Yin=ym/ln > X2 =xy2/ln and

the following non-dimensional parameters:

ay =2 [kllx +hpoy gy + ks, + kmxj (10)
mpy kpx +kpox

ay, =2 (klllx +kppoy +kpay + ks + kum] (in
my kpx +kpox

ay, =2 [kllxlll +hkponln —kpaxlpo +kpsylis —kpexlio ] (12)
mpy (kpix + ko)l
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mpo [ ke +kocdin = kpaxlnn + kuselus = kiexlin

amgy = >
mpy (kp1x +kp2)in
_mp _mp [ ki ko
ap3=——, a3y =— —k X >
11 m \ kpix Koy
b M2 kpzy +kpgy +kpsy, +kpey b kisy +kpay +kysy + ke,
11— k k s Yl — k k s
my Ilx T Ko m Iix T Koy

mypy ( ki3l +kpaylia +kisylie —kieylps

by = ’
mpy (kpix + k)i
mpy [ kmsyls + kiaylys +kysylps = kpeylir
by = ’
my (kpix +kpa)ln
mp8
fo=7"TT""—,
& (kpy +kpin
ey = mpaln (kpaln + kol = Kpaxlis + kisilis —kpexlrn)
(kpix + k)
e = mpln Kol + kpoxlin = kpaxlin +Kislis = kKirexlina)

(kpix + ko)

o = mpolp (kp3yplys +kpaylis +kisylie = kreyplr7)
12 — s
(kpix + ko)

o mpolp (kysylis + kraylns +knsylis = kieyling)
12 — 5
(ke k)

2 2 2 2 2 2 2 2 2
3= m12(k[1x111 +k12xln +k13y113 +k14x112 +k]4yl[4 +k15xl[5 +k15y116 +k16x112 +k16yl[7)

(knx + k2171

ci3 =
(k[1x +k12x)111

>

2
crq= mplh . molnln (g + ki)
1 Ckpix + k)
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(13)

(14)

(15)

(16)

(17

(18)

(19)

(20)

e2y)

(22)

(23)

m12(k111xl,2,1 + k112xl,2,1 +k[I3yl ,2,3 + k114x/,212 +k[I4yl ,2, 4t k115x1%15 +kiIs y/1216 + k116xl,2,2 + k116y/1217) 24)

(25)



_mpp(kyny + ko) _ mppln Gy + ko)

din > di ,
myp (ki + ko) myplp (ke +kpay)
__ mpk b = myok
P e k) ey + k)
(kpiy + ko) (kpix + ki)
ki3y mpkirsy
en = X X > € = X X >
(kpix +kp2y) mpy (ki +kpoy)
iy ki s Mok
€ . o eln=

In (kpy +kpae)” In myyCkpe +kpoy)’

and the following non-dimensional functions

In In ' '
M Vio - Xpo |= V0= X12),
[\/’"12 [(kpix +kpoy) Nmpa kg + ko)

In In : :
M Viro - X =S Wo = Xr2)
[\/mIZ/(kllx +kpoy) mpy [ + ko)

I(mpyg —(kp3yyn —kpsyliner) = 1(fg —(en¥n —ener))

I(mprg = (k3 yim —kisylusen) = 1(fg = (emYm — emaen)) -

In result, equations of motion in the counter part non-dimensional form are as follows

{(11 +apXp +aper—apXp =0,

Y +bpYp —bpagr + fo =0,

Pr+enXn —cpYn +cper —cpaXp + k(o — o) =0,
Xpp=Xn-er+Xp=fuWVio—Xp) [fe —(en¥n —epe)] 1(fg —(en¥n —erngpr)
X m*amXm +agpen —apzXpy =0,

Y +bimYm —bien + 4 =0,

P +cmnXm —cmYm + ci3pn — cuaX i + ki (o — ) =0,

Xy —dinXin —dipen +dinXin =

= fiuxWiro = Xi2) U g = (em¥in —ennpi)]- 1(fy — (ein¥in — era9nr))-

4. Numerical computations

(26)

27

(28)

(29)

(30)

G

(32)

(33)

(34)

Our numerical computations have been performed via the fourth order Runge-Kutta method with

constant time step #=0.001 and zero initial conditions. We consider symmetric system with the
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values of non-dimensional parameters and non-dimensional functions taken from the previous paper

[4], namely:

an =ag =aq :0,07836, dry =djpp =4y :0,03344, dary =daps =djz 20,04058,
bIl = b111 = bl = 0,09375 N b12 = b112 = b2 = 0,03314 s Cn=¢C =6 = 0,02689 N
Crp =Cyp =Cp 20,02666, Ci3 =Cp3 =¢C3 20,06181, Crq4 =Cpr4 =C3 20,03264,

d[]l :de =1 5 fg 20,00529, er =emng =€ :1,37931 s €12 =€p =€) 20,47237 .

Kinetic friction functions fy; (V;o— X;5) and fy (Vj;0 — X 12) in our model are described by

the Stribeck functions. Because classical signum function is discontinuous, we decide to approximate

the mentioned functions by hyperbolic function with numerical control parameter & and

Vio =Vyo =V in the form

TWo=X12) =g tanh(%}‘“(% ~Xp)+ BV -Xp), (35)

. Vo—X . .
JukVo—=Xp2) = 1o tanh[%j—a(% ~ X))+ BV - X 112), (36)

with fixed 4y =08, o =1559, f=4252,12 and &=0,0001.
Moreover, because functions I(fy —(e¥y —expr)), I(fy —(e¥in —erxpy)) are also

discontinuous, in our computations we use the following approximations

f[n (fg _(ely[l — e )) = tanh3

(e Y —
[M]](fg —(elYH _62¢])) s (37)

S —(aY—ewy)
&

Jun(fg = (@Y —expp)) = tanh3[ ]'I(fg —(eY1 —ex0pp) - (38)

In result, in our numerical simulation we consider the following equations of motion
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Xp+a Xy +ayp; —asXp; =0,

Y1+ — by + /g =0,

Pr+aXp—c¥p+e30p —caXpp + k(g — o) =0,
Xp—Xn-—or+Xp=fu(Vo—Xp)-1fg —(@¥n —ep)] 1(fy — (e¥n —expp)),

X +a Xy + axpy — a3 X g5 =0,

Y + by Yy —byoy + f4 =0,

Pir + a1 X — ¥ + 3oy —ca Xy + k(o — ) =0,

X=X —on + X = fin (7 —an)'[fg =(aY —ep)] 1(fg — (e —erpp))-

(39)

5. Numerical results
Fig. 2 shows the phase trajecories of the system for the velocity of driving belt V', =0.002 and zero

initial conditions in time interval z €[10000,12000]. The time interval was chosen to avoid the
transition state.

Obtained results and detect an irregular dynamics of the considered 8 -DOF system. The phase
trajectories, Poincaré maps (Fig. 3) as well as power spectral densities (Fig.4) indicate that the
character of motion is chaotic. If we increase the value of 7}, then the character of motion changes.
This situation is presented in the Fig. 5, Fig.6 and Fig.7. When the dimensionless velocity of driving
belts reaches the value of 0.05, the motion exhibit a periodic character.

'@

o)

Figure 2. Phase trajectories of the system for /) = 0.002 in the time interval z € [10000,12000] .
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6. Conclusions

In the paper mathematical model of two coupled 4-DOF mechanical linear sliding systems with dry
friction is considered. The considered system can be treated as a system of two identical 4-DOF

systems presented earlier in [4] and coupled by torsional spring. In this case the physical
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interpretation of the considered model could be two rows of carriages laying on the guideways and
coupled by an elastic shaft, which moves at constant velocity with respect to the guideways as a
foundation. From a mathematical viewpoint the mentioned system is presented as a nonlinear
equations of motion, which are obtained using second kind Lagrange's equations. Dynamics of the

analyzed system is carried out for one set of system parameters and various non-dimensional V.

Interesting dynamics behaviors of the considered system are reported using time series and phase
trajectories. The obtained results indicate, that the analyzed system possesses periodic, quasi-periodic
or chaotic orbits, as well as fixed points. Moreover, the mentioned results show that synchronization

effects between the coupled systems are possible.
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The dynamic and flutter properties of the new airfoil model
NACAO0015
(STA228-15)

Jan Kozanek, Vaclav Vicek, Igor Zolotarev, Martin Stepan

Abstract: The new airfoil model NACA0015 (with a chord length of 59mm, thickness 8.85mm and
width of 76.6mm) was traditionally proposed as the dynamic system with two near eigenfrequencies
13.3 Hz and 17.1 Hz corresponding rotation and transversal movability. This design allows the
generation of self-excited motion of the airfoil in subsonic air flow with Mach numbers M = 0.2 - 0.4.
Inside of the airfoil are placed angle sensor and four semiconductor pressure sensors. For time
registration of the transversal movement of the profile rotation centre, the contactless magnetic linear
sensor is used. In the paper, the identified eigenvalues and eigenmodes for zero flow will be
compared with flutter properties (frequency, modes, time evolutions) of the airfoil situated in the
aerodynamic tunnel of the Institute of Thermomechanics AS. The evaluated sensor data serve for the
correction of classical interferometric measurements supposing isentropic flow.

1. Introduction

The new airfoil model NACA0015 was constructed with the idea of generation self-excited vibrations
in subsonic air flow. For these aerodynamic experiments the suction type aerodynamic tunnel of the
Institute of Thermomechanics AS — Fig. 1, was used. This research belongs to the broader field of
investigation of complex questions regarding the stability of aerodynamic systems. For this purpose,
the fluttering profile is supported as a two-degree of freedom dynamic system, one for rotation (pitch)
and the second for translation (shift) motion with mutually near and adjustable eigenfrequencies.
Compared with older constructions [1, 2], the translation springs were not changed, but the rotational
support was realized using a new coil spring with high elasticity. The corresponding eigenfrequency
can be changed by the spring length and by a different diameter of the spring wire. The

eigenfrequency of the transversal mode is influenced by using the grub screws — [3].

»

Figure 1. Measured profile situated in the test section of the wind tunnel.
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The new airfoil model with a chord length of 59 mm, thickness 8.85 mm and width of 76.6 mm was
divided into five parts - see in Fig. 2. Two miniature ball bearings enable the profile to rotate, the axis

of profile rotation is situated in 1/3 of the chord. The weight of the profile is about 38 grams.

i
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Figure 2. The new airfoil model NACAO0015 with two modifications of rotational springs.

Arrangement of the aerodynamic experiment
The schema of the measured profile support and experimental equipment are shown in Fig. 3.

Machmeter

Magnetic linear Zal ]
/ F——— % Prandtl probe
0

Pressure sensors
4x MPXHG115
P2u

NACADD15
profile
P1u Airflow

-_—
2 — <
-—

Magnetic rotary P1d
encoder RM08 E&T_f—?éricsgjgg[r}
/ N
i B P2 4x MPXHE115
DEWETRON === @
desktop PC Strain gauge

full bridge

SpeedCAM @ Vv v hov 5y
MotionPro X3 DEWERACK 16|| DC power
Interferometer

1 amplifier [ || supply

Figure 3. Airfoil rotational and transversal support and the experimental equipment.

Pitch angle of the profile was recorded with the magnetic rotary encoder type RMO08. The
translation of the frame with fluttering profile was measured with the magnetic non-contact linear
encoder LM13TCD40CB10A05. The measurement of the translation is doubled by using a calibrated
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strain gauge with full bridge placed on the flat spring. Pressure on the surface of the profile was
measured with four semiconductor pressure sensors MPXH6115A6U - FREESCALE
SEMICONDUCTOR. Transducers were coupled in pairs on both profile surfaces.

Signals were processed with DEWETRON desktop PC using Dewesoft 7 software. The optical
measurements were performed by using a high-speed camera MotionPro X3 at 1000 frames per
second. Velocity of the flow field was measured by a Machmeter associated with the wind tunnel.
The interferometer is constructed for visualization in an area with a diameter of 160 mm. The flutter
was initialized by a 1.7 mm initial deviation of the frame.

2. Eigenvalues and eigenvectors of the system for zero air flow velocity
The modal analysis was carried out in the laboratory Dynamics and Vibration of the Institute of
Thermomechanics AS CR. The excitation was realized by pulse-hammer with the force sensor 4519-
002 B&K and the measurements were performed with the acceleration pick-up DeltaTron 4519-002.
The discretized time signals were registered and evaluated by the PULSE B&K measurement system
with card 7537A. Two (marked 1, 2) excited and measured points in the centre of rotation and on the
trailing edge are depicted in Fig. 4.

The measured complex frequency transfer functions v; .(f) as the function of excitation

frequency f (see Fig. 6), were evaluated by the fitting identification method — [5]:

v,-,k<f)=zlf;“—ji+h<f>, &

BITOwW

535

Figure 4. The configuration of the dynamic experiment with the two excited and measured points.

where V; (f) is the frequency transfer function (excitation in k-point and pick-up in j-point), s, isthe

complex eigenvalue and 4, ;, is the corresponding complex modal contribution and h(f) is the
influence of the other modes and experimental perturbations.
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Initial pre-tensioning of the transversal springs

Two flat strip springs allow vertical displacements of the profile and their rigidities can be changed
by using grub screws. The three positions of the grub screws correspond to the three positions of the
grub p1, p2, p3 and define three geometrical deformations of the flat strip springs (see Table 1).

Table 1. Initial tensioning corresponding to the different grub screw positions p1, p2, p3.

p pl p2 p3
d [mm] 0.233 0.583 0.933
x10° Frequency response v(1,1) x10° Frequency response v(1,2)
4 T T T T
4
05
2
-1
< So
316 B
o o
5 g
-2 a2
=254 -4
3t 8
é -1 15 -1 -05 6 0‘,5 1 -8 -6 -4 -2 6 2
Real v(f) x10° Real v(f) x10°
a) b)
Frequency response v(2,1) Frequency response v(2,2)
0
0.01
-0.05
0.005
- I -0.1
¥ 5
o o
£ E.015
-0.005
-0.2
-0.01}
-0.25
A5 ET) 5 0 5 015 04 005 0 005 01
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c) d)

Figure 5. The example of the complex frequency responses v(f) in measured configurations (pick-
up,excitation) - a)-(1,1), b)-(1,2), ¢)-(2,1) and d)-(2,2) - initial tensioning p2.
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The identified complex eigenvalues and eigenmodes for three dynamic systems distinguished by their

initial tensioning of the transversal springs are summarized in Tables 2, 3, 4, 5, 6, 7 and 8. One of the

rotational eigenmodes has very small amplitude and therefore it was neglected.

Table 2. Identified modal parameters d,, ok and eigenvalues s, for the initial tensioning p1.

(pick-up,excitation) 1,2) 1,2) (2,2) (2,2)
-0.0002 - 0.003i -0.003 - 0.017i 0.003 - 0.005i | 0.019 - 0.24i
a, ;i 0.0003 - 0.005i 0.003 + 0.005i 0.002 +0.003i | 0.030 + 0.015i
0.001 + 0.009i
-1.09 +14.26i -0.50 +13.37i -0.53 +13.53i | -0.61 +13.29i
s, [H2] -0.65 +17.13i -0.22 +14.78i -0.91 +17.99i | -0.24 +14.45i
-0.27 +17.25i

Table 3. Normalized eigenvectors vT and v} corresponding to rotational and transversal eigenmodes
for the initial tensioning p1.

UI [al'z'l ; al'z'z]/al'z’z [00197 - 001411, 1]
vy [az1,1,0212]/0211 [1,—1.7816 + 0.3069i]

Table 4. Identified modal parameters 4, ; , and eigenvalues s, for the initial tensioning p2.

(pick-up,excitation) 1,2) 1,2) (2,2) (2,2)
-0.0000 - 0.001i | -0.0002 - 0.009i -0.003 - 0.0045i 0.030 - 0.23i
av,j,k 0.0002 - 0.002i 0.001 + 0.004i 0.001 + 0.003i 0.010 + 0.032i
-0.0002 + 0.004i
-0.94 +14.40i -0.53 +13.71i -0.58 +13.64i -0.80 +13.36i
s, [HZ] -0.67 +17.56i -0.25 +14.91i -0.68 +18.19i -0.28 +14.44i
-0.30 +17.66i

Table 5. Normalized eigenvectors v and v} corresponding to rotational and transversal eigenmodes
for the initial tensioning p2.

UI [allz'l ; al'z'z]/al'zlz [00176 - 00153l, 1]
vy [az1,1,212]/0211 [1,—1.9901 + 0.0990i]
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Table 6. Identified modal parameters d, ok and eigenvalues s, for the initial tensioning p3.

(pick-up,excitation) 1,2) 1,2) (2,2) (2,2)
-0.0003 - 0.001i | -0.0004 - 0.008i | -0.004 - 0.003i 0.085 - 0.23i
a, ;i 0.0004 -0.002i | 0.0016 +0.004i | -0.0002 + 0.002i | -0.053 + 0.024i
-0.0002 + 0.004i
-1.01 +1456i | -0.58 +13.69i -0.63 +13.83i -0.94 +13.33i
s, [H2] -0.91 +17.630i | -0.27 +14.96i -0.82 +18.28i -0.41 +14.29i
-0.59 +17.76i

Table 7. Normalized eigenvectors v and v corresponding to rotational and transversal eigenmodes
for the initial tensioning p3.

U{ [al'z'l ) al'z'z]/al'z‘z [0.0058 — 0.01951, 1]
U; [az'l'l ’ az'l'z]/az'l‘l [1, _1.9423 + 0.2885[]

Table 8. Complex eigenvalue s, corresponding to the largest amplitude - the tensioning of the

transversal springs is marked as p1, p2, p3.

s, [Hz] Rotational eigenmode Transversal eigenmode
pl -0.61+13.29i -0.65+17.13i
p2 -0.80+13.36l -0.67+17.56i
p3 -0.94+13.33i -0.91+17.63i

3. Aerodynamic experiments with airfoil profile NACAO0015

Aerodynamic experiments were realized in the Laboratory of the Institute of Thermomechanics AS
near Novy Knin for subsonic air flow with Mach numbers M = 0.2-0.4 and Reynolds numbers (2.63-
2.83)-10°. The results, involving flutter regime, with M = 0.21and Re = 2.76 10°, will be presented as
an example in this paper. The measured parameters were shift [mm] of the rotation centre and pitch
angle [deg] as a function of time. The frequency spectrum was evaluated for rotational vibration in
different time moments. Profile kinematics added the following information for the profile motion.

Pressure of the fluid flow on the profile surface was measured in 4 surface points.

3.1 Shift of the centre of rotation in flutter regime

The shift of the centre of rotation in the starting period of the flutter for Mach number M = 0.21 is
depicted in Fig. 6 (data No. 2911-21). The initial deviation of the frame for flutter starting was 1.7

mm,
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291121, M=0.21, (5-8)s

shift [mm]

5 55 B 6.5
time [s]

75 8

Figure 6. Shift in the starting period of the flutter.

the flutter frequency was 15.2 Hz. About 1.5 s after the flutter initialization, the steady state vibration

was registered. The shift response on the interruption of the fluid flow we can see in Fig. 7.

2911-21, M=0.21, (26-29)s

T

shift [mm]
o

5 i H i
26 265 27 275 28 285 29
time [s]

Figure 7. The shift response on the interruption of the fluid flow

Periodic beat vibration, visible on the record, is probably connected with the eigenfrequency of the

profile for zero fluid flow (see Tab. 8) and the above-mentioned flutter frequency.

3.2 Pitch angle analysis

The behavior of the pitch angle time records was more complicated compared to the shift of centre of
rotation. This also concerns the starting period of flutter and the steady state period of shift motion.

The time record of the pitch angle corresponding to the time period from Fig. 6 is depicted in Fig. 8.
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291121, M=0.21, (5:9)s

pitch angle [deg]

time [s]

Figure 8. Time record of the pitch angle correspondig to the start of flutter in Fig. 6.

The initial deviation of the frame for the start of flutter caused a pitch angle of about -9 [deg].
Time record (the amplitude increase and steady state part) in Fig. 8 is similar to Fig. 6, but in Fig. 8
we can see significant polyharmonic vibration (7.8 Hz and 15.1 Hz), verified by spectral analysis in
the time period (7 — 9) s — see Fig. 9. The vibration with the frequency 15.1 Hz during the start of
flutter corresponds to the mutual approach of different rotational (13.3 Hz) and transversal (17.6 Hz)
eigenfrequencies in the case of zero air flow velocity. This is caused by the interaction of the fluid
flow with the vibrating airfoil. On the other hand, a new generated frequency 7.8 Hz with smaller

amplitude corresponds to some subharmonic vibration with half frequency.

Amplitude Spectrum of rotationint=(7,9)s

abs (Y(f)

10 1‘2 14 '!IE '!IE 20
f[Hz] «

o 2 4 B 8

Fig. 9. Spectral analysis of the pitch angle record in the time period (7 — 9) s.
When the tunnel was suddenly closed, the fluid flow influence decreased and the airfoil polyharmonic

vibration with frequencies 12.9 Hz and 16.1 Hz approached the case of zero air flow velocity — see
Fig. 10.
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Amplitude Spectrum of rotationint =(26.5,28.6)s
7 T : T . . . . T T
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Fig. 10. Spectral analysis of the pitch angle record in the time period (26.5 — 28.6) s — after the
interruption of the fluid flow.

3.3 Profile kinematics

The previous paragraphs studied the time records — shift and the pitch angle of the vibrating
airfoil. Another possibility of this presentation is to describe their motion simultaneously in the same
graph with new axes (pitch angle, shift), where the time becomes the parameter of the curve. For
example the short time interval (17 — 17.1) s of the steady state vibration (Data No. 2911) is depicted
in Fig. 11, the two parts of the incomplete loops are visible. For this case of our flutter experiments
with the airfoil model, which has lower rotational eigenfrequency than transversal, these two
incomplete loops are typical.

291121, M=0.21, (5-8)s
4 . . . . . . . . r

shift [mm]

pitch angle [deg]

Figure 11. Airfoil motion in (pitch angle, shift) axis with two incomplete loops, data No. 2911-21.

4. Conclusions

The experimental device for the aerodynamic research of the behavior of the airfoil model
NACAQ015 in the air flow was reconstructed and its operation was verified. The principal aim is to
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generate self-excited motion of the airfoil in subsonic air flow in an aerodynamic tunnel. The
measuring and data registration system have been extended and improved. The spectral and modal
properties of the new airfoil support were identified for different configurations of the flat strip
springs. As an example, the experimental results describing the appearance of the flutter vibration for
the air flow velocity with Mach number M = 0.21, the steady state vibration and the response to the
interruption of the air flow were presented and analyzed. The profile kinematics showed double loop
vibration in comparison with the results obtained in the earlier measurements [4].
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Comparative analysis of the methods of controlling the
gyroscope-stabilized platform for searching and observing
air targets
(CON003-15)

Izabela Krzysztofik, Jakub Takosoglu, Zbigniew Koruba

Abstract: At present, remotely controlled weapon modules are becoming the basic
equipment of modern army. The platform for searching and observing air targets is
one of the most significant elements of a weapon module. The effectiveness of
conducting combat tasks by anti-aircraft defence units also depends on the precision
of operation of the said platform. The platform constitutes a stable basis, independent
of angular movements of the base on which it is located, for a TV/thermal imaging
camera and the coordinator used for searching and observing the detected target. The
paper presents the algorithm of control of the platform for searching and observing the
manoeuvring air target placed on the deck of a combat vehicle. The optimized, classic
PD controller and fuzzy controller PD type were designed. Numerical research of the
dynamics of the controlled platform were conducted as well as a comparative analysis
of the proposed methods of control. The results of research are presented in a
graphical form.

1. Introduction

A self-propelled rocket missile ensures anti-aircraft protection to military units increasing at the same
time their mobility. A quick change of a current location is an inseparable element of a strategy
indispensable on a contemporary battlefield. Searching, identifying and tracking the detected air
target during the movement of a vehicle are important elements of the operation of the missile. At
present, more and more countries equip their armies with self-propelled missiles having remotely
controlled weapon modules. The platform for searching and observing air targets is one of the most
significant elements of a weapon module. The platform constitutes a stable basis, independent of
angular movements of the base on which it is located, for a TV/thermal imaging camera and the
coordinator used for searching and observing the detected target. Also the effectiveness of the combat
tasks conducted by anti-aircraft defence units depends on the precision of operation of the
platform [1,2].

The concept of the platform that is possible to be used on the deck of a combat vehicle is shown
in figure 1. The gyroscope-stabilized platform is the basis of the structure [3,4]. Inside the platform,

there is a TV and a thermal imaging camera and two mechanically-controlled gyroscopes. Step
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engines are the elements performing the control of programmed and stabilisation movements. Each
engine controls one platform axis. Also a central control unit is mounted in the basis of the device
whose function is to control the device operation. The device may perform movements in altitude and
in azimuth in the full angular range.

outer frame

J

inner frame

Y
Figure 1. The general view of the platform for searching and observing air targets [5].

When searching for a target, the device axis scans the air space on the set path, i.e. it follows the
strictly defined lines in space. Then, the optical system may intersect the thermal radiation emitted by
the air target. After detecting the target, the device automatically passes to the automatic tracking of
the target, i.e. from that moment its axis overlaps with the line of sight. Thanks to the use of the
proposed gyroscope-stabilized platform, the image of the target is stable and the movements of
cameras are independent of vibrations and angular movements of the combat vehicle.

The rule of operation and the full mathematical model of one-, two- and three-axis gyroscope-
stabilized platform are discussed in detail in paper [5]. In the present paper, a one-axis gyroscope-
stabilized platform was considered. Moreover, an assumption was adopted that the device centre of
mass overlaps with the centre of its rotations and the moments of inertia of its frames are omitted.

Then, the linearized equations of movement of the devices are as follows:

Jk(§+d)y)—30n(c/)+azz)+qw,9:MW, (1)
35+ )+ 3n(9+ @ )+ 75 =M, @
where:

9, —angles of location of the device axis in space;
o,, . —angular velocities of tilt and declination of the vehicle deck, respectively;

Jo.Jx —longitudinal and transverse moment of inertia of the device, respectively;
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M,,M, — moments of controlling forces having an impact on the inner and outer frame,
respectively;

n,.n. — friction coefficients in suspension bearings of the inner and outer frame, respectively.

2. The algorithm of control of the gyroscope-stabilized platform for searching and
observing air targets

The use of the considered platform allows for quick searching of a target in space, stable maintaining
of the detected target in the field of view of optical system and attacking the target during the
movement of the vehicle. It increases the effectiveness and mobility of the self-propelled rocket
missile. The algorithm of operation of the platform when searching the air space and tracking the
detected air target is shown in figure 2.

@ COMBAT VEHICLE

(0) @,
Y y
gyroscope-stabilized | Mw:M;

platform il

Line of Sight (LOS)

S,y

i
Control System

3., programmed controls
M, M}

Sz vz tracking controls
M., M,

Figure 2. The algorithm of operation of the platform mounted on the deck of a combat vehicle.

The platform is influenced by the disruptions coming from the vehicle. Regardless of the
disruptions, the device axis should perform programmed movements (when searching for a target)
and tracking movements (when tracking the detected target). Hence, the control moments should be
used which have the following form [2,5]:

Mw:H(tOltw)'Mv'\:/’(t)"‘n(tsxtk)'M\?v(t): (3)

MZ:H(tovtw)'sz(t)+n(tsvtk)‘Mzs(t)r (4)
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where:

MP M P —programmed control moments; M, ,M 5 — tracking control moments;

TI(t,, ty, ), II(ts, t, ) — functions of a rectangular impulse; t, — moment of starting to scan the space;
t, — moment of detecting the target; t; — moment of starting to track the target; t, — moment of

completing the self-guidance process.
The control moments, both programmed and tracking, are generated directly from the platform

control system.

2.1. The control system with the PD controller
For controlling the platform and tracking air targets a control system with the PD controller was
designed [6].
Then, the control moments have the following form [5]:
My, =ky (9, —9)—ke(w, —w)+ hg(&;Z —9), (5)
M, =

kc(lgz _‘9)+ kb(Wz _‘//)+ hg (‘/’z _V/) (6)

The controller coefficients £, k.,h, were selected in the optimum way due to the minimum

deviation between the fulfilled and set path described in detail in paper [5].
It was assumed that the device axis moves with programmed movement on the n-leaved rosette. Then,

the set angles of location of its axis are determined from the following dependences:
9 (t)= @ -sin(w, -t)-cos(e, -1), 7
v, (t)=a-sin(w -t)-sin(e -t), ®)

where: « =0.75rad , @; =1.25rad/s, w, =29rad/s .

When tracking a target, the set angles of location of the device axis are determined from the equations

of movement LOS:

dé . .
azvc[cos;(C COSy, €0S(9; — 7 ) +Sin ¢ sin y/z]+ ©)
—V,, [cos xp, cosy, cOs(I, —7q ) +SiN xp Siny, |,
9 L [V, 008 e 8in (8, — 1) +Vp €08 p Sin (% — 7)), (10)
dt  cosy,
dy 1 . .
d_tz = _E{Vc [COSXC sin y, €os(9; —y¢)—sin ¢ COSWZ]Jr (11)

-V, [cos Xn Siny, cos(Y, —yn)—sin x, cosy, ]}

354



The diagram of the classic PD controller is shown in figure 3.

PD controller

B T R R e
| 9,y :
: P/| e ~ 1
Z )
I + T~ ®+ 9, “,l:
I
—
I
M, M, | D B |
! + < |#] !
| I
| [
| I
| I

Figure 3. A schematic diagram of PD controller.

2.2. The control system with a fuzzy controller

Classic controllers are successfully used in the analysed dynamic systems. The authors made an
attempt to use an alternative algorithm of control using the methods of artificial intelligence, namely
the fuzzy controller. Fuzzy controllers are used in household goods and appliances, the automotive
industry, as autopilots of ships and planes, as well as auto-tune systems, e.g. autofocus. For both

controllers, the controlling signals are the control moments M, and M, generated directly from the
control system. Controllers input signals are the actual angles of inclination ¢ and declination y of
the device axis and the set angles of inclination &, and declination y, of that axis. Based on those
input signals, adjustment deviation ey, is determined. The diagram of the fuzzy controller is shown

in figure 4 [7,8]. The designed controller belongs to a class of systems MIMO type because it has four
inputs and two outputs. The basis of a fuzzy controller comprises 25 rules of Mac Vicaa-Whelen

which constitute the surface of processing shown in figure 5 [9,10].

Fuzzy Logic Controller

===
] 8/~W/ |
{ Fuzzy inference P A e R :
ey f\\ algorithm k, i @ hdh !
I MAJ_., l \J |
I |
’ NS| Z |Ps A D I

) €y
erMz z |ps|rs ‘___A',_, <I<—@ :
|
|
|
|

Figure 4. A schematic diagram of the fuzzy logic controller.
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Figure 5. A surface of control.

2.3. Results of numerical research
The results of the conducted numerical research are shown in figures 6-10.
During the process of fuzzy inference, the level of ignition was determined using the MIN operator,
the fuzzy implication with the MIN operator, and individual outlets of all rules were aggregated with
the use of the MAX operator. In the process of defuzzification, the method of centre of gravity (COG)
was applied [11,12].
The conditions of conducting the simulation were as follows:
a) platform parameters

Jo=5-10"*kgm?, J, =2.5-10*kgm 2, n=600rad/s, 7, =7, =0.05 Nms ,
b) initial parameters for the vehicle and the target

Xy=0m, Y,=0m, Z,=0m, V,=10m/s,

X =2000m, Y, =1000m, Z, =2000m , V, =200m/s , y, =0rad, y,=-0.25rad .
The kinematic forces working on the platform from the side of the vehicle were adopted in the
harmonic form:

oy = oy, sin(vit), @, = @, cos(vpt),

where: @y, = w,, =2.5radls , v, =10rad/s .
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Figure 6. The angles of inclination of platform axis and LOS: a) PD controller; b) fuzzy controller.
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Figure 7. The angles of declination of platform axis and LOS: a) PD controller; b) fuzzy controller.
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Figure 8. The paths of platform axis and LOS: a) PD controller; b) fuzzy controller.
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Figure 9. Control moments: a) PD controller; b) fuzzy controller.
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Figure 10. Control errors: a) PD controller; b) fuzzy controller.

4. Comparative analysis of the methods of control

Two types of controllers were used to control the gyroscope-stabilized platform for comparative
purposes. The first is the classic PD controller and the second is the fuzzy controller PD type. The
quality of the control of the gyroscopes platform was verified by means of standard performance
indices including (Table 1) [13]:

Table 1. Performance indices

Indices Formula Description
settling time tr With the assumed over-adjustment, it is demanded
that the adjustment time was as short as possible.
steady-state error e = Iim|e(t)| Adjustment error ey appears in the system either
e after the change of the set value or after the
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change of one of the disruptions, which can
potentially affect the system, or simultaneously
due to the two above mentioned reasons.

o The modified Sartorius' criterion indicates all
IAE=ﬂe(t)|dt errors in the adjustment system resulting from
0 over-adjustment and under-adjustment.

IAE (Integral of Absolute Error)

ISE (Integral of Squared Error) 0 The criterion in which the significance of small
ISE= fez(t)dt errors is decreased, and the significance of large

0 errors is emphasized, because of that the ISE
criterion gives a more objective image of reality.
The control system optimized with the use of ISE

may indicate a small, slowly disappearing error of

adjustment.
ITSE (Integral of the Time- o Optimization with the use of that criterion is used
weighted Squared Error) ITSE= Itez(t)dt to achieve a control system in which the
0 disappearance of the error is faster.

ISC (Integral of Control) Criterion indicating the costs of control

ISC = [u’(t)dt
0

1000
100
10

0,1 +
0,01 +—
0,001 -+

0,0001 -

fuzzy
mPD

E ITSE ISC est

IAE IS

tr

Figure 11. Comparison of performance indices of the classic and fuzzy controller

(logarithmic scale).

5.  Concluding remarks

The comparative analysis of the methods of controlling the gyroscope-stabilized platform for
searching and observing air targets was conducted in the paper. Two types of controllers were
designed: a classic PD controller with optimum parameters and a fuzzy controller with MIMO
structure. In order to verify the quality of the control, the synthesis of controllers was made and six
selected indices of quality of the control were determined. The use of the fuzzy controller
significantly shortened the time of searching the space and detecting a target. The time of detecting a
target for a classic controller amounts to 4.7 s, while for the fuzzy controller only 2.2's. All of the
analysed performance indices indicate smaller values in the case of a fuzzy controller. Additionally, a
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significantly smaller cost of control (by more than 50%) was stated which was examined with the ISC

index in relation to the classic controller.
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Modelling and numerical simulations of a pendulum elastically
suspended and driven by frictional contact with rotating disk
(BIF204-15)

Grzegorz Kudra, Jan Awrejcewicz

Abstract: The work concerns modelling and numerical simulations of a special kind of
physical pendulum frictionally driven. The pendulum’s joint is suspended elastically in
the plane of the motion resulting in the full plane motion of the pendulum and in tree
degrees of freedom of the analysed mechanical system. The pendulum is driven by
frictional contact with a disk with a constant angular velocity. Examples of self-excited
oscillations and bifurcation dynamics of the pendulum are presented. Majority of the
work focuses on efficient approximate modelling of the resultant friction force and
moment occurring on the contact surface.

1. Introduction

There are plenty of examples of mechanical systems, where friction plays a crucial role in their
dynamical properties and behavior. Friction can be a desirable phenomenon or not, but in both cases its
appropriate and efficient mathematical modelling is an important part of analysis and synthesis of
mechanical systems with frictional contacts. The classically understood friction model is a relation
between single component of friction force and one-dimensional relative displacement of the contacting
bodies. This relation can possess different levels of complexity, beginning with the classical Coulomb
friction law and ending with advanced relations, where often additional state variables are defined.
These kinds of models can be applied directly during mathematical description and analysis of
dynamical systems with frictional contacts, where at each element of the contact the same relative
motion of the contacting surfaces occurs. But in real life one can encounter many examples of
mechanical systems, where the above assumption cannot lead to correct results. One can give such
examples like dynamics of rolling bearings, billiard balls, different kinds of tops, the wobblestone,
polishing machine, disk clutches and many others. Exact and correct results can be always obtained by
detailed physical modelling and space discretization in vicinity of the contact. But this approach leads
to computation cost increase and is not appropriate in fast numerical simulations. This is the reason of
the interest of many researchers in looking for simple approximate models of contact forces, which
would be suitable for fast and realistic simulations of the certain classes of mechanical systems with

frictional contacts.
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Contensou [1] noticed that if the product of the normal component of the relative angular velocity
of the contacting bodies and size of the contact is sufficiently large then one should take into account
the coupling between the friction force and moment. He proposed an integral model of the resultant
friction forces under assumption of fully developed sliding and Coulomb friction law valid on each
element of the circular contact. The results of Contensou were then significantly developed by
Zhuravlev [2], who presented exact analytical solution to the Contensou’s integral model and also
proposed the corresponding approximant models based on the Padé expansions. Further developments
and generalizations of the approximant models of the contact forces, including rolling resistance,
assuming elliptical contact area, are proposed in the work [3]. Special regularizations of these models
can be found in [4, 5], which allow to avoid singularities for vanishing relative motion as well as take
into account the different values of the static and kinetic friction coefficients.

Stamm and Fidlin [6] proposed a regularized two-dimensional model of friction forces appearing
on finite plane area based on elasto-visco-plastic theory, but requiring discretization of the contact area.
They applied their model in modelling and analysis of a disk-on-a-disk system being to certain extent
a counterpart of a disk clutch, where alternating sliding and sticking solutions can occur [7]. In the work
[8] there are presented results of analytical studies of the similar system, where the approximations
based on Taylor’s expansion of the friction force and moment for fully developed sliding are used.

In the present work the authors apply their earlier developed models of the resultant friction force
and moment in modelling and numerical simulations of the mechanical system being a certain

modification of the disk-on-a-disk system analyzed in the works [7, 8].

2. Modelling of friction forces

Let us consider a circular contact area of dimensionless form exhibited in figure 1, where one assumed:
i) the fully developed sliding; ii) Classical Coulomb friction law valid on each element of the contact;
iii) constant friction coefficient; iv) that the relative motion of the contacting surfaces is a plane motion
of rigid bodies. There are also assumed the following relations between real and non-dimensional
quantities describing the contact: T = uNTy, Mg = uNaM, 6(x,y) = (N/a?)o(x,y), ¥5 = @vg and
®; = wg, where Ty and My are the real resultant friction force and moment loading the contact and
reduced to the center A of the contact F, Ty and Mg — the corresponding non-dimensional resultant
friction force and moment, u — friction coefficient, N — real normal loading of the contact, @ —
characteristic dimension of the contact (in this case real radius of the contact F), § and ¢ — real and
dimensionless contact pressure, V¢ and v — relative real and dimensionless relative linear velocity at
the point A, ®g = wg — relative angular velocity in the plane of the contact. Note that time in all the

introduced quantities is real.
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Figure 1. The contact area.

Assuming that Ty = —Tgre, — Ty ey, Mg = —Mge,, Vg = vgey, + Vg€, and @g = wge,, where

€; is the unit vector along the axis ¢, one can find the following integral expressions:
Tox = J[ o100 y) (Vsx — w5y) dxdy ,
Toy = [[,,n(x,y) (vsy + wsx) dxdy )
M = [[,.n(x,y) (05(x* + ¥?) + vgyx — vgyy) dxdy
where
n(x,y) = a(x,y) ((st —wsy)? + (vsy + (usx)z)_llz.

Since the model (1) requires integration over the contact area at each time step, it is not suitable
tool for fast and reliable numerical simulations. Based on the results presented in the previous works of
the authors [3] and assuming the constant dimensionless contact pressure distribution on circular

contact area o(x,y) = 1/m, one can derive the following two sets of approximations of the integral
model (1)

o,0) _ VUsx
T, = T,

m m
(@23 Ze0miagim)

I s.
Ts(yo,o) — Usy T, (2)

m m
<(v52x+v52y) 2 +bm|ws|m>

2
“bw
3 S

MéIO'O) —

_
m m
((vzxwzy) z +bm|ws|m)

and
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T(Il,l) _ (vszx+vszy+bw§)vsx
sx = T
3m m
<(Vszx+Vszy) 2 +bm|“’s|3m)
2 2 2
T(I1,1) _ (st+Vsy+b“’s)Vsy 3)
sy - 1
3m m
<(Vszx+vszy) 2 +bm|m5|3m>
2hwitt o (v +v3)
M(11,1) _ 3 sy PsUsxTlsy
K =

3m i
((vszx+vszy) 2 +bm|m5|3m>

The approximations (2-3), after the replacements v, = vsc0s@, and v, = vssings, fulfil the

following properties of the integral model (1)

9t fUnin2) a9t
B
v o 1
s vs=0 slyg=0
8J fUn1n2) ) .
LR =2 j=1m,, @
dw! dw! 2
s ws=0 slwg=0

where f = Ty, Tsy, Mg, while m and b are arbitrary constants. Note that the above approximations
possess the same denominators, which is not necessary in general (see [3]), but allows for application
of the later presented special form of regularization.

In order to make easier the comparison of the functions (1-3), one introduces the spherical

coordinates
Vsxy = Ag €OS ;5COS @, Uy, = A5 COS O sin @, wg = Agsin . 5)

The parameters m and b are optimized by searching for the best fitting of the corresponding functions
on the representative (in the case of circularly symmetric contact pressure distribution) field 65 €
[0,m/2] and ¢; = 0. For the functions (2) one found b =1.744 and m =0.674, while for the
approximations (3) one obtained b =0.765 and m =0.452. The corresponding plots are exhibited in
figure 2. In the further modelling process the approximations (3) will be used.

In the works [4, 5] a special kind of regularization of the models of the type (2-3) was proposed,
allowing to avoid singularity for vanishing relative motion of the contacting surfaces, but also to model
the situation where the static friction coefficient is greater than the kinetic one. Applying that approach

to the components (3) one gets
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Figure 2. Comparison of the approximate components TS(;”) (a), MS(I°'°) (b), TS(;“) (), MSU“) (d) of
the friction model (grey lines) with the corresponding full integral components T, and M

(black lines), for ¢ = 0.
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and where ¢ is a small numerical parameter. The coefficient 1’ is a function of the parameter 1 equal

to the maximum magnitude of the resultant dimensionless friction force (or n = uy/u, where y is the
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static friction coefficient). This function can be approximated as n'(n) = —13.607 + 30.893n —
22.01n% + 5.878 n3 for n € [1,1.3] and n'(n) =~ —2.41 + 3.985n — 0.3581n2 + 0.0493 13 for n €
[1.3,2.7], with the error |An| < 0.001 (see [5]). Figure 3 exhibits exemplary plots of the model (6)

near zero relative motion, for 6, = /4, ¢, = 0,7 = 2and e = 1073,

2_
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= =
E | -0.5
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Figure 3. Approximations Ts(;lg'l) (a), Ms(i“) (b) near zero relative motion - for 8 = /4, s = 0,

7'(2) = 4479 and £ = 1073,

3. Mathematical model of the pendulum

In figure 4 there is presented a physical conception of the special mechanical system, being a certain
modification of the disk-on-a-disk system analyzed in the works [7, 8]. A physical pendulum of mass
M and moment of inertia B with respect to the mass center C is rotationally connected, by the use of
the joint A, a light platform. The platform is mounted on the support by the use of elasto-damping
elements in such a way, that it cannot rotate. The origin O of the introduced coordinate system OXY is
defined as a position of the point A of the pendulum in its equilibrium position in the case of no friction
forces acting on the mechanical system. The pendulum is equipped with a flat disk of radius R centered
in the point A. This disk is in contact with a larger rotating rigid body performing pure rotational motion
with constant angular velocity w, about the center S. It assumed a constant contact pressure distribution
and Coulomb friction law on each element of the circular contact between the bodies.

The governing equations of the presented mechanical system read

M(X, —epsing —ep?cos @) + kxX, + cxXy +uNTEY =0

SXE
M(Y, + egcosp —ep?sing) + kyY, + cy ¥y + yﬁTs(}Ilzl) =0,

B(,Zi+e(Mg+kXXA+cXXA+uNTS(;§'1)) sing + @)

-e (kyYA + oYy + ,uNT(I“)) cos@ +c,p + uNRMEY =0,

sye

366



where X, and Y, are the coordinates of the point A; ¢ — angular position of the pendulum; e = AC —
position of the mass center C; ky and ky — stiffness coefficients of the elements supporting the rotational
joint A; cx and ¢y — the corresponding damping coefficients; ¢, — the coefficient of damping in the
rotational joint A; u - kinetic friction coefficient; N — normal loading of the contact; Xg and Y — the
coordinates of the point S; g — gravitational acceleration. As a model of the resultant friction force and

moment the relations (6) are applied.
Ly

Cx kx

Figure 4. The physical concept of the mechanical system.
The kinematic arguments of the functions (6) read

Ws =@ —Wo,

Xatwo(Ya=Ys)
o = A ®)

_ Ya—wo(Xa—Xs)

Usy R

4. Numerical simulations

In all the presented in this section numerical simulations the following parameters are fixed: g =

9.81m/s?, b = 0452, m = 0.765and e = 1073,
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Figure 5. Bifurcation diagram with angular frequency w, as a control parameter.
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Figure 6. Examples of the system’s behavior corresponding to the bifurcation diagram presented in

figure 5, for wy = 30rad/s (a), wy = 40 rad/s (b).
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In figure 5 there is presented a bifurcation diagram of the system exhibited in figure 4 with the
angular velocity w, playing a role of a bifurcational parameter. The remaining system parameters read:
M=12kg, B=001kgm? e=01m, ky=ky=1000N/m, cx =cy = 0.1N s/m, Cp =
0INms X,=0m, Y,=0m,R=002m, N=25N, u=1 and n =1 (the static friction
coefficient is equal to the kinetic one). For low angular velocities one observe a stable equilibrium
position — see figure 6(a), where for wy = 30 rad/s the corresponding time history of the angle ¢ is
presented. For the greater values of w, a stable periodic attractor appears - see figure 6(b). Further
increase of w, leads to rich bifurcational and irregular dynamics, with full rotations of the pendulum —

see figure 7.
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Figure 7. Trajectory of the system (a-b) and Poincaré section (c-d) corresponding to the bifurcation

diagram presented in figure 5 for wy = 61.5 rad/s.
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In figure 8 there are presented examples of periodic stick-slip oscillations of the investigated
mechanical system, where the following parameters are assumed: M = 1.2 kg, B = 0.01 kg m?, e =
0.1m, kx =ky =100N/m, ¢y =cy =0.IN's/m, ¢, =0.1N'm's, X;=0m, w,=0.6rad/
s,R=01m,N =6N,u=1and n = 2.5. The position of the joint S along the axis X is different for
each of the presented solutions: Y = —0.1 m(a,b), Yy =0m (c,d), ¥ = 0.1 m (e, f).

5. Conclusions

In the work there have been presented examples of models of the resultant friction force and moment
based on the previous works of the authors. They are simple functions, which can be an effective
substitute for the exact integral model, suitable for fast and realistic computer simulations of a certain
class of mechanical systems with frictional contacts.

These models in their primary form concern the case of a fully developed sliding on the contact
area and possess singularity for the case of lack of the relative motion. The applied regularization
occurred to be an effective method to avoid that problem and take into account different values of static
and kinetic friction coefficients. The drawbacks are the stiff differential equations and the change of
physical properties of the system near the stick mode.

In order to test the developed models of friction forces, a mathematical model of a special
mechanical system is built, which is some modification of the disk-on-a-disk system analyzed in the
works [7, 8], being a strongly simplified disk clutch. It is expected that the proposed model can exhibit
much richer bifurcational dynamics, allowing for testing different aspects of friction models. In should
be noted that the presented work is in progress and only preliminary results are reported. It is also

considered the construction of the corresponding experimental rig in the future.
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Axially excited spatial double pendulum nonlinear dynamics
(BIF306-15)

Michat Ludwicki, Grzegorz Kudra, Jan Awrejcewicz

Abstract: Analysis of a 3D spatial double physical pendulum system, coupled by two
universal joints is performed. External excitation of the mechanism is realized
by axial periodic rotations of the first joint of the pendulum. System of ODEs
is solved numerically and obtained data are analyzed by a standard approach,
including time series, phase plots and Poincaré sections. Additionally, FFT (Fast
Fourier Transform and the wavelet transformation algorithms have been applied.
Various wavelet basic functions have been compared to find the best fit, e.g. Morlet,
Mexican Hat and Gabor wavelets. The so far obtained results allowed for detection
ofa number of non-linear effects, including chaos, quasi-periodic and periodic
dynamics, as well the numerous and different bifurcations. Scenarios of transition
from regular to chaotic dynamics have been also illustrated and studied.

1. Introduction

This paper presents the model and its numerical simulations of a simple 3D double physical
pendulums, under variable axial excitations. The periodic torque in axial direction is the only external
force considered and realized as a variable angular velocity of the pivot point of first pendulum.
Damping force in each joint is modeled by introduction of linear damping characteristic.

Following the subject of current scientific publications related to the multiple physical pendulum
use and analysis one can say that it deals mainly with simplified constructions having specific
configurations. When searching for the available papers with regard to the pendulum model presented
here, we have not detected those considering a double pendulum as a system of rigid bodies, where
the only excitation source has been associated with axial vibrations.

Many papers aimed on investigations of the spatial pendulums mostly deal with the single
spherical pendulum and its variants, e.g. using a single rigid body cylinder model [1-3] or using
simple mathematical pendulum in space ([4], [5])-

More complex spatial pendulum configurations are studied as an objects of nonlinear analysis,
but rather to test or develop a control and stabilization techniques, e.g. general model of inverted
multiple mathematical pendulum control using single torque [6] or a moving cart [7] or inverted
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double rigid body pendulum being the most similar to the construction presented in our paper
but controlled by four external torques [8].

Another wide area of application of the pendulum models deals with damping and stabilization
phenomena. However here also one can found no spatial multibody pendulums, but rather simplified
mathematical pendulums, like a double mathematic pendulum model [9].

Lastly, multiple physical pendulums, often very complex, are sometimes used for modeling
biological systems, especially human limbs. One can see the natural similarity of these two (bio-)
mechanical systems. Unfortunately, in this scientific research pendulums are mainly used to map real
body movements, so the main goal is to develop a proper control algorithm, e.g. inverted pendulum
models of human gait [10] or to model some body characteristic by similar configuration
of pendulums, like kicking power calculated by a similar model of a double physical pendulum [11].

Some additional vibration analysis techniques, like Continuous Wavelets Analysis are also
presented in our paper. This investigation method is widely used in mechanical vibration analysis,
including chaotic dynamics of beams [12], gears and bearings fault detection methods ([13], [14]),
carrying out stability analysis during earth-quakes [15] or even brain oscillations effects using EEG
and wavelets [16].

This paper presents the results of numerical computations of a complex mechanical system using
both classical and non-classical (wavelets) techniques. A lot of nonlinear behavior effects of

the system is observed and discussed, using multiple graphical interpretation.

1.1. The Pendulum Model

Presented mechanical system consists of two simple physical pendulums connected by two universal
joints O; and O, (see Figure 1). Each single pendulum is treated as a rigid body having a mass m;
and moment of inertia approximated by an axially symmetric cylinder. Its length L; and the position
of center of masses e; are also known. The suspension joint of first pendulum can oscillate in two
directions (¢;and 6,) and additionally it rotates around vertical axis with variable in time angular
velocity.

The model takes into account a simple viscous damping characteristics in each joint described

by the following equations:
T
M, = [Mgg, — Mgg,, Mgy, — Mgy, Mag, — My, 1)

where M; are corresponding damping torques proportional to the angular velocities.
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Figure 1. Coupled pendulums.

Air resistance forces have been neglected owing to their small values comparing to the mass
and inertia forces occurring in the system. External source of exciting torque is applied to the point

of suspension of the pendulum as a variable angular velocity function
w(t) = wg + g sin(Q t), 2

where @ is a constant part of velocity [rad/s], q states for the amplitude [N-m] and Q stands
for frequency [rad/s].

Finding potential and kinetic energy of the system and using the Langrange equations
of the second kind, the govering equations of motion have been derived in an analytical way.

After performing several transformations to simplify their form, a set of four ODEs can be written

as follows
BN
$1 P1 P1 1 P1
M SRS A . B S R =0, 3
@ -lg |t 6, | 2Bl 6, |4, |TR| 6 ®)
P> P2 P2 ¢2J P2

where a = [62, 92,62, 92, 01¢1,0102,0,¢1,02¢,, ¢1¢2,6192]Tand M, A, B, R denote matrices

and vectors, here not defined explicitly (see Appendix).
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2. Numerical computations

Results of the numerical computations presented in this paper concern the following fixed parameters
(see Fig. 1) listed in Table 1.

Table 1 Numerical computation parameters.

simulation example
first joint second joint
weight of the pendulums [kg] m; =05 m, =0.5

""""""""""""""""""" ength [m] | L,=02 | 1,=02
”””””” position of the mass center [m] [ ;=01 | =01
""""""""""""""""""""""""""""""" 4=0002 | 1,=0002

moments of inertia [kg-m] ly1 =0.002 Iy, =0.002

1, =0.0001 1, =0.0001
 viscous damping coefficient [N-s/m] [ ¢;=01 | =01

The ODEs solving algorithm (named NDSolve[] in Wolfram Mathematica® package) is based
on higher order Runge-Kutta methods including automatic step control technique and other
computation performance improvements. Numerical results are automatically interpolated to any
chosen time step.

During numerical calculations, every first 400 s time steps were ignored as transient motions

and next 400 or more (if needed) were used as significant for the further analysis.

2.1. The Wavelet Analysis

Numerically computed results have been studied by a standard approach, including time series, phase
plots and Poincaré sections. Additionally, FFT (Fast Fourier Transform) and the wavelet
transformation algorithms have been used.

Various wavelet basic functions have been compared to find the best fit, e.g. Morlet, Mexican
Hat and Gabor wavelets. Detailed comparison showed that non-orthogonal Morlet wavelets [17]
(see equation (4)) are the most convenient for analysis of the studied mechanical system.
The Continuous Wavelet Transformation performed for this wavelets produces smooth wavelet
scalograms with clearly exhibited frequency variations keeping relatively fast numerical calculations.
This transformation is based on the following formula

W(©) = 1/4/7 cos(t m/2/1og (D)) expit-2) @
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3. Results

Here, a few representative results of classical nonlinear dynamics analysis combined with FFT
and wavelet continuous transformation are presented. All plots and diagrams have been generated
using Mathematica® package. It is important to mention, that there are three possible control
parameters that control a value of angular velocity function (see eq. (2)) — a constant part of angular
velocity wy [rad/s], the amplitude g [N'm] and the excitation angular velocity frequency Q [rad/s].
The periods number maps have been calculated for a constant q and variable woand Q while

bifurcation diagrams for variable control parameter Q and constant ¢ and «, are constructed.

3.1. Classical analysis vs. Continuous Wavelets Transformation

For wo = 6.5 rad/s, g =3 N'm, Q = 6 rad/s and very small initial deflection of the first pendulum
(6; =0.001 rad) the dynamical system finally tends to a stable quasi-periodic solution. The quasi-
periodic pulsation can be seen clearly in the phase plot shown in Figure 2b. For this case of non-
stationary nonlinear behavior, one can see an obvious advantage of the wavelet analysis, since
the resulting scalograms show a structure of scale variable of wavelet basic function corresponding
to frequency vs. time.

The dark horizontal line in the wavelet scalogram (Figure 2d) on scale level 5 represents
the quasi-periodic solution (after t = 300 s), while the dark regions in higher scales (before t = 300 s)
correspond to the transient behavior. In general, in wavelet analysis, the higher the scale value is
a lower frequency is represented. Similar observation holds for a 3D representation of this scalogram

reported in Figure 2e.

For higher amplitude of excitation q = 12 N-m, keeping constant wo = 0 rad/s and Q = 5.49 rad/s
our dynamical system exhibits chaotic behavior. It can be seen in the Poincaré sections in Figure 3a
and the in the phase plots in Figure 3b. The FFT analysis distinguishes one outstanding frequency

which is also seen in the wavelet scalogram marked by one darker horizontal region on scale level 3.
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Figure 2. Time series (a), phase plots (b), FFT analysis (c), wavelets scalogram (d) and the same
scalogram in 3D (e) for wo = 6.5rad/s, g = 3 N'm, Q = 6 rad/s.
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Figure 3. Poincaré section for 2000 s (a), phase plots (b), FFT analysis (c) and wavelets scalogram (d)
for 200 s (wo = O rad/s, q = 12 N-m, Q = 5.49 rad/s).

Last set of the presented results (see Figure 4) contains maps showing a number of periods,
which are combined with bifurcational diagrams for three different amplitudes of excitation.
The white horizontal line in the maps shows the path of control parameter changes in corresponding
bifurcational diagrams. The gray background of the maps represents one period vibrations, while
the dark regions, a maximum counted periods, which corresponds to chaos or a high-order quasi-
periodicity.
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Figure 4. Periods number in the plane (wo, Q) for constant amplitude g, after 400 s of transient
oscillations and bifurcation diagrams for ¢, with variable Q and constant value of wg
marked by white horizontal line on the maps. (a)-(b) for ¢ =3 N'm, (c)-(d) forg =5 N'm
and (e)-(f) forg = 7 N-m.

Observe that both charts presented in pairs in Figure 4, are complementary. The knowledge
of the number of periods provides a general information of the nature of system dynamical behaiour,
while bifurcational diagrams supply more complex data, but for a particular range of the control
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parameter. In Figure 4a one can see that the system shows no irregular vibrations over a large range
of low frequencies of excitation. Over wo~6 N-m, a clear line appears above which the system
transits to chaotic behavior. Presented bifurcational diagram (see Figure 4b) shows that in spite of the
quasi-periodic and chaotic dynamics, the wide window of period 2 oscillations occurs for Q € (3,6).
Similar observations can be made on the remaining pairs of images representing the results
of calculations for higher values of excitation amplitude g. Among others, for g =5N-m system

passes through a number of states of the multiple period, quasi-periodic and chaotic regions.

4, Conclusions

The present paper is an extension of the work published in reference [18], where a basic
nonlinear dynamic analysis and the announcement of the experimental rig has been introduced.
In comparison to the previous paper, here we have applied novel techniques for monitoring
of the system dynamics by studying nonlinear behaviour maps (humber of periods maps), as well as
the application of the wavelets transformation techniques, which have been adapted and compared
with the standard FFT methods.

The application of Continuous Wavelet Analysis to the investigation of chaotic vibrations of
the pendulums is a helpful tool to show and analyse systems behaviour vs. time including
a bifurcation diagrams vs. control parameter. The most important role in this type of investigation
plays the choice of the proper wavelet base function. The carried out tests and validation approves
indicated a Morlet wavelet as the best choice, which is confirmed by research devoted to ([12], [15],
[19], [20]).

In conclusion, it was noticed that the double system of physical pendulums despite the small
initial deflections (about 0.001 rad) shows an irregular behaviour at relatively low angular velocities.
In that conditions, we have been recorded numerous ranges of control parameters for which
the vibration character was periodic or quasi-periodic. These test conditions are important from
the experimental point of view. Chaotic behaviour obtained from the simulation on a real system
is dangerous, since test stand exhibiting chaos can be quickly damaged due to large amplitudes
of vibrations.

The developed model brought a good tool for analysis and prediction of nonlinear dynamics

of the presented in the previous work real pendulum. That will be the subject of a separate paper.
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Appendix
Full form of matrices and vectors M, A, B, R from equation (3) in Wolfram Mathematica notation.
M={

{Va Cos[@1(D)]> (2 lyg + Iy + I3 + 2 €2 my + €2 My + 2 L2 my + 4 e, Ly my Cos[0,(t)] Cos[pa(t)] + 1. Cos[2 pa(t)]) -
e, Lym Sm[2 (ﬂl(t)] Sln[(pz(t)] + Sln[(pl(t)]z (|13 + 1y Sln[02(t)]2 + COS[&z(t)]Z (|23 COS[(ﬂz(t)]z + ¢ Sln[(pz(t)]z)) -
la Cos[0x(t)] Cos[pa(t)] Sin[e:(1)] Sin[2 p2()],

Sln[az[t]] (1/2 COS[Hz(t)] ('|21 +2 |22 - |23 + 622 m; + Ia COS[2 (ﬂz(t)]) Sln[(ol(t)] + COS[(ﬂz[t]] (ez L1 my Sln[(pl(t)] + Ia
Cos[gy(t)] Sin[e(t)])),

Cos[6,(1)] Cos[gz(1)] (e2 Li mz Cos[ps(t)] - la Sin[pi(®)] Sin[po(t)]) + Cos[es()] (I Cos[pa(t)]* + los
Sin[p2()]*),Sin[02(t)] (Ip Sin[ea(t)] - €2 Ly mz Cos[pa(t)] Sin[2(t)])},

{Sin[02(t)] (5 Cos[B2(V)] (-los + 2 Iz - I3 + €22 My + I, Cos[2 ga(t)]) Sin[pa(H)] + Cos[ga(t)] (2 Ly M, Sin[py(t)] +
la Cos[g ()] Sinfe2(1)])),

lip + 1> my + Iy Cos[0x(1)]* + 2 e, Ly m; Cos[6(t)] Cos[ga(t)] + Cos[pa()]* (Li> M2 + lx3 Sin[02(H)]?) + (La> m2 + I
Sin[02(1)]) Sin[g2(D)]%,1a Cos[g2(t)] Sin[O(t)] Sin[ea(t)],

Iy Cos[Ox(t)] + e Ly my Cos[p(t)]}.{Cos[0a(t)] Cos[pa(t)] (e2 Ly mz Cos[pu(t)] - la Sin[pa(t)] Sin[ez(B)]) +
Cos[pa(t)] (I Cospa(t)]* + s Sin[p()]?),

la Cos[ga(t)] Sin[0x(t)] Sin[e2(t)],

le Cos[ga(t)]? + 1o Sin[2(t)]%,0},{Sin[O,(t)] (I, Sin[ea(t)] - €2 Ly mp Cos[ea(t)] Sin[e2(t)]).lr Cos[Ox(t)] + e, Ly m,
Cos[p:(1)],0,1}

A={
{0,

Sin[0(t)] (5 Cos[0:(t)] Cos[pr(V] (-lzs +2 bz - bos + 2 My + I Cos[2 po(1]) + Cos[pa(t)] (e2 Ly mz Cosfg(®)] - la
Sin[p:(0] Sinlp2(0D),

Cos[pa(D)] Sin[@2(1)] (-e2 Ly ma Cos[pa(t)] + la Sin[pa(t)] Sin[p2(D)]),
-e, Ly m, Cos[ei(t)] Cos[ea(t)] Sin[62(t)],

-2 (Cos[p1()]* (B2 Ly my + 15 Cos[6(1)] Cos[g2(V)]) Sin[pa(t)] - &2 Ly Mz Cos[Aa(t)]* Sin[ga(D)]* Sin[ga(t)] - &2 Ly M,
Sin[0>(D)]> Sin[p1(D]* Sin[e2(t)] + Cos[0(t)] Cos[pa(1)] (62 L M2 Sin[2 p1 (V)] - la Sinfe1(D]* Sin[eo(1)]) + 2
Cos[pi(t)] Sin[pa(t)] (2 lix - 2 Iz + g - Iy + Iz + 2 8.2 My + Ly? My + (lp + (822 - L1?) my) Cos[2 Oa(1)] + s
Cos[2 pa(1)] - l2s Cos[2 po(1)] + €2* My Cos[2 g(1)] + 2 Cos[O(1)]* (Ls* M - 123 Cos[eo(H)]? - I Sin[e2(1)]*)),

2 Sin[G2(t)] (V2 Cos[B2(t)] (-las + 2 Iz - 1oz + €27 Mz + I5 COS[2 2(1)]) Sin[pa(t)]* + Cos[p1(t)] Cos[p2(t)] (-2 Ly m;
Cos[ps(t)] + la Sin[ea(t)] Sin[ea(t)])),

2 (-Cos[ps(t)] Cos[pa(t)] (e2 Ly Mz Sin[f(]* Sin[pa(t)] + la Cos[ea()] Sin[pa(t)]) +Cos[Ox(H)]> Cos[pa(t)]
Sinfpa(t)] (-e2 Ly m Cos[ea(t)] + la Sin[ps(8)] Sinfea(t)]) - Cos[fx(t)] Coslea(t)] (la Cos[ex(H)]* Sin[es(B)] +
Sinfga(t)] (e2 Ly m; Cos[ps(B)] - la Sinfps(t)] Sin[e2(1)]))),

Sin[pa(t)] (-l2 Sin[Gx(D)]* - 2> M, Sin[Ga(B)]* - Cos[p(B)]* (Ie - lzs SIN[O(D]) - I Sinfp2(D)]* + Iy Sin[6(0)]?
Sinfga()]* + e2> M, Sin[B,(H)]* Sin[(H)]* + Cos[(D]* (Ib - 23 Cos[pz(H)]* - e Sin[gz(t)]*),

Sin[6,[t]] (Cos[g1(t)] (Ip + la Cos[2 g,(t)]) - 1. Cos[(t)] Sin[e1(t)] Sin[2 p2(t)]),
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Cos[GAAt] ((Is - 1a Cos[2 g2(1)]) Sin[pa(t)] - 2 €2 Ly m; Cos[ps(t)] Sin[p2(t)]) - 1a Cos[pa(t)] Sin[2 p2(1)]},

{Cos[p1(t)]? (e, Ly my + I, Cos[O4(t)] Cos[g(t)]) Sin[p2(t)] -e2 L1 my Cos[O4(t)]? Sin[p1(t)]? Sin[¢,(t)] - €2 Ly m;
Sin[62()]* Sin[e:(1)]* Sin[ea(t)] + Cos[A()] Cos[g2(t)] (e2 Ly M2 Sin[2 p1(B)] - la Sin[e:(H)]* Sin[e2(D]) + ¥4
Cos[e1(t)] Sin[e1()] (2 11 -2 liz + loa - loo + g + 2 €2 my + Ly my + (Iz2 + (€22 - Ls®) m2) Cos[2 65(1)] + 1
Cos[2 g(1)] - l23 Cos[2 p(t)] + €2> M2 CoS[2 2(t)] + 2 Cos[0x(D)]* (Ls> M, - |23 Cos[p(D)]* - e Sin[p2(D]%),

0,

la Cos[x(t)] Cos[p2(t)] Sin[g2(1)],
-€2 Ly my Sinfga(1)],

0,

Pz COS[Hz(t)]Z (-|21 +2 |22 - |23 + ezz m, + Ia COS[2 (ﬂz(t)]) Sln[(ﬂ1(t)] + Sln[(ol(t)] (COS[(pz(t)]2 (Ic + |23 Sln[gz(t)]z) +
|23 Sll"l[(ﬂz(t)]2 + Sln[ez(t)]2 (-|22 - ezz m, + Ic Sln[(ﬂz(t)]z)) + COS[Hz[t]] (2 (573 Ll my COS[gﬂz(t)] Sln[(/h(t)] + Ia
Cos[e(t)] Sin[2 ¢a(1)]),

-Sin[6(t)] (Cos[p1(t)] (Ip - 12 Cos[2 g(t)]) + Sin[e1(t)] (2 e2 Li m2 Sin[ga(t)] + 12 Cos[6a(t)] Sin[2 ¢2(1)])),
2 Sin[@(t)] (-2 Ly m Cos[pa(t)] + Cos[Aa(t)] (-22 - €22 M2 + I3 Cos[pa(t)]* + I Sin[p2(1)]?)),

2 (-e2 Ly my Cos[6,(t)] + 12 Cos[p2(t)] Sin[@2(1)]?) Sin[ga(t)],

(I - 1a Cos[2 ¢(1)]) Sin[6:(1)]},

{Sin[62(t)] (-(*2) Cos[G2(t)] (-la1 + 2 Iz - I3 + €22 M2 + Ia COS[2 g2(t)]) Sin[p1(t)]* + Cos[a(t)] Cos[p2(t)] (e2 Ly M2
Cos[pa(t)] - I Sin[ea(t)] Sin[e(t)])),

Sin[6x(t)] (e2 Ly mp Cos[ga(t)] + Cos[,(t)] (Ip - I2s Cos[@a(t)]? - I Sin[e2(1)]?)),

0,0,

-(%%) Cos[02(1)]? (-lzn + 2 1 - I3 + €2 My + 1, Cos[2 ¢,(1)]) Sin[ea(t)] - Sin[p1(t)] (Cos[e2(1)]? (I + I3 Sin[6,(1)]?)
+ s Sin[pa(H]2 + Sin[02(t)]? (-lzz - €2 My + 1. Sin[pa(t)]?)) - Cos[Ot]] (2 €2 L1 m, Cos[ga(t)] Sin[ea(t)] + 1
Cos[p:(B)] Sin[2 p2(D)]),

0,

-Cos[62(t)] (I + la Cos[2 ¢o(t)]) Sin[es(t)] - la Cos[ga(t)] Sin[2 pa(1)],

0,

(Ip + 12 Cos[2 po(t)]) Sin[G2(1)],

-la Sin[2 p2(1)]},

{Cos[ps(t)] Cos[e2[f]] (e2 Ly M2 Sin[6z(H)]* Sin[e(t)] + la Cos[ea(t)] Sin[pa(t)]) + Cos[O(t)]* Cos[pa(t)] Sin[ea(t)]
(62 Ly m; Cos[ps(8)] - I Sin[p(1)] Sinfg2(t)]) + Cos[6:(t)] Cos[es(t)] (la Cos[ez(H)]* Sin[e:(t)] + Sin[e2(1)] (2 Ly
mz Cos[p1(t)] - la Sinfps(H)] Sin[ex(H)]),

(€2 Ly my Cos[Oa(t)] - 1a Cos[ga(t)] Sin[O,(t)]?) Sin[e(t)],

la Cos[a(t)] Sinfe2(t)],

0,

Sin[G[t]] (Cos[pa(t)] (Io - la Cos[2 p2(B)]) + Sin[px(1)] (2 €2 Ly M Sinfg2(t)] + 1a Cos[62(8)] Sin[2 p2(1)])),
Cos[6a(t)] (In + Ia Cos[2 ga(t)]) Sin[py(t)] + la Cos[ps(t)] Sin[2 po(1)],

0,

~(Io + 12 Cos[2 pa(t)]) Sin[:(t)],
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{0,

-0 (Sin[61(t)] (Cos[p1(t)] (-2 e2 Ly mz Cos[pa(t)] Sin[Aa(t)] + 123 Cos[pa(D)]* Sin[2 Oa(t)] + Sin[2 62(1)] (-I2 - €2
m; + g Sin[pa(t)]?) + la SIn[0>(V)] Sin[e1(t)] Sin[2 p2(D)]) + 2 Cos[O1[t]] (Cos[@1(D)]* (2 l11 - 2 liz + 121 - 122 + 23
+2e?m+ L2 my+ (I + (822 - L) my) Cos[2 6x(1)] + la Cos[2 pa(t)]) + 2 Cos[G2(1)]* (I - 2 &2 Ly m, Sin[2
p1(1)] Sin[pa(t)] + Cos[p1()]* (L> My - I3 Cos[@a(t)]” - e Sin[@(t)]?) + Sin[pi()]* (-L> My + 123 Cos[ea(t)]* + I
Sin[p2(H)]*) + 2 (li2 + e1> My - Cos[pa(H)]* (-La> M + Ic Sin[pa(D)]* + Sin[G2(D)]* (-123 + Li*> m, Sinfes(1)]?)) - 2 €,
Ly mz Sin[62()]> Sin[2 pa(1)] Sin[e2(t)] + Li* Mz Sin[pa(D]* + 11 Sin[0:(H)]* Sin[eo(D)]* + €22 m, Sin[62(H)]
Sin[pa()]? - Sin[p1(t)]* (11 - liz + €1 My + I Sin[ga(1)]? - Sin[62(D]? (I - Ls*> m, Sinfg(1)]))) - 2 Cos[G[t]] (-4
e, Ly my Cos[gs(t)]? Cos[pa(t)] + la Sin[2 ¢1(t)] Sin[2 ¢,(1)]))),

oo ((A) (211 +2 13+ 262 My +2 (Iz1 - 2 Ip + I3 - €22 M) Cos[2 O2(1)] - 1a Cos[2 (Oa(t) - ¢2(1))] + 2 I21 Cos[2
92(1)] - 2 123 Cos[2 pa(t)] + 2 €22 My Cos[2 go(1)] - 121 COS[2 (0a(t) + 2(1))] + las Cos[2 (O(1) + ¢2(1))] - 2> M2
Cos[2 (Ox(t) + p2(t)]) Sin[62(t)] Sin[e:(t)] + Cos[A:(B)] Sin[G2(1)] (Cos[O2(V)] (-l + 2 Iz - Iz + €22 Mz + o
Cos[2 ¢(1)]) Sin[2 1(B)] + 4 Cos[g2(1)] Sin[e:(t)] (e2 Ly m2 Cos[gs(1)] - 1 Sin[e:(t)] Sin[g2(1)]))).

o (Sin[f.(t)] Sin[62(t)] (Cos[ps(B)] (I + la Cos[2 pa(t)]) - la Cos[O(t)] Sin[p:(t)] Sin[2 ¢x(t)]) + 1/4 Cos[H1[t]] (-2
Cos[6x(1)] (2 122 + 2 €22 Mz + 12 CoS[2 (pa(t) - p2(t))] - €2 Ly Mz COS[2 pa(t) - @2(t)] + Iz COS[2 (p2(t) + ()] -
23 Cos[2 (pa(t) + p2(t))] + €27 M2 CoS[2 (pa(t) + p2(1))] + €2 Ly Mz COS[2 pa(t) + p2(t)]) + Cos[p2(t)] (-8 €2 Ly m
Cos[py()]> + Ia (5 + Cos[2 G2()]) Sin[2 ¢a(t)] Sin[p(t)]) + la Cos[Gx(t)]* Sin[2 p1(1)] Sin[2 p2(1)]))}

{o (Sin[6:(1)] (Cos[pa(t)] (-2 e2 Ly m, Cos[pa(t)] Sin[Ox(t)] + l2s Cos[ga(t)]* Sin[2 O(t)] + Sin[2 Ox(1)] (-l22 - €2 M,
+ 1 Sinfp2(D)]%)) + la Sin[62(t)] Sin[pa(t)] Sin[2 g2(H)]) + 2 Cos[O1[t]] (Cos[pa(D]* (2 T11 - 2 l1g + la1 - 12 + 15 +
2e2my+ L2 my+ (I + (822 - L1%) my) Cos[2 6,(t)] + 1 Cos[2 p,(t)]) + 2 Cos[6(1)]? (I - 2 e, Ly my Sin[2 ¢4(t)]
Sin[p2(t)] + Cos[pi(D)]* (Li*> M2 - lzs Cos[gz(V]* - I Sin[p2(t)]?) + Sin[pa(D)]* (-Li> M2 + los Cos[pz(D)]* + I
Sin[p2()*) + 2 (I12 + €1> my - Cos[p2(t)] (-La> M2 + e Sin[p1(D)]* + Sin[2()]* (125 + Li> M2 Sin[e1(D]?) - 2 €2
Ly my Sin[@x(t)]? Sin[2 ¢1(t)] Sin[e2(t)] + L2 my Sin[ga(t)]* + 11 Sin[6x(1)]? Sin[ga(t)]? + €22 m, Sin[6,(t)]?
Sin[g2(t)]? - Sin[ea(t)]? (li1 - liz + €12 My + I Sin[p2(t)]? - Sin[62(1)]? (Ip - L2 m2 Sin[e2(t)]?))) - 2 Cos[6,[t]] (-4
€2 Ly m; Cos[gy(H)]* Cos[p2(t)] + I Sin[2 p1(8)] Sin[2 p2(D)]))).

0,

U4 o (-2 (-2 (Iz1 - 2 122 + I3 - €22 My) Cos[6(1)] + la Cos[O:(t) - 2 pa(t)] + 4 €2 Ly m Cos[p(1)] + 121 Cos[Oa(t) + 2
?2(0)] - 123 Cos[6a(t) + 2 p2(1)] + €22 Mz Cos[6(1) + 2 p2(1)]) Sin[6:(1)] Sin[62(1)] + Cos[6u[t]] (Cos[es(V)] (2 Io1 +
213 +2€7 My -2 (log - 2 1 + I3 - €2 My) COS[2 Oa(1)] + 4 €, Ly My Cos[O:(1) - p2(B)] + 121 Cos[2 (62(1) - pa(1))]
- l23 Cos[2 (6(1) - p2(1))] + €22 Mz Cos[2 (A1) - pa(L))] + 2 121 COS[2 p2(1)] - 2 123 CoS[2 9o(1)] + 2 €2> M, Cos[2
p2(8)] + 4 €2 Ly mp Cos[0a(t) + p2(t)] + la1 Cos[2 (62(1) + p2(1))] - 123 Cos[2 (6(1) + p2(1)] + €22 M, Cos[2 (6:(1) +
#2(1)]) - 4 12 Cos[0x(1)] Sin[ea(t)] Sin[2 ¢2(1)])),

o (-(*2) (4 &2 Ly m, Cos[6(t)] + 2 1. Cos[02(1)]> Cos[p2(t)] + la (-3 + Cos[2 0(t)]) Cos[p2(t)]) Sin[61(1)] Sin[e2(t)]
+ Cos[y(t)] Sin[2(t)] ((Ib - 1a Cos[2 2(1)]) Sin[p:(t)] - Cos[p:(B)] (2 €2 Ly m, Sin[g2(t)] + 1. Cos[Ax(1)] Sin[2
22O}

{U20 A Q Iy +2 g +2e2My+2 (g - 2 lpp + Ig - €22 My) Cos[2 Ga(t)] - 1o Cos[2 (Ba(t) - p2(t))] + 2 11 Cos[2
92(D)] - 2 123 Cos[2 p(t)] + 2 €22 Mz Cos[2 a(1)] - 121 COS[2 (Ba(t) + p2(t))] + los CoS[2 (a(1) + 02(1))] - €22 M2
Cos[2 (0a(t) + ¢2(t)]) Sin[0:(D)] Sin[p:(t)] + Cos[Ai(R)] Sin[Ox(t)] (-Cos[Oa(D] (-los + 2 1oz - Iz + €22 My + 1,
Cos[2 p2(1)]) Sin[2 pa(t)] + 4 Cos[pa(t)] Sin[pa(D)] (-e2 Ls M2 Cos[pa(t)] + la Sin[p1(B)] Sin[e2(1)])),
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-1/ 4) ® (-2 (-2 (la1 - 2 l22 + 23 - €52 mp) Cos[G,(1)] + la Cos[a(t) - 2 2(t)] + 4 €2 Ly my Cos[pa(1)] + I21 Cos[Oa(t)
+ 2 ga(t)] - 123 Cos[0,(t) + 2 @a(t)] + 22 My Cos[B,(t) + 2 po(t)]) Sin[O4(t)] Sin[O(t)] + Cos[1[t]] (Cos[¢a(t)] (2
ln+2 13 +2e2my-2 (g -2 I + lpg - €22 my) Cos[2 O,(t)] + 4 e, Ly my Cos[O4(t) - p2(t)] + 11 Cos[2 (Oa(t) -
02(1))] - 123 CoS[2 (Oa(t) - @2(t))] + €22 My Cos[2 (O4(t) - @2(t))] + 2 151 CoS[2 @a(t)] - 2 13 COS[2 ()] + 2 €2 m,
Cos[2 po(t)] + 4 e, Ly my Cos[6,(t) + @a(t)] + 121 Cos[2 (Oa(t) + ¢2(t))] - l2s Cos[2 (Ba(t) + p2(t))] + €22 m, Cos[2
(0:(8) + 92(t)]) - 4 1a Cos[0>(D)] Sin[p:(B)] Sin[2 pa(1)])),

0,

® (1, + 12 Cos[2 p2(0)]) Sin[0:(t)] Sin[0(t)] - Cos[A[H] (Cos ()] Cos[pa(®)] (I + la Cos[2 p2(V)]) - la Sinfpa(0)]
Sin[2 p,(O1)},

{o (-Sin[6y(t)] Sin[0x(t)] (Cos[ps®] (s + la COS[2 p2(D)]) - la Cos[Bx(t)] Sin[ps(t)] Sin[2 px(t)]) + 1/4 Cos[64[t]]
(2 Cos[0:(t)] (2 1z + 2 2 M, + 1, Cos[2 (a(t) - p2(t)] - €2 L Mz CoS[2 g1(t) - 9] + lzx CoS[2 (a(t) + p2(0)]
- 123 Cos[2 (pa(t) + p2(1))] + €22 M2 Cos[2 (pa(t) + p2(t))] + €2 Ly m2 Cos[2 ga(t) + pa(1)]) - Cos[pa(t)] (-8 €2 Ly m2
Cos[p: (O + Ia (5 + Cos[2 O(t)]) Sin[2 pa(t)] Sinlpa(t)]) - I Cos[O:()]* Sin[2 pa(t)] Sin[2 p:(t)])),

-0 (-(1/2) (4 & Ly m, Cos[0(1)] + 2 la Cos[B()]* Cos[po(O)] + la (-3 + Cos[2 G(t)]) Cos[pz(B)]) Sin[6x(D)]
Sinfpo(t)] + Cos[6:(0)] Sin[B:(0)] ({1 - 1a Cos[2 ¢2(0)]) Sin[pa(t)] - Cos[pi(®)] (2 €2 Ly m; Sin[pa()] + I
Cos[2(1)] Sin[2 p()]))).

o (-(l + 1a Cos[2 p(B)]) Sin[6:(t)] Sin[6x(t)] + Cos[Au[t]] (Cos[Ox(t)] Cos[ea(t)] (I + la Cos[2 po(t)]) - 1
Sinfpa(t)] Sin[2 z(t)])),

0}

e

R={

1/8 (2 Ly 07 Sin[2 6,()] - 4 112 @2 Sin[2 1(8)] + 2 |13 0 Sin[2 O:(1)] - 12 w2 Sin[2 G1(1)] - 2 €22 my o Sin[2 Gi(1)] -
2 L12 mp @2 Sin[2 6;(t)] - 3 Iz @? Cos[x(t)]? Sin[2 6;(t)] - 4 e, Ly my @? Cos[O2(t)] Cos[g,(t)] Sin[2 O:1(t)] + 3 12
®? Sin[2 64(t)] Sin[6,(1)]? + 1/4 Cos[O1[t]] (-@? (-4 lp1 - 4 I3 + 4 €2 my - 12 (Iy; + I3 - €2 my) Cos[2 O,(1)] - 2
(I21 + 123 - €22 my) Cos[2 (Ba(t) - pa(t))] + 4 121 Cos[2 gi(t)] + 4 13 Cos[2 ()] - 4 €22 my Cos[2 pa(t)] - 2 11
Cos[2 (Oxt) + @u(1))] - 2 123 COs[2 (6(1) + p1(1))] + 2 &2° M, COs[2 (6(1) + pa1(1))] + 6 l21 Cos[2 (Ox(t) - pa(t))] -
6 I3 Cos[2 (B,(t) - pa(t))] + 6 €22 my Cos[2 (O(t) - pa(t))] + 121 Cos[2 (Ba(t) - @1(t) - 2(1))] - 123 CoS[2 (6a(t) -
?1(t) - @2(1))] + €2 My Cos[2 (62(1) - (1) - p2(t)] + 6 121 Cos[2 (ps(t) - p2(1))] - 6 123 Cos[2 (pa(t) - ¢2(t))] + 6
e2> My Cos[2 (pa(t) - @2(1))] + la1 COS[2 (O2(t) + @u(t) - p2(1))] - l2s COS[2 (6(t) + pa(t) - p2(1))] + &> M, Cos[2
(O2(1) + a(t) - p2(1))] - 12 11 CoS[2 (V)] + 12 153 CoS[2 pa(1)] - 12 €2> My COS[2 o(1)] + 6 121 Cos[2 (6(1) +
92(1))] - 6 123 Cos[2 (62(t) + pa(t))] + 6 2> M Cos[2 (O2(t) + 2(1))] + 121 COS[2 (6(1) - @a(t) + @2(1))] - 123 Cos[2
(62() - pa(t) + @2(t))] + 2> Mz CoS[2 (62(1) - pa(t) + @a(t))] + 6 a1 COS[2 (pa(t) + @2(1)] - 6 l25 CoS[2 (pa(t) +
92(1))] + 6 €27 my Cos[2 (pa(t) + a(t))] + 121 COS[2 (62(1) + pa(t) + 2(1))] - l2a COS[2 (62(1) + u(t) + pa(t))] + €2
m, Cos[2 (0a(t) + p1(t) + pa(t))]) Sin[6u(t)] + 32 €, g M, Cos[pa(t)] Sin[O2(1)]) - > Cos[pa(H)]* Sin[2 O1(1)] (2 111
-2 li3- 1+ 2e2m +2 L2 my + ly Cos[B,(1)]* + 4 e, Ly my Cos[0,(1)] Cos[ga(t)] - 122 Sin[62(1)]?) + 2 11y
Sin[2 6,(t)] Sin[ea(t)]? - 2 113 @* Sin[2 61(t)] Sin[ea(t)]? - 122 ©* Sin[2 64(t)] Sin[ea(t)]> + 2 €2 My ©* Sin[2 64(t)]
Sinfea(t)]* + 2 Ly my @? Sin[2 61(t)] Sin[ei(t)]? + |2 @* Cos[6x(1)]* Sin[2 61(t)] Sin[ei(t)]> + 4 €, Ly m; @
Cos[0,(t)] Cos[g(t)] Sin[2 O1(t)] Sin[e1(D)]? - 12 ©* Sin[2 O4(t)] Sin[6x(t)]*> Sin[e1(t)]> - 8 e, g m, Sin[4(t)]
Sin[p1(t)] Sin[p2(t)] + 4 €2 Ly m; 2 Sin[2 61(t)] Sin[2 pa(t)] Sin[e2(t)] + 2 Cos[pa(t)] Sin[6:()] (4e1gmi +4 g
Ly mp + 4 e; g mp Cos[64(t)] Cos[pa(t)] + 4 e, Ly m; @? Cos[g,(t)] Sin[61(t)] Sin[0,(t)] - 121 * Sin[61(t)] Sin[2
0,01 + 2 1oy @ Sin[0:(6)] SIN[2 o] - las @2 Sin[A2()] SiN[2 6oO)] + €22 My w? Sin[A:(D)] SIN[2 G(1)] + I, w2
Cos[p2(t)]? Sin[64(t)] Sin[2 O,(t)] - 11 @ Sin[61(t)] Sin[2 6(t)] Sin[ea(t)]* + s ®* Sin[64(t)] Sin[2 Gx(t)]
Sin[p2(t)]? - €22 mp @? Sin[O1(t)] Sin[2 0,(1)] Sin[e2(D]?) - 4 11 ©* Sin[Hy(t)]? Sin[6,(t)] Sin[e.(t)] Sin[2 ()] +
4 123 @ Sin[01(D)]* Sin[0>(V)] Sin[e1(1)] SIn[2 @o(1)] - 4 &> M2 w? Sin[61(1)]* Sin[O2(1)] Sin[e:(B] Sin[2 p(1)] + 2

397



I3 @ Cos[0,(t)] Sin[2 0:(t)] Sin[2 ¢1(t)] Sin[2 ¢2(t)] - 2 I3 @ Cos[Bx(t)] Sin[2 64(t)] Sin[2 @a(t)] Sin[2 @, ()] +
2 822 m; o Cos[0:(1)] Sin[2 6:(1)] Sin[2 p:(1)] Sin[2 p(1)] - 4 @ Cos[O1(D)]* Sin[02(B)] (Cos[pa(D)] (2 e, Ly m;
Cos[ga(t)] + Cos[Aa(t)] (-l + 2 152 - 123 + &2 My + I COS[2 p2(1)])) - la Sin[s(1)] Sin[2 p(V)])),

1/8 (8 g Cos[61(t)] ((ex my + Ly my + e, m, Cos[6,(t)] Cos[g(t)]) Sin[ei(t)] + e2 m, Cos[ei(t)] Sin[e2(t)]) - 1/4 w?
Cos[Oi(D1> (8 l11-8 iz +2 1oy -4 1+ 2 I3+ 82 My - 2822 My + 8 Ly> My + 4 Iz Cos[0a(1)]? - 2 (1 + I3 - €22
m,) Cos[2 6(t)] + 11 Cos[2 (6a(t) - @a(t))] - 125 CoS[2 (Ba(t) - ¢2(t))] + €22 M, Cos[2 (Oa(t) - ¢2(t))] + 16 €, Ly m,
Cos[6x(t)] Cos[2(t)] + 6 Iz CoS[2 p2(t)] - 6 I23 CoS[2 @a(t)] + 6 €2> Mz Cos[2 p2(t)] + la1 Cos[2 (Oa(t) + p2(1))] -
Iz Cos[2 (Ox(t) + ¢2(1))] + e2> Mz Cos[2 (Oa(t) + p2(t))] - 4 122 Sin[02(1)]?) Sin[2 @1(1)] + 8 Cos[2 pu[t]] (2 €2 Ls
m2 Sin[ga(t)] + la Cos[62(1)] Sin[2 ¢2(1)])) - V2 ? (Cos[0:(H)]* (la Cos[2 Ox(t)] Cos[2 pa(1)] Sin[2 p1(t)] + (21 +
a3 - €2 Mz - (l21 + I3 - €2° M) Cos[2 Bx(1)] + 3 1a Cos[2 p(1)]) Sin[2 ¢a(t)] + 4 Cos[e[t]]* (2 e2 Ly M2 Sin[gpo(t)]
+ 1o Cos[62(t)] Sin[2 2(t)])) - 2 (Ia Cos[e2()]* Sin[2 6:(t)] Sin[2 6x(1)] Sin[e(t)] + 4 2 Ly my Cos[p(t)] (Sin[2
01(8)] Sin[62(1)] Sin[g1(1)] - Cos[6x(D)]* Cos[O2(1)] SIN[2 p1(t)]) + 2 Sin[2 Out]] ((-3 los + 4 l22 - ls + &2 Mz + 1o
Cos[2 p2(1)]) Sin[2 Ox(1)] Sin[pa(t)] + 4 1a Cos[e(t)] Sin[G2(t)] Sin[2 2(1)]) - CoS[OLI]* (2 111 - 2 113 - 12 + 2
8> My + 2 Ly® my + I, Cos[2 6x(1)]) Sin[2 pa(t)] - 2 Sin[eu[t]]* (2 €2 Ly m2 Sin[p2(t)] + 1. Cos[x(t)] Sin[2
20D,

1/8 (-2 w* Cos[6(1)]? Cos[1(t)] (-la1 + 2 155 - 13 + €22 My + 1, CoS[2 g,(t)]) Sin[2 61(t)] - €2 M, (-6 Ly 0* +2 Ly 0?
Cos[2 6:(1)] - 4 g Cos[64(t) - pu(t)] + Ly @ Cos[2 (0u(t) - @u(1))] + 2 L1 @ Cos[2 ¢s1(t)] - 4 g Cos[01(t) + p2(D)] +
L1 @ Cos[2 (61(t) + pu(t))]) Cos[p2(t)] Sin[f2(t)] + 2 la > Cos[pu(t)] Cos[p2(t)]* Sin[2 61(t)] Sin[6()]* + ©*
(Cos[ps(t)] (-3 lar +4 12 - I3 + €22 Mz + 15 Cos[2 o(1)]) Sin[2 61(1)] Sin[02(1)]* - 2 12 Cos[O1(1)]* Cos[e1(D]?
Sin[2 6,(t)] - 1/4 15, (-6 + 10 Cos[2 6,(t)] + Cos[2 (64(t) - p1(t))] + 2 Cos[2 ¢1(t)] + Cos[2 (61(t) + ¢s1(1))]) Sin[2
G201 + 2 1, Cos[01(D]* Sin[6(t)] Sin[2 ¢1(t)] Sin[2 2(t)]) + Cos[O:[t]] (4 e2 m, Cos[g2(1)] (2 g Sin[6:(1)] - Ly
o Cos[ps(t)] Sin[2 61(1)]) - 2 la @ (-2 + 6 Cos[2 Ou(t)] + Cos[2 (61(t) - po(t))] + 2 Cos[2 pa(t)] + Cos[2 (6a(t) +
o1 O)]) Cos[oa®]? Sin[0:(0] + ? (~(U/4) (-2 + 6 Cos[2 61()] + Cos[2 (Bu(t) - pn(t))] + 2 Cos[2 pa(t)] + Cos[2
(61(9) + @1()]) (-3 Ia + 12 Cos[2 p(1)]) Sin[G2(1)] + 2 1. Sin[2 61(1)] Sin[pa(t)] Sin[2 p2(1)]))).

1/8 (-4 I, @ Cos[6:1(t)] Cos[g,(t)]? (Cos[61(t)] Cos[,(t)] Cos[gi(t)] - 2 Sin[6:(t)] Sin[6x(t)]) Sin[ea(t)] + 8 e, gm,
Cos[6:1(B)] (Cos[p2(t)] Sin[p(t)] + Cos[62(t)] Cos[ea(t)] Sin[px(t)]) + & Cos[p2(t)] (-2 €2 Ly mz Cos[Oy(H)]
Sin[2 p,(t)] - 1/8 15 (20 - 12 Cos[2 61(t)] + 6 Cos[2 (6.(t) - Oa(t))] - 20 Cos[2 G(1)] + 6 Cos[2 (6a(t) + Oa(t))] + 6
Cos[2 (01(1) - p2()] + Cos[2 (6u(1) - O:(t) - @2(1))] + 2 Cos[2 (O:(t) - @2(1))] + Cos[2 (6a(t) + (1) - p2(H)] +12
Cos[2 pa(t)] +6 Cos[2 (6a(t) + pu(t)] + Cos[2 (Ou(t) - G2(t) + pa(D))] + 2 Cos[2 (G2(1) + pa(t))] + Cos[2 (6u(t) +
02(t) + o1 (O)]) Sin[2(t)]) + @ Cos[O1[t]]* (-2 la Cos[O(t)] Cos[g(t)]* Sin[2 pa(t)] + Cos[gz(t)] (-2 €2 Ly m2
Sin[2 gy(t)] - %2 1a (-6 + 6 Cos[2 6(t)] + Cos[2 (6a(t) - eu(t)] + 6 Cos[2 py(B)] + Cos[2 (6a(t) + pa(t))])
Sin[g2(t)]) + 4 Cos[x(1)] Cos[pa(t)] Sin[g2(t)] (-e2 Ly M2 Cos[pa()] + la Sin[e1(t)] Sin[e2(t)])) - 2 (4 €2 g m2
Sin[6(t)] Sin[0(t)] Sin[p2(t)] + ? Cos[02(t)] Sin[pa(t)] (-3 2 Ly M, + €, Ly M2 Cos[Oy(t)]* Cos[ga(D]* - €2 Ly M2
Sin[py(D)]? - 121 SIn[2 @1 (1)] Sin[g2(t)] + Iz SIN[2 pa(1)] Sinfga(t)] - €2* M2 Sin[2 pu(1)] Sin[2(t)] + Sin[1(B)]* (-
€2 Ly m; + ez Ly m Sinfpy()]* + la SIn[2 g4 (t)] Sin[p2(1)])) - @* Sin[2 61[t]] (-2 1a Sin[62(1)] Sin[es(t)] Sin[e(V)]*
+ Cos[g[f]] (2 ez Ly m; Sin[65(1)] Sin[g2(t)] + 1. Sin[2 02(1)] Sin[2 ¢2(H)])))) },

where
la =121 - 123+ €2 my,
Ip =15 + €2 my,

lc =1y + 852 my.

398



Acknowledgments

This paper was financially supported by the National Science Centre of Poland under the grant
MAESTRO 2, No. 2012/04/A/ST8/00738, for years 2013-2016.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

J. Shen, A. K. Sanyal, N. A. Chaturvedi, D. Bernstein, H. McClamroch. Dynamics and control
of a 3D pendulum. 43rd |EEE Conference on Decision and Control, 2004. CDC 1 (2004), 323
328.

N. A. Chaturvedi, N. H. McClamroch. Asymptotic stabilization of the hanging equilibrium
manifold of the 3D pendulum. International Journal of Robust and Nonlinear Control 17, 16
(2007), 1435-1454.

N. A. Chaturvedi, T. Lee, M. Leok, N. H. McClamroch. Nonlinear Dynamics of the 3D
Pendulum. Journal of Nonlinear Science 21, 1 (2010), 3-32.

J. Néprstek,C. Fischer. Types and stability of quasi-periodic response of a spherical pendulum.
Computers & Structures 124 (2013), 74-87.

L. Consolini, M. Tosques. On the exact tracking of the spherical inverted pendulum via
an homotopy method. Systems & Control Letters 58, 1 (2009), 1-6.

I. M. Anan’evskii, N. V. Anokhin. Control of the spatial motion of a multilink inverted pendulum
using a torque applied to the first link. Journal of Applied Mathematics and Mechanics 78, 6
(2014), 543-550.

T. Lee, M. Leok, and N. H. Mcclamroch, Dynamics and Control of a Chain Pendulum on a Cart.
Proc. of the IEEE Conference on Decision and Control, (2012), 2502-2508.

Xinjilefu, V. Hayward, H. Michalska. Hybrid Stabilizing Control for the Spatial Double Inverted
Pendulum. Brain, Body and Machine, Springer Berlin Heidelberg, (2010), 201-215.

P. Egger and L. Caracoglia. Analytical and experimental investigation on a multiple-mass-element
pendulum impact damper for vibration mitigation. Journal of Sound and Vibration 353, (2015),
38-57.

M. McGrath, D. Howard, R. Baker. The strengths and weaknesses of inverted pendulum models
of human walking. Gait & Posture 41, 2 (2015), 389-394.

H. Ozaki, K. Ohta, and T. Jinji. Multi-body power analysis of kicking motion based on a double
pendulum. Procedia Engineering 34 (2012), 218-223.

J. Awrejcewicz, A. V. Krysko, N. A. Zagniboroda, V. V. Dobriyan, V. A. Krysko. On the general
theory of chaotic dynamics of flexible curvilinear Euler—Bernoulli beams. Nonlinear Dynamics
79, 1 (2014), 11-29.

K. Vernekar, H. Kumar, K. V. Gangadharan. Gear Fault Detection Using Vibration Analysis
and Continuous Wavelet Transform. Procedia Materials Science 5, (2014), 1846-1852.

N. G. Nikolaou, I. A. Antoniadis. Demodulation of vibration signals generated by defects in
rolling element bearings using complex shifted Morlet wavelets. Mechanical Systems and Signal
Processing 16, 4 (2002), 677-694.

H. Li, T. Yi, M. Gu, L. Huo. Evaluation of earthquake-induced structural damages by wavelet
transform. Progress in Natural Science 19, 4 (2009), 461-470.

J. Gross. Analytical methods and experimental approaches for electrophysiological studies
of brain oscillations. Journal of Neuroscience Methods 228, (2014), 57-66.

R. Biissow. An algorithm for the continuous Morlet wavelet transform. Mechanical Systems
and Signal Processing 21, 8 (2007), 2970-2979.

M. Ludwicki, J. Awrejcewicz, G. Kudra. Spatial double physical pendulum with axial excitation:
computer simulation and experimental set-up. International Journal of Dynamics and Control
3,1(2014), 1-8.

399



19. J. Awrejcewicz, A. V. Krysko et al. Analysis of chaotic vibrations of flexible plates using fast
Fourier transforms and wavelets. International Journal of Structural Stability and Dynamics
13, 7 (2013), 1340005.

20.J. Awrejcewicz et al. Analysis of chaotic vibrations of flexible plates using Fast Fourier
Transforms and wavelets. International Journal of Structural Stability and Dynamics 13, 7
(2013), 1340005-1 - 1340004-12.

Michat Ludwicki, Ph.D.: Lodz University of Technology, Department of Automation, Biomechanics
and Mechatronics, 1/15 Stefanowski St., 90-924 Lodz, Poland (michal.ludwicki@p.lodz.pl). The
author gave a presentation of this paper during one of the conference sessions.

Jan Awrejcewicz, Professor: Lodz University of Technology, Department of Automation,
Biomechanics and  Mechatronics, 1/15  Stefanowski ~ St., 90-924 Lodz, Poland
(jan.awrejcewicz@p.lodz.pl).

Grzegorz Kudra, Ph.D.: Lodz University of Technology, Department of Automation, Biomechanics
and Mechatronics, 1/15 Stefanowski St., 90-924 Lodz, Poland (grzegorz.kudra@p.lodz.pl).

400



Influence of intermediate foil on air-foil bearings performance
and exploitation properties
(STA162-15)

Jakub tagodzinski, Kacper Miazga

Abstract: Air-foil technology is an interesting alternative for classic rolling or oil
bearings in turbomachinery. It ensures low power losses, do not require external
lubrication or pressurization and is capable of working with high rotational speeds.
Numerous studies brought significant improvement in materials and design solutions
for the aerodynamic shaft support system. The paper presents effects of modification
performed by adding intermediate foil to typical structure of air-foil bearing. The
main aim of the investigation was focused on analyze of its influence on characteristic
parameters and exploitation properties of operating bearing, i.e. bearing load capacity
and bearing resistance to thermal runaway phenomenon [4]. The thermal runaway is
also known as foil bearing thermal instability. The tests confirmed proper behavior of
the modified device and brought new knowledge in air-foil technology field.

1. Introduction

The last decades brought remarkable progress in the field of high speed turbomachinery. New kinds
of air cycle devices are designed with consideration of decreasing their dimensions and ability to
work with high rotational frequencies. Moreover great attention is paid to limitation of power losses
and assurance of reliability.

In order to meet such demands new kinds of rotor support systems had to be developed. One of
the proposed solutions is an idea of QOil-Free technology, in which air-foil bearings have great

potential.

1.1. Air-foil Technology

Air-Foil bearings are self-acting aerodynamic bearings that use ambient gas as their working fluid.
The main idea of their design is based on two foils placed between shaft and sleeve: bump and top
(see figure 1). As the shaft starts rotating, the ambient gas (e.g. air) is pushed between top foil and
journal due to its viscosity that creates thin gas film. After reaching characteristic rotational speed
called lift-off speed the air gap is continuous and there is no contact between the shaft and the top foil.

In this solution the bump foil is considered to be an elastic support for top foil.
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Bump foil— — Bearing sleeve

Top foil — ,— Journal

Figure 1. A basic schematic of the air-foil bearing

Air-foil bearings are mainly considered as shaft support system for high rotational speeds cycle
machines of low and medium power, usually up to 100kW. They were firstly applied in Air Cycle
Machines and Environmental Control Machines mainly in military aircrafts [1], confirming their high
performance abilities. With growing demands and advances in technology the field of use was
expanded to many other devices such as blowers, turbojet engines, ORC generators, compressors,
turboexpanders etc.

1.2. Air-foil bearings features and design

There are many advantages considered with the air-foil bearings. First to be mentioned they are self-
acting, aerodynamic supports, therefore, unlike aerostatic bearings, there is no need for external
pressurization. It leads to elimination of additional pressure supply systems and simplifying the
construction of the machine. Moreover, using ambient gas as working medium air-foil technology is
free from oil lubrication, which ensures total cleanliness of working medium. It is significant
especially for systems where seals are problematic and any contamination of cycle gas is
inadmissible. Furthermore, power losses in machines with air-foil bearings applied are strongly
reduced due to their non-contact operation with high rotational speeds.

Despite many advantages, air-foil bearings have significant limitations that have to be
considered. First of all there is dry friction phenomenon that occurs during start up and shut down of
the machine. Before the thin gas film is formed, the surfaces of the top foil and the shaft have contact
with each other. The frictional contact limits the lifetime of the bearing due to surface degradation
and leads to destruction of these parts. Solution of this problem lies in application of special coating
materials that reduce dry friction and protect foil and shaft from wear. Moreover, such materials
should ensure chemical stability, especially where air is not working fluid, good adhesion to the base

and solid lubrication possibly. The investigations of coatings brought many different solutions, such
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as ceramics, polymers, metallic materials and composites suitable for wear protection, considering
various temperature ranges of operation [2, 3]. They can strongly improve the performance of the
bearing, ensuring sufficient number of start-stop cycles without undesirable wear.

Another important issue of the air-foil bearings is limited load capacity. With thin self-acting gas
film and elastic bump foil as the only support for the journal, the mass of rotating system is limited. If
the rotor is too heavy, it can break the continuous gas gap and cause an ineffective operation of the
bearing, including damage due to friction.

Under a heavy load, a foil bearing thermal runaway phenomenon may appear. This phenomenon,
known also as foil bearing thermal instability, results from too tight fitting in the bearing. This causes
positive feedback loop between the frictional torque and journal thermal expansion. The thermal
runaway develops very quickly and can cause severe damage to the bearing.

The numerous studies of the air-foil bearing construction brought various concepts for the
structure of the device. Main differences lies in the slot-like locks, which are responsible for fixing
foils in the sleeve (see figure 2) and elastic support for top foil. The classic bump foil was usually
modified by circumferential splits and variable pitch bumps. Another idea was based on substituting
bump foil by elastic metal mesh [5]. Numerous different structural variants of air-foil bearings were
developed and tested considering multipad, hydresil or multilayer bearings with additional
intermediate foil [1].

%

Figure 2. Different types of retaining slots

2. Intermediate foil in air-foil bearings

The basic structure of air foil bearing consists of flat top foil and corrugated bump foil which acts as a
spring. Most common modifications leading to improvement of the bearing performance were made

to bump foils, distinguishing them in three main generations [4][6]. Another interesting adjustment
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was made by introducing intermediate foil into the bearing, which was placed between bump and top
foils. This additional element improves damping of the foils structure. Moreover with intermediate
foil, the top foil has additional support that decreases a phenomenon of sagging (see figure 3). It
occurs in collapsing of the top foil between pitches of the bump foil when thin gas film is formed

under operation of the bearing [7].

Flexible Top foil
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Figure 3. The effect of sagging

During initial tests the intermediate foil occurred to have positive influence on bearing
performance. Comparing to basic air-foil bearing construction, the torque at the start-up was reduced.
Moreover wear of top foils working in modified bearings was noticeable lower, resulting in increase
of the bearing lifetime. These observations brought an idea of tests that could precisely describe

influence of intermediate foil in air-foil bearings.

2.1. The test rig for air foil bearing with intermediate foil.

The idea of checking the results of intermediate foil implementation was based on comparing a
performance of the same bearing with and without this element. The sleeve was prepared to work
with three segments of bump foil with circumferential splits, intermediate foil and top foil coated with
wear resistant polymer AS20. The shafts coating consisted of chromium oxide ceramic material. The
bearing was transformed into classic type by removing intermediate foil and placing three pieces of
flat foils with the same thickness as the intermediate between bearings sleeve and bump foil
segments. This way it was possible to test two variants of the bearing with the same initial preload,

which usually is adjusted by inner diameter of the sleeve [8].
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Figure 4. Elements of the air-foil bearing with the intermediate foil.

The test rig was based on electrical spindle controlled by frequency converter. The measured
values were rotational speed of the shaft, provided by an optical sensor and bearing torque measured
with force gauge attached to its sleeve. The idea of the experiment was to compare a behavior of both
variants of bearings working under variable static load. The design of test rig allowed adjustment of
static load by suspending a weight on bearings sleeve. In order to eliminate an influence of the

weights on force sensor measurement, an externally pressurized aerostatic bearing was placed on the
investigated air-foil bearing to provide pendulous attachment of mass.
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4 6
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Figure 5. The test rig schematic (1 - electric spindle, 2 — pedestal, 3 — table, 4 — optical sensor, 5 —
aerostatic bearing, 6 — investigated aerodynamic air-foil bearing, 7 — torque lever, 8 — force

sensor, 9 — force sensor rack, 10 — suspension of static load).

2.2. Load capacity of air-foil bearings.

The air-foil bearings, as self-acting rotor support system without external pressure supply, are usually
used in low and medium power applications, with limited mass of shaft and rotor. The design of the
machine needs to consider a specific nature of their performance.

The analysis of air-foil bearings capacity is a strongly complicated issue. Comparing to other
types of bearings, the behavior of elastic structure of foils is difficult to describe with equations.
Moreover, there has to be considered dependency between thin gas film of working medium and solid

structural foils. Another important phenomenon comes from friction between bump and top foils that
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slightly shift their relative position during bearing operation. Considering the complexity of
phenomenon that occurs in the air-foil bearings numerical models that can entirely describe their
behavior are difficult to create.

Load capacity of the air foil bearing is strongly related to its construction. The experimental data
brought a simple method of its estimation. It was shown, that load capacity is linearly related to
dimensions of the bearing projected area and surface velocity [9].

Nevertheless, experimental investigations are significant in determining behavior of air-foil
bearings in different working conditions. Test performed with variable static load can be used for
creating performance map, which is a characteristic based on surface plot that describes power loss in
bearing depending on the rotational speed and applied load [10]. With the map, optimal operational
points and safety margins can be found.

3. Experimental results and discussion.

The experimental tests were performed in two series, beginning with classic type of air-foil bearing,
then with the bearing with the intermediate foil. Both devices were loaded with the same static loads
forces from 6.3N to 113.5N (the values considered mass of air-foil and aerostatic bearings sleeves).
For each value of load the force on air-foil bearing sleeve was measured and then recalculated to
torque and power loss at rotational frequencies from 200Hz to 400Hz with step of 50Hz.

3.1. Results of measurements.

With collected data the following plots were created, which present operating parameters of both
bearings. The characteristics on the Figure 6 present the performance maps of both bearings.

Simple design Bearing with intermediate foil
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Figure 6. Performance maps.
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In order to get a clear comparison of operation parameters of air-foil bearings with and without
the intermediate foil the relation of torque value to suspended static load for specific rotational
frequencies of the shaft were plotted.
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Figure 7. Measured values of torque for specific rotational frequencies of the journal. Note: vertical

scales are the same.
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An additional analysis was done to the measured peak values of the torque at the start-up of the
bearing for each value of static load, as it is critical moment in operation of the device when dry

friction occurs.
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Figure 8. Peak values of measured torque at the star-up of the bearing.

3.2. Discussion.

The analysis of the results shows very strong influence of static load on operating parameters of the
air-foil bearings. According to former predictions, the measured torque increases with the increase of
mass loaded on the bearing sleeve in entire range of rotational speeds of the shaft. In case of
implementation of this rotor support system in a machine it would result in growth of power losses
with increase of rotating systems mass.

If we take into consideration the power losses dissipated in the bearing (see performance maps in
Figure 6), it is clearly visible that applying the intermediate foil can cause a reduction of power losses
by ~ 25%. One can observe, that with simple design, the bearing power losses performance map
reaches a peak value of almost 400 Watts, but the bearing with intermediate foil, for the same
operating conditions, has a maximum power loss value at only 300 Watts. This means less heat
generated during operation, less journal thermal expansion and wider bearing thermal stability
margin.

In the Figure 7, were the ranges of all torque axes are the same for all plots, it is found, that static
load has bigger influence on measured torque with lower rotational speeds of the shaft. With the
increase of rotation frequencies, the lower change of bearings torque is observed with defined
increment of static load.

The Figure 7 brings also a comparison of operating parameter of the air-foil bearing with and
without intermediate foil. Eventually, there was no significant difference found in performance of

both tested variants. The values of measured torque for all rotational speeds and static loads were very
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near. In this case, there cannot be seen any significant influence of the intermediate foil on operation
of the air-foil bearing.

The different situation can be observed in plot of measured torque at the star-up of the bearing
(see Figure 8). It is a critical moment of the bearings operation where dry friction occurs before
formation of the continuous gas film and cause wear of top foils and journals surfaces. In this case the
implementation of the intermediate foil causes visible decrease of measured torque. It is translated
into reduction of frictional force between the top foil and the journal at the start-up.

The analysis of the results was also based on visual inspection of the top-foils of both bearing
variants after tests were performed. It brought an information about level of wear of the coating

materials.

Figure 9. Top foils after test: a — basic type of the bearing, b — bearing with the intermediate foil.

The top-foils worked in very similar conditions, being subjected to approximately the same
number of start-up and shut-down cycles. The visual inspection showed lower level of wear in AS20
polymer on the top foil which worked in the bearing with implemented intermediate foil. The top-foil
from the basic type of the bearing had more degraded surface, even with local complete loss of

coating material.

4. Conclusions.

The purpose of the experimental tests presented in the paper was to investigate the influence of
intermediate foil implemented in the aerodynamic air-foil bearing on operating and exploitation
properties of this rotor support system. The evaluation of this variation was based on comparison of

the performance of basic and modified bearings working under variable static load.
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The analysis of the test results showed that intermediate foil have a significant influence on
power losses in air-foil bearing under operation with continuous gas gap formed. The values of
measured torque for both bearings working with the same rotational speeds and suspended static loads
varied very slightly. The significant difference was found in measurements of torque at the start-up of
the bearings. The application of the intermediate foil caused reduction of measured torque in this
critical moment.This indicates decrease in the friction force between the top foil and the journal. The
positive effect was also confirmed by visual inspection, which showed lower wear of the top foil that
worked in the modified bearing.

The intermediate foil is an interesting modification for aerodynamic air-foil bearings. It improves
mutual operation of foils resulting in advances of exploitation properties of the bearing and increases
damping by introduction of additional friction between foils and reduces the effect of sagging.
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Remote monitoring of the train driver along with the locomotive
motion dynamics in the course of shunting using mobile devices
(CON273-15)

Jakub Mtynczak, Rafat Burdzik, Ireneusz Celinski

Abstract: A train in operation may be considered as a dynamic system. Many
interesting dynamic train properties may be observed while it is performing the
shunting activity. Therefore, the first stage of the experiments conducted was devoted
to development of a remote monitoring system using mobile devices for monitoring of
the train driver’s actions and the locomotive motion dynamics. The paper describes
implementation of the method for the sake of application of remote monitoring in the
course of shunting of the SM42 locomotive. For this purpose the research was
conducted at a test station. The shunting locomotive was equipped with a recording
unit with a proprietary mobile application installed. The application developed by the
authors uses the accelerometer system to measure linear accelerations and velocity of
the locomotive. For establishing the geographical position within the test station area
the GPS system was used. This system makes it possible to monitor physical
parameters of the shunting activity. Along with simultaneous measurement of
positions of shunting locomotives, it allows for assessment of the driver’s actions to
be assessed from the perspective of their legitimacy and conformity with the relevant
work regulations. For the sake of prospective application in measurements,
locomotive traffic data may be transferred to a signal box by means of the SMS
protocol for purposes of the shunting management.

1. Introduction

Problems of dynamics of rail vehicles are addressed in a vast number of scientific studies on account
of the extensive impact of dynamic phenomena on such aspects as safety, technical reliability,
efficiency of processes and comfort. The obstacles one encounters while modelling and observing
dynamic phenomena in rail vehicles are due to limitations of accessibility, external conditions and
dimensions. Therefore, the research assumption adopted was the observation of dynamics of a
locomotive in the course of shunting. One of the most important aspects of operation of a railway
station comprises shunting activity. Principal goals of such activity are mainly marshalling and setting
of train sets. In the course of shunting, there is often a necessity of changing the number of cars or
cars are being reset and admitted at different technical points of a station (for cargo handling). Such a
large range of activities enables observation of multiple dynamic phenomena under relatively
advantageous conditions. Moreover, when properly performed, shunting activity is a prerequisite of

efficient railway traffic management. Besides general regulations typical of the given railway line,
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shunting activity is performed in accordance with shunting rules and regulations established for the
given technical point [7,8]. While conducting this type of activity, what proves decisive of its
characteristics is often the type of the means of transport being marshalled and the cargo being

transported.

Railroad tracks

Figure 1. Shunting runs studied, plotted against a plan of the Chabéwka (Poland) station. Source:
OSM/JSOM [1,2,3]

The authors of the article have discussed both a concept and application of a simple method of
remote supervision of shunting runs using mobile devices enabling observation and recording of
chosen dynamic parameters of a rail vehicle. In the course of the studies, an SM42 series diesel
locomotive was used, being one of the most popular means of cargo transport. Figure 1 is a site plan
of the railway station with the blue line designating the GPS trace of the locomotive studied while

performing shunting activity [1-5].
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Figure 2. Interior of the test locomotive driver’s cab. Source: authors’ own materials.

2. Methodology

Assumptions of the method proposed are as follows: mobility, simplicity of operation, short time of
installation of measuring apparatus, synchronisation of time and location (positioning). For the sake
of these assumptions, an application was developed for mobile phones to replace standard measuring
devices. A mobile phone is attached to the driver’s cab floor in such a manner that its top part
indicates the driving direction while the locomotive is moving ahead. The phone’s vertical axis is
perpendicular to the track substructure plane. The mobile phone features an application created by the
authors, dedicated to the Android platform, which uses the accelerometer system to record linear
accelerations occurring in the course of the shunting locomotive’s operation.

What is also recorded is the shunting locomotive running speed and, by means of the mobile
phone’s GPS unit, its physical position in space. Also a number of other parameters are recorded,
including speed, locomotive altitude above sea level etc. Such a simple measuring system allows for
monitoring of basic physical parameters of shunting operations performed by the shunting locomotive
driver. In combination with simultaneous measurement of the shunting locomotive position, it enables
verification of legitimacy of the manoeuvres performed by the driver and their parameters as well as
the degree to which the driver adheres to specific legal regulations and standards. In the course of the
measurement, basic data related to the locomotive’s running characteristics may be sent to the
shunting signal box using the SMS protocol. Depending on the data transmission technique applied,

the data transferred only concern mean values of the characteristics examined (SMS) of aggregated
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data (GPRS). In this manner, an additional reverse channel is created while conducting shunting
activity (supplementary to the channels used in accordance with the applicable legal regulations, i.e.
the visual and the radio one), which accurately enables supervision of the work performed by the
shunting locomotive driver based on the characteristics being measured [6,7]. In the aftermath of the
research in question, the authors are planning to use transmission channels to remotely control the
driver’s work by means of the WiFi and BT protocols. The graphical material provided in the article
has been developed based on the data recorded while studying the locomotive running along the trace
plotted on the test station site plan (Figure 1).

BASE DATA:

-ACC X [m/s”2]
-ACCY [m/sh2]
-ACCZ [m/sh2]
——————| -TIME [hh:mm:ss]
-LATITUDE [deg.] SHUNTING
-LONGITUDE [deg.] SIGNAL BOX

| SHUNTING ACTIVTY H MASL [metres]

DATA COMPRESSION

DATA TRANSMISSION
SHUNTING AREA

Figure 3. Concept of the research methodology. Source: authors” own materials.

Figure 3 is a diagram illustrating the research methodology applied in the scope of remote
control of shunting activity using a locomotive. Based on the characteristics acquired by means of a
mobile device, data of the locomotive’s linear acceleration and positioning (as well as a number of
other characteristics, such as speed, altitude above sea level) are processed. The data in question are
aggregated and/or compressed, and then, using the chosen transmission channel (SMS, GPRS), sent
to the shunting signal box. This enables the shunting signal box personnel to acquire accurate
knowledge on the locomotive parameters, and owing to the station’s radio communication system,

they can monitor changes in these parameters.
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3. Train marshalling process

In accordance with Instruction Ir-1 (R-1) on “train traffic management”, shunting operations are
defined as intended movements of railway vehicles. The foregoing also applies to other activities
related to the said movements, as they are performed on tracks of shunting stations [7]. The
operations excluded from those activities are the train entry, exit and passing. Shunting is performed
with motor-driven railway vehicles, among others.

The method described in the article mainly applies to this kind of shunting activity, although, on
account of its simplicity, it may also be used for the sake of marshalling conducted by means of rail
and road tractors or special machinery [7]. The shunting activity is performed in a place referred to as
a shunting area. It is a pre-defined (delimited) section of a railway station territory forming an
independent set of tracks and machines used for shunting activity by one shunting manager by means
of one shunting locomotive. A division into shunting areas and districts (two or more shunting areas)
has been introduced in order to enable efficient and safe performance of shunting activity.

One of major parameters of shunting activity is the shunting speed, as specified in Instruction Ir-
9 (R34) [6]. Shunting operations are often performed in tracks occupied by rolling stock. It is for that
reason that individual shunting operations should be performed with care, maintaining safe running
speed, as defined in Instruction Ir-9 [6]. Shunting speeds have been precisely specified in the
instruction with reference to different cases of technological activities and incidents. Safety of
shunting activity is not only the matter of the rolling stock, but it also concerns the goods transported
by rail, and primarily people. Permissible running speed ranges for shunting activity are defined in
Instruction Ir-9. While performing shunting operations, the running speed must not exceed 25 km/h,
however, depending on the technology used for shunting and the infrastructure elements involved, the
permissible speeds range considerably from 3 km/h up to 40 km/h. For instance, a self-propelled
railway vehicle running in the “idle” mode, in certain cases and at selected points of the shunting
area, may run with the permissible speed as high as 40 km/h. In an extremely restrictive case, while a
shunting locomotive is driving up to the rolling stock, this speed must not exceed 3 km/h. In
accordance with the methodology proposed in the article, the shunting signal box receives real-time
information on the shunting locomotive position and its actual speed. This enables remote monitoring
of correctness of the shunting activity to be performed by shunting brigades, even those operating
within particularly vast shunting areas and under diversified weather conditions. Not only is it
important from the perspective of shunting safety, but also regarding potential claims of
owners/insurers of the goods transported. The method in question allows for documenting the course
of shunting activity using highly accurate parameters by way of verifiable measurement. In such a
case, each shunting activity is digitised and stored at the appropriate shunting signal box or centrally
archived. Moreover, working characteristics of individual shunting brigades may be compared

415



between one another, e.g. in order to calculate bonuses for individual members of brigades in
recognition of their effort.

Information on the shunting activity is transferred in real time to the shunting signal box which
enables the activity to be adjusted using reverse communication channels from the signal box (mainly
radio communications, but video and audio signals as well).

What matters while performing shunting activity is the precise information on locations of
shunting vehicles and members of shunting brigades. In accordance with the applicable regulations,
vehicles must be equipped with an active bottom headlight whose position corresponds to the driver’s
station arrangement (left side, right side). This piece of information is particularly is important for
shunting brigades. Knowing it, one may determine the side on which the driver is seated as well as
the direction in which the shunting locomotive is moving. Assuming that members of shunting
brigades have been equipped with appropriate terminals enabling them to acquire information on the
locomotive position, the methodology proposed may additionally increase safety of shunting activity.
For instance, as the shunting locomotive is approaching, a brigade member may be warned with
vibrations or an audible signal [12-14]. Such safeguards are fundamental to shunting activity
conducted at large marshalling yards of high throughput as well as when working under difficult
atmospheric conditions (fog, heavy rain etc.). Unfavourable station layout, i.e. considerable slopes or
longitudinal profiles with large curvature, should also be considered as a factor imposing

implementation of such safety procedures.

4. Analysis

The methodology proposed is mainly based on indications of an accelerometer installed inside the
locomotive driver’s cab as well those provided by a GPS receiver. Such a simple system enables

monitoring of the locomotive position and parameters of its motion as it performs shunting activity.
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Figure 4. Accelerations measured within an hour of shunting activity. Source: authors’ own materials.

Figure 4 illustrates linear accelerations measured inside the cabin of the SM42 diesel locomotive
performing shunting activity. The colour blue in Figure 4 marks vertical accelerations (ACC_Z).
Yellow corresponds to accelerations in the longitudinal axis of the locomotive’s motion (ACC_Y),
and black (in the background of characteristic ACC_Y) — in the axis transverse to the direction of the
locomotive’s movement (ACC_X), i.e. lateral accelerations.
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Figure 5. Zoomed-in section of acceleration characteristics. Source: authors’ own materials.
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Figure 5 shows only a section of the graph illustrating the shunting activity parameters measured,
selected from within the entire period of the measurement in question. It demonstrates temporary
changes to linear accelerations in individual axes of the freedom of movement. 28 intervals have been
provided for the duration time of 10 ms, which corresponds to the observation time of 0.3 of a second.
In Figure 4, marked with a red frame, one can notice abrupt changes to the vertical (ACC_Z),
longitudinal (ACC_Y) and transverse (ACC_X) acceleration. Such changes are correlated with the
physical location of the locomotive in the physical space of a shunting station (Figure 1). Each of the
characteristics (ACC_X, ACC_Y and ACC_Z) stems directly from the type and parameters of the
actions undertaken by the driver, which may prove variable within a certain range, as well as from the
physical position of the locomotive over specific elements of the track infrastructure. To a
considerable degree, it also results from the condition of the rolling stock performing the shunting
operations and technical characteristics of the locomotive itself. What also affects these
characteristics, yet to a lesser extent, is the weather conditions and other random factors, such as e.g.
physical condition of the driver performing shunting operations.

Speed [km/h]

©
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—
E—

TIME [MS]

o LJ

Figure 6. Shunting locomotive speed profile. Source: authors’ own materials.

Figure 6 illustrates the shunting locomotive speed during the test. Apart of standard assessment
of the speed adjustment to the shunting operations performed (in correlation with the locomotive
location on the station plan), such a graph also makes it possible to assess the efficiency of utilising
the shunting locomotive working time. Furthermore, the graph provided in Figure 6 enables
estimation of fuel consumption in the course of the shunting activity being conducted. Since changes

to the running speed illustrated in the graph in Figure 6 are considerably dynamic, it may also be
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considered as a premise for optimisation of a schedule of shunting operations for the sake of fuel

saving etc.
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Figure 7. Profile of the locomotive altitude above sea level. Source: authors’ own materials.

The shunting locomotive altitude profile provided in Figure 7 with reference to the sea level
proves particularly helpful for purposes of the running speed control. The track slope exerts a major
impact on the locomotive running speeds (particularly at mountain stations, ramp-type shunting
stations and those featuring a gravity yard hump). In correlation with the locomotive’s traction
characteristics as well as its position on the station plan, it enables calibration of the shunting
locomotive speed (this subject will not be discussed in detail in this article).

According to the method proposed, the remote monitoring of shunting activity is ensured by
using the SMS and GPR transmission channels. There are numerous restrictions to the first option,
namely those of technical and economic nature. The maximum SMS length is 140 8-bit characters
(900 characters owing to the CSMS technology) [9]. The foregoing means that a single SMS may
only be used to send information about ca. 3 data sets (each in the minimum composition: three
values of linear acceleration, value of longitude and latitude) at three pre-defined locations of the
shunting station. Therefore, this technology only enables data to be sent in an aggregated form, and
only for certain sections of long tracks. In practice, it virtually precludes ongoing supervision of a
shunting rail vehicle. What seems prospective for the method proposed is the use of communication
channels based on the WiFi and BT technologies [10,11]. Nevertheless, when considering the latter
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case, one should bear in mind the technical (length related) constraints of this method, since not all

track systems will allow for this technology to be deployed.

5. Conclusions

The research method, the mobile application and the procedures for analysing the locomotive’s
shunting activity at a marshalling yard, all discussed in this article, enable assessment whether the
locomotive driver’s duties are pursued in a correct manner. Within the given shunting area, one can
monitor the shunting activity by application of the method in question. Prospectively, such an
information channel combined with a reverse channel (radio communications) enables the driver’s
operations to be corrected. As regards further prospects of application, it may also enable completely
automated shunting activity (once the relevant legal regulations are amended in this respect).

The method proposed offers interesting new opportunities for performance of shunting activity
at large marshalling yards, especially in cases when the given shunting run extends on neighbouring
switching circuits. Knowing the shunting locomotive position enables the personnel to efficiently set
the travelling route between individual circuits.

The method proposed also proves useful while switching passenger cars with people inside,
when specific instructions must be followed and special precautions maintained. One should bear in
mind that, in cases of railway accidents with casualties, investigation procedures are particularly
lengthy and liquidation of damages — costly. The same applies to hazardous and valuable goods. The
method presented provides analytical tools supporting investigation procedures as well as acquisition
of non-personal evidence material for purposes of investigations conducted by law enforcement
bodies and of potential lawsuits. In this respect, it should be noted that, unlike with dedicated on-
board recording devices of rail vehicles, owing to simplicity and practically non-existent investment
expenditures related to the method implementation, not only all vehicles participating in shunting
operations may be furnished with the devices in question, but also all members of shunting brigades.
In extreme cases (hazardous substances, cargo of very high market value), also the rolling stock being
switched may be equipped with recording devices of this type.

With regard to providing members of shunting brigades with mobile phones with the application
installed, there is a problem of how to appropriately mount the phone. It is meant to potentially allow
for establishing the manner in which the given worker moves (linear accelerations made) and the
GPS-based positioning method does not change.

A separate issue is the identification of technical condition of the track and its substructure at
shunting stations. Elements of railway infrastructure at shunting stations are usually more complex in

terms of structure than other technical operating facilities for railway. Firstly, there are far more
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turnouts at these stations. Additionally, these elements are more exploited in operation (multiple
changes of travelling routes, several times more frequent than in other sections of railway
infrastructure). In light of the foregoing, one should keep in mind that not only does the method
proposed enable control over characteristics of the shunting locomotive operating condition, but also
rough assessment of technical condition of the shunting station infrastructure. For these purposes, one
must record and archive parameters of linear accelerations of shunting locomotives. A single shunting
area is typically handled by one locomotive. Therefore, by comparing its linear accelerations in the
course of operation in a long-term horizon, this is how one may indirectly examine the service wear
of track infrastructure elements. This type of wear may be statistically observable through
comparisons of linear acceleration characteristics of the same shunting locomotive, assuming that no
significant changes of traction parameters have been introduced within the period analysed.

By reversing the foregoing assumptions, i.e. assuming invariability of track substructure
characteristics in a certain time horizon, one may attempt to apply the methodology discussed for rail
vehicle diagnostics. Any anomalies detected in linear accelerations, after collating them with
databases used to record typical ranges of rail vehicle responses at individual infrastructure elements,
should provide grounds for undertaking specific repair or maintenance actions towards the given
vehicle. It is a complex problem which requires further detailed research.

This article has provided several illustrations to solutions enabling the data in question to be
analysed. The authors have also proposed other options for monitoring parameters of shunting activity
as well as technical condition of both facilities and means of transport taking part in shunting. This
subject is very multi-faceted and requires considerable technical and financial resources to be

involved.
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Advanced control structures for galvanometer scanners for
improved parameters in biomedical imaging
(CON166-15)

Corina Mnerie, Stefan Preitl, Virgil-Florin Duma

Abstract: Galvanometer-based scanners (GSs) are optomechatronic systems utilized
in a wide range of applications, from commercial and industrial to high-end, the latter
for example in biomedical imaging. A GS consists of an oscillatory element (shaft,
magnet, and galvomirror) in a motor structure equipped with a positioning servo-
system built usually in a closed-loop structure and controlled by different algorithms.
The development of a high-performance control solution for such a device is based in
this study on a closed-loop GS which consists of a proportional-derivative (PD-L1)
controller and a servomotor. The mathematical model (MM) and the parameters of the
basic construction are identified using a theoretical approach followed by an
experimental identification. With the indentified model, an extended control solution
is proposed, with an additional controller of proportional-integrator-derivative (PID-
L1) type, which will ensure a better speed response and a good immunity to constant
disturbances which can affect the servo system. A good match was found between the
theory, the simulations, and the testing for different types of input signals, such as
triangular, sinusoidal, and sawtooth — the latter with different duty cycles. The paper
finally presents a Model based Predictive Control (MPC) solution for the mobile
element of a GS. The control solutions proposed are supported by simulations carried
out in Matlab/Simulink.

1. Introduction

From the numerous types of laser scanning systems that exist [1], the galvanometer-based scanners
are the most utilized nowadays [2], in a range of applications that range from commercial and
industrial to high-end, the latter mostly in biomedical imaging, for example for Optical Coherence
Tomography [3, 4], Confocal Microscopy, or combinations of different techniques [5]. Although the
main use is to produce the lateral scan of the samples in such applications, there are also other
objectives, such as: generating the sampling function simultaneous to the probe scan in Time Domain
OCT [6] or scanning delay line Fourier Domain OCT [7].

GSs are advantageous because of their mature technology [8], their good positioning capabilities,
and the satisfactory scan frequencies for the above applications. However, they do have issues,
especially regarding their scanning functions and control structures. We have approached these two
aspects in several works, and demonstrated the best type of custom scanning function to obtain the
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highest possible duty cycle [9], and rules of-thumb to obtain the most distortion-free images with
different OCT techniques [10, 11].

The aim of this paper is to carry on the researches on the optimization control structures and
algorithms for which we have completed a series of studies in [12-16], in order to obtain a trade-off

between speed and precision for this type of scanning devices.

1.1. A mathematical model of a uni-dimensional (1D) GS.

GSs are optomechatronic oscillatory devices utilized as scanning systems for laser spot positioning or
for raster scanning. The performances achieved by a GS depend upon the choice of the main
constructive elements: DC motor, detector, mirror, and servo amplifier [1]. The most utilized GSs
have a moving magnet motor, usually build in the Brushless DC motor (BLDC) technology, with a
high performance optic or capacitive detector embedded on the motor shaft; this design is in a closed-
loop configuration with an appropriate control algorithm. The galvomirror is rigid mounted, coaxial
with the motor shaft. The speed and accuracy of the entire scanning system depend upon the
positioning control algorithms required by the application.

The GS utilized in this study consists of a moving magnet servomotor and a Proportional-
Derivative with first order Lag controller (PD-L1). The mathematical model (MM) and the
parameters of the basic construction were identified in [12] using a theoretical approach followed by
an experimental identification. The angular position of the mirror is considered equal to the angular
position of the rotor due to the high torsion rigidity of the scanner [1].

The equivalent MM in transfer function form is [12]:

kGS

Ho(s)=——65
es () 1+2scT +5%T? M

where Kgs is the global gain (it includes the gain of the servomotor and the gain of the PD-L1

controller), & is the damping factor, and T is the time constant of the GS.

1.2. Control structures

The basic control solution of the GS has a classic closed-loop structure [17-18]. The new and
improved solutions are designed considering a cascade control structure with a second controller in
the extended loop. In such structures the performances achieved in the first loop are improved by the
controller placed in the extended loop [17-18]. Figure 1 presents the block diagram of a cascade
control structure applied for the GS. Based on the number of the available detectors the extended loop

is closed through the same detector or through the second one.
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Another control structure used in this paper for the implementation of the new solutions is the
Two Degree of Freedom control structure (2-DOF) [19]. The advantage consists in the separation of
the two major problems of the control, i.e. the reference tracking and disturbances rejection, with two
independent controllers [19]. This structure is used for implementing the predictive control algorithm
[20]. Figure 2 presents the general block diagram of a 2-DOF control structure in the RST polynomial
form (R, S, T are polynomials in the backward shift operator z* and A is the differencing operator 1-

v

Ue Servomotor 0
c > BLDC >
Extended
_ _ _ _controller_ _ DI |e
BASIC LOOP GALVOSCANNER
D2 <

Figure 1. The block diagram of the cascade control structure. Components: C - Extended Controller, PD-L1 —
Internal Controller of the GS, D1 — first detector, D2 — second detector.

v

T/AR ZOH » Plant

A 4

SIT |«

Figure 2. The block diagram of the 2-DOF control structure.

2. Control solutions for improved performance parameters

The main objectives of the control algorithm are the positioning tracking and the good rejection of
disturbances. In order to achieve a performance enhancement of the system, different type of control
design methods were used; they include classical and advanced methods.
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2.1. Classical control solutions

Although the basic control solution has good positioning tracking results, the PD controller does not
ensure a proper accuracy in the presence of disturbances. Two classic control solutions proposed in
our former work were tested by simulations [16]. First a PI controller was introduced in series with
the existing PD-L1 controller, in the angular position feedback loop. The controller was designed
using an Extended Symmetrical Optimum method (ESO-m) [21] for different values of the P
parameter. The transfer function of the PI controller is:

HC_PI(S)=SkTCC (14sT¢) . @)

The controller parameters of the design performed using the ESO-m are:

1
k.= ) (3)

I=pTx, 4)

where Ty is the small time constants sum of the open system, kg is the gain of the open system, k. is
the controller gain and T¢ is the integrative time of the PI controller.

The second control solution is based on a cascade control structure with the PID-L1 controller in
the external loop. The controller is designed based on the Modulus Optimum method given by

Kessler [22]. The transfer function of the real PID controller is:

kep 1+2SET+s2T?
HC-PID(S)Z&L ’ (5)

s 1+sTg

where k¢, is the gain of the PID-L1 controller, T is the time constant, ¢ is the damping factor, and Ty,
is the filtering time constant.

The new control solutions were tested through simulations on unit step input signal and on
standard and specific periodic signals. The simulation results are presented in the next section. Table
1 shows a synthesis of the performances achieved, expressed by the overshoot o;, the first settling
time t,; and by the settling time of the system t,.

Table 1. Synthesis of the performances achieved using classical control solutions.

] Solutions with P1 controller Solution with
Basic
Indicator . PID-L1
solution p=4 B=9 p=16
controller
61 [%0] 9 50 27 17 7
tr1 [ms] 0.33 0.19 0.30 0.46 0.10
t, [ms] 0.64 1.50 2.00 3.00 0.5
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2.2. The Predictive control solutions
For the basic GS a Model based Predictive Control (MPC) solution is presented in the following. The
predictive control solutions ensure robustness and good disturbances rejection for the system. The
model of the plant (GS) is used to predict the future behavior [20, 23-24]; an objective function is
minimized and based on it and the control law is obtained.

The model of the plant can be identified in a CARIMA form:

A Dy =Bz Dz %t — 1) + C(z1) 22 6)

1-z~1'’

where A, B, C are polynomials of degree na, nb nc, d is the discrete dead time of the system, e(t) is
the zero mean white noise, u(t) is the control signal generated by the predictive controller, and y(t) is
the output sequence.

The optimization of the objective function ensures good tracking performances by minimizing
the error between the future output on the considered horizon and the determined reference signal; it
also penalizes the necessary control effort. The general form of the objective function is:

I= X% 80) [7 (A D-w(eDP + T, A0) [Au(t+-DF )

where $((t + j|t)) is the expected value of the output at time (t+j) with the available information
about the output y at time t, w(t+j) is the future reference signal, N; and N, are the limits of the
predictive horizon, and N, is the control horizon. The common values for the control weighting
sequences are d(j) equal to 1 and A(j) equal to a constant [20].

To obtain the predictive control algorithm the Diophantine equations for the prediction output
have to be solved [23]. The entire algorithm is detailed in [20, 23].

Ei(z DA A+ 2z F(z7) =1. (8)

The value of the optimal prediction output at time (t+j) with the information available at the moment t

is given by:

§(e+ilD=G; (z) Au(t+j-d-1)+F; () y(©) ©)
where the polynomial G(z%) has the expression:

Ej(z"Y)B(z™) = G;(z™). (10)

The polynomials E;, Fj and G;, have been calculated in a recursive algorithm, starting from the
initial values, from the GS mathematical model, with j from N, to N, in the prediction horizon.
Replacing Eqg. (10) in (9) the predicted output of the system consists in two components: one

related with the future reference trajectory and the other one related with the free response of the plant
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(f(t)). The latter one is computed from the present and from the past values of the output and of the

control signals:
f@® =FEHy@®) +6'(z"HAult - 1) 11
du(t) = K(w(®) - £(1)), (12)

where G is square matrix, G’ is column vector, both computed from the coefficients of the
polynomials G;, F is the column vector of the polynomials F’(z*), and K is the resulting vector from
the first line of matrix (G'G+41)™G" [20].

Based on the incremental form of the control equation (12), the predictive control algorithm was
implemented in the 2 DOF structure [19-20, 25], with the incremental control law:

T(z™Y)
R(z71)

Ss(z™YH

Au(t) = 2y © . 13)

w(t) —

R(zh), S(z*) and T(z%) are polynomials and their coefficients were obtained from direct identification
with Eq. (12).

The predictive control algorithm is based on a discrete form of the GS transfer function from Eq.
(1), considering the sample time of 0.03 ms. The numerical form is [13]:

- _ 0.0272+0.02436z~ 1 y(t)
Hoc(z7) =271 == 14
es(z7) 1-1.6670z-1+0.7185z-2  u(t) (14)

The study covers different values of the control horizon N, and of the control weighting 4 [15].
The best control solution was selected considering simulation results. The performances achieved are
presented in Table 2. Based on these performances the selected predictive control solution is for
A=0.8 and N,=10.

Table 2. Synthesis of the performances achieved using predictive control solutions.

Predictive Control solutions
Indicator Basic solution

N,=3 N,=5 N,=10
- 4=0.1 4=0.8 4=0.1 4=0.8 4=0.1 4=0.8
6, [%] 9 50 39 20 21 18 9
ty1 [Ms] 0.33 0.11 0.25 0.12 0.2 0.12 0.23
t, [ms] 0.64 >2 2 0.8 0.9 0.8 0.4

3.  Simulation results

The simulations are carried out in Matlab/Simulink. The results of the simulation using the control
solutions are presented with respect to the basic structure (i.e., servomotor and PD controller). All

proposed solutions were tested on a unit step reference signal in order to evaluate the performances
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achieved and on general or specific periodical signals (i.e., sine wave, triangular, and sawtooth) or
specific periodic signals [9-10] used in practical applications.

In Figure 3 the response of the basic GS structure is presented for different reference signals. In

order to validate the GS model the experimental results were compared with the simulation results

obtained in [14].
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Figure 3. The basic GS structure: (a) step response when considering a disturbance; (b) response on a periodic

reference sawtooth signal.

The responses of the classic control solution proposed (i.e., the solution with PI controller in the

main loop and the solution with the PID-L1 controller in the extended loop) are presented in Fig. 4.

To highlight the efficient rejection of the disturbances, a step/limited ramp disturbance was applied in

the torque of the servomotor. The solution with PID-L1 controller showed better dynamic
performances (see Table 1 and Fig. 4 (c) and (d)).
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Figure 4. The classical control solutions - system response based on a unit step reference signal: (a) solution with
the PI controller, step type disturbance; (b) limited ramp type disturbance; (c) solution with a cascade

extended PID-L1 controller, step type disturbance, (d) limited ramp type disturbance.

Selected simulation results for the predictive control solution proposed are presented in Fig. 5.
Different cases, for different parameters values, were studied in order to find “the best solution”.
Based on the analysis of the simulation results, the most attractive predictive control solution can be
considered for the control horizon of 10 sampling time and the weighting factor of 0.8. In Fig. 6 a
comparison is presented between the basic structure of the GS, the best classical solution (i.e., the one
with extended PID-L1 controller), and the selected predictive solution.
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4, Conclusion

S

In this paper some classic and advance control solutions for 1D GSs were developed and presented.

Although the design methods are quite different, the solutions can be compared considering the

performances achieved by the scanning system — for which the output signal represents the angular

position of the mobile element.
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Based on the analysis of the simulation results, both the proposed predictive solution and
extended PID-L1 solution provide better dynamical performances then the basic structure of the GS.
The global settling times are comparable, while the first settling time is shorter for the PID-L1
structure, and the disturbances rejection is more efficient in the selected predictive case. From the
scanning point of view these performances consists in speed and accuracy. The proposed predictive
solution was selected based on an extensive study regarding the design parameters of the Model
Predictive Control method. All solutions have been validated through numeric simulations.

Current and future work includes the integration of the GSs in complex scanning systems
intended for biomedical applications, especially for handheld scanning probes for OCT [26].
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The application of physical models in scale to test of vehicle
lateral stability
(STA182-15)

Krzysztof Parczewski, Henryk Wnek

Abstract: The issue of the article has been dedicated the possibility of using physical
models of vehicles in the scale in the research of motion dynamics. In paper discussed
the problems of lateral stability of vehicle motion. Particular attention was paid to the
danger of rollover, which occurs especially in commercial vehicles of high center of
gravity position. Problem concerning the construction of the model, control and
selection of research equipment was discussed. During the construction of vehicle
model in scale, the research and analysis of the results, was used the theory of
similarity of m-Buckingham. Comparative tests were carried for full-size vehicle,
having a high center of gravity, and model of the vehicle made in the scale of 1: 5.
Described the tests used in the research of vehicle dynamics and especially in terms of
roll stability. In the end of the paper was made comparison of the research results of
stability motion of full-size firefighting car with vehicle model in scale.

1. Introduction

During constructing means of transport studies are being conducted physical models. In aviation,
aircraft scale models are tested in wind tunnels, maritime transport ship models are tested in pools.

The article presents an attempt to use physical models of vehicles made on a smaller scale to test
vehicles on the tracks research in the implementation of new vehicles or upgrade existing ones,
especially in the case of vehicles manufactured single units, for which testing is impossible or
unprofitable. The use of dimensional analysis, theory of similarity and n-Buckingham theorem,
allows you to transfer the results of tested vehicles in scale to the full-size vehicles. This results in an
increase in road safety and reduce the time and cost of testing.

The study was addressed the lateral stability of vehicles and in particular their resistance to rollover.

2. The definition of stability

The vehicle motion parameters will be result from the driver's actions, and external forces, when the
vehicle is moving along a specified track. For this reason, the actual vehicle motion parameters may
be different than assumed by the driver. The steerability are called all the properties of system
vehicle-driver-environment, which was determining the degree of opportunities to approach the

desired and actual motion parameters [12].
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In the literature on the concept of vehicle stability and the stability of motion is used
interchangeably [1,9,12,22]. The motion stability of vehicles concerns characteristics that describe the
traffic conditions of the vehicle and the vehicle itself. The directional stability of the vehicle is
understood as the ability for self-maintenance of the trajectory defined by the position of the steerable
wheels and the ability to self-return to the previous state of motion after precipitation it from this
state, by the outer short-term disturbance [1,2,19,21]. In tests on vehicles using the concept of
technical stability relating to phenomena whose duration is limited, called [1] stability in the sense of
Bogusz. Definitions of vehicles stability was described by Wicher J. [22], and they are also included
in the standard for terminology that is used to assess the movement of vehicles [24,25].

Matters of vehicles motion stability address different aspects of vehicle motion. Andrzejewski

R. has identified the following issues related to the stability of the vehicle motion [1]:

. driving or braking of the vehicle during linear motion,

. motion on the road with inclination: longitudinal and / or lateral,

. driving in a curve of the road: with a uniform motion, during acceleration or braking,

. phenomenon of understeer and oversteer,

. the wheel rotation and its impact on the vehicle motion,

. disturbances affecting on the motion of the vehicle, for example: side wind, uneven road

surface, weather conditions, etc.

The driver performing certain maneuvers also influences on the vehicle motion. Keeping of a car
desired path of movement, despite the presence of interfering forces, it is possible by the features of
the vehicle known as directional stability [12,21]. Directional stability of the vehicle depends on
many factors relating to the vehicle, such as: location of the vehicles center of gravity, vehicles
dimensions, the load size and its distribution, condition and type of the tires, the condition and the
type of suspension and also factors relating to vehicles motion parameters such as: steering wheel
angle, acceleration, and speed. Litwinow defines the concept of directional stability, in addition to
distinguish the concept of overturn stability in lateral and longitudinal direction and slip stability [12].

Dajniak H. and Prochowski L. gave the definition of stability, dividing it into the stability of the
longitudinal and lateral [8.19]. A loss of the lateral stability can cause that the vehicle will rollover
around a line connecting the outer points of contact between the wheels with the road (one side of the
vehicle). This definition refers to issues related to rollover the car. In the literature often can be found,
used interchangeably, the terms on transverse stability: rollover propensity (tendency to rollover at the
side) and roll stability (stability due to the vehicle to tip over sideways) [10,11,17]. The second of the
terms was introduced in 1983 in a report on parametric analysis of the dynamic stability of heavy

vehicles (C. Winkler, P. Fancher and C. MacAdam) made for the NHTSA (National Highway Traffic
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Safety Administration) [23]. This term had been accepted and is quite widely used, particularly for
heavy vehicles and combinations of vehicles as well as for vans and sport utility vehicles.

The loss of longitudinal stability is revealed to deviation from the assumed trajectory of the
vehicle, this deviation rapidly growing, and isn't possible to correct by the driver. The loss of lateral
stability is revealed to exceeding the permissible roll angle of the vehicle [13].

During testing of vehicles in order to evaluate the stability of the movement, are measured such
variables as: the speed of motion of the center of gravity and its deviation from the longitudinal axis
(usually measured are the various components of vehicle speed), acceleration acting on the center of
gravity, the roll angle and angular velocity of the body roll (measured the center of gravity of the
vehicle relative to the longitudinal axis of the vehicle), the pitch angle and pitch angular velocity of
longitudinal inclination (as measured relative to the transverse axis of the vehicle, parallel to the plane
of the ground) and the yaw angle and yaw rate (measured relative to an axis perpendicular to the road
surface passing through the center of gravity of the vehicle).

Loss of motion stability can be caused by exceeding the maximum permissible speed limit on the
road curve, an external impulse like: side wind, uneven roads, etc.

The directional stability are particularly important issues, in the case of trucks because the its
associated with sudden and uncontrolled change in the motion direction. The loss of transverse

stability can lead to vehicle rollover.

3. Use the theory of similarity in the construction of the model, research and analysis

of results

The theory of similarity and dimensional analysis is used particularly widely in cases where it is
difficult to describe the desired parameters in equations, and variables are known to affect the desired
parameter. Applying this theory to the evaluate vehicle roll stability using vehicle made at a scale
requires the designation of comparable parameters and variables describing the vehicle motion and

define the criteria of similarity.

3.1. Conditions to provide similarity vehicle and a physical model

Some of the basic assumptions of similarity theory and dimensional analysis already appeared in the
works of Fourier in the early nineteenth century. Greater its development dates from the end of this
century, this applies to works of Rayleigh, Reynolds, Maxwell, Froude, Carvallo, Pascha and others
[20]. Similarity theory can be used wherever its use gives reasonable results, decrease costs of studies

or in cases where other methods of analysis are difficult to apply [3].
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The Buckingham n-theorem is based on dimensional analysis, and the basic idea is to replace the
physical quantities on dimensionless quantities [7]. Dimensionless quantities are obtained by referring
them to the selected of basic quantities (e.g. weight, length, and time).

Dimensional analysis reduces the number of variables that must be specified to describe an
event. If it is assumed that the system can be described by & number of variables, the mathematical

description of this system is as follows:
u=f(u,uy, s, u,). (1)
The same system can be described using dimensionless quantities, the write will take the form:
= (T Ty Tyyenes Ty, )

where r - number of selected basic quantities.

From the Backingham's m-theorem we assumed that the description of the system need less
variables than in a dimensional analysis. Typically, the basic quantities are: mass, length and time.

From the condition of similarity follows that: two systems are similar if they can be described by
the same variables and working under the same conditions.

To be able to compare the dynamics of vehicles, they must be met according to criteria known as
the similarities. This dependencies related to both: the vehicle structure, the conditions of its motion
and external forces. There are three general similarities criteria:

» geometrical - length scale,

 kinematic - scale speed or acceleration,

o dynamic - the scale of strength.

The fulfillment of these criteria allows the interpretation of the model results studies and relating

them to the dynamics of full dimensional vehicle’s motion.

3.2. Dimensionless parameters of compared vehicles

The compared dimensionless parameters for vehicles full-dimensional and scaled, have been defined
using the Buckingham n-theorem. Characteristic parameters of the test vehicle have been converted
into dimensionless system. On their basis were determined required parameters of the scaled vehicle
like: the linear dimensions, mass and moments of inertia, stiffness and damping of the suspension and
tires stiffness. Below are the parameters « (for a simplified two wheel model supplemented by vehicle
rollover model). These are (normalized by weight, length and time): distances to center of gravity
from the front and rear axle m;, 7,, tires cornering stiffness for front and rear axle 3, 14, the moment
of inertia about the axis Z 75, center of gravity height ms, wheelbase 7;, moments of inertia about the

axis X and Y mg, o, mass suspended ¢, distance from roll centre to the center of gravity m;;, angular
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stiffness of suspension m;,, damping of the inclining by the suspension 3, stiffness of the tires and
suspension in the longitudinal and vertical direction (X and Z) w4 + m;9. Achieving full compliance of

each dimensionless parameter is difficult to realize, hence generally are dealt with partial similarity.

3.3. Errors caused by the use of partial similarity

During the analysis of vehicle motion and its rollover conditions, were compared selected parameters
of motion: lateral acceleration, velocity, roll and pitch rate of vehicle body, inclination angles, slip
angle, yaw rate and yaw angle wheels slip angles and the vehicles track.

The tests were conducted under real conditions while maintaining the similarity scale factors for the
individual parameters. While the analysis is not determined and not taken into consideration the
aerodynamics forces and rolling resistance, because their impact on comparable motion parameters
was small enough that it could be omitted. Due to the different technology of producing tires the
problem of their selection was dealt with in [15]. In our analysis we could not get the full compliance
of the dimensionless parameters of tires and suspensions. For this reason, the results were analyzed in
terms of their confusion caused by these factors, knowing that the partial similarity may lead to

differences in results to describe the behavior of the compared vehicle [3].

4. The scaled vehicle, construction, control system, measuring instrumentation

To verify the methodology of research using physical models, it was built vehicle on a smaller scale,
taking into account the requirements arising from the similarity theory. The values of parameters
characteristic of the vehicle in scale were determined on the basis of dimensionless parameters of full-
size vehicle. Attempts were made to get maximum compliance with dimensionless parameters.

During construction vehicle model were used parts from the radio-controlled vehicle model,
equipped with an internal combustion engine with a cylinder capacity 26 cm®, centrifugal clutch, and
gearbox, central and final transmissions, driving the rear axle of the vehicle. The behaviour of
similarity in relation to the vehicle real (truck special with a high centre of gravity) resulted in the
necessity to take a number of actions which resulted in, the selection and change of appropriate
dimensions: track wheels and wheelbase, position of the centre of gravity, changes suspension front
and rear axles, selection of tires with appropriate parameters and changes distribution of masses
enabling to obtain the required mass moments of inertia. These works have been described in
previous publications [14,15,16].

To control the movement of the vehicle was made system consisting of: steering system, the
microprocessor controller and control program. This system allows the driver to program the
operating settings of servomotors in time: the steering angle and acceleration - braking. The trajectory

of the vehicle depends on the saved parameters of vehicle motion in the controller. The disadvantage

451



of this control system is the inability to respond to the disturbances associated with an increased
wheel rolling resistance or a local change in the coefficient of adhesion of the scaled vehicle.
Typically, the effect of such disturbances, will change the direction of the vehicle relative to the path
assumed (programmed). To avoid this, the test must be carried out on a flat, clean and relatively
smooth road surface.

The scaled vehicle control system allows for two modes of operation: steering vehicle using a
conventional radio control apparatus and steering with the controller mounted on the vehicle.

The controller has been made based on a microprocessor from ST Microelectronics
STM32F103VCT6. It allows you to define and save the settings servo for phases: acceleration,

braking, performs specific maneuvers and stops the vehicle, and also to remember the initial settings.

Figure 1. The vehicle in scale ~ 1: 5 with installed measurement equipment

The scaled vehicle is equipped with measuring devices enabling recording of the important
parameters of its motion. Was used apparatus Racelogic VBOX with module IMU, using GPS
technology, due to its small size and small weight. Recording test results were on a Compact Flash
card with a frequency of 100 Hz. Figure 1 shows a scaled vehicle with the mounted measuring

devices.

5. Research tests used for the testing of vehicles in scale

For comparisons chosen two tests: driving on a circular path in the steady-state conditions and the
maneuver of step input with the linear escalation of rotation angle of the steering wheel [24,25]. The
first of the proposed tests is to determine the characteristics of the vehicle during the steady-state
vehicle motion and the other in the dynamically changing conditions. The selected attempts not

require correction of the steering wheel angle by the driver.
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Figure 2 shows the adopted movement path in the test of driving in a circular path with a
constant speed and method of a test implementation of the step input with the linear escalation of the

steering wheel angle.

a b
) 7T T T~ ) 5,1-/
- ~
.7 PN Steering wheel input 100 % level
4 \
/ m// A
/ \
/ \\
|
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\ | P E——
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Figure 2. Carried out tests: driving in a circular path at a steady-state condition (a) and step

steering input (b).

The test was carried out with the vehicle speed of ~17 km/h, the lateral acceleration of -4,5 m/s2
(equivalent to the actual vehicle speed of ~ 40 km/h moving on a track with a radius of ~ 21,5 m).

During the tests the vehicle was moving at a predetermined speed straight ahead and then at a
designated place performed a turn of established angle value. The test was carried out with the vehicle
speed of ~17 km/h, initially on straight track and then the vehicle performed a steer maneuver to
moving on a circle with a radius of ~5.6 m (which corresponds to the actual vehicle speed of ~40

km/h moving on circle with a radius of ~21,5 m).

6. Comparison of measurements results of the vehicle motion stability

Full-size vehicle testing were performed on a test track TATRA in Koprivnice (Czech Republic)
[4,5,6,18]. Tests of physical model of the vehicle were carried out on the airport board in Kaniow
near Czechowice-Dziedzice.

Comparison of the results of measurements of model and actual vehicle required the use of scale
factors and conversion of vehicles motion parameters on a dimensionless scale. Due to the fact that
the results presented in a dimensionless system are difficult to assess, they was converted to a

dimension scale for a full-size vehicle.

6.1. Steady-state circular test

During the test vehicles were moving at a predetermined speed on a circular path. Below were
presented the time courses of selected vehicles motion parameters in full-size and scale (figures 3+6).

Actual vehicle was moving at a speed of ~40 km/h and vehicle in a scale of ~20 km/h.
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Figure 3. Comparison of the lateral acceleration achieved by the full-scale vehicle and the scale

model vehicle in the steady-state circular test.

Yaw velocityy/, rad/s
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Figure 4. Comparison of the yaw rate achieved by the full-scale vehicle and the scale model

vehicle in the steady-state circular test.

During the motion on a circular path there was a certain difference in speed, hence differences of

lateral acceleration obtained during tests.
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Figure 5. Comparison of the yaw angle achieved by the full-scale vehicle and the scale model

vehicle in the steady-state circular test.
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Figure 6. Comparison of the roll angle achieved by the full-scale vehicle and the scale model

vehicle in the steady-state circular test.

The differences of yaw rate of vehicles, as well as acceleration, result from differences in speed
of the individual vehicles. Increments of yaw angles of vehicles are very similar, indicating similar
conditions of performance the tests (after translation into motion of a full-size car).

The physical model of the vehicle shows less heeling angle. Appearing differences are due to

differences of the suspension stiffness and may be taken into account while analyzing the results.

6.2. Step steering input test

During the step steering input test the full-size vehicle was moving at a constant velocity of ~40 km/h
and the vehicle in scale ~21 km/h, which after conversion corresponds to a similar velocity. The
driver performed a turn maneuver by turning the steering wheel by a fixed angle, where the lateral
acceleration has reached of ~ 4 m/s”. In the case of the model the turn wheels angles were setting by
adjusting the position of the actuator. Selection the wheels turn angles in the physical model results

from the setting of the steering servomotor by a specified number of units.

Vehicle path

—Full size vehicle
—Scale model vehicle

€ o \
’ \

|

-30
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Figure 7. Comparison of the motion trajectory of the full-scale vehicle and the scale model

vehicle in step steering input test.
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Differences occur in increase speed of the turn. On actual value steer angle influences a variety
of factors among others clearances in the steering system or steer resistance. For this reason, there
were differences of each waveform of the variables. Figure 7 shows the trajectory of motion of both
tested vehicles. During the tests failed to get similar tracks vehicles due to the fact of necessity to
convert the track for the model. This resulted in the existence certain differences of the other
parameters. The drawings 8+11 present the waveforms of selected motion parameters of tested

vehicles.
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Figure 8. Comparison of the lateral acceleration achieved by the full-scale vehicle and the scale

model vehicle in step steering input test.
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Figure 9. Comparison of yaw rate achieved by the full-scale vehicle and the scale model vehicle

in step steering input test.

During the step steering input test the full-size vehicle was moving at a speed of 38 km/h and
physical model 39 km/h, after the conversion resulting from the scale of similarity. The differences of
the acceleration are from speed of the turning manoeuvres. Vehicle yaw rates in the initial phase were
a little different. After achieving the maximum velocity differences are bigger and result from
differences of the circle radius and velocity. Due to the angle of the steer extortion are slightly higher
the values of yaw rate.

During the step steering input test the yaw angle was greater for the full size vehicle than in the case

of the model, what results from driving on circular path of lesser radius. Generated side slip angle of
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the gravity centre for the full size vehicle is greater than for mobile model, due mainly to the other
characteristics of the tires.

On the basis of the indicators shown in Table 1 it can be concluded that there is a large
coincidence of parameters such as: the time to reach 90% of the yaw rate, yaw rate, side slip angle
and the dynamic overshoot value of yaw rate. Greater differences are observed for parameters such as

lateral acceleration or dynamic overshoot for lateral acceleration of the vehicle.

Table 1. Summary of parameters that define the behavior of the vehicle: the full scale vehicle

and scale model vehicle in step steering input test.

Value
Parameter Symbol Full scale Scale Unit
vehicle model
vehicle®
) Y
Steady-state yaw rate response gain 5 2.439 2.310 1/s
. a.
Ste_ady-state lateral acceleration response (Fy) 2985 3150 m/s¥/rad
gain ss
- N : )
Tlme_ to 90% of the yaw rate in steady-state Ty 0.42 043 s
motion
Yaw rate peak response time T ymax 0.63 0.69 s
Yaw rate peak Ymax 0.399 0.405 rad/s
Yaw rate in steady-state condition Wss 0.387 0.387 rad/s
Steerl_n_g wheel angle in steady-state Sss 923 275 o
condition
Side slip angle in steady-state condition Bss -6.78 -4.00
Lateral acceleration peak Aymax 4.60 4.60 m/s’
Lateral acceleration in steady-state condition Ayss 4.21 4.20 m/s’
Overshoot value of yaw rate Uy 0.031 0.046 -
Overshoot value of lateral acceleration Ua, 0.092 0.095 -
Indicator T =Ty pax * Bys Tp 427 2.76 ’

Reference to parameters related in rotation of the steering wheel was replaced into parameters

relative to the average angle of turn the wheels.
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Figure 10. Comparison of roll angle achieved by the full-scale vehicle and the scale model

vehicle in step steering input test.
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Figure 11. Comparison of the yaw angle achieved by the full-scale vehicle and the scale model

vehicle in step steering input test.

7. Summary and conclusion

The use of physical scale models for vehicles testing is attracting attention of researchers. Conducted
research on vehicles models can partly replace and partly to limit the tests of full size vehicles. The
study of physical models of vehicles made in scale, are carried out by a number of centers, among
others in the US, France, Germany, India and South Korea. Vehicle models are used for motion
analysis, both whole vehicles and the operation of selected assemblies (eg. the suspension, steering or
brakes). The scope of research focuses on issues of dynamics, aerodynamics, as well as to evaluate
the braking maneuver performed on straight and curvilinear section of the track and turning
maneuvers. Mobile models are also used for rapid prototyping of the controllers to systems prevent
wheel lock during braking, stability control, roll stability, steering or power train systems. The cost of
testing the physical vehicle models made in the scale is lower (for a scale of 1:3 by half, for the scale
of 1:5 about one-quarter of the cost for one test of the full size vehicle).

Based on the presented comparisons it can be concluded that the physical models in scale may be
also used to assess the stability of vehicles manufactured as the low serial production or individually.

The proposed research methodology of the vehicles roll stability allows for testing any vehicle using a

458



physical model made in scale. The research of the model on the test tracks allow for its rapid
modifications and determine the rollover risk indicators limits for different possible applications of
the vehicle. The carried out tests shows that the vehicle models are particularly useful in the studies,
while which can lead to vehicle rollover and also in conditions of simulating abrupt maneuvers in the
field of non-linear tire cooperation with the road surface. In such case, even with a possible rollover
of the model, there are no health risk drivers and the material losses are relatively small.

It has been found that while maintaining the similarity of the tests:

e The tested traffic parameters of the physical model with a sufficient accuracy correspond to
measurement results of the full size vehicle (deviation of the results from 8 to 15% depending on
the test).

e The greatest discrepancies exhibit a designated side slip angles of the vehicle centre of gravity
(8 to 15%).

e The greatest coincidence of results was reported for the yaw rate (difference of results ~4%).

e The roll angles of the mobile model and the full size vehicle have a good coincidence
(the deviation does not exceed 8%).

The carried out comparative studies of the full size vehicle and the physical model, support the
conclusion that physical models of vehicles can be used to assess the stability of large-size vehicles at
a given confidence level. From analysis of the dimensionless parameters the confidence level for
carried out researches was established at 95%. During research on the test tracks, while maintaining
the similarity of the performed tests, it was observed discrepancies of compared parameters at ~ 8% to
15%, wherein larger differences were related with those parameters on which were influenced

occurring the non-compliances of the dimensionless parameters.
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Comparison of acceleration severity index of vehicle impacting
with permanent road equipment support structures
(STA193-15)

Mariusz Pawlak

Abstract: The acceleration Severity Index (ASI) is one of three energy absorption
types, described in European norm EN12767 (Passive safety of support structures for
road equipment, Requirements, classification and test method), and is regarded as the
most important rate of impact on occupants. Vehicle models, used in simulation has
been developed by the National Crass Analysis Center (NCAC) of The George
Washington University. To perform numerical vehicle crash simulation, the finite
element models of permanent road equipment support structures, using the available
LS Dyna software were developed. Results are presented to study the dynamic
response of vehicle after impact with the permanent road equipment support
structures. The acceleration severity index curves are calculated and visualized in
Matlab.

1. Introduction

Permanent road equipment support structures are columns for traffic signals, information signals,
signs and lights used permanently on the streets. During design process of support structures are
taken into account conditions described in norm EN-40[4][5]. In 2011 Road and Bridge Research
Institute, which has been granted the accreditation of the Polish Centre for Testing and Certification
as a certifying unit, decided that from the beginning of 2015 all street light used on roads and located
within safety zone should be passively safe, or additional safety barriers should be applied[6][7][8]-
More informations are described in literature [28] It means that columns must be also certificated
according to norm EN 12767:2007, approved by CEN (Cimité Européen de Normalisation) in 2007.

The norm introduce classification of permanent road equipment support structures by velocity,

absorption of energy and safety of passenger.

Tab.1. Classification of support structures [3]

Parameters taken into consideration Alternatives
1. Speed class [km/h] 50, 70 or 100
2. Energy absorption category HE, LE or NE
3. Occupant safety level 1,230r4
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Information, to which energy absorption category belongs column is received by measuring post-
impact speed of a vehicle 12 m after an impact point.

Tab.2. Support structures categories for energy absorption [3]

Impact speed Post-impact speed V, [km/h] measured 12 m after
V; [km/h] impact point with support structure
HE LE NE
50 V,=0 0<V <5 5<V <50
70 0<V<5 5<V,<30 30<V <70
100 0<V <50 50<V <70 70<V <100

Finally Occupant safety level is identified by calculation of Acceleration Severity Index (ASI)
and Theoretical Head Impact Velocity THIV.

Tab.3. Occupant safety level [3]

Energy Occupant Speed
absorption safety level Crash test at a speed of 35 Crash test at speeds of
category km/h 50,70 and 100 km/h
Maximum values Maximum values
ASI THIV [km/h] ASI THIV [km/h]
HE 3 1.0 27 1.0 27
2 1.0 27 1.2 33
1 1.0 27 1.4 44
LE 3 1.0 27 1.0 27
2 1.0 27 1.2 33
1 1.0 27 1.4 44
NE 3 0.6 11 0.6 11
2 1.0 27 1.0 27
1 1.0 27 1.2 33

One crash test is taken at vehicle speed 35 km/h to check how column works with low velocity,
and next one with higher velocity (50, 70 or 100 km/h)

Till now there is still in use many street ligths, which are in "0" class of vehicle passenger safety,
what means that risk of injury or death after crash accident is high. Most of them are concrete
columns and local authorities are gradually replacing them. Newer columns are aluminum and steel ,
the newest one are made from composites.

Certification of column is carried out by passive safety tests.. To reduce the number of
expensive experiments there are attempts to create numerical simulation of vehicle impact with
designed column. However the real tests must be done to make validation of numerical results and
must be in accordance with the conditions described in the norm. The numerical model of column and
vehicle must be detailed enough to behave in similar way as in reality. Too many simplifications can
lead to inadequate conclusion and it can be found when compared with experiments. Software used in
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automotive industry for numerical crash tests is LS Dyna, information about explicit methods
implemented in this application are described in literature [1][2][11][12].

In numerical simulations three vehicle models were used. Resultant velocities, accelerations and
acceleration severity index curves from impact at a speed of 35 km/h will be presented because at low
velocity ASI index is more sensitive to vehicle center of mass and column mounting . First model
was Toyota Yaris model 2010 sedan, created by The National Crash Analysis Center and The George
Washington University. Second was Geo-Metro Finite Element model (GM_R3) developed at
Politecnico di Milano and third vehicle model was Geo-Metro Finite Element model developed also
by the National Crass Analysis Center (NCAC) of The George Washington University. Detailed
geometry of car with suspension, applied initial linear velocity of driving and angular velocities of
rotating car wheels has strong advantage, comparing with simple models without suspension, only
sliding with assumed velocity.

Acceleration Severity Index is a parameter, sensitive to vehicle model, location of vehicle's mass
center and column with fundaments center of mass. Its value depends on material of column, the way
of mounting to the ground and soil model. In this article will be presented sample results from

numerical crash tests and conclusion.

2. The acceleration Severity Index

Acceleration Severity Index is an indicator of acceleration, it is dimensionless and one of most
important parameter calculated for road equipment such as barriers, signal, sign and light columns.

According to CEN test procedures ASI is computed by following equation:

as1o = j[(:) @) @] o

where:

a, a,a, are the 50 ms average component vehicle acceleration along X (longitudinal), Y
(transverse) and Z (vertical) axis;

a,=12g,a, =9g,a, = 10g are the corresponding limit accelerations of a vehicle along X,

Y and Z axis;

This index gives an information how harmful can be motion of a car for passengers sitting close

to the reference point during impact. The reference point is constantly in a vehicle, what means that it
is assumed, that passengers are keeping contact with the vehicle by seat belts.

The limit accelerations can be interpreted as values, below which risk of passenger injury is very

low. As was mentioned before, ASI index is dimensionless scalar function of time and has only

positive value. The maximum value of ASI index is assumed as measure of acceleration intensity:
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ASI = max[ASI(t)] 2

If i is time in ms, than 50 ms average vehicle acceleration along X, Y and Z axis can be
calculated as:

ﬁ(t) — v(t=i+55(:)m;)l;"(t=i) (3)

Calculation of ASI is based on velocity curves, received for node marked as sensor in vehicle
center of gravity.

3.  Mathematical model of column, fundament and soil

For numerical crash tests was created sample column 13 m high, assumed to be made from
aluminum alloy. The stress-strain curve used in material model was taken from literature about
tension of aluminum circular pipes [25] . Model of material used in LS Dyna
*MAT_PLASTICITY_WITH_DAMAGE_ORTHO_TITLE, includes erosion criteria, and effective
plastic strain is applied as a function of effective plastic stress[24] . Generally aluminum alloy is
insensitive to strain rate, but to fully describe dynamic behavior of a column during impact, welds
were modeled by elements *CONSTRAINED_GENERALIZED _WELD_FILLET, which have
ductile and brittle failure criteria implemented.

After reviewing literature about numerical crash tests of support structures [13] [14][16][17]
there is almost no information about influence of fundament and soil on results. Generally ASI index
is higher when supporting structure is flange mounted because in ground planted (rooted) center of
mass is higher and vehicle during impact decelerate more smoothly. Description of test place with
fundament and soil is given in norm [3], and below is presented numerical model of sample column

flange mounted.

Figure 1. View of column with fundament and soil numerical model
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Fundament is concrete, soil is implemented in LS Dyna as *MAT_SOIL_AND_FOAM [10] ,
material properties are take as for unwashed Gantry Sand [18][19]. Adding two components to the
numerical model increased significantly number of finite elements and time of calculation. But as a
result was received visible large displacement of fundament in a soil, appeared gaps and flowing of
soil, as it really happens in experimental tests.

4. Results from numerical crash tests at a speed of 35 km/h

As it was mentioned earlier ASI index curve from impact with low velocity is more sensitive to
vehicle center of mass and way of column mounting. The most popular vehicle used in crash tests is
Suzuki Geo Metro, known in Europe as Swift |1, manufactured in 1992-2002. The mass and center of
gravity of this car meet the requirements described in norm[3].

But interesting aspect is behave of column during impact with modern car with front crumple
zone and higher mass/ kinetic energy. Therefore as a first vehicle was chosen numerical model of
Toyota Yaris model 2010 sedan, created and validated by The National Crash Analysis Center and
The George Washington University at real crash tests with rigid wall[22].

Time of simulation was assumed 200 ms, finite element method model in LS Dyna consists of

2.6 min nodes and 2.4 min of elements.

TOYOTA VARS MODEL (MCAC VO1)

N9

Figure 2. Model of Toyota Yaris model 2010 sedan with marked sensor at center of gravity[26]

Sensor was located at center of gravity (node 4000406), its position in global coordinate system is
1004 mmin X,
-4,4 mmin Y and 569 mm in Z axis. The total mass of a vehicle is 1100 kg.

Below are presented results for crash test of model Toyota Yaris sedan 2010 with sample column
at a speed of 35 km/s what is ~9.72 m/s
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Figure 3. Toyota Yaris resultant velocities, accelerations and acceleration severity index curves,
impact at 35 km/h

The maximum ASI index was 0.63, what is significantly below 1.0. As can be noticed mass of a
car is 200 kg more than suggested in norm, what means higher kinetic energy at the first phase of
impact (~11 %). During crash can be observed plastic deflection of column and front hood of a car,

motion of fundament and a gap in a soil.
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TOYOTA YARIS MODEL (NCAC VO1)
Times o

Figure 4. Model of Toyota Yaris model 2010 sedan after crash with sample column

In further numerical crash tests were used models of Suzuki Geo Metro, known in Europe as
Swift 11, manufactured in 1992-2002. The mass and center of gravity of this car meet the requirements
described in norm[3], but during validation of numerical models with results from experiments it
turned out that small changing of center of gravity within model has influence on results.

As a second vehicle was used the finite element vehicle model of Geo Metro with full working
steering system, front and rear suspensions modified by Department of Aerospace engineering
Politecnico di Milano [27]. Was noticed additional mass on wheels comparing with other model [26]

Sensor of acceleration was located at center of gravity (node 700002), center of gravity in global
coordinate system is at X -1683mm, Y 30 mm Z 512 mm, mass of vehicle is 880 kg.

Figure 5. View of sample column impact with Geo-Metro car model (ver. GM_R3)

As a third vehicle was used numerical model of Geo Metro, developed by the National Crass
Analysis Center (NCAC) of The George Washington University under a contract with the FHWA and
NHTSA of the US DOT, developed and shared for research purposes[26]. The location of center of
gravity was modified by additional mass inside cabin of a car in the same manner as is done in

experiments, when is no engine in a vehicle.
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Figure 6. Geo-Metro car model (Ver. GM_R3) resultant velocities, accelerations and acceleration

severity index curves, impact at 35 km/h

Figure 7. View of Geo-Metro car model (ver. NCAC) with additional mass inside cabin
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Sensor of acceleration was located at center of gravity (node 700002), center of gravity in global

coordinate system is at X -1708 mm, Y -16 mm Z 478 mm, mass of vehicle is 878 kg.

iy acceleration curve as a function of time
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Figure 8. Geo-Metro car model (Ver. NCAC) resultant velocities, accelerations and acceleration

severity index curves, impact at 35 km/h

As could be seen, Suzuki Geo-Metro car models during impact had different velocities and

acceleration curves. It appears that results from NCAC model are more realistic.
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Figure 9.

NCAC) crash test

GEO METRO REDUCED (NCAC V2) : :
- = A GM_R3(@node 700002

= B NCAC{@node 700002

x velocitv (E+3) Im/sl

( 0.02 0.04 0.06 0.08 01
Time [s]

Figure 10. X velocity curves for two Suzuki Geo Metro models

5. Conclusions

Reviewing results of simulations presented here, it is obvious that using newer version of vehicle
with front crumple zone, designed to absorb the energy from the impact by controlled deformation,
will give lower value of ASI index. Mass of Toyota Yaris is about 1100 kg, unacceptable if crash test
have to be made according to the norm, 200 kg more is noticeably in increased kinetic energy.

Location of vehicle's center of gravity has influance on character of impact. Viewing results from
Suzuki Geo Metro model with modified suspension system and higher center of gravity in z axis
(Ver. GM_R3) , the conclusion is that energy absorbed by column was higher, car almost hit into the
column and ground, velocity was lowered more smoothly, regularly from the beginning till the end of
impact. This situation had confirmation in lower value of 50 ms average component vehicle

accelerations and ASI index.
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In case of Suzuki Geo Metro, where center of gravity was lower in z axis (Ver. NCAC) , than
the energy absorbed by column during impact was lower comparing to the previous condition. Car
was driving partly on a column and start loose velocity more abruptly when column overturn about
10 deg. In this case kinetic energy is slower transferred to internal energy, can be seen rotational
motion of a column at the beginning of impact.

When maximum value of ASI index at impact velocity 35 km/h is above 1.0 than modifications
should be applied. It is said that stiffening of columns by additional flanges or by increased thickness
of column shells should decrease velocity of car more smoothly, absorb more kinetic energy at the
beginning of crash and transfer to internal energy (plastic deflection). This phenomenon would occur
if the ground was regarded as rigid. But in reality ground is deflectable, soft or hard soil, and in the
first phase of crash test take place movement and rotation of a column with fundament. As a result
velocity of car in a first phase is higher. At some point, when fundament is not moving anymore,
plastic deflection of a column is appearing. Stiffening of columns by additional flanges or by
increased thickness of column shells decrease plastic deflection and even more abruptly slowing
down a car in second phase. And is received an opposite effect, ASI index is higher.
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Epidemiology of HIV with cell-to-cell transmission
(STA098-15)

Carla M.A. Pinto, Ana R.M. Carvalho

Abstract: In this paper, we propose a model for the dynamics of HIV in-
fection, that includes two types of transmission: virus-to-cell and cell-to-cell
transmission. We compute the basic reproduction number and the stability
of the disease free equilibrium. Simulations of the model show the relevant
contribution of the two transmission types for the epidemics of HIV.

1. Introduction

AIDS is still a major challenge for public health worldwide. In Europe, focus is put in the
control of the epidemics, since there are no clear signs of decline. Countries in the East show
increased numbers in new reported cases. On the contrary, in Portugal, the data from 2013
shows a sustainable trend of decline in the number of new reported cases. There is a decrease
of 13.7% in this number, when compared to 2012. It has also been observed a decrease in
the mortality associated to AIDS.

HIV impairs the immune system and leads eventually, without treatment, to its collapse.
The leukocytes with CD4™ receptors, known as CD4" T cells, are the main targets of
HIV [5]. Thus, it is extraordinarily important to understand the mechanisms behind cell-
to-cell transmission in the epidemiology of HIV. It is believed that the infectivity of HIV is
102 to 10® times greater in cell-to-cell transmission than in virus-to-cell transmission [2].

The interest in developing mathematical models that included cell-to-cell transmission
started in the 90’s. Spouge et al [6] compare two models, one for virus-to-cell transmission
and one for cell-to-cell transmission. Their numerical results revealed similar behaviors in
the two models. Agosto et al [1] use current experimental data to show that most ART
regimens are effective in blocking cell-to-cell virus transmission and preventing CD4™ T cells
depletion. They advocate a deeper knowledge of HIV epidemiology in vivo to devise better
ART regimens, and ease the burden of HIV infected people.

In this paper, we propose a model for HIV dynamics that includes cell-to-cell and virus-
to-cell transmissions and drug-resistance. In Section 2 we describe the model. In Section 3
we compute the reproduction number and the stability of the disease-free equilibrium. In
Section 4, we present and discuss the simulations of the model. We conclude our work in

the last section.

473



2. The model

The model describes the dynamics of the populations of the healthy CD4" T cells (T'), the
drug-sensitive T' cells (T%), the drug-resistant T cells (7)), the drug-sensitive virus (Vs), and
of the drug-resistant virus (V;). The first term in the equation of the T' cells represents
the growth rates of these cells. The second and third terms represent the infection of the
T cells by sensitive and resistant virus, Vs and V;, at rate k1. The parameter u; € [07 1]7
with 0 and 1 indicating no treatment and full treatment, respectively, represents the efficacy
of reverse-transcriptase inhibitors (RTIs). RTIs inhibit the infection of CD4" T cells by
virus. The drug-resistance indicates the inability of RTIs to inhibit the infection of T cells.
The virus resistant strain is less fitted to infect T cells. This fitness factor is incorporated
in the equations of the model using parameter ¥. The last two terms of the first equation
represents the cell-to-cell transmission, at an infection rate k2. The drug-sensitive T cells,
Ts, can become resistant to drugs with a probability u. They die at a rate d2. Vs and V;
particles are produced by the corresponding infected CD4™" populations, with bursting sizes
of drug-sensitive strain, Ns, and of drug-resistant strain, N,. The parameter us represents
the efficacy of protease inhibitors (PIs). The later inhibit the production of infectious virus
from already infected cells. The constant virus loss due to infection of CD4" T cells is done
with a rate k3. The virus population is cleared at a rate c. The nonlinear system describing

the dynamics of the model is:

() = fT1) (1 =)k Va()T(t) = ¥ka Vi ()T (1) — k2T (1) Tu(t) — akaT (1) T (1)
T(t) = (1=w)(l—u)kVa()T(t) + k2T (1) Tu(t) — 62T5(1)

To(t) = YkaVe()T(t) + uki(1 — w)Vs(£)T(t) + k2T ()T (t) — 62T (1)

Vi(t) = Nsbo(l —u2)Ts(t) — kaT(t)Vs(T) — cVi(t)

Vi(t) = Ny (t) — ksT(t)Vin(t) — cVin(t)

)

We will consider f(T') = A —dT +rT (1 - %)7 where X is the source of new cells and
d is the mortality rate of the CD4" T cells. The healthy T cells are assumed to proliferate
exponentially at rate r until they reach the carrying capacity Tmaz, in the absence of virus

or infected T cells.
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3. Reproduction numbers and stability of disease-free equilibria

In this subsection, we compute the reproduction number of model (1), Ro. The basic repro-
duction number is defined as the number of secondary infections due to a single infection in
a completely susceptible population.

We begin by considering two sub-models of model (1). Model (2) is obtained from model (1)
by setting the variables concerning the resistance dynamics (7 and V;) to zero, and model
(5) follows from model (1) by setting the variables concerning the sensitive dynamics (7T
and V;) to zero. We then compute the reproduction number of system (2), R, using the

next generation method [3].

T(t) = fT@) — (1 —u)kaVa()T(t) — k2T(8)Tu(t)

22
~~

=
[

(1 — u)(1 — w)ka Va(O)T(t) + ko T(£)Ts(t) — 52T (2)

Va(t) = Nuba(l — u2)Ta(t) — ksT(£)Va(T) — cVa(t)

The disease-free equilibrium of model (2) is given by:

Py = (T°17,VQ) = (f(1°),0,0) (3)
Tmaaz —d —d)? EESY
where T° = [ zir s ived Using the notation in [3] on system (2), matrices

for the new infection terms, F', and the other terms, V , are given by:

koT° (1 —u)(1 — up)k1 T°
0 0

02 0
—N552(1 —UQ) k3T0+C

The associative basic reproduction number is thus:

_ kT N Ns(1 —u2)(1 — w)(1 — w1k T°

s — F -t
R P( v ) 02 ksTO + ¢

(4)

where p indicates the spectral radius of FV ™. By Theorem 2 [3], we obtain the following

lemma.
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Lemma 1 The disease-free equilibrium Pg is locally asymptotically stable if R, < 1 and
unstable if Rs > 1.

We proceed with the computation of the reproduction number of model (5) below, R;.

T(t) = (1) =k Ve(t)T() — YikaT ()T (t)
T(t) = wkiVi(t)T(t) + P1k2T ()T, (t) — 62T (t) (5)
Vi(t) = NpoopTr(t) — ksT(t)Vi(t) — Vi (t)

The disease-free equilibrium state P§ of model (5) is given by:

Py = (I%17,V)) = (f(1°),0,0) (6)

The matrices for the new infection terms, F'; and the other terms, V| are given by:

P1koT® Pk TO
0 0

82 0
—N.82p  ksT® + ¢

The corresponding basic reproduction number is:

Y1k T° 4 Ny bk T°

-1
R, =p(FV™ ) = 5 a0 1 c

(7)

where p indicates the spectral radius of FV~'. The following lemma follows from By Theo-

rem 2 [3].

Lemma 2 The disease-free equilibrium Pg is locally asymptotically stable if R, < 1 and
unstable if R, > 1.

We repeat the same procedure for the calculation of the reproduction number of the full

model (1), Ro. The disease-free equilibrium state, Py, of model (1) is given by:

PO = (TO7TSO7T797V307V7‘0)
= (f(TO)7 0,0,0, 0)
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The corresponding F' and V matrices are computed to be:

koT° 0 (1 —u)(1 —ur)ka T° 0
0 PrkT° w(l — up )k T° ki TO

F=
0 0 0 0
0 0 0 0
02 0 0 0
v 0 02 0 0
—Nsaz(l—ug) 0 kgTO-i-C 0

0 —N,829 0 ksT® + ¢

and the corresponding basic reproduction number is:

Ro = p(FV™") = max{Rs, R,} 9)

where p indicates the spectral radius of FV ™. By Theorem 2 [3], we obtain the following

lemma.

Lemma 3 The disease-free equilibrium Py is locally asymptotically stable if Ry < 1 and
unstable if Ro > 1.

4. Simulations

We simulate the model (1). The parameters used in the simulations are given in Table 1 and
the initial conditions are set to T(0) = 10°, T5(0) = 10°, and all other variables are set to
10.

In Figure 1, we observe that the model (1) approaches asymptotically the disease-free equi-
librium.

In Figure 2, we simulate the dynamics of model (1) for different values of the parameter
r, the proliferation rate of healthy 7' cells. We observe that as r increases, the number of
infected (sensitive and resistant) T' cells and virus (sensitive and resistant) also increases.
This was an expected behaviour since, in the case of the endemic state, a larger number of
uninfected cells boosts the virus dynamics (i.e., there are more cells to be infected).

In Figure 3, we depict the dynamics of system (1) for different values of the parameter k2,
the cell-to-cell transmission rate. From the observation of the figures, we note that as ko
decreases the number of uninfected T cells increases, on the contrary to what is seen in the
number of sensitive infected T cells that decreases. This is in agreement with previous works

in the literature [8].
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Parameter Value Units Reference

A 10* cells mL™* day ™! 2]
d 0.01 day™* 2]
d2 1 day ! 2]
T 0.03 day™! 2]
c 23 day™* 2]
Tnas 10° mL~" 2]
U1 0.6 [7]
u2 0.3 (7]
u 3x107° [4]
P 0.5 [4]
o 0.1 [4]
k1 1.5x 1078 mL day ™! 2]
ko 2.4 %1077 mL day ™! 8]
k3 7.79 x 107° mL day ™! [4]
N, 3000 [7]
N, 2000 [7]

Table 1. Parameters used in the numerical simulations of model (1).

In Figure 4, we observe the contribution of k1 and k2 to Ro. As expected, augmenting ki
and ks is translated in an increase in Rp. In terms of the infection, this means that there is

a change in the epidemiology of HIV, from a disease-free equilibrium to an endemic state.

5. Conclusions

We proposed a model for the dynamics of HIV epidemics, considering two types of trans-
mission: cell-to-cell and virus-to-cell, and drug-resistance. Simulations of the model show
that both cell-to-cell and virus-to-cell transmission are relevant for the development of the
disease. We believe that efforts should be applied in better understanding HIV pathogenesis
in vivo, in order to develop smarter ART regimens, to reduce the treatment burden of people

living with HIV.
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Electromagnetic stabilisation of a slender rotating shaft
(STA197-15)

Piotr M. Przybytowicz

Abstract: The paper is concerned with the problem of loss of dynamical stability of a
slender rotating shaft and the making use of electromagnetic actuators to prevent the
rotor from such a situation. It is known that internal friction in the shaft material may
destabilise its static equilibrium position during operation. At a certain angular
velocity, called the critical speed, the static equilibrium bifurcates into a new
oscillatory state manifested by additional precession-like motion having some
amplitude and frequency. To avoid this disadvantageous, sometimes even dangerous
situation, an active method incorporating electromagnetic actuators is proposed and
discussed. The actuators generate an attractive force interacting with the
ferromagnetic shaft. At the same time transverse motion of the shaft induces
electromotive force in the electric circuit supplying the magnetic cores. This
electromagneto-mechanical coupling gives an effect resembling viscous damping, but
in fact it is a strongly non-linear phenomenon. Either way, the electromagnetic
interaction highly influences dynamics of the shaft and noticeably stabilizes the
system. Another problem studied in the paper is the non-linear response of the rotor
near the critical point. To this end, mathematical formalism handling Hopf’s
bifurcation is introduced, an approximation of the bifurcation solution built and its
orbital stability checked. Numerical simulations of the thus formulated model clearly
show that the introduction of electromagnetic actuators reduces the amplitude post-
critical vibrations.

1. Introduction
Rotating shafts, even perfectly balanced, may exhibit self-excited vibration brought about by the
presence of internal friction in the shaft material. Self-excitation occurs while exceeding a certain
critical rotation speed (over the first eigenfrequency of the shaft treated as a beam) and manifests
itself by a sudden growth of vibration amplitude with small variations in the angular velocity. It is to
be emphasized at this point that this is completely different phenomenon than another one related to
critical rotation speed, but corresponding to the first resonant speed and the first eigenfrequency of the
shaft. The static equilibrium position of the rotor evolves into a qualitatively new state of oscillatory
character. Such a situation is known as flutter, i.e. bifurcation of the static equilibrium into dynamical
periodic behavior. In terms of mathematical analysis this phenomenon is called Hopf bifurcation [1].
The problem of dynamical loss of stability of rotating shafts has been a subject of thorough
research works for the recent decades. Investigations by Dimentberg [2], Tylikowski [3] as well as by
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Kurnik [4] deserve here particular mentioning. For an equally long time the problem of how to
eliminate such instability or, at least, to shift it away outside the operational regime of rotation speed
has been undertaken by many researchers and engineers. At hand have remained structural
modifications to the rotors (changing their elasticity and rigidity) but always they were only passive
solutions.

In this paper, an active approach towards stabilization of a rotating shaft is proposed and
discussed. It is a fully controllable method incorporating electromagnetic actuators into the system.
The actuators however are not supports of the shaft (as in systems with magnetic contactless bearings)
but additional elements exerting some attractive force on the ferromagnetic shaft. The concept comes
from considerations initiated by Kurnik [5] and elaborated on by Dziedzic [6] where such a solution
was applied to the rigid rotor supported on hydrodynamical oil bearings. In this contribution, that
method has been adapted for stabilization and reduction of vibration of a slender shaft mounted on
rolling bearings, where two pairs of electromagnetic actuators have been placed somewhere between

the stiff mechanical supports in both perpendicular planes.

2. The analyzed model and governing equations

In the study, an elastic shaft in form of a Euler-Bernoulli beam made of some ferromagnetic material
possessing certain energy dissipative properties is assumed. The shaft equipped with a system of two
pairs of electromagnetic actuators is shown in Fig. 1. The shaft undergoes lateral displacement in both
transverse directions y and z. The total displacement is then w= \/yZT .

y U

EJpA S %/ X
5%3 N
Xa ‘ ‘

ediP

Figure 1. Model of the rotating shaft with electromagnetic actuators

The structural and material parameters assumed in the calculations are the following: length of
the shaft 1 =1 m, diameter d =0.01 m, area of the cross-section A=7.85x10"° m? geometric cross-
sectional moment of inertia J =4.91x10° m*, material density p =7800 kg/m®, Yong's modulus
E =2.1x10" Pa, retardation time of the material (Kelvin-Voigt rheological model) A =0.0001 s,
coefficient of the external damping (surrounding medium) ¢=2.0 kg/(m?). The parameters of the
electromagnetic stabilization system are: length of the magnetic core I, =0.2 m, cross-section area of

the core S =3.14x10* m? nominal air gap in the magnetic circuit &=0.01 m, number of wire
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windings N =500, electric resistance of the supply circuit R=8 Q, relative magnetic permeability
of the core ¢ =5000.

Detailed derivation of equations of motion of an elastic rotating shaft was laboriously given by
Kurnik [5] who examined the class of rotating beams made of a material having damping properties
described by the Kelvin-Voigt model according to which the stress in the material is directly

proportional to strain (Hooke's law) as well as to strain velocity (viscous effect). These equations are

as follows:

o’y 0 ) ooy 0z

—+h—+a"||1+— + =0, 0(X—X

ot ot ot Joxt TP G 7 O B X)

0? 0 o )o 0! @
z z z y

— +h—+a’||1+— - =q,, 8(X—X

ot ot K at]ax“ ﬂwax“} . 8(x=%,)

where 3(x—X,) denotes the Dirac delta function. It describes the presence of the electromagnetic
actuators place at X=X, and are assumed to act as tip-concentrated forces. The quantities F, F,
are magnetic forces, i.e. q,, =F,/(oA), q,, =F, /(oA), besides h=c/(pA), a’=EJ/(pA). An
explicit form of the magnetic forces q,,, d,, is given in (4). They were derived by Kurnik [5].

The analyzed object is a one-dimensional continuous system described by partial differential
equations (1). It has an infinite number of degrees of freedom. Keeping in mind the fact that dynamics
of the system is mainly governed by first eigenfunctions of the shaft, expressions (1) will be
discretized into ordinary differential equations by projecting them onto the subspace ranged over the
first eigenmode corresponding to the simply supported beam. This approach would yield a possibly
exact and simple at the same time mathematical model of the system enabling analysis of its response
within the linear and non-linear domain.

The first eigenform of the simply supported Euler-Bernoulli beam is a sine function sin(z x/1).

Accordingly, the first approximation (Fourier method) to equations (1) is:

y(x,t) =Y (t)sin ”I—X and z(x,t)= Z(t)sinﬁl—x (2)

Application of Galerkin's unimodal discretization to (1) based on predictions (2) gives:

X,
|
T X,

Y +hY +k} (Y + BY +ﬁw2)—|3qmy sin =0
®3)

Z+hZ+k}(z +/327[)’a)Y)flgqmzsin =0

where k, =z*/1*. The expressions for the electromagnetic forces are:
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q. = S Nz/lc Iy2 _ Iyl q., = S Nzﬂc ) _ iZl (4)
™ 4pA [(A-y, ) (A+y, )| ™ 4pA |(A-z,f (A+z)

where S denotes cross-sectional area of the magnetic core, u, = u,u its resultant magnetic
permeability ( z, = 4x107" H/m — magnetic permeability of vacuum), i, 0y, 0,, 1, arecurrentsin
the electric circuits in both actuators (four independent electric circuits), N — number of wire
windings in each electromagnet, A — normalized gap in the magnetic circuit A=5+1./24,, v,
and z, transverse displacements of the shaft at the point of actuators placement:
Y.=Ysinzx, /I, z,=Zsinzx,/l.

Equations of electrodynamics of the electric circuits supplying every half of the electromagnets

are the following:

di, :2(U—iyzR)(A—ya)_i \% diy, :Z(U_ile)(A+ya)+i Y
dt NS 4, P A-y, dt N2S 1, TA+y, ©)
di,, _2U-i R)(A-2,) . z di, _2U-i,R)(A+2,) . z
dt N?S 4, ZA-z, ' dt N?S 4, “A+z,
and the explicit form of electro-mechanical coupled equation of motion of the shaft is finally:
Y +hY +k“(Y+ﬁY+ﬂa)Z)—SN2'u° e sin“Xa -
' 20A1 |(A-y,) (A+y,f [
SNZ 52 :2 (6)
Z+hZ+k(Z+BZ - PwY)- #o e sinZXe — 0
Yy {(A—za)z TR

As a result, we have two ordinary differential equations of the second order and four equations of
the first order. To get some more organized and neat mathematical formulation of the above, let us
introduce new variables which will transform these expressions all into differential equations of the
first order and, additionally, make the equilibrium position of the electro-mechanical system trivial.
Normally, mechanical equilibrium is at the zero point (Y =0, Z =0) but the electric currents do not:
=i

y2 =1, =i, =U /R . To achieve the goal, we introduce:

U]

which leads to the system of eight differential equations of the first order:
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u, =u,

U U
. UG+E US+E
U, =—hu, —k/'(u+fu, + fou)+& o A—ug A+ug
1oa 1oa
Us =,
2 27]
u8+UE u, +—
U, = —hu, —k}'(u+pu, - fou)+¢, o A—ue AU
3>a 3>a
u o (1+Y)s,
b= S (arug ) = ay ) R
oVp A+u, &, oVp A-u, &,
(u +—)u [u +Bju
7 4 6 4
T
oVp A+uy &, oVp A-u, ¢,
2
where &, =sin X , o-:M and V = pAl .

The system (8) can be presented in a concise vector formulation:

u=f(w,u)=A(®)u+N(w,u)

®)

©)

where f stands for the right-hand side of the system, A is a matrix of the linear part of (8), N — the

remaining non-linear part.

3. Critical rotation speed

Find now the critical rotation speed, i.e. the angular velocity at which the shaft loses its stability and

self-excitation occurs. To this end, eigenvalues of the matrix A (see eq. 9) around the trivial

equilibrium u=0 should be determined.

0 1 0 0
—ki+U, -h-K/B -k!Bo 0
0 0 0 1
A@) - k!Bao 0 —ki+U, —h-kig
0 U, 0 0
0 ~U, 0 0
0 0 0 U,
0 0 0 ~U,
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where the following notations have been introduced:

i ) UR:i U,=2U0U;¢&,, A A (11)

U_=2U , _
RA ? Vpo

‘ R A’

Thus we look for a solution to the eigenproblem det[A(w)—rl1]=0, where the matrix A is explicitly

given in (10), r — is the eigenvalue to be found, I is the identity matrix of the rank 8. The eigenvalue

which decides about stability of the system has the greatest real part. Denote it by r, =r,. By
tracking its trajectory on the complex plane Re{r,}—Im{r,} one can easily notice the moment at
which Re{r,} reaches zero and intersects the imaginary axis. Positive values of Re{r,} mean

destabilization of the system and the onset of self-excited vibration (flutter).

128.026

128.024

128.022

128.020

128.018

128.016

128.014

128.012

-15 -1.0 -0.5 0.0 0.5 \

Figure 2. Trajectory of the decisive eigenvalue for the disabled and enabled actuators.

The situation is shown in Fig 2. Initially, at a low angular velocity, the eigenvalue stays on the left
half of the complex plane and the system remains stable. Growing @ makes the eigenvalue r, move
rightwards. At o =w,, it passes through the ordinate — the stability is lost and @ gains the critical
threshold. Activation of the electromagnetic actuators however shifts the trajectory leftwards (as seen
in Fig. 2) and stabilizes the shaft which for a certain U =0 acquires a new, greater value of the
critical speed.
Naturally, an infinite growth of @, by application of a larger and larger voltage is not possible
because of obvious safety reasons and also due to threat of divergent behavior of the shaft which
might attach to one of the electromagnets as a result of too excessive attracting force.

In Fig. 3, the critical velocity @, is shown in function of the voltage U supplied to the electric

circuits of the actuators. Apparently, relatively small values of U of 20 V lead to an increase in the

critical speed by 40 %.
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Figure 3. Critical rotation speed vs. voltage applied to the electromagnetic actuators.

4. Non-linear analysis of the system
The newly born situation — the loss of stability and appearance of self-excited vibration requires
additional investigation to be made in order to examine the character of such vibrations. The main
problem here is to find out whether the newly occurred limit cycle (flutter) is orbitally stable or not.
This is of vital importance to the system.

The near-critical nature of self-excited vibration can be analyzed by constructing a bifurcating

solution composed of an infinite series of 2xi-periodic functions of the form:

o

u(e, Qt) = zgi—:u“) () (12)

i=1

where u® are the sought harmonics of the frequency Q being itself expressed in terms of the series

in the small parameter ¢ :
o, (13)

where Q, denotes the initial frequency of the flutter Q, =Im{r,(®»,)}. Analogously, the angular

speed is also expanded into the series:

=0, + ig—a), (14)

i 1!
Now, take into consideration only the first approximation of the bifurcating solution:

u(e, Qt) = eu® (Qt)

(15)
Q=Qo+lg2 Q,, v=0, +152w2
2 2
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since Q, =0 and @, =0 are zero (like any other odd terms). The first approximation u® is based on
the eigenvector g corresponding to the eigenproblem {A(w,)-iQ,}q =0, whereas the parameters

o, and Q, are obtained from relationships given by looss and Joseph [1]:

, :_Red—{‘{’z} , Q, =0, Im{
3Re{ ra(wc,)}

@

1(“’")} Limgw,y (16)
do

in which the complex number ¥, is to be found from:

(w“’ )'*(q K, +0a,L )+3iiii (©.0) a, ;9,4 7
ENEGlIp au ou, <

35337
B 2 i=1 j=1k=1 a j k i=1 j=1k
where f, is the i-th component of the right-hand side vector of the governing equations of motion (8),

and K,, L, are k-th components of vectors found from the following expressions:

azf(a) 0 _

8 8
K=-2A"
( cr Z‘IZ‘I aulauk qk (18)
-1 &3 62f(wcrl )
L=AA@,)-2iQ}* Y > % T g,
=1 k=1 ou. 6uk

The vector q” standing in (17) is another base vector corresponding to the adjoint eigenproblem
{AT(@,)+iQ,}9 =0. Both vectors q and q" can be determined with an accuracy up to a constant.

For uniqueness, their orthonormalisation is used:
8 8 _
zqui =0 and Zqiqi =1 (19)
i=1 i=1

where the overbar means the complex conjugate. All the above formulas enable numerical calculation
of the first bifurcating approximation whose most important characteristic is its amplitude. It is
illustrated in Fig. 4.

As can be easily noticed, for U =0 (no actuation) we observe an infinite jump of self-excited
vibration. This is because the considered system is fully linear in its mechanical part. The non-
linearity comes from electrodynamics only. Application of U =0 encloses the bifurcating solution on
a limit cycle with a certain amplitude (see Fig. 4). Greater values of U smoothen this amplitude more
and more. The effect of reduction of the vibration is easily seen.

What is especially interesting, the observed bifurcation is always supercritical. This means that

the amplitude of flutter monotonically grows with an increase in the rotation speed and no sudden
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jumps will appear (like in the case of subcritical bifurcation). This has been numerically confirmed by

calculating the Floguet exponent given by the equation:
o(e)=Re{¥,}e? +0(c*) (20)

where O(e*) denotes small terms of higher orders. Since &> >0, the sign of o is ruled by the
magnitude of Re{¥,}, and the analysis proves that it is always negative. And o <0 means that the

limit cycle is orbitally stable.

0.8
0.6

0.4

O — O
0 2 4 6 8 [rad/s] &

0.0

Figure 4. Amplitude of the bifurcating solution around the critical point for some selected voltages in
the electromagnetic actuators.

5. Concluding remarks
In this paper, a method of stabilization and reduction of vibration in an elastic rotating shaft by
making use of electromagnetic actuators is presented. The electromagnets introduce kind of an
additional stiffness and damping to the system by generating an attractive magnetic force proportional
to the lateral displacement and velocity of the shaft. The character of this force is strongly non-linear.
A very good efficiency of the proposed method has been confirmed. A shaft of length 1=1 m and
diameter d =1 cm exhibits growth of the critical rotation speed by 40 % for a moderate voltage of
20 V. Another advantageous effect of this stabilization approach is observed in the non-linear scope
as well. It has been observed that the loss of stability is always accompanied by smooth and safe
supercritical bifurcation.

The analyzed model is yet mechanically linear. Further research is the required to get a complete

understanding of the phenomena taking place in the system.
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Using saturation phenomenon to improve energy harvesting in
a portal frame platform with passive control by a pendulum
(CON004-15)

Rodrigo Tumolin Rocha, José Manoel Balthazar, Angelo Marcelo Tusset, Vinicius
Piccirillo, Reyolando M.L.R. Fonseca Brasil, Jorge L. Palacios Felix

Abstract: A new model of energy harvester based on a simple portal frame structure
subjected to saturation phenomenon is presented. Energy is collected via a
piezoelectric device whose nonlinearities are considered in the mathematical model.
The system is a bi-stable Duffing oscillator presenting chaotic behavior. Optimization
of power harvesting and stabilization of chaotic motions to a given periodic orbit is
obtained analyzing the average power output and bifurcation diagrams. Control
sensitivity to parametric errors in the damping and stiffness parameters of the portal
frame is studied. The proposed passive control technique uses a simple pendulum
tuned to the vibrations of the structure to improve energy harvesting. The results show
that with the implementation of this control strategy it is possible to eliminate the
need for active or semi active control, usually more complex. The control also
provides a way to regulate the energy captured to a desired operating frequency.

1. Introduction

In recently past years, the research about vibration energy harvesting has been increased substantially.
Many of those vibration sources are found in structures that are excited by wind, sea waves, vehicles
traffics, i.e., external excitations. One of most promising and studied device as a means of low power
energy harvesting is the piezoelectric material.

The research about these materials begun with some experiments, showing itself a nonlinear
material [1]. Recently, a big gamma of works introducing the piezoelectric material as a means of
energy transduction has been widely studied as we see in [2-6]. Specially, the nonlinearities of the
piezoelectric material, which was experimentally found, was analytically proposed as an
approximation by [7]. The nonlinearities of vibratory energy harvesting were widely exploited by [8].

The vibratory energy harvesting generally contains the piezoelectric material coupled to a
structure. Some kind of structures may present particular configurations that may improve the energy
harvesting, even provide periodic behaviour. One of the particular exploited configurations is the
internal resonance, such as 2:1, between two modes of vibration, so that the system transfers part of
the vibration energy available at a certain coordinate to the another one. This is the saturation

501



phenomenon described by many authors, for example, among others [9-11]. The implementation of
saturation as a control method was proposed and studied by [12-14], among others.

Works involving electro-mechanical systems have been recently studied by many authors. A
model of an energy harvester based on a simple portal frame of a single-degree-of-freedom structure
was presented in [15]. The system was considered as a non-ideal system (NIS) due to a full
interaction of the structure motions, with the energy source, a DC motor with limited power supply.
The nonlinear piezoelectric material was considered in the coupling mathematical model. The system
was found to be a bi-stable Duffing oscillator presenting chaotic behaviour. The structure was
controlled using a pendulum as a passive control and improved the energy harvesting of the system.

The passive control using a pendulum was implemented by [16], showing to be a very useful
controller and energy harvesting tune.

In this work, we will explore the passive control using a pendulum coupled in a simple portal
frame of two-degree-of-freedom structure, as studied by [17,18]. We will show the control and
improvement of energy harvesting of the system setting a control parameter of the pendulum.

2. Energy harvesting modelling

The energy harvesting model studied in this paper, illustrated in Fig. 1, consists in a portal frame of
two-degrees-of-freedom with a piezoelectric material coupled to a column and a linear pendulum
coupled to the mid span of the beam, i.e., the pendulum will move according to the symmetric mode
movement.

The portal frame consists of two columns clamped in their bases with height h and a horizontal
beam pinned to the columns at both ends with length L. Both column and beam have flexural stiffness
El. The mass at mid span of the beam is M. The masses of the columns are m. The structure is
modelled as a lumped mass system with two-degrees-of-freedom. The coordinate q; is related to the
horizontal displacement in the sway mode, with natural frequency w;, and g, to the mid-span vertical
displacement of the beam in the symmetric mode, with natural frequency w,. The linear stiffness of
the columns and the beam can be evaluated by a Rayleigh-Ritz procedure using cubic trial functions.
Geometric nonlinearity is introduced by considering the shortening due to bending of the columns and
of the beam.

The linear pendulum is coupled to the mass of the mid-span of the beam, consisting of a mass ms,
rotational stiffness ks, and rotational damping as cs.

The nonlinear piezoelectric material is coupled to the column as an electric circuit, which is
excited by an internal voltage (back-emf) proportional to the mechanical velocity, in order to harvest
energy from the vibration of the column. This circuit consists of a resistor R, a produced charge Q and

a capacitance C, of the capacitor. The dimensionless relation of nonlinearity of the piezoceramic is
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given by d(gy) = 6(1+@|qy|) defined by [7], where 0 is the linear piezoelectric coefficient and © is the
nonlinear piezoelectric coefficient.

The mechanical system is based-excited by a harmonic force which has amplitude F, and
external frequency w,. This external force frequency is set near resonance with the symmetric mode.
Frequency o, is also set twice the frequency of the sway mode as 2m; = w,. These conditions of
resonance are necessary to have modal coupling in the nonlinear adopted model. In these conditions,

we have the saturation phenomenon.

v v v,
ERR R
2 Il 3 )= U,
m L/2 M L/2 n
o\
— X,
dfqi) El, h lmg Elln
q, Y
\ I

q, g 15

Figure 1. Physical mode of a simple portal frame of two-degree-of-freedom structure

2.1. Modelling of the dynamical system
The modelling of the physical model will be developed by Lagrange’s energy method which uses the
Lagrangian function and Euler-Lagrange equation.

Nodal displacements, shown in Fig. 1, are

B B .
U =g u2:u1+zvf u3=u1—zv12 X,=-u, +Ising
1
A A )
Vi=0Q, V, =——U; Vy=——U; Y, =v, +1cos¢

2 2
where A = 6/5h and B = 24/5L. The stiffness of the beam and column calculated by the Rayleigh-Ritz
method are, respectively, k, = 48E1/L® and k. = 3EI/h®.
The generalized coordinates considered here, are the displacements of the mass at the mid span
of the beam M. Using nodal displacements of (1), the kinetic energy is defined in Eq. (2).
T:EM(L]f+\'/12)+1m(2uf)+1m3()(12+Y12) )
2 2 2
Introducing the generalized coordinates q; and q,, the kinetic energy becomes to Eq. (3).
1

. . 1 . 1 2 . ; e .
T=oM (o +q§)+5m(2qf)+5m3(ql2 +03 + 174" +21g(d, cos g +d,sing)) ®3)
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The potential energy of the system is given by the strain energy of the structure, the stiffness of
the pendulum, the work of the weight of the masses of the beam, columns and pendulum, and by
electrical potential part of the piezoelectric circuit with the contribution of the piezoelectric and the

capacitor, resulting in Eq. (4).

2
u :%kc(u22+u§)+%kb(vl—v27;v3] +mg (v, +V, )+ Mgy, +mygY, +...
4
1 d(a,) 1Q°
=k = —=2Q(U, + v, ) + ==
2" C, QU +v.) 2C,

Substituting (1) in (4), in terms of the general coordinates q;, g, ¢ and Q, we have the potential

energy in Eq. (5).
1 1
U =(k, —mgA)q; +§kb(q22 + quqf)+ Mgq, +m,g(-a, +1 cos¢)+5k3¢2 -

d(q) ( B 2] 1Q?
ot — i .
C Qg+ 4q2 +2Cp

p

®)

Now, we consider energy dissipation of the system, comprising the structural and pendulum
damping defined by a Rayleigh function and the resistor of the electrical circuit. Then it follows in

Eq. (6).
1 ., 1 ., 1 . 1_ .
D:E 1qf+EC2q§+§cs¢2+§RQ2 (6)
The harmonic excitation force is given by (7).
S = Focos(wnt) (7)

The Lagrangian function is defined by Eqg. (8). Substituting Egs. (3) and (5) in Eq. (8) we have
the Lagrangian of Eq. (9).

L(g9.,9,t)=T -U 8)

1
(ke ~mgA)a; + K, (a; + Ad; ) + .

1 . . 1 . 1 . 1
L:EM(qf+q§)+5m(2qf)+5m4qf— ngz+m3g(—q2+Icos¢)+5k3¢2—... )
d(a) ( B 2) 1Q°
+—g? |+
c, Q| & 4qz 2¢c,

Now, using Euler-Lagrange, Eq. (10), we have the equation of motion of the system that are Eqs.
(11), (12), (13) and (14).
d [6L] oL @D
_ob D _

il i DU T i=14 10
dt{og ) éq og " ()
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(2m+M +m,)d, + 2(k, —mgA)q, +K,Ad,g, +c,g, =m,| (éﬁcosyﬁ — ¢%sin ¢) + dc(:ql)Q (11)
p
(M +m,)d, + k., +C,0, +(M +m,)g +A7kbq12 =Fycosat +myl(gsing + §° cosg) + d((:ql)ngz
p
(12)
myI%¢ + C, + kygp + My [(‘q‘lc05g15+(c'12 —g)sin¢]=0 (13)
. d(qg B
RQ—%{qﬁzcﬁ}g:o (14)

P P
For a better analysis, a dimensionless process is carried out, resulting the dimensionless

equations of motion of the system as follows

X+ X+ X, + XX, = 7, (4" cosg — ¢ sin ¢) +0(1+0|x)sV (15)
X+ 11X + 3%, + X + Gy = By CosQz + O(1+ Ox,| ) 5Vx, + 7, (4"sing + ¢ cosg) (16)
¢+ 1 + 0ip + v, X cosg+(y,X; — G, )sing =0 (7
V' = 0(1+0|x[)(5x, +8,x} )+ oV =0 (18)

where dimensionless parameters are

xiz(?ll, xzfqz, V:S—O r=ot, o= M , d(xi):—od(ql)

M_Milwl' HZ:(M+CrZT13)w1' Gzzw?L' °:(M+r|1:103)wa 3:wgfl’ e:mis
K K k,h?

w2=%1 (M +bm3)' %:’\:\TZ')}, 2=2(Milran3)a)fL’ Qz%:’ ya:% (19)
2 2 2

“’fi :TZ My =(2m+M+m,), ”fmjgwl' 71=|\T:Ih' =M T:La)L

To calculate the harvested power of the system, Egs. (20) and (21) are given as dimensional and

dimensionless harvested power, respectively.
P = RQ? (20)
P=RV" (21)
where Ry = R(w100)°.
The average power of the system can be calculated by Eq. (22), as in [7,15,17,18].

P :%].P(‘[)d’[ (22)
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Next, section 3 will discuss numerical simulations with and without the pendulum, considering

the nonlinear piezoelectric contribution fixed in ® = 1.

3.  Numerical simulations results and discussions

The numerical simulations realized in this work were performed by MATLAB®© software. The
parameters considered to the numerical simulations are in Tab. 1. The parameters were adjusted to
has saturation phenomenon at the portal frame system, that is, w, = 2w, and the external force

frequency is in resonance with the symmetric mode (Q = w, + o), where ¢ is a detuning factor.

Table 1. Dimensional System Parameters

Parameters | Values Means Torsional Pendulum
ks [Nm/rad] 0.403 Stiffness
g [m/s7] 9.81 | Gravity acceleration L [m] 0.52 Beam Length
M [ka] 2.00 Beam Mass h [m] 0.36 Column Length
I [m] 0.16 Pendulum Length
m [kg] 0.50 Column Mass External Excitation
Fo[N] 40 Amplitude
m;s [kg] Vary Pendulum Mass R [kQ] 100 Piezoelectric Resistance
c1[Ns/m] 0.001 Column Damping Colur] 1 Piezoelectric Capacitance
. External Excitation
C2[Ns/m] 0.002 Beam Damping wn [rad/s) 146.9 Frequency
Pendulum Linear Piezoelectric
Co[Ns/rad] | 0.061 Damping 0 0.1 Coefficient
. . Nonlinear Piezoelectric
El [Nm?] 128 Linear Stiffness (2] 1 Coefficient

A new control parameter will be considered in order to configure the system with the optimal
energy harvesting and behaviour of the system. This new parameter will be defined in eqg. (23).

o=~ (23)

m3

The parameter “e” will be varied with an acceptable ratio that the pendulum mass (ms) should not
overpass the value of the mass of the mid span (M). This interval is 0.5 <e < 100.

Next, we will present results of numerical simulations considering and not considering the
passive control, and in the end, compare the results each other showing the contribution of the

pendulum as a passive controller.

3.1. Dynamical analysis of the portal frame structure

In this section, we will show some analysis of behaviour and energy harvesting of the system without
the pendulum coupling to show the saturation phenomenon and its advantage to harvest energy. Using

the parameters of Tab. 1, next figures provide results of the analysis.
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Figures 2a and 2b show the bifurcation diagrams of the horizontal and vertical movement,
respectively, related to the external force frequency. We can see some values of the frequency that the
system tends to be chaotic. The interval of the frequency showed in the bifurcation diagrams shows

the relation of resonance between the vertical movement and the external excitation.

0.4

-0.4
130 140 150 160 170 130 140 150 160 170

(a)  External Force Frequency w, [rad/s] (o) External Force Frequency w, [rad/s]

Figure 2. Bifurcation diagrams of (a) Horizontal movement, (b) Vertical movement.

The external force frequency w, = 146.9rad/s (the same as Tab. 1) will be analyzed in order to
comparison, because it is in the chaotic area of the bifurcation. Therefore, next simulations we will
consider the external frequency as w, = 146.9rad/s.

Figures 3a and 3b show the Poincaré maps of the horizontal and vertical movement, respectively,

in order to analyze the behaviour of the system. We see that the system is chaotic.

Figure 3. Phase plane (in black) and Poincaré maps (red dots) of; (a) horizontal movement, (b)

vertical movement

Finally, we calculated the average harvested power of the chaotic system, and it is 9.169,

approximately.

In next section, we will show the influence of the pendulum coupled to the mass “M” of the mid-

span of the beam to the behaviour and energy harvesting of the system.
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3.2. Analysis of the pendulum coupled to the dynamical system

In this section, we will perform some analysis of behaviour and energy harvesting of the system with
the pendulum coupled to the portal frame. To the analysis of the control of the chaotic behaviour, we
will set a control parameter by “e”. This control parameter is the inverse of the mass (e = 1/ms), so we
can see the influence of the mass at the behaviour of the system.

To follow the same line as in Sec. 3.1, we will consider the external force frequency as in Tab. 1
to the next simulations.

Firstly, we built a bifurcation diagram related to the control parameter and we can carry some
results. Figures 4a, 4b and 4c show the bifurcation diagram of the horizontal, vertical and pendulum
movement. Figure 5 shows the average harvested power related to the control parameter. We see
some intervals of e that controlled the chaotic behaviour, forcing it to a periodic behaviour. This
interval is approximately 25 < e < 68 (region 1). The average power at region (1) is approximately
4.80. In region (2), e < 25, we see a great improvement of the energy harvesting; a peak of 69.02
amount of power, however, the behaviour is most of time quasiperiodic, sometimes the system
presents periodic behaviour. In region (3), e > 68, we see the average harvested power increasing
slowly from 4.80 to 8.63, approximately, but the behaviour tends to be quasiperiodic all the time.

Analyzing the full interval of e, we see no chaotic behaviour.

M 8 ‘ [
Y | | 1
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(@) (c) €
Figure 4. Bifurcation diagram related to the control parameter “e” of (a) horizontal movement, (b)

vertical movement and (c) pendulum movement
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Figure 5. Parametrical analysis of the control parameter “e” related to the average harvested power
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4. Conclusions

This work presented the energy harvesting of a simple portal frame of two-degrees-of-freedom
structure using a pendulum as a passive control.

The pendulum showed to be very useful as a controller, it eliminated the chaotic behaviour,
forcing the system to a periodic and quasiperiodic behaviour, it will depend on the value of the
parameter control “e”.

The energy harvesting could be improved. We see in Fig. 5 that some regions of the parametrical
analysis have more or less harvested power. In region (1) the system presented periodic behaviour all
the time, while in region (2) and (3) the system presented most of time quasiperiodic behaviour.
However, the average power goes from 4.80 to 69.02, approximately. It will depend on the value of
“e”.

The advantage of using a passive control is that, it not necessary any electronic component to
control the system, as an active control. Therefore, we can tune the energy harvesting choosing a
desired parameter control.

Based on the results obtained in this paper, we should compare the efficiency between the NES
[19], which is a small mass-spring-damping system coupled to a degree-of-freedom of the main

structure, and the present pendulum approach.
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Passive and semi-active vibroisolation of a horizontal platform
(CON164-15)

Stefan Segla, Milan Zmindak, Martin Orecny

Abstract: The paper deals with modelling, control and optimization of a horizontal
platform suspension system, which is kinematically excited in two mutually
perpendicular directions. The platform is intended to be used as the working machine
seat suspension in the machine cabin. Its primary goal is to reduce horizontal
vibration of the seat, while the vertical vibration is reduced by the seat itself. Three
alternatives of the platform are investigated. The first one is suspended with passive
elements, the second one is suspended using idealized semi-active dampers and the
third one is equipped with magnetorheological dampers. The skyhook control
algorithm is applied to control the idealized semi-active and also magnetorheological
dampers. The design parameters of the mechanical and also control parts of the three
suspensions are optimized using multi-objective optimization with the objective
function expressing minimization of the frequency weighted accelerations and relative
displacements. The numerical simulation results show that using idealized semi-active
and also magnetorheological platform suspensions gives significant platform vibration
reduction compared with the passive platform suspension.

1. Introduction

The operators of various land vehicles and machines are exposed to vibrations due to their operation.
Prolonged exposure to vibrations has a significant influence on the operator’s fatigue and can even
lead to a deteriorating health state. Among human inner organs the vertebra is the most affected.
Medical research studies presented by Griffin in [1, 2] showed the need for proper suspension design
ensuring desirable comfort of the operator. Another need is related to the controllability of working
machines in the fields of the heavy earth-moving machinery and mobile agricultural machinery.

A lot of research has been devoted to the mitigation of the vertical vibrations in various kinds of
vehicles. The conventional seat or vehicle suspension involves passive springs (often air-springs) and
dampers. Multicriteria optimization techniques are often applied to determine the optimum values of
the suspension damping and stiffness parameters leading to optimum dynamic performance of the
passive suspensions. Stein et al. [3] studied locomotive driver’s seat vertical suspension with an
adjustable damper. The seat model was augmented with the seat cushion dynamic model and a two-
parameter optimization was performed. Maciejewski et al. presented in [4] comparison of
transmissibility functions for a conventional and modified passive suspension of working machine

seats. Vibro-isolation properties of the modified system were improved by a modification of an air-
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spring and shock absorber. Segla and TriSovi¢ in [5] used 1.5 degree of freedom Zener’'s model to
model and optimize a working machine seat suspension. The paper also points on the possibility of
improving the dynamic characteristics of the seat with the use of a passive dynamic vibration
absorber. In [6] the effect of asymmetry on vertical dynamic response of railway vehicles was
investigated and in [7] possibilities of multi-objective optimization for selecting dynamic
characteristics of seat suspension systems and quarter-car models were presented.

Active suspension system involves replacing the conventional suspension elements with an
actuator. It uses the external power supply for generating the active force that is regulated by a control
system reacting to system parameters (displacement, velocity and acceleration). This system is still
costly, involving a number of precision components, and its energetic demand is high. The most
important characteristics of these systems can be found e.g. in [8], [9]. Maciejewski et al. in [10]
investigated the dynamic response of an active vibro-isolating pneumatic suspension seat. Active
control of the air-spring force used a triple feedback loop control system. Misselhorn et al. [11]
presented a testing method in which real-time measurements on physical hardware replace the
mathematical model of the vehicle model during simulation.

Semi-active suspensions fill the gap between active and passive systems. The idea of the active
system can be modified so that the actuator is only capable of dissipating energy. The semi-active
suspension system is characterized by a rapidly adjustable damper parallel with a spring which
supports the static load. Hardware requirements are considerably less. Required external energy is in
general very small [8]. Magnetorheological (MR) dampers are mostly used semi-active devices in
automotive engineering. The key feature of an MR damper is the magnetorheological oil whose
rheological properties can be altered by applying a magnetic field. By controlling the field variable
damping force can be produced. Overview of semi-active control algorithms (balance, skyhook and
groundhook algorithms), MR and friction dampers, vehicle modelling and human body analysis can
be found in [9]. Georgiou et al. [7] presented comparison of passive and semi-active suspension
systems with a constant horizontal speed over roads involving an isolated or a distributed geometric
irregularity. Optimization was based on three performance criteria related to ride comfort, suspension
travel and road holding.

2. Dynamic and mathematical models of passive platform suspension

In Fig. 1, the dynamic model of a passive suspension system is presented. It consists of a rectangular
plate of mass m, linear springs k and linear dampers c.

Special ball bearings are assumed to be used between the working machine cabin and the
horizontal platform. Low friction of the bearings enables neglecting friction forces between the cabin
and the platform.

524



u () k k
—>

€ | e; €

k
c
k e, i & K
c
k

I v(®

Time functions u(t) and v(t) represent kinematic excitation of the platform induced by the

Figure 1. Passive platform suspension.

vibrating cabin. They were obtained experimentally in the cabin of the bucket-wheel excavator Schrs
1320 [12] in a coal strip mine in Bilina (the Czech Republic), Fig. 2. The bucket-wheel excavator is
one of the most suitable possibilities of application of the horizontal platform.

Figure 2. Bucket-wheel excavator Schrs 1320.
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In the following the equations of small plane motion will be derived for the platform. The
absolute linear displacements x and y of the platform center of mass T and the angular displacement
¢, Fig. 1, determine an instantaneous position of the platform. Point O is the geometric center of the
rectangular plate of dimensions | and h. The points O and T are not identical in order to take into
account actual placing of the real seat with an operator sitting on it.

Assuming small motions of the platform, the motion equations can be written in the form (see
Fig. 3)

Fcl

Fis

| . b e

Figure 3. Free body diagram.

m¥X=- > F- XF, )
i=1,2,5,6 i=1,2

my=- > Fi- 2Fq, @
i=3,4,7,8 i=3,4

|-|- (;{52 ZFki ei sin aj — ZFki ei sin aj + ZFCi ei Sinai - ZFCi ei Sinai, (3)
i=1,3,6,8 i=2,4,5,7 i=13 i=2,4

where x, y and ¢ are generalized coordinates — linear displacements x and y of the platform centroid T
and angular displacement ¢ of the platform, m is the platform mass, I; is the mass moment of inertia
of the platform about its center of mass T, I, h and e; are geometric dimensions of the platform, r and s
are geometric lenghts determining position of the platform center of mass T with regard to the
geometric center of the platform O, ¢; are angels, Fy; (i=1, 2, ..., 8) are spring forces acting at points

1,2,...,8,F;(i=1,2, ..., 4) are damping forces acting at points 1, 2, 3 and 4.
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The spring and damping forces acting on the platform can be written e.g. for points 1 and 2 in the

form
Fia =k (x—=u-pesing), Fio =k (x—u+pe,sina,), 4

Fu=k(k-lU-gesing), Fop=k(X-U+gpeysina,), (5)

In chapter 6 the optimum values of the chosen design variables k and ¢ will be determined by
minimizing the objective function expressing the frequency weighted platform accelerations and
relative displacements.

3. Dynamic and mathematical models of idealized semi-active platform suspension
Dynamic model of this suspension differs from the passive suspension, Fig. 1, in using idealized
semi-active dampers instead of passive ones.

The control law of the semi-active dampers is based on the sky-hook control. The task of each
damper is to generate the same force, with the same direction and magnitude, as the fictitious sky-
hook damper (with the damping coefficient cgy) acting on the platform would generate. For example,
for point 1, Fig. 4, the fictitious sky-hook damper is placed between points 1 and 1’. The point 1’
absolute location in the horizontal direction is fixed. The semi-active damper is capable of generating
the damping force of the required direction only if the direction of the absolute velocity X; of point 1
and the relative velocity between the platform and the working machine cabin are of the same

direction. It can be expressed by the following inequality

u(®)

Figure 4. ldealized semi-active platform suspension.

%, (% —u) >0. (6)

The following equations hold for the semi-active damping forces at points 1 to 4
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Fa1=Coy (X-gesing) if (x-gesing )(x-u-gpesina)>0, @)

(
(

Faz=Coqy (V+oegsinag) if (k+pegsinag)(x—v+gegsinas)>0, )

Feao =Cay (X+epsinay) if (k+gpeysina,)(k—i+ge;sinay)>0, ®)

Fsa,4 = Coy (y_¢e4 Sina4) if (y_¢e4 sin 0!4)()7 —V-geysin a4)>0, (10

If condition (6) is not met then the semi-active damper is not capable of generating the damping
force of the required direction and it has to be in the “off” state.

On the magnitude of the semi-active damping force Fg,; an upper limit preventing the damper
from generating higher damping forces than a real magnetorheological (MR) damper can do will be
applied. In the “off” state of the semi-active damper a zero damping force Fg,; will be applied (unlike
to real MR dampers).

In chapter 6 the optimum values of the chosen design variables ¢y, and k will be determined by
the same procedure as described at the end of chapter 2.

4. Dynamic and mathematical models of platform suspension with MR dampers

The dynamic model of this suspension differs from the idealized semi-active suspension in using MR
dampers [13] instead of the idealized semi-active ones. In literature a lot of mathematical models of
real MR dampers, whose parameters were obtained experimentally, can be found. It is of great
importance to choose MR dampers whose parameters are suitable from the point of view of the force
range, its magnitude in the “off” state and time delay.

The mathematical model of the MR platform suspension differs from the idealized semi-active
platform model in replacing egs. (7) to (10). The governing equations of the control force produced

by the i-th MR damper are expressed in the form
FMR,iZO'aZi+O'OZiUi+012i+0'2Ai+O'b AiUi’ i=l,2,...,4, (]_]_)
2 = A —ag |All zi, (12)

Aiz(x—u—¢e15ina1), A2 :()'(—L]+¢e25ina2),

Ag=(y-V+gegsinag), Ay =(y-V-gessinay). 13)

These equations are modified LuGre dynamic friction model described in [13]. In egs. (11), (12)
z; denotes an internal state variable related to the MR fluid deformation and Uj is the applied voltage
that acts as the control input. U; max =4 V and the other parameters are defined in [13].

A two-state control strategy based on sky-hook control is used and it is defined by the following

equations and conditions
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Uizuopt, if A;B; >0, otherwise U;=0, i=12,.,4, (14)

Bl Z(X—¢elsin 0{1), BZ Z(x+¢62 sin az),

L R 15
By=(y+@egsinas), By=(y—g¢e,sinay). (15)

The optimum values of the chosen design parameters k and U, will be determined in chapter 6.

5. Formulation of the optimization problem

Optimization of the platform suspension parameters is necessary because of two opposite
requirements
—  minimization of the platform accelerations to protect the operator’s health (maximization of
his comfort),
— minimization of the platform relative displacements to ensure the controllability of the
working machine.

Numerical simulations showed that angular displacements ¢ and also angular accelerations ¢

are negligible compared with the linear displacements x, y and accelerations X, ¥ . This justifies
their neglecting in the objective function.

In order to improve clarity of the optimization results both frequency weighted effective
accelerations in the x and y directions will create one function f;. The same holds for both effective
relative displacements in the x and y directions. It is justified by negligible differences of the effective
values of these quantities in the x and y directions. The same holds for the kinematic excitations in
both directions.

The best compromise between the opposite criteria mentioned above create a nonlinear

optimization problem. An appropriate procedure of its solving is by minimizing the objective function

fop =W f +(w-1) f2

: (16)
1,nom f2,n0m

where w is the weighting coefficient which depends on the significance of the criteria (we(0, 1)).
Function f; is expressing the platform frequency weighted effective accelerations in the x and y
directions

lT..z 1T»-2
fi= 7 X (t)dt+ ?jy (t)dt, 17
0 0

and function f; is expressing the platform effective relative displacements in the x and y directions
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T

-
f2:J%j(x(t)—u(t))zdt+\/%f(y(t)—V(t))2dt: (18)
0

0
where T is the time of integration. It must be sufficiently long to capture the dynamics of the system.
Both the effective values f; and f, in eq. (16) are devided by their nominal values (defined for the
mean values of the design variables in their search intervals), because the values are not

commensurable.

6. Optimization results and discussion
The specified values of the platform suspension are: mass of the platform m = 220 kg, mass moment
of inertia of the platform I = 22.5 kg.mz, I1=0.75m,h=0.65m,r=0.09m,s=0.11 m, e; = 0.5227
m, e, =0.6131 m, e; = 0.6085 m, e, = 0.4721 m, e5 = 0.4592 m, eg = 0.3290 m, e; = 0.3254 m, eg =
0.5032 m, oy = 22°, o, = 37.7°, o3 = 47°, oy = 28.5°, a5 = 54.7°, o = 36.4°, o7 = 43.7°, 0 = 62.2°
(see Fig. 1). The weighting coefficient is w = 0.9 and the time of integration is T = 20 s.

Using the Global Optimization Toolbox of MATLAB [12] the following results of optimization
were obtained

— the passive platform suspension: k = 4600 N/m, ¢ = 650 N.s/m,

— the idealized semi-active platform suspension: k = 4050 N/m, ¢y, = 8740 N.s/m,

— the MR semi-active platform suspension: k = 3000 N/m, U, = 3.02 V.

The performance of both semi-active suspensions are compared with the passive suspension.
Table 1 presents effective relative displacements and also frequency weighted effective accelerations
(according to 1SO 2631). It can be seen from the table that both semi-active suspensions bring

significant improvements compared with the passive suspension.

Table 1. Effective relative displacements and frequency weighted effective accelerations.

. L Effective relative Frequency weighted effective
Suspension Direction displacement [m] acceleration [m.s?]

. X 0.0023 0.2533

Passive
y 0.0022 0.2455
Idealized semi- 0.00072 01855
. y 0.00083 0.2166

active

MR semi-active X 0.0015 0.2124
y 0.0014 0.2043
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In Fig. 5 the platform accelerations of the passive versus the idealized semi-active suspension in
the x direction are presented and in Fig. 6 the platform accelerations of the passive versus the MR

semi-active suspension in the x direction are shown. The time interval of 20 s was reduced to 10 s to
better see the details.

1 T T T T T
passive suspension
idealized semi-active suspension
a7 05
g
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Figure 5. Acceleration in the x direction (passive versus idealized semi-active suspension).
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Figure 6. Acceleration in the x direction (passive versus MR semi-active suspension).

7. Conclusions

In the paper three different suspensions of a horizontal platform which can be used in the cabin of a
working machine are presented. Their parameters were optimized in the time domain. The control
algorithms used to control the idealized and MR semi-active dampers are based on sky-hook control
(continuous and two-state control). The results of numerical simulations show significant platform

vibration reduction of semi-active platform suspensions compared with the passive platform
suspension.
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Limit cycles in dynamics of bluff bodies of airflow
(STA058-15)

Yury Selyutskiy

Abstract: Motion of elastically supported bluff body under the action of airflow is
considered. It is supposed that the body can perform translational motion in the
direction perpendicular to the flow. In order to describe unsteady aerodynamic effects,
the empirical model is used that was developed earlier for simulation of dynamics of
aerodynamic pendulum. Limit cycles appearing in the obtained dynamic system are
analyzed. Dependence of their amplitude and frequency upon the flow speed is
studied. Influence of model parameters upon the characteristics of the cycles is
studied. It is shown that simulation results are in qualitative agreement with available
experimental data.

1. Introduction

One of well-known and commonly observed phenomena occurring for structures submerged in flow
are vortex induced vibrations. These vibrations are performed in direction transversal to the flow
velocity and occur for different types of bluff bodies (like pipes, bridges, transmission lines,
suspended cables, etc.) in a certain range of flow speeds and can intensify the fatigue effects or,
sometimes, lead to serious damage of the construction. This engineering importance gave rise to great
interest to the problem, which resulted in appearance of many papers dedicated to it (e.g., [1-5]).

Experimental investigation of transverse oscillations of bluff bodies in flow is technically very
complicated. However, a number of studies of this kind was performed ([6], [7], etc.). These tests
revealed hysteresis of the amplitude and the frequency of the oscillations when the flow speed
increases and then decreases. This phenomenon is due not to the properties of the elastic mounting of
the body, but to the inherent properties of the flow.

In order to perform efficient parametric analysis of body behavior without having to integrate
Navier-Stocks equations, a range of phenomenological models (e.g., [2, 5]) were proposed to describe
the said vortex-induced oscillations of bluff bodies. Most of them are based on so-called wake
oscillator approach, when an additional ordinary differential equation of the second order is added to
the original motion equations, and the extra variable represents the unsteady lift force acting upon the
body. This equation is usually of the Van-der-Pol type. Such method allows describing some features

observed in experiments.
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In [8], an attached oscillator approach was proposed to describe the behavior of the aerodynamic
pendulum. This model is based on introducing an additional degree of freedom that integrally
simulates the internal dynamics of the flow. It was shown that this approach allows obtaining results
that are in good agreement with available experimental data.

Comparison of the attached oscillator model and wake oscillator models suggests that a more
general phenomenological approach could be developed that would allow simulating characteristic
features of behavior of both bluff and streamlined bodies. Such approach would be useful, for
instance, to simulate unsteady effects arising for wing-type bodies at large angles of attack.

2. Motion equations

Consider a bluff body (like cylinder, prism, etc.) elastically mounted and immerged in a flow in such
a way that it can move in the direction perpendicular to the flow speed (Fig. 1). Position of the body is
determined by the ordinate Y of its center of mass C.

Assume that under steady conditions (that is, when no wake takes place) there arises no lift force.

Separate the aerodynamic load upon the body into two components: steady one, F,’, determined by
the drag force directed along the body velocity with respect to the flow; and unsteady one, F,. In

order to describe the latter, we use the attached oscillator model proposed in [8] and allowing
simulating unsteady effects in dynamics of airfoils. The coordinate z of the oscillator with respect to
the body will be the second degree of freedom.

However, for the case of a bluff body, this model needs some modifications. This is due to the
fact that the wake is essentially nonlinear phenomenon, and it is necessary to introduce some

nonlinearity into the model. So, we assume that an additional force F, acts upon the attached

oscillator, and this force depends upon Z in a non-linear way.

Figure 1. Body with the attached oscillator
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The steady aerodynamic force (drag) is applied to the body in its center of pressure and directed

against the velocity of this point. Assume for simplicity sake that the center of pressure coincides with

the center of mass. Then F; can be represented in the following form:

where V. =V2+Y? p is the density of the medium, S is the characteristic area of the body, V is

the flow speed, C, is the dimensionless drag coefficient. We suppose that this coefficient remains
constant.

Taking into account the above stated, behavior of the system comprising the body and the
attached oscillator is described by the following dynamical system:

MY +DY +KY =F; +F,
mi+Y =—F, +F, @

Here M is the mass of the body, K and D are stiffness and damping of the elastic mounting,
m is the mass of the attached oscillator.
Similarly to [8], suppose that the force of interaction between the attached oscillator and the

body, F,, is linear elastic force depending only on relative position and speed of the oscillator with
respect to the body:
F,=kz+hz

As for F, , it seems reasonable to assume that this force should non-linearly depend on the

nl
oscillator speed:
Fnl = le - H3Z3
Hence, (1) can be rewritten as follows:
e . 0S -
MY + DY +KY =——C,\VY +kz +hz
o @
mz+Y =-kz—(h —hl)z'—h3z'3
It should be noted that h — E <0, so that the oscillator would be unstable, and limit cycles

would appear.

In order to make the notation clearer, we rewrite (2) in non-dimensional form. For that, introduce

the dimensionless time 7 =t,/K/M and the following non-dimensional parameters and variables:
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Y z
y =—, =
R R’ 2x/MK \/ pSR
_om 2R 2h h = 2h, h _ Vh,

=——, k= , h= ;
PSR pSV? pSV pSV’ S

3

Here R is characteristic dimension of the body.

Then equations (2) can be rewritten as follows (dots mean derivatives with respect to 7 ):

+[2¢+ +y=—kn+h
y[CM]yyMnr/ @

m i+ +kn—(h—h)j+hyi’ =0

Evidently, this dynamic system has only one equilibrium position, and it is always unstable.

3. Limitcycles

In order to obtain some estimation of parameters of limit cycles arising in the system, we search

the solution corresponding to the limit cycle in form
y=Y,Sin wt, n=mn,5N wt+¢p, 4
In what follows, we’ll assume that the body is heavy, that is, M =2 >>1 (¢ is a small

parameter). Such relation is quite common for solid bodies moving in air. Besides, suppose that the

structural damping is small:
¢ =¢,60 <1
Represent the cycle frequency as o =, +&%w, . Then, substituting (4) in (3), using the

harmonic balance method, and neglecting members of the second order of smallness and higher, we

obtain:
1-w? .
Yo — e Uk cosy, — hw,sing, —2y,w,w, =0
—noU hw, cosg, +uksing, + Cyu+2¢; yw, =0 5)

Ny Mwg —U’k + muw]y,cosep, =0

3wlnih, —4n, h —h u?+ 4w y,musing, =0

From (5) it immediately follows that w, =1. The second and the third equations of (5) yield the
following relation for the phase ¢, :

2 mku? mhu
CdU + 2C0 tan [ +mtanup0 +CdU +2<0 +m:0

The amplitudes are given by the following formulae:
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— m—ku? tang,+ h —h u, =nu
3n, %o hl Yo =9 C,u+2(,

Mo =

\/4u hw, C0s ¢, + uk sing, ©)

Finally, for w, we have:

neU Uk cosy, —hsing,
2Y,
Thus, the frequency of the cycle is given by the following formula:

Q}lz

1 noU uk cosp, — hsing,
2y,M

Note, however, that the above relations for parameters of cycles are valid only under assumption
that both amplitudes are not small: y, ~1, n, ~1.
However, this system has yet another cycle. In order to determine its characteristics, we’ll search
for it under assumption that y, = y,e*, 7, ~1.
Then we obtain the following equations:
y, 1—w? —nu ukcosp, —hwsing, =0
U hweosy, +uksing, =0
7, Mw? —u’k =0 @
3w’nih, —4n, h—h u*=0

From the third equation of (7) we obtain that

/k
w=u,|—
m
This means that the amplitude of the cycle is proportional to the flow speed, which agrees with

the fact that the shedding frequency increases linearly with the flow speed when it is far enough from

the resonance with the natural frequency.
For the amplitude of the attached oscillator we have:

4mh —h
o=l
3k h,
Note that this amplitude does not depend on the flow speed in a first approximation.

For the phase one readily obtains:

Jkm

tanp, = o

Finally, (7) yields the following formula for the amplitude of the body:
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_[ah-h hu  Jkm-h
3 h, ‘m—uzk‘\/kath

Yo

Evidently, these formulae can be used only in the range of flow speeds where m—u’k is not
small in absolute value.

Thus, two limit cycles exist in the system, which makes prerequisites for hysteretic behavior.

4. Numerical simulation

Basing on the above mathematical model, numerical simulation was performed in order to study
behavior of the body at different flow speeds.

For the dimensionless body mass there was used the following value: M =500 . Like in [2], we

assume that the total drag coefficient is constant, and C, = 2.

04 ey
y ¥
0.6 0.61

0.4 0.44

0.2 02

Figure2. a) £ =0;b) £ =0.0015.

0.84

0.61

0.2 09

Figure3. a) £ =0.003;b) £ =0.01.
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The values of parameters of the attached oscillator parameters should be determined in such a
way as to provide reasonable agreement with experimental data. Here, the following values were
chosen:

m=15 k=16, h=10, h =25 h,=05.

Dynamic system (3) was integrated numerically for different values of the structural damping ¢

and different flow speeds. For each combination of parameters, limit cycles were found, and their
characteristics were determined. Some results of computations are presented in Fig. 2, 3, where
amplitudes of oscillations of the body are shown as functions of u.

Note that a hysteretic behavior is observed: in the area close to the resonance between the natural
frequency of the body with its elastic support and the partial frequency of the attached oscillator, two
attracting limit cycles are observed. This phenomenon, as well as the dependence of the limit cycle
amplitude on the flow speed, is in qualitative agreement with results of experiments [6].

As the damping increases, the hysteresis zone becomes smaller, and finally disappears. In the
same time, the speed corresponding to the maximum amplitude of oscillations decreases. Both these
facts were also observed in tests [6].

5. Conclusions
Transverse oscillations of an elastically supported bluff body in airflow are considered, and its
unsteady interaction with the flow is simulated using the attached oscillator model. Limit cycles
appearing in the obtained dynamic system are analyzed. It is shown that simulation results are in
qualitative agreement with available experimental data.

Thus, the attached oscillator model can be used as an element of a phenomenological approach

that would allow describing unsteady effects arising both for streamlined and bluff bodies.
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On rocking of arigid body on a moving rough plane
(STA132-15)

Yury Selyutskiy, Rinaldo Garziera, Luca Collini

Abstract: One of the most destructive effects of earthquakes upon buildings and other
constructions is due to horizontal displacement of the ground. This paper proposes a
simplified approach to description of behavior of tower-like structures in such
conditions. For this aim, a plane-parallel motion of a rigid body over horizontal plane
with dry friction is considered. It is assumed that the plane performs harmonic
oscillations in horizontal direction. In order to describe collisions between the body
and the supporting plane, Routh hypothesis is used. Conditions of overturning of the
body are obtained for different values of amplitude and frequency of oscillations of
the plane, depending on model parameters, such as body aspect ratio, friction
coefficient, coefficient of restitution, etc.

1. Introduction

The behavior of different tall structures, such as monuments, towers, chimneys, oil or water tanks,
etc., installed on a shaking foundation has been a problem of technical interest for many years. This is
due, in particular, to the fact that such objects are especially vulnerable during earthquakes, and it’s
necessary to develop methods to prevent their overturning.

Study of dynamics of such bodies is related with the fundamental problem of describing the
motion of bodies on a plane with dry friction. The complicated nature of the interaction between the
body and the surface and presence of paradoxes (like Painleve paradoxes) and the practical
importance of the topic led to appearance of a large number of studies dedicated to this topic. Results
obtained in classical works by Routh, Painleve, McMillan, etc., were extended and complemented, for
instance, in [1-3].

Another important problem related with rocking of blocks is modeling the collision between the
block and the supporting plane in presence of dry friction. Some paradoxes were detected (like
increase of mechanical energy after the collision) and ways of their solving were proposed (e.g., [4],
[5D).

The first systematic research of rocking of a rigid block on moving horizontal plane was
performed in [6]. This pioneering work was followed by a large number of subsequent studies (for
example, [7-12]). In these works, an extensive study was performed of behavior of rocking rigid
blocks, both free and forced. However, some specific effects due to the presence of dry friction with
non-infinite coefficient are still to be investigated.
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2. Motion equations

Consider a rigid block on a horizontal rough rigid plane. Suppose that the block can perform plane-
parallel motion in vertical plane. Suppose also that the supporting plane can move along a fixed
horizontal axis. Let OXY be the moving coordinate frame fixed to the supporting plane, X, Y, be
coordinates of the center of mass G of the block, and ¢ the angle between the block basement and

the supporting plane (Fig. 1).

YA

O

Figure 1. Block on the moving plane.

Equations describing the dynamics of the block depend on the state of motion: whether the block

contacts the supporting plane or is in free flight; whether the block contacts the supporting plane in
one point (¢ = 0) or over the whole base (¢ = 0); whether the contact point moves or not.

If the block remains in contact with the plane, and its base makes a non-zero angle with this
plane, the following kinematical relations hold:

Y, =hcose +asinesgne W

AX =hsing —acosesgne
Here a is the half-width of the block base, h is the distance from the base to the center of mass,
AX is the distance between the projection of the center of mass onto the supporting plane and the
contact point.

In this situation, motion equations can be written as follows:

mX, = F, —ma,

-mg®Y, —m@pAX = N —mg )

mr’p = F,Y, + NAX

Here r is the radius of inertia of the block, m is the block mass, g is the gravity acceleration, Iff

is the friction force, N is the normal reaction, &, is the acceleration of the supporting plane.
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In order to simplify the notation, introduce the dimensionless time 7 :t«/g/h and the following
non-dimensional parameters:

E ~ -
, Ffzif’ N ﬁ ae:$l X :£1 yG:Yil AX:&
h h

a r
“Th PTh mg “mg’ g ° h

Then equations (1) can be rewritten in non-dimensional form as follows (dot means the
derivative with respect to 7 ):

X =F; —a,

~@*ys —¢hx=N-1 ©)]

0°)=F,ys + NAX

In what follows, we’ll assume that at the initial time the block is at rest in its “nominal” position
(i.e., =0). Besides, we suppose that the block height is much larger than the block width:

a<<l1

Under such assumptions, the block motion will be purely translational if the friction coefficient
f is small enough (i.e., f <«). In the same time, if the plane is perfectly rough, the body can
perform rocking motion (and, possibly, turn over).

We’ll consider an “intermediate™ case of sufficiently large friction coefficient:

2 2

o
One can readily show that in this situation pure translation is impossible.

Consider now different states of motion of the block and corresponding motion equations.

2.1. Motion with ¢ #0 and with sliding
In this case, rotation angle is not zero (hence, there is only one contact point), and the contact point
velocity v, is also not zero.

Then from (3) we readily obtain

P (1-ys9°)
AX? + p? — fy Axsgnv,

F, =—fNsgnv., N = (5)

Consider slow enough motions of the body (that is, (p:a)<1/]/y,3 <1). Then, for small ¢,
sliding is only possible if v, and Ax are of different sign (the block slides on its rear edge); for

larger @, when Ax tends to zero, sliding is possible in both directions.
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Note that if v. and Ax are of the same sign, then there exists such angle ¢, for which the

denominator of the second relation of (5) vanishes. This situation can be interpreted as “friction
impact” that results in instantaneous stop of the contact point.
Acceleration of the center of mass and angular acceleration are given by the following relations:

_ fys@’p®sgnve + fysa,Axsgny, — f p’sgnv, —a,Ax* —a,p0°

X‘ 2 2
AX® + p© — Ty AXsgnv,

G

. fyeo’sgnv, — y Axe’® — fys sgnv, + Ax
AX® + p° — Ty, Axsgnv,

2.2. Motion with ¢ #0 and without sliding

In this case, the contact point velocity is zero. First, determine the friction force and normal force
required to maintain zero acceleration of this point:

Er YeAXD® + Ao’ + Axa’ p? + a, A +3,0° — Yo AX
f 1+a®+ ,o2 '
o Yoo + Y AW + Y0 p” + YoM~ e — p

N
1+a® + p?

If ‘Ff* < fN” then instantaneous acceleration of the contact point is zero, and the block performs

pure rocking. Hence:

« - V2AX@® + AXCa” + AXa’ p* —a Y2 — Y AX
G 1

1+a® + p?

. aYe +AX
1+a® + p?

Note, however, that if Ax=0 (that is, for almost all values of ¢) there exist values of a, , such
that N” <0 . This situation can be interpreted as a loss of contact with the supporting plane (bouncing
of the block), and requires a more detailed analysis.

If ‘Ff‘ > fN" >0, then the instantaneous acceleration of the contact point is not zero, and the
following relation holds:

F, = fNsgnF;

Motion equations can be rewritten as follows:

o fy,0’p’sgn F; — fy,a,AxsgnF; + f p’sgn F; —a,Ax* —a p’
=

fy,Axsgn F,. + AX? + p°
. fylw®sgn F; — y,Axe® + Ty, sgn F; + Ax

fy,Axsgn F; + AX? + p°
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The normal force is given by the following formula:

_ pz(yea)z _1)
fy.Axsgn F; + AX? + p?

N =

If N <O (which takes place, for example, for large a, such that a,Ax>0), the block loses

contact with the supporting plane.

2.3. Motion with ¢ =0 and zero angular speed

Now discuss the case when the block contacts the supporting plane with its total basement (i.e.,
©=0),and @=0. Then second relation of (1) is not valid, and it is necessary to determine Ax from
other considerations.

First, analyze the case of sliding. Then it is natural to assume that Ax =asgnv. , and we obtain

the following relations for friction and normal forces:

2

P

Ff :—stgnvC s N :—m .

But from (4) it follows that N <0, hence, sliding of the block with the basement contacting the
supporting plane is impossible.

Let now v, =0. One can easily obtain conditions for the block to remain at rest: F, =a,,
Ax=-a, . This occurs if |a,|<ea .

For larger values of a, the angular acceleration can’t remain zero. Find the friction and normal
forces for which acceleration of the contact point would be zero:

o _aad’+ap’-asgna, . 1+p’+laja
Fo = a7 y NN=———>0
+a’+p l+a"+p

One can readily show that if (4) is satisfied then ‘Ff‘ < fN”" for any a_ . Hence, acceleration of

the contact point is zero, and motion equations are as follows:
¢ _a—asgna,
1+ a® + p?
.3, +asgna,
1+a® + p?
Thus, in case of the large enough friction the block can’t start sliding (even accompanied with
rotation) from the “nominal” initial condition. Sliding can only begin when the block makes a non-
zero angle with the supporting plane.

Now, it is necessary to consider the case when the angular speed of the body is not zero.
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2.4. Collisions
If the angle ¢ becomes zero, and the angular speed is not zero, then collision takes place. In order to
describe it, we’ll use the Routh hypothesis about the relation between the normal and tangential
impulses. The collision should be subdivided into two steps: deformation and restitution. First,
consider the deformation phase.

Under the assumptions made earlier, the angular speed and the contact point velocity are of
different sign before the collision (that is, the block slides on its rear edge). Let, for definiteness,

@ >0 before the collision, and, hence, the pre-collision angular speed be negative (@_<0). At the

end of the deformation phase, the vertical speed of the new contact point becomes zero.
Impact theory yields the following equations:

PP w—w =AQ! —i—aAQS

(7
AQ;j :wf—w'—&—vé -V, AQ;j =—aq w 4w

Here AQf and AQ;’ are horizontal and vertical impulses; “~ sign denotes values before the

collision, and prime denotes values after the deformation phase.
Suppose that the contact point velocity becomes zero by the end of this phase. Then from (7) we

obtain the following relations:

2 2
ve =0, a)':'o2 a2+1wf— 5 12 Ve_
P +a’+1 P +a’+1
Hence,
2
o 2a(1+ p*) a AQ! = 2a° pl+a
y__l 2 2 O+ 2 2z Ve Q = 2 7O~ 2 2 'c-
+p +a 1+ p° +a 1+ p°+a 1+ p°+a

Taking into account (4), one can readily show that
|AQ]|< fAQ)

This means that friction is sufficient to maintain zero velocity of the contact point during the

deformation phase.

Now consider the restitution phase. From Newton’s hypothesis we obtain
d _ r
AQ; =kAQy
Here k is the restitution coefficient, AQyr is the vertical impulse for the restitution phase.

Suppose that the horizontal velocity of the contact point by the end of the restitution phase is

zero. Impact theory yields the following equations:
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2w, —w =AQ! +aAQ!
p-w, Q Q) -

r /! r !
AQ =w —w, +V,, AQj=U, —aw, taow
Here u, is the vertical speed of the contact point after the restitution phase, and “+” sign denotes

values after the collision.

From (8) we obtain:
2 2 2 2 2
C‘L:p ajl 22akw7_ ljpzka -
l+a"+p (1+a +p )(l+p )

ka® p>+h’m
= 7| =2 7, 2@ 7 2 Ve-
1+p l+a"+p l+a+p

u

+

One can readily show that for f >« the inequality |AQXr < fAQj holds.

Hence, the horizontal speed of the contact point remains zero during the restitution phase. As for

the vertical speed, it has the third order of smallness under the assumption that o <<1, which allows

neglecting the free flight phase.

3. Numerical simulation
Basing on the above mathematical model, numerical simulation was performed of the block behavior
for different laws of motion of the supporting plane (piecewise-constant and harmonic). We assumed
that the collisions are perfectly inelastic (k = 0). The following values of parameters (satisfying (4))
were used for calculations:

a=01 p=03 f=15

Some results of computations are presented in Fig. 2-5. Blue lines denote the time-dependence of

the angle ¢, and green lines denote the time-dependence of the contact point speed v, .
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Figure 4. a) a, = 0.25sin(5t) ; b) a, = 0.5sin(5t).
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Figure 5. @) a, = 0.75sin(5t) ; b) a, =0.75cos(5t).

The friction coefficient is large, so the block starts sliding only at high external acceleration,

which leads to its overturning. For moderate accelerations, it performs pure rocking.
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For periodic external acceleration, it is the relation between the magnitude of the acceleration
and the period that determines if the block will overturn. Note, however, that the behavior of the
block depends considerably not only on the amplitude and frequency of the excitation acceleration,
but also on its phase (see Fig. 5).

A series of calculations was performed where the external acceleration was given by the formula

a, = Aw’sinwt . Basing on these computations, the boundary values of parameters A and o were

determined, for which rocking motion without overturning is still possible (so to speak, numerical

criteria of overturning).

A A

0.10
0.08
0.06
0.04

0.02

Q)

0 2 4 6 8 10
Figure 6. Area of possible rocking without overturning in the plane of amplitudes and frequencies

of the supporting plane displacement

In Fig. 6, these boundaries are shown the areas in the plane of the mentioned parameters for

different values of « . Motion without overturning is possible below corresponding curves. Note that

they practically do not depend on friction coefficient in the considered range of f .

4. Conclusions

Dynamics of a rigid block on moving horizontal plane is studied with consideration of effects due to
dry friction and collisions. Different phases of motion, including collisions, are considered for the
case of large enough friction. Specific features of behavior of the block related with the presence of
the dry friction are described. Influence of amplitudes and frequencies of the external acceleration

upon the block motion is studied.
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Long-term behavior of adaptive strategies for artificial sensors due
to receptors
(CON047-15)

Konrad Siedler, Carsten Behn

Abstract: The paper is devoted to the problem of identification of ground ex-
citations which force a sensor and its seismic masses, respectively. Precisely,
a control strategy is sought such that acting forces on a sensor can be mea-
sured and identified. The sensor is modeled by a mechanical system in form
of a spring-mass-damper system within a rigid frame with degree of freedom
two and strict relative degree two, which is forced by a (supposed unknown)
ground excitation to the frame. We further suppose, that the seismic masses
are under the load of internal control forces to achieve the prescribed goal. The
sensor properties are derived from the natural behavior of mechanoreceptors
from biology, which can adapt their reactions to several stimuli caused by the
environment. For this reason, adaptive control strategies with time-varying
controller gains are applied to ensure the sensor behavior. While not changing
excitations have to fade out by the controller, further stimulus from the en-
vironment has still to be perceptible and absolute values has to be identified.
Additionally, the sensor has to be as universal as possible and the lowest pos-
sible value of the controller gain has to be ensured. For this, existing control
strategies from literature are analyzed and modified. Then, the most effective
control strategies are applied to the sensor system. Finally, the controllers
with the best results of the identification of excitations are successfully and
powerfully verified in long-term behavior and their response to different kinds
of excitations using random system parameters.

1. Motivation

To establish contact with the environment, every organism has sensory organs. They are
highly specialized biological sensors which have been perfected and still get perfected in the
course of the evolution, by natural selection sorting poorly or faulty functional systems. As
a result, the animals evolve excellently adapted skills for their habitats, whose functional
components are limited to the essential. So its worth to take a look at the animal kingdom
to deduce existing solutions for our technical world on the model of the nature.

An interesting species is the phylum of arthropods (lat. arthropoda). They have to rely on a
perfect workable vibration sense. This works in a way that animal hairs (distributed every-
where on the body — primary concentrated on the legs in case of arachnids) get into vibration

due to changes in the environment. Then, these vibrations are noticed and “measured” by

551



mechanoreceptors inside, [2]. These hair-sensors are so sensitive, that air turbulence of ap-
proaching objects can be detected as they can decided between approaching enemies and
victims. For example, the air turbulence caused by a fly can be detected in a distance of up

to 30 cm. These sensory hairs are called “Trichobitria” for arachnids, [1].

1.1. Mechanoreceptors

In the moment of an incoming stimulus, i.e., when a change of the environment gets regis-
tered, forces are transferred by the sensory hair to the tissue. The receptors therein notice
the changes and react with different characteristics. Therefore, the hair is only a lever to
transfer stimuli. For the stimulus perception, only the support of the hair is important.
The mechanoreceptors serve as stimuli converters or processing units. They are responsible
for the registration of physical stimuli. If such a mechanoreceptor is excited by a constant
excitation, it reacts with a short and quick answer. This signal falls off continuously. The
reachable activity rate or running time for such a reaction is the so-called adaption and is

the base of the following classification, [8]:

e Fast-Adapting Mechanoreceptor (FAM): Once developed an excitation, a FAM re-

sponds only to changes of the excitation with a short and fast series of pulses, followed
by a equally rapid decline of the activity. While the excitation remains constant only

pulses with long offset occurs.

e Slow-Adapting Mechanoreceptor (SAM): The reaction of this type shows a similar

course as the FAM, but far slower. Furthermore, it offers a continuous reaction at
constant excitations. In figure 1, it can be seen that the SAM has a much higher

activity rate, while the constant excitation continues in contrast to FAMs, [8].

So fast adapting mechanoreceptors exhibit the sensitivity to react to changes, but to
ignore a constant signal. Nevertheless, they have the adaptability to perceive a change

during a constant signal.

1.2. Aims

The properties of FAMs should be mimicked by a (technical) sensor, e.g. in robotics. There-
fore, it is considered in the modeling to implement the essential functionalities of the sensor
(its sensory behavior) in a suitable mechanical control system. Excitations should be iden-
tified using as few as possible known system parameters. Adaptive control strategies trans-

pose the biological behavior, in the following points:

e By occurring of constant excitations (e.g. wind) the system still has to be sensitive

for other acting stimuli (e.g. air turbulence).
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Figure 1. Reaction of fast/slow adapting (FA/SA) mechanoreceptors during a constant

excitation, [8].

e In contrast to the biological paradigm absolute values has to be identifiable.

e The controller gain has to be as low as possible, so as little as possible raised energy

has to be needed for this.

Using the time-varying and self adapting gain k(-), the controller should get the ability to
“learn”. These points are analyzed via a simulation and parameter study. To implement
these points, different control strategies are applied to a sensor model with a degree of
freedom (DoF) two and tested for their possible use in, e.g., a long-term behavior. We try
to use the identification ideas in [3,4,6], but apply the developed adaptive strategies therein
to a system of DoF = 2 in order to achieve more promising results. The best strategies are

then used to analyze and investigate the long-term behavior of the modeled system.

2. Sensor model with degree of freedom two

A promising way to achieve a very good identification of ground excitations is a spring-mass-
damper model with DoF = 2. With a two-mass-system, there exist a variety of ways to
implement a strategy for the identification of ground excitations, for example, the second
mass can serve as an absorber mass, or more options for the introduction of the gain factor

k(-) exists.

2.1. Modeling

We consider a sensor system consisting of two visco-elastically (with parameters c1, ¢z, di

and d2) interconnected mass points mi and me within a rigid frame, which is forced via a
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(unknown) ground excitation f(-), see figure 2.

M)

Figure 2. Sensor system with degree of freedom two.

The variables x1(¢) and z2(t) represent the absolute coordinates of the masses mi and
mg at time ¢, whereas y1(t) and y2(t) represent the relative ones. With the regulating forces
u1(t) and wa(t) it is tried to influence the masses m; and mo in that way to identify the

unknown ground excitation.

2.2. Model equations

The equations of motion are derived using Newton’s second law for the masses mi and msa.

In absolute coordinates 1 and x2 we get:

miir = —e (zi(t) — f(t) — di (@1(2) — £(2))
+ca (z2(t) — 21(1)) + da (2(t) — 41(t)) +ua(?), (1)
mady = —c2 (w2(t) — z1(t)) — da (d2(t) — #1(t)) + ua(t).

With the transformation y;(t) := x;(¢t) — f(¢) for all ¢t and ¢ € {1, 2}, the absolute coordinates
x; are replaced by the relative ones y;, we get:

—(d14+d2) 1 +dayz — (c1 4+ c2) y1 + cay2 — ma f(£) +ui(t),

mi1 Y1
moge = *d23'/2+d22'/1*C2y2+62y1*mzf.(t)+u2(t),

with (dimensionless) parameters given in table 1.
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Table 1. Parameters chosen for all following simulations.

m1=1 m2:1
d1=b5 da=5
C1:10 62:10

3. Control strategies

Numerous adaptive control strategies in different versions with different feedback laws were
studied for their quality in the identification of ground excitations in [7], inspired by strategies
for a system of DoF =1 in [3,4,6]. The best resulting control strategies are listed in table 2

and explained in the following.

Table 2. Summary of the most effective control strategies.

Adaptation law ‘ Advanced A—Stabilisation  Offset-Control
Feedback law PD-Feedback PD-Feedback
Gain factor scalar vectorial, 2-Norm
Evaluating regulation force | wu1(¢) w1 (t)

3.1. Control goal

With two masses mi and mg, there are different ways to act on the system with the regulating
forces u;(t): control the movement of only one mass, or the movement of both masses, or
regulate the distance between the masses. For this, we consider the following PI-feedback

laws

e feedback laws with different gain factors:
ui(t) = —ki(t) es(t) — kki(t) é;(t), i€ {1,2} (3)
with  ki(t) = fi(ei(t),t)

e feedback laws with one common gain factor:
ui(t) = —k(t) ei(t) — k k(t) é:(t) (4)
with  k(t) = f([le(t)l],?)

The larger the value of k is chosen, the more is the settling time increased. Therefore, this
value is as low as possible to choose, but even so, that: « > 0. So the stabilizing effect of

the D-term is obtained. For this reason « = 0.1 is sufficient, see [5].
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3.2. The adaptation laws
The gain parameter is determined via a so-called adaptation law. In this paper, we focus on

the following two:

e Advanced A-Stabilization:
First versions of advanced A-stabilization were set in [6]. In [5], this adaptation law

was further developed. Here, it is adapted to the new system:
v(lest)] —eX)?  for ed+1 < |ei(t)]
v(lei@®)| —eX)z  for eA<|es(t)] <eA+1

0 for |ei(t)| <eA At —te <tq

—o(lei(t)],eN) k(t) for |ei(t)] <eX At —te>ta (5)

5(|6i(t)|,6)\) =0 (1 _ leéi(;”)

with e = 0.7, 0 = 0.5, t4 = 2, v = 100 and \ = 0.2

e Offset-Control:
Initially, the idea is only to use the error value e(t) (P-Gain). But, in this adaptation
law, there does not exist a possibility to decrease the gain factor. The gain factor
increases all the more, the further the position of the mass m is away from the reference
position (yres(t) = 0). Afterwards, the gain factor keeps the foregoing values of the
adaptation law in mind and increases this value only to the next one. One way to
make the adaptation law forget these previous values is to give the position of the
mass m from the “past” with a delay of the value ¢,¢s and negated back to the input
of the controller. So, the reduction of the gain factor depends on the value which it
had to increase before. The time ¢,¢ is called “offset-time”:
bt = Y lle(®)1l; for ¢ <toss
e®lls = pllelt = tog)ll; for ¢ > togs (©)

with p =+ =100 and to,5y = 5.0

The value e(toff) shows the error of the position of the mass m to the time to5y.
The higher this value is chosen, the higher increases the gain factor k(¢), because the
adaptation law keeps more past values in mind, before being demount. The smaller
the time t,fs is chosen the restless will the course of the gain factor be and so the

course of the regulating force, too.
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4. Tests of the chosen control strategies

For the long-term behavior investigations, a new excitation function faoo(t) (see (7) and
figure 3) is introduced, which helps to study the behavior of the system to different excitation

pattern.

)2

t — faoo(t) = (1 +10e~ @=13° 110~ (t—31.4)2 +5e (t—175.5)2 +5e (t—81.7)2

_55)2

+5e” “‘88‘5)2) Ccos (t (0.5 ei(tTo) + 1) ( — % arctan (t31555) + 0.5)

(7)

This excitation function is used for the following simulations. Both masses are controlled to

Excitation function f2oo(t)

2 | | | | | | | | | Time t
0 20 40 60 80 100 120 140 160 180 200

Figure 8. The excitation function fa0(t).

their rest positions and we observe the quality of the approximation of the regulating force
u1(t) via the excitation my f(t) (for randomly selected system parameters). Moreover, for
brevity, we focus on feedback structure (3) and apply both adaptation laws to point out the

main difference.

4.1. Long-term behavior

To look at the quality of the identification in observing the regulating forces u1 (¢) compared
to the excitation force on mass mi, we get the following simulation results. Figure 4 shows
the excitation force to mass mj.

If we apply the adaptation law of the advanced A-stabilization (5), than figure 5 shows
the necessary control force u1(t) in this case.

Like the characteristic of this adaptation law, little excitations (low values of its ampli-
tude) on mass m; are filtered by the property of the A-tolerance area. Since the regulating
force drops from ¢ = 100 so, that a little bit later no regulating force exists and so it is
assumed that no (relevant) excitation acts on the system. This property is to qualify: In

the high frequency area (about ¢ € [40;60]) the excitation can drive out the mass m; from
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Figure 5. The regulating force u;(t), advanced A—Stabilisation.

the tolerance area, although the amplitude of the excitation is identical to ¢t =~ 100 at this
moment. Because of the periodical and fast leaving of the tolerance area, it is not enough
time to decrease and so the gain factor increases down-welling. This area is very good to
identify in observing the regulating force.

The cosine wave around the peaks is only to imagine, so long no other event after a short
time drives the mass out of the tolerance area.

Altogether, the form of the excitation can be clearly seen, in observing the regulating force
u1(t). Corresponding to the biological ideal, low excitations are only for short time visible, so
that they can only be suggested (adjustable over the parameters: waiting time ¢4, factor o)
and afterwards gradual filtered (adjustable over the factor o). For example, at the moment
t =~ 90, one can see a cosine wave which dies down. Its amplitude or frequency is not high
enough that it can leave the tolerance area. Only for the time ¢4 the gain factor is high
enough, that the regulating force can show the excitation, after that § is working. The real

end of the cosine wave is not visible.
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Figure 6 presents the necessary control force in case of applying the adaptation law of

the offset-control (6).

o

5}

regulating force u1(t)

I
S]

&
S

! ! ! ! ! ! Time t
0 20 40 60 80 100 120 140 160 180 200

IN
5]

Figure 6. The regulating force uq(t), Offset-Control.

Its a very good coincidence of the forces. Both the moments of low excitations and the
high peaks are good to see in the regulating force ui(t). As long as the excitation is not

exactly fa00(t) = 0, every time a value for the gain factor exists k(t) > 0.

4.2. Behavior in case of randomly chosen system parameters

In subsection 4.1, one can see the behavior of both control strategies to different kinds of
excitations. According to subsection 1.2, the sensor system has to give a reliable identification
of excitations, without knowledge about the system parameters. Therefore, the behavior of
the sensor system is now examined with randomly chosen system parameters’.

For this purpose, three simulations for every control strategy are presented.

Advanced A—Stabilization For the control with adaptation law (5), the randomly cho-

sen system parameters are given in table 3. To evaluate the quality of the identification of

Table 3. Random system parameters, simulation with advanced A—Stabilization.

Parameter ‘ Simulation ¢ =1 Simulation ¢ =2  Simulation ¢ = 3
Masses 1/ 2 1.7264/1.0679 0.8389/1.1535 0.6482/1.5196
Damper 1/ 2 6.1793/6.2463 3.6828/4.2444 4.0475/3.5462
Springs 1/ 2 | 11.4432/10.3283 7.2766,/14.2338 8.3536/12.2123

the excitation in observing the regulating force w1 (¢), the time histories of these quantities

are given in one figure 7. For comparability the courses are scaled with their mass m1, so

!The ranges are: for both masses 0.5 < m < 2.0, damper 3.0 < d < 7.0 and springs
5.0<¢<10.0.
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Figure 7. Regulating forces u; ;(¢): Red - u1,1(¢), green - ui 2(t), blue - uy 3(t).

that the value of the regulating force at the moment ¢ is divided by the mass mi. The
courses from figure 7 are illustrated in the same axis scaling as the appearing force by the
excitation from figure 4.

It is easy to see a very good approximation of the forces, which differ only rarely despite
different system parameters.

With decreasing mass one can see an increase of the extreme values of the regulating forces.
Thereby in the settling area, there is a faster settling to y = 0 for regulating force wu1,3(t),
than the other regulating forces. So from the moment of about ¢ ~ 110, it takes a value of
u1,3(t > 110) = 0, while the regulating force minor swings for the other simulations. With
the chosen parameters, the mass m, leaves the A-tolerance area for a very small interval
of about 0.3 to 0.4, by what the gain factor takes values between k(t) € [2.5;3.5]. So, a
regulating force u(t) exists for these simulations.

In view of the randomly chosen system parameters, the differences between the regulating
forces u1,1(¢) to u1,3(t) are very small. That means the results point out, that adaptation

law (5) represents a very good opportunity for implementing the functionality of a FAM.
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Table 4. Random system parameters, simulation with Offset-Control.

Parameter ‘ Simulation ¢ =4  Simulation ¢ =5  Simulation i = 6
Masses 1/ 2 1.5181/1.0883 1.5422/0.5517 0.6453/1.3849
Damper 1/ 2 6.0310/5.6219 4.2684/4.7550 6.3116/3.2715
Springs 1/ 2 6.7119/12.4313 14.5022/8.8156 14.3791/11.4593
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Figure 8. Regulating forces u; ;(¢): Red - ui,4(¢), green - ui 5(t), blue - ui 6(t).

Offset-Control For the simulations using adaptation law (6), the randomly chosen system
parameters are now given in table 4. To study the behavior of the Offset-Control, the results
of the simulations are presented in the same way as already the advanced A-stabilization
ones, see figure 8. The courses are very similar to each other. Above all, the courses of the
regulating forces u1,4(t) and u1,6(t) exhibit a very good agreement. Only the course of the
regulating force u1 5(¢t) shows a clear less amplitude. This behavior exists at every time ¢.
The best approximation of the force of the excitation my fgoo (t) shows the blue one.

The similarity of the courses reflects the behavior of the gain factor k(t), it appears to have
only a vertical offset. The same happens to the position of the mass m1, only with variation
of the amplitude.

For the Offset-Control, one can see a very good approximation of the respective regulating
forces u1,;(t) to the resulting force of the excitation my fzoo (t). The characteristic property
of the Offset-Control allows a good identification for any excitation type (wether weak or
strong), but it needs at any time where the excitation function has a value of f200(t) # 0 a
value for the gain factor of k(¢) > 0. Thereby, the control strategy requires more energy as

the advanced A-stabilization one.

5. Conclusion

Concerning the adaptation and identification behavior of animal mechanoreceptors, the two
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presented adaptation laws for PD-control of an artificial mechanical sensor system worked
successfully and effectively. The identification scheme was based on observing the regulating
force and on comparing it with the excitation force on the corresponding mass point. In view
to the specific properties of the adaptation laws, they showed a very good functionality. With
the advanced A-stabilization one can filtrate dispensable signals, by adjust of the value A for
the tolerance area. Thereby, too little changes can not be seen. Using the Offset-Control,
a very good identification of all occurring signals was possible, but that led to ongoing
energy requirements. Depending on the information needed, one can insert an appropriate
adaptation law, without changing the feedback law. In both cases, only observing of the
regulating force u1(¢) on the mass my is necessary.
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Mechanical systems with two nonlinear springs connected
in series
(ASY251-15)

Roman Starosta, Grazyna Sypniewska-Kaminska, Jan Awrejcewicz

Abstract: The aim of the paper is analysis of dynamical regular response of the
nonlinear oscillator with two serially connected springs of cubic type nonlinearity.
Behaviour of such systems is described by a set of differential-algebraic equations
(DAEs). Two examples of systems are solved with the help of the asymptotic multiple
scales method in time domain. The classical approach has been appropriately
modified to solve the governing DAEs. The analytical approximated solution has been
verified by numerical simulations.

1. Introduction

The linear simplification is sometimes too rough to describe the behavior of a physical object with
sufficient accuracy. Therefore, models of nonlinear oscillators have been widely considered in
physics and engineering. Nonlinear oscillators with serially connected springs were investigated by
many authors mostly numerically. Most papers concern a case, when one of the springs is linear and
the second one is nonlinear [1, 2, 3].

Telli and Kopmaz [1] showed that the motion of a mass mounted via linear and nonlinear springs
in series, is described by a set of differential-algebraic equations. Similar situation occurs in our
investigation. It implies a need of a modification of the standard multiple scale method in time
domain (MMS). Two examples of the system with two nonlinear springs are presented and analyzed

using appropriately adopted MMS. That are one-dimensional oscillator and a spring pendulum.

2. One-dimensional oscillator

Let us consider the one-dimensional motion of a body of mass m attached by massless nonlinear
springs to an immovable support. The studied system is shown in the Figure 1.

The restoring force of the springs with cubic nonlinearity are

F=k(z,+AZ%) i=12 (@)

where Z, is the elongation of the i-th spring, k; is the constant stiffness and A, is the nonlinearity

parameter. Lengths of untensioned springs are Lo and Ly,.
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Figure 1. Oscillator with series connection of two nonlinear springs.

Such type of nonlinear elasticity is widely discussed in the papers concerning nonlinear

dynamics [1, 4]. When A, >0 the characteristics of the spring is called “hard”, while for A; <0 the

characteristics is called “soft”. Hereafter we consider only the case A; >0.

2.1. Mathematical model

Two equations describe behaviour of the system. One of them is the differential equation of the body
motion

m(Z, +2,)+k,2,0+A,2,7)=0. @

The second one is the algebraic equation describing equilibrium at the massless connection point

S and reads

KZ,(+AZ2)-k,Z, 00+ A,2,2)=0. @)
The above equations are supplemented by the initial conditions

Z,(0)=X,, Z,(0) =V,. 4

After transformation of the governing equations to the more convenient dimensionless form they

read
i+, + 1+ AV, 1+ e,22) =0, ©)
2,1+ a,22)- 2,01+ @,27)=0, ®)
2,(0)+2,(0) =2,, 2,(0) + 2,(0) = v, , @)

where z, and v, are initial displacement and velocity of the body, z,=Z,/L, &, =A,L* for i=12,
L=L,+L,, A=k,/k,. Dimensionless time r=tw, where o, =k,/m and k, =kKk, /(k, +k,)

have been assumed as characteristic quantities.
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2.2. Approximated analytical solution

The problem (5)—(7) can be solved using MSM [4], although the approach requires some significant

modification. The assumptions of smallness of the nonlinearity parameters are proposed in the form
a, =€, oy = 0,8, (8)

where & is a small perturbation parameter.

The solution is searched in the form of series with respect to the small parameter

k=1 k=1
2,(r6)= z‘ngZk (r0rm) z(re)= ngzlk (70:7). 9)
k=0 k=0
Introducing (8) and (9) into (5) — (6) we obtain two equations in which the small parameter ¢
appears. These equations should be satisfied for any value of the small parameter, so after sorting
them with respect to the powers of ¢ we get the differential equations of the first and second order.
After eliminating secular terms and solving the equations, the approximate solution takes the form:

b2A(3cr, (5 +84)— o, (16 + 254))

z,(r)=b,Acos(Bz +y, )+ 3205 4) cos(Bz +,)
20249, + o, (1 -8)72) (10
+ 322 (1+1/1) cos(Bz +, )cos(2B7 + 2y, ),
b2, —8a, 4 + 90, 4°)
z,(r)=b,cos(Bz +y, )+ cos(3B7 +3y, ), (11)

32(1+2)
where B=1+3b2(a, +2,2°)/8(L+ 4), while b, and v, are the initial amplitude and phase.

2.3. Results
In Figure 2 the time history of the generalized co-ordinates and their sum are presented.

B 2o(7) — 1 o6 o
A1m22(n) | 21 (T)4z2(1) -

06 2D

0 5 10 5 0 5 10 15

Figure 2. Time history of the motion of the system for ¢, =0.8 «,=1.4;a) 1=8, b, =0.05;

a,=14;b) 1=0.1, b, =0.5; dotted line — numerical solution.
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The comparison between numerical and analytical solutions confirms correctness of the
asymptotic calculations. The explicit form of the solution allows for deeper analysis of the motion of
the body.

From solution (10) the period of the primary vibration can be derived

B 1672(2 +1)
30, b2 +3a, b +8(1+1) (12)

Expression (12) quantitatively describes dependence of the period with respect to amplitude,
involved nonlinearities and the parameter 4. When the springs are nonlinear with hard chara-

cteristics («; >0), the period is smaller than 27 . In Figure 3 the value of period of the vibration

versus nonlinearity parameters «, and «, is shown.

al 0.6
Figure 3. Period vs. nonlinearity parameters; 4=1.5, b, =0.1.

The dependences of the vibration period and amplitude versus 4 obtained from (12) are
presented in Figure 4.

Amplitude

6.25 0.1015
0.1010

0.1005

6.15

05 1.0 1.5 20 25 3.0 35

Figure 4. Period and amplitude vs. 4; a, =0.8, a, =1.4; dashed line — linear case , =0, o, =0.

The position of the extremum value in Figure 4 depends on nonlinearity of springs «;, , «,.
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3. Spring pendulum

The dynamics of the nonlinear spring pendulum presented in Figure 5 is investigated in this point.
Such quite simple and intuitive system serves as a very good example of a study of non-linear

phenomena exhibited by two degrees-of-freedom mechanical systems.

Figure 5. The pendulum with two nonlinear springs connected in series.

The investigated pendulum-type system consists of the small body of mass m suspended at a fixed
point on the two nonlinear springs of the length Ly, and Ly, whose elastic constants are denoted by
ki, 4; and k,, A4,. Due to the introduced constraints, the body can move only in the fixed vertical
plane. Moreover we assume that the springs are straight and collinear. We are interested in free
motion of the system, thus no external force or damping are admitted. The total springs elongation Z,,
Z, and the angle ¢ describe unambiguously the position of the system.

3.1. Mathematical model

The equations of motion are obtained with the help of the Lagrange equations of second kind.
Similarly as in previous section, the differential equations are supplemented by the algebraic one,
which describes equilibrium of the spring’s connecting point S. The restoring forces in the springs are
of the same type as previously. They are described by eq. (1). The dimensionless form of the

mathematical model is as follows

7, +7, + (143220, L+ A)z, + 32,0, (1+ A)22 + , (1+ A)2 w2 (cosp 1)

—(1+2,+2,)p* =0, (13)
(42,42, 1+2,+2,)5+2( +2,)p+ Wsing)=0, (14)
22, (e,2,(2, +32,, )+ 3,22, +1)-2,(@,2,(2, +32,, )+ 3,22 +1)=0 . (15)
The initial conditions reads

2,(0) +2,(0) = 25, 2,(0) + 2,(0) = V,, (0) = 0, 9(0) = . (16)
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The dimensionless parameters are defined in the same way as above, in section 2. The

elongations of the springs at the static equilibrium position z,, and z,, fulfill the following additional

conditions
2, (L4 220, ) =W I(1+ 4) and 2, (1+ 22ct, )= AW /(1 + 2) | @)
The trivial solution of Eq. (14), which fulfills z, +z, +1=0, is omitted.

3.2. Approximated analytical solution

The problem (13)—(16) can be solved analytically using the multiple scale method [4], although the
approach requires some significant modification. The assumptions of smallness of the nonlinearity
parameters are proposed now in the form

a, =a,6’ a, = a8, (18)

In this problem three time scales should be used, so the solutions are searched in the form

k=3 k=3
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(19)

k=3
2,(r;¢)= zngZR (F0m) z(me)
k1

k=1 k=1
Adopting the MSM we obtain the asymptotic analytical solution in the form:

Z = alo/l(l_ 3(zlzra1 -2;.a, ))COS((E +1 )[ + ‘//10)+ azzowzﬁ“(3 COS(Z(FS +1 )T + 2‘/’20)
+aw? 1)/ 4(aw? — 1)1+ 1) - 38,82 WA((1+w—2w? Jcos((T, + T +20,)r +yy —20)  (20)
+(1+w2w? )cos((l"2 +T, = 2T,) 7+ + 21y ))/(16(4W2 - 1))

a2 w2 (4w? —1+3cos(2(T, + T, )r +2v,,))

4aw? ~1)1+ 1)
3,82 w({1+w—2w?)cos((T, + T + 21, )7 + 10 — 2075, (21)
+ (14 w20 Jeos((T, + T, — 2T, )7+, + 20, )/ (16(4w? —1))

Z, =28y COS((F1+F2)T+V/10)+

0=, CO8((T, + T, ) + ) + AWl + A )(— 2 — 3w+ 20 Jeos(- T, — T, + T, + Ty )r w0 + )
+(2-3w— 2w )cos((T; + T, + Ty + T, )t + o + 170 )/ (2(4w2 — 1))

+ 22 w(6 — 5w + W L+ A cos((— 2(T, + T,) = T, /2)r — 2,0 + 1750 )/16 (2w — 1) (22)
+ azoafow(— 6+ 7w +9w* + 2W3)(1+ AY cos((2(T, +T,) =T, /2)r + 2y + 1 )/192(4w2 - 1)

+ a2, (1—49w? Jeos(3(T, + T, )r + 3y, )/192(aw? —1)

where a,,,8,,W,,, W, are the initial values of amplitudes and phases of z, and ¢ respectively.

They are related to the initial values z,, v,, ¢, and o, by the conditions (16) and egs.(20) — (22) at
instant 7 =0. The shortening denotations T,,T,,T,T,,I5, I, have the following form
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Ao, +22ard) . BalwW-1) . 2+32%a,+24+32al

R () B rva) B 20+ 2) ’
[ _12ab (e AP (w-w)+ wigaiw' + (16— a5 )- w'(64 -+ 7a, )
) 8(aw? -1 ’
[ _lowal(1+aF(wi-1) | -8aiw’—wli6—a )+ w(64+7a})
° 64w’ —16 ne 64w’ —16 '
3.3. Results
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Figure 6. Time history of the body position for «, =0.35, «, =0.25, 1=2.5, a,,=0.07,

'
/
R

Time histories of the coordinates describing position of the body are presented in Figure 6. In both
9

graphs, the solid line represents the asymptotic solution according to (20) — (22).
50 6

]

-0

-0

N

a, =0.07, w,, =0, v, =0 ; dashed line — numerical solution.

The period of the first term of the asymptotic solution for longitudinal as well as swing vibration

as a function of the parameter A are presented in Figure 7.
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Figure 7. Period vs. A for longitudinal and swing vibration; for o, =0.35, «, =0.25, a,,=0.07,

8, =0.07, ;=0 w, =0.
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4. Conclusions

The mathematical model of the mechanical systems containing two serially connected nonlinear
springs consists of the differential and algebraic equations. Properly modified multiple scales method
in time domain allows to solve effectively this problem and to obtain the approximate asymptotic
solutions. The range of parameters, for which the error is reasonably small, is limited according to the
assumptions of the MSM. The correctness of the results has been confirmed by numerical simulation.

The analytical solution allows to analyse the influence of the parameters on the studied system
motion. The influence of some parameters on the period and amplitude has been discussed in the case
of free vibration.

Finally, we confirmed that the applied software Wolfram Mathematica has been very helpful in
the analytical transformations and simplification of the derived and studied DAEs.
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Rollers vibration of conveyor belt
(STA194-15)

Martin Svoboda, Frantisek Klimenda, Jan Kampo, Josef Soukup

Abstract: The article is deals of measurement of vibrations on a roller conveyor stand.
These vibrations have a significant influence on the noise of the conveyor. For the two
sets of rollers were determined the vibrations by experimentally. Difference between
individual set of rollers is in used of semi finished product of the outer shell. The
design of the rollers is the same. One set has a shell from convectional tube and the
second set from accuracy tube. The vibrations were measured by six-channel analyzer
Briiel&Kjer (PULSE). Acceleration and natural frequency were measured by using a
three-axis accelerometer. In the conclusion of the article is an evaluation of vibration.
Three the highest acceleration values in depending on the frequency of vibration in
individual directions are given. From this evaluation are selected rollers with minimal
and maximal acceleration.

1. Introduction

The rollers, respectively his fixing on the support structure are the priority source of noise of tube
belt conveyors. The rollers are in operation dynamically loaded by a tensile force of belt and vertical
force from the conveyed material. None of these forces is not constant, are varies at a given time. This
load causes vibration of the rollers in x, y and z-axis. The vibrations of the rollers are transmitted over
their fixed on the supporting structure. The supporting structure vibrates and it is the noise source [2,
3]. The pipe conveyor uses a rubber belt that is rolled into a tube. This construction uses six rollers for
rolling and maintaining the belt in the desired transverse profile (tube). It means that on one
supporting are installed twelve rollers. This leads to relatively considerable vibrations and hence to
noise of supporting structure. By a covers are covering the exposed places for noise reduction. The
noise pollution may be also increased at the improper fixing. The article is deals by the measurement
of rollers vibration which have a different semi finished product of shell and thus a balancing.

Measurement of two set of rollers (& 89 x 214 mm) is presented.

2.  Vibration measurement

Measurement was performed on stand measuring which is composed of a part of the tube belt
conveyor (Fig. 1). The stand uses a three supports on which can be fixed the roller holders for
rollersg 89 x 214 mm and @ 112 x 224 mm. The roller holders are made from sheet metal with

thickness 5 mm. The weight of whole construction (stand) without the rollers is 369 kg. The lower
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longitudinal members are provided with adjusting screws (two on each side) which is used to set the
stand horizontally. The rollers are fixed to holders by screws which are placed in the roller axis.
These holders are made from metal sheet (thickness 5 mm). The axis of roller is fixed displaceable in

the holder. Fixation of the roller on the holder is shown on Fig. 2.

Figure 2. Fixation of the rollers on the stand
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Each set of the rollers includes three rollers of identical design (& 89 x 214 mm). The bearings
with inner diameter 20 mm (6204) have the all rollers. Both sets of the rollers differ by used semi
finished product of rollers shell. The rollers the first set (1.X) is made from convectional tube and the
second set (2.X) is made from accuracy tube. The basic parameters of rollers for measuring are shown
in Tab. 1.

From Tab. 1 it is apparent that set 1 which is made from convectional tube, showing large weight
dispersion. The difference between the heaviest and the lightest roller is 75.7 g (roller 1.2 and 1.3). It
is evident that the roller 1.2 which has the lowest weight having different tolerance of the individual
parts. Different tolerance of the shafts and the bearings housings is haven. Conversely the rollers of
set 2 have a very small weight difference (the difference between the max. and min weight is only 2.1

9).

Table 1. Rollers parameters

Number Internal )
Name . o Weight [g]
of pieces indication
11 2431,6
Roller from convectional
3 1.2 2352,2
tube
1.3 24279
2.1 2538,4
Roller from accuracy
3 22 2540,5
tube
2.3 2539,8

Belt speed in operation is 2.5 m.s. This speed was maintained for all measurement and
corresponds of revolutions 563.75 rev.min™ for rollers @ 89 mm. These revolutions were measured
continuously by laser tachometer Briiel&Kjer type 2981 (CCLD). The vibrations of the individual
rollers were measured by three-axis piezoelectric accelerometer. The acceleration and the own

angular frequency is calculated by equations

\" 2 . H
a=—=-0"y,sinot=3a,sinwt, ()

m

were v - speed, w - angular frequency, y, - displacement amplitude, a, - acceleration amplitude, t —
time, k — rigidity of the system, m — weight of the system.
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The accelerometer was placed on the roller holder (Fig. 3) and it measured the vibration in three
mutually orthogonal axes. The vibrations are transmitted through the holders to the support and to the
all constructions. The construction is vibrated. Also it was measured the acceleration on the supports

and the longitudinal members of construction, simultaneously was the noise measured.

The acceleration sensor and the noise sensors were involved in the analyzer PULSE 3060-B-120
and evaluation by program. Sensing vibration time was 30 s. Each roller was measured by 10 times
and were own (dominant) frequency in each axis evaluated including the size of the acceleration.

Figure 3. Location of the accelerometer on the roller holder

3. Measurement evaluation and discussion

Evaluation of the acceleration and vibration frequency of individual rollers is shown in Tab. 2.
The first three natural frequencies and maximum amplitude of acceleration in individual directions
are given. All frequency are placed in the zone where is the sensitivity of the ear human is high.

On Fig. 4, Fig. 5 and Fig. 6 are shown graphs of the acceleration and frequency of roller 1.1 in X,
y and z-axis direction.

The Fig. 4 is shown that the maximum acceleration (the largest acceleration amplitude) achieved
at a frequency of 1064 Hz which is the dominant (the value of the acceleration is 0.0101 m.s2). Other

two own frequencies are 64 and 352 Hz.
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Figure 4. Acceleration and frequency of roller 1.1 in x-axis direction
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Figure 5. Acceleration and frequency of roller 1.1 in y-axis direction
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Figure 6. Acceleration and frequency of roller 1.1 in z-axis direction

The Tab. 2 shows that the rollers of set 2 exhibit the high vibrations in the y-direction, i.e. in the
shaft axis (particularly roller 2.2). This roller has an erroneous the imposition. These vibrations are
vibrating the steel frame of the conveyor and increase the overall noise of devices. Conversely the
roller of set 2 in the x-direction has lower frequencies. The dominant frequency of the individual

rollers is significantly different. This indicates of their bad balance.

Table 2. Vibration of roller (own frequency and acceleration of roller)

- . Frequency and Frequency and Frequency and
3 § § acceleration x direction acceleration y direction acceleration z direction
g | g
Q & f, [Hz] a,[m.s?] f,[Hz] ay[m.s?] f,[Hz] a,[m.s?]
f 64 0,0219 132 0,0090 64 0,0459
11 f, 352 0,0164 540 0,0053 188 0,0099
fa 1064 0,0101 112 0,0038 92 0,0076
f 352 0,1932 128 0,0121 64 0,0776
1.2 f, 64 0,0352 528 0,0120 92 0,0601
fa 1220 0,0299 536 0,0119 160 0,0582
f; 64 0,0480 1176 0,0323 64 0,1733
1.3 f, 356 0,0286 1168 0,0257 160 0,0125
fa 832 0,0106 1264 0,0148 872 0,0057
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Table 2. Vibration of roller (own frequency and acceleration of roller) - continue

- s Frequency and Frequency and Frequency and
3 § § acceleration x direction acceleration y direction acceleration z direction
° E 2
o ] £ 2 2 2
0 & f, [Hz] a,[m.s™] fy [Hz] ay[m.s™] f,[Hz] a,[m.s™]
f, 804 0,0178 132 0,0585 64 0,0253
2.1 f, 840 0,0173 1088 0,0366 176 0,0130
fs 824 0,0164 996 0,0156 156 0,0130
f 780 0,3361 1088 0,6222 820 0,1759
2.2 f, 772 0,0270 1004 0,2804 440 0,1563
fs 344 0,0288 996 0,0279 156 0,0882
fi 904 0,0483 944 0,0101 64 0,0241
2.3 f, 944 0,0316 904 0,0100 156 0,0117
fs 868 0,0278 128 0,0080 864 0,0072

4. Conclusion

The article deals with the measurement of noise two sets of rollers for conveyor belt. The one set
is made from the normal tube and the second tube is made from the precision tube. The all rollers
have the parameter @ 89 x 214 mm. From the Tab. 1 it is evident that the individual sets of rollers
have their weight differ. The measured vibrations (Tab. 2) have an effect on the vibration of the
whole construction. The total noise is increases. The maximum size of the acceleration of the roller is
in the x-axis direction of roller 2.2 (dominant frequency is 780 Hz, acceleration is 0.3361 m.s%), the
minimum size of the acceleration of the roller is in the x-axis direction of roller 1.1 (dominant
frequency is 1064 Hz, acceleration is 0.0101 m.s?). In the y-axis direction is the maximum
acceleration of roller at the roller 2.2 (dominant frequency is 1088 Hz, acceleration is 0.6222 m.s™),
the min. size of the acceleration of the roller is in the y-axis direction of roller 1.1 (dominant
frequency is 112 Hz, acceleration is 0.0038 m.s). In the z-axis direction is the maximum acceleration
of roller at the roller 2.2 (dominant frequency is 820 Hz, acceleration is 0.1759 m.s™2), the min. size of
the acceleration of the roller is in the z-axis direction of roller 2.3 (dominant frequency is 864 Hz,
acceleration is 0.0072 m.s™). In the next stage will be measured the rollers driven by a conveyor belt

which is not burdened by the transported material.
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Wave-based control of strongly non-uniform lumped flexible
systems
(CON295-15)

Joseph W. Thompson, William J. O'Connor

Abstract: Wave-Based Control (WBC) is particularly effective for rest to rest
maneuvers of under-actuated, uniform, cascaded, lumped flexible systems.
WBC sees the motion as a superposition of rightwards and leftwards travelling
mechanical waves. The actuator simultaneously launches and absorbs these
waves, to combine position control and active vibration damping. The method
has many advantages. It is robust to modelling errors and system changes. It
requires minimal sensing, all done at the actuator. Because it is robust, WBC
also achieves good control for mildly non-uniform, lumped systems. When
highly non-uniform however, control becomes difficult. Wave dispersion then
causes trapping of vibrations. A wave model which accurately represents the
dynamics must deal with these non-uniformities. In continuous systems non-
uniformities cause partial reflection and transmission of waves. This paper
examines ways of modelling a similar phenomenon in lumped systems. These
models are then used to modify the traditional WBC scheme to achieve good
control of strongly non-uniform lumped systems. Applications include control
of launch vehicles for spacecraft payload comfort and reduction of propellant
sloshing.

1. Introduction

Consider a generic under-actuated flexible system, such as that shown in figure 1, which has
a single actuator, with displacement xo, controlling the motion, z;, of a cascade of masses
and springs, of arbitrary length. This arrangement represents a range of flexible systems
of practical engineering interest, including robotic arms, cranes, space structures and disk
drive heads. Typically the actuator must directly control x¢ to achieve a desired motion
of the tip mass, x,, and so it must combine position control and active vibration damping.
For rest-to-rest manoeuvres to a new target position, these two tasks must be completed
simultaneously. If for example it reaches the right position while still vibrating, subsequent
vibration absorption will probably move it away from target, and further motion will start
the vibration again.

Of the many approaches to date to designing controllers [4, 5], Wave-Based Control
(WBC) has been shown to have many advantages [1, 3], including robustness to modelling

errors, to actuator limits and to system changes; rapid responses; ease of implementation;
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Figure 1. Non-uniform lumped system with one free and one moving boundary

and minimal sensing. Any motion of the actuator is envisaged as launching a wave (or
motion disturbance) into the system, which travels to the tip and back, dissipating as it
goes. The control system measures the returning wave and gets the actuator to absorb it.
This process of absorption provides active vibration damping. If the launch wave has a net
(DC) displacement, the process of absorption will also involve a further net displacement
which, in the absence of external disturbances, will equal the net displacement of the launch
wave. So at steady state, the system will come to rest at a displacement of twice the final

value of the launch wave.
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Figure 2. Series wave model of lumped system

Implicit in the design of WBC is some kind of wave model of the lumped system. Figure
2 shows what we call a “series” model for the n-mass system in figure 1, comprising a loop
of 2n 4 1 wave transfer functions (WTFs). The upper loop models the outgoing waves (or
propagating motion) from actuator to tip, with WTFs G;, while the lower loop models the
waves returning from the tip to the actuator, with WTFs H;. The motion of each mass,
x;, corresponds to the sum of the corresponding outgoing component, a;, and the returning
component b;. For the model to be considered valid, the x; should obey the equations of

motion of the system. Using capitals to indicate the Laplace Transform of the corresponding
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time-domain variables, the wave model is described by:
A = GiAia (1)
Bi_1 = H;B; (2)
and the validity condition that the X; satisfy the equations of motion is:
Xi=A; +B; ®3)

The summing junction at the left ensures that, for the actuator, Xo = Ao + Bo. The free
(unconstrained) tip is modelled by the transfer function F, joining the outgoing loop to the

returning loop such that:

WBC works especially well for uniform systems, with equal masses and springs. In this case,

all the WTFs in the wave model can be set equal to each other, and then they take the form:

ms? ms2  mZ2st

2k k * 4k

G(s) =1+ (5)

It is easy to verify that figure 2 is then a valid model of figure 1, in the sense that the
sum A; + B; obeys the same equations of motion as X;. Thus the wave model provides a
new way of understanding the dynamics of the system, an alternative to modal analysis, for
example. It resolves the motion into two counter-propagating components passing over, or
through, each other. This in turn leads to good controller design.

The inherent robustness of WBC also ensures that this model leads to good control
for mildly non-uniform systems. However, as the system becomes strongly non-uniform,
control becomes more difficult, resulting for example in longer settling times for rest-to-rest
manoeuvres. This challenge is not unique to WBC. Any control system for a system such as
figure 1 would experience major problems when x is trying to control x,, and, for example,
one of the masses between them is much larger than the rest, causing an inertial blockage,
dynamically isolating the tip from the actuator.

As part of ongoing research into WBC, this paper explores ways to model non-uniform
mass-spring cascades in a wave-like manner, mainly to help in the design of controllers to
deal better with strongly non-uniform systems.

Even in the uniform case, the lumped system is dispersive. The loop model in figure 2
captures this dispersion in the form of the transfer functions, G(s) in equation 5. As the

non-uniformity of the system becomes more pronounced, the dispersion increases. Classical
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wave analysis would suggest modelling strong non-uniformities using “shunt” transfer func-
tions, interconnecting the upper and lower loops in figure 2, especially at points of greater
discontinuity, modelling partial transmission and partial reflection of waves. Such shunt
models can, and have been, developed, and are a topic of on-going research [2].

However a series model is still possible, even with strongly non-uniform systems with
strong dispersion. For reasons of brevity, this paper focuses on purely series models, that
is, models such as figure 2 forming a single loop. One reason for this is to facilitate WBC,
which precisely seeks to cause waves to enter the system at the actuator, travel to the tip
and then back again, to leave the system through the actuator, leaving the desired motion
behind, while damping vibration. The paper will consider the ambiguities in the model, and
propose how these might be resolved, and then how they might be applied to control. (Shunt

models will be presented in other work.)

2. Resolving the ambiguity in the series wave model

The model shown in figure 2 consists of 2n + 1 WTFs yet the system has just n equations
of motion. As a consequence any n + 1 of these WTFs may be chosen arbitrarily and the
remaining n may be calculated to satisfy the equations of motion. Therefore there is an
infinity of choices for the transfer functions G;, H; and F, all giving valid series models of
the system. Not all of them, however, will exhibit wave-like behaviour. Although the motion
in a lumped system may not be considered as waves in the classical sense, it has already
been shown that the motion has certain wave like properties that are useful for designing
controllers. The subject of this section is to define these useful wave-like properties, and to
use them as validity conditions for the series wave model, thereby removing the ambiguity

in WTFs G;, H; and F.

2.1. System equations of motion

Figure 3(a) shows a typical internal mass mass m;, (1 < ¢ < n — 1), for the flexible system
of figure 1. Each of these masses m; has another mass m;—1 (or for n = 1 the actuator) to
its left connected by spring k; and also a mass to its right m;y1 connected by spring k1.
Figure 3(b) shows the boundary mass m, which has no mass and spring opposing its motion
to the right. The equations of motion of these internal and boundary masses will now be
considered separately.

The internal section of the system shown in figure 3(a) has six components of motion:
A1, Ai, Ait1, Bi—1, B; and B;y1. The components A;—1 and B;11 may be thought of as
the inputs to this sub-system. They are the motion components (waves) incident from the

left and from the right into this sub-system. Equation 6 shows the four remaining motion
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Figure 3. (a) Internal mass subsystem, and (b) Boundary mass subsystem

components written in terms of these inputs, A;—1 and Bjy1.

A1 GiGit1 0
A; G 0 A1
= (6)
Bi_1 0 H;H; Bit1
B; 0 Hi_t,_l

The motion of mass m; is described by:
miSQXi — ki (Xic1 — Xi) = kit1 (Xip1 — X4) =0 (7)
Using equations 4 and 6 to substitute for the displacements X;_1, X; and X;4+1 we obtain:

Ai1 [Gs (s°mi — (Giy1 — 1) kivi) 4+ (Gi — 1) ki)
+ Biy1 [Hip1 (—Hiki + ki + kiv1 + 8277%) —kit1] =0 (8)

This equation represents the n — 1 equations of motion for masses mi to mn—_1.

The subsystem at the boundary shown in figure 3(b) has four components of motion,
An_1, An, Bn—1 and B,. The component A,_; may be thought of as the input to this
sub-system. It is the motion component (wave) incident from the left hand side. In a similar
fashion to the non-boundary masses, the three remaining motion components may be written

in terms of A,_1 as follows:

A Gn
Bn_1 = FG.Hy, An—1 (9)
B, FG,
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The motion of mass m,, is described by:

M Xy —kn (Xn1—Xn) =0 (10)
Using equations 4 and 9 to substitute for displacements X,,_1 and X,, we obtain:

At (kn [Gn (FHy — F — 1) + 1] — (F 4+ 1)s’Grmy) =0 (11)

2.2. Towards a unique series wave model

To help resolve ambiguities, we propose two constraints on the model, based on desired
wave-like properties. Firstly, each subsection of the system, such as shown in figure 3(a),
should work independently of the rest of the system and thus must itself be a valid series
model. Secondly, the model should allow superposition, so that counter-propagating wave
components at any point should not interfere with each other. These constraints imply that
the equation of motion of each internal mass m; must hold for any possible values of A;_1
and Bii1, i.e. any motion incident from the left and any motion incident from the right.
Similarly at the boundary we require that the equation of motion for the boundary mass m,,
should hold for any possible value of A,,_1. For equation 8 to hold for any values of A;_;
and B;11, two independen equations emerge, one describing a recursion relation between G;

and G;+1 and one describing a recursion relation between H; and H;1.

k;

G; = 12

Eiv1 (1= Gigr) + ki + s2my (12
ki1

Hit1 = 13

T THk + ks + kit1 + s2m; (13)

If equation 11 is to hold for any value of A,_1 then the boundary WTF F must be

_ 2

P (Gn — 1) kn + s°Gpmp (14)

G [(Hn — 1) kn — 52m)

Now if any G; is known, all the other GG; may be calculated according to equation 12 and
similarly if any H; is known then all the other H; may be calculated according to equation
13. The chosen constraints supply an extra n — 1 equations, bringing the total number to
2n — 1. But two more equations are still needed. There is still a free choice for one of the
G; and one of the H;, any combination of which will yield a valid series model. It is here
proposed that a very good choice is to make the upper and lower loops behave as if they
were parts of systems extending to infinity in a uniformly, periodic way. For this to be true
the G; and H; must cycle and to return back to the same transfer function at the start of

each new appended system. In other words, the dynamic load seen by the actuator, looking
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forward, is the non-uniform cascade of masses and springs of the actual system, followed by
a (notional) repetition of this system in a periodic way, for ever. This can be achieved by

making G, and G also follow the recursion given by equation 12 such that:

kn
n = 1
¢ —(G1 = 1) k1 + kn + s?mp (15)

In this way the G; are made to cycle periodically. This can be thought of as making the
system as close to uniform as possible, by repeating the (non-uniform) sub-system, uniformly,
to infinity. It is conjectured that such an arrangement, for example, may maximise power
flow, and yield the flattest possible frequency response, between actuator and tip. It also
helps design very good control systems. Similar arguments apply for the return loop. By
making H; and H, follow the recursion given by equation 13, the return loop is made
uniformly periodic in the same sense, where now the notional extension to infinity is through
the actuator to the left.

kn,
(Gl — 1) ki1 + k, + s2m,

Hy, = — (16)

These two equations bring the total to 2n 4+ 1 and provide an unambiguous way to arrive at

a wave model for a non-uniform system.

Comment 1

Whether or not the choices just described are the best possible, and how exactly one might
define "best”, are still open questions. As a minimum, however, we can certainly be sure

that these choices lead to valid, well-defined, series wave models of non-uniform systems.

Comment 2

When these criteria are implemented in practice, the mathematics can become tedious,
especially for cascades with more than a few masses and springs. But at least three interesting
features emerge. Firstly, as will be seen in section 2.4 a quadratic equation is obtained in
the WTFs, with two solutions, one of which is proper (with phase lag and finite gain for
all frequencies), the other not. This is exactly what happened in the uniform case. The
appropriate choice between the two solutions is obvious. Secondly, the order of the WTF's
does not grow with the length of the system, but remains ”close to” second order (with terms
in s? plus fractional powers of s), for all the resulting G; and H;. Thirdly, the procedure
leads to WTFs which become identical to those of the previous uniform model when the

masses and springs are equal.
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2.3. Uniform case

In the uniform case, where all springs are of stiffness k, all masses are m and G; = H; = G,

equations 12 and 13 reduce to the same quadratic in G.

2
G- (242 )c+1=0 (17)
k

This has two solutions given by:

2 2 244
ms ms m*s

=14+ —+1/—
G +2k % +4k2

(18)

These two solutions correspond to motion propagating in two different directions. At a given
complex frequency s, one of these solutions is strictly proper, and causal. This solution
corresponds to a forward propagating wave and the other to a wave propagating in the
opposite direction. Equation 14 for the boundary WTF then gives F' = G so that all WTFs

including F' are equal in the uniform case.

2.4. Two-mass system

The simplest non-uniform system consists of two masses (n = 2). The series model for this
system consists of five transfer functions, G1, G2, F, Hs and H;. In this case equations 12

and 15 may be simplified to a quadratic in G1:

- M Re i mes 19
! k1 (k1 + k2 + mas?) k1 k1 + k2 + mqs? (19)

2 (kl =+ kz) (2k1 + m182) m252 k1 + ko + m282
G1 + =
This has solutions:

k1 + kz) (m1 + mz) 52+ 2k, (k'l + kz) + mymas?
2k1 (k1 + k2 + mas?)

G =t

I \/(771282 (k1 4 ko 4+ m1s?) + (k1 + k2) (2k1 + mas?)) 2 — 4k3 (kv + k2 + mas?) (k1 + k2 + mas?)

2k1 (k‘1 + ko + m182)
(20)

and the corresponding solutions for G are:

(k1 + ko) (ma +ma) 8% + 2ka (k1 + k) + mimas®

2k (k1 + ka2 + mas?)
\/(m232 (k1 + ko + ma1s?) + (k1 + k2) (2k1 + m1s?)) 2 — 4k? (k1 + ka2 + ma1s?) (k1 + k2 + mas?)
2k (k1 4 k2 + mas?)

Gy =

+

(21)

where the plus or minus sign before the radical must be the same as in Gi. So, as in the

uniform case, there are two solutions for G; and G2 corresponding to waves propagating in
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two directions. Equations 13 and 16 may be solved in the same way. It is easy to show that
the solutions for H; and Hs will be the same as equations 20 and 21 but with k; and ko
interchanged. The boundary transfer function F' may then be calculated using equation 14.
It can be seen that all the WTF's in this model are global, or in other words they depend
on all the parameters of the system: ki, k2, m1 and ma. In the uniform case, the solutions
for G1 and G2 reduce to the uniform WTF of equation 18. Changes in the Bode magnitude
and phase plots for G1 are shown in figure 4, as the system departs from the uniform case
(k1 = k2 =1, m1 = mg = 1). The system is made gradually more non-uniform by reducing
the value of ma, the tip mass. The springs are kept equal, implying that H; = G2 and
H> = (G1 in all cases. It can be seen that the low and high frequency behaviour is the same
in all cases and is that of the uniform WTF of equation 18 with & = k1 and m = m;1. When
the system becomes non-uniform a finite pole and zero appear in The pole and zero occur
at frequencies, 1/% and % respectively.

The Bode magnitude and phase plots for G1, G2 and F are shown in figure 5 for ms = 0.5.
At high and low frequencies both G2 and F approach the uniform WTF with k& = k2 and
m = mg It can be seen that G2 also has a single pole and zero but interestingly where G
has a pole, G2 has a zero and vice versa. It can also be seen that F' has a zero at frequency

[ (Eitkz)(mitma)
2myma

The Bode plots for the product G1G2 are shown in figure 6. This is the transfer function
from actuator to tip and for the system in question is equal to HzH1, the transfer function
from tip back to actuator. In the product G1G2 a cancellation of poles and zeros occurs so

that it has a very flat frequency response with a small hump between frequencies ,/%

and ,/®4*2  The magnitude plot has a maximum at frequency ,/w.
mo mimo

The magnitude and phase plots for the product Gi1G2F H2H; are shown in figure 7.
The flatness of the response and unity gain, despite the non-uniformity, are conjectured to
be ideal for optimising wave-based control as they suggest ”unhindered”, uniform motion

propagation around the loop, from actuator to tip and back to actuator.

3. Conclusions and future work

The model of figure 2 is not uniquely defined and many possible WTFs lead to valid series
wave models. Proposals have been presented here to remove the ambiguities, leading to a
unique series wave model of the non-uniform system. In the uniform case the series model
proved useful in designing control systems and it is expected the same will apply to the
non-uniform case .

This series model is made possible by imagining the non-uniform system as one unit of a

system that is extended uniformly to infinity. The new wave model consists of non-uniform
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WTFs each of which depends on all the dynamic parameters of the system. In this sense
the series model is global rather than local. If a purely local model is desired (one where
each WTF depends only on local m; and k;), shunt WTFs must be added to the model.
Such shunts would represent partial reflection and partial transmission of wave components
at points within the system.

The non-uniform WTFs have some interesting properties. Unlike in the uniform case,
they have finite poles and zeros. Interestingly however the products of the series of WTFs
from actuator to tip and tip to actuator have no poles or zeros. Similarly the overall transfer
function from actuator to the tip and back again has a very flat frequency response.

Future work will include: investigations into higher order non-uniform systems; the mod-
ification of existing wave based control schemes using the non-uniform WTFs; and further

development of the shunt wave model.
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On the mathematical analysis of vibrations of axially moving
strings and beams
(ASY239-15)

Wim T. van Horssen

Abstract: In this paper the transversal vibrations of an axially moving string or beam
with constant or time-varying length, time-varying velocity, and/or time-varying
tension are studied. By using a multiple timescales perturbation method, asymptotic
approximations of the solutions of the formulated initial-boundary value problems are
constructed. The applicability of Galerkin’s truncation method and the applicability of
the method of characteristic coordinates for these types of problems are discussed.
The presence of internal resonances and autoresonances are described in detail. For
conveyor belt problems it will be shown how the two timescales perturbation method
in combination with the method of characteristic coordinates can be used to construct
asymptotic approximations of the solutions on long timescales. Also for these
conveyor belt problems it turned out that Galerkin’s truncation method was not
applicable to obtain asymptotic results on long timescales.

1. Introduction

Over the last sixty years a huge amount of papers was published on the transversal vibrations of
axially moving strings or beams. This was and still is partly due to the enormous variety in
engineering applications such as conveyor belts, chair lifts, pipes transporting liquids and gases, band
saws, elevator cables, crane and mining hoists, and so on. The relatively simple, mathematical
description by means of string-like or beam-like models was and is another reason to consider these
vibration problems. The reader is referred to the following, rather recent papers [1-27] and the
references therein to have a quick overview what was studied in the past, and how it was studied.
Usually an initial-boundary value problem for an axially moving , tensioned string or for a tensioned
Euler-Bernoulli beam equation is studied. These string and beam equations can be linear or nonlinear.

As linear string and beam equation one has

u, +2Vu, +V,u, +(V2 —cz)uXX =0, and )

El
Uy + VU, +Vu, +(V? =¢% )u,, +——u

A o =0 )
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respectively, where u (X,t) is the displacement of the string or beam in vertical direction, V (t) is the

time-varying string or beam speed in horizontal direction, ¢ >0 is the wave speed due to a
pretension in the string or beam, X is the coordinate in horizontal direction, E is the modulus of
elasticity, | is the second moment of inertia with respect to the string/beam middle plane, p is the
mass density of the string/beam, A is the cross-sectional area of the string/beam, t is the time, and

L is the distance between the pulleys (see figure 1).

| L |

| |
v Tua Ny
T A X .
x=0 x=L

Figure 1. Schematic model of the axially moving continuum

with axial speed V in x-direction and transversal displacement u (x,t) .

When small (geometrical) nonlinearities are introduced in the model equations (1) and (2), or when
small axial speed fluctuations in V (due to belt system imperfections such as pulley eccentricities,
and so on) are considered, one can apply perturbation methods to approximate the solution of an
initial-boundary value problem for Eq. (1) or Eq. (2). The reader is referred to [28-25] to have a good

idea about the available perturbation methods for these types of problems. For the aforementioned
problems it is usually assumed that the solution u(X,t) can be written in an infinite series

representation, that is, in a Fourier series
o0

U(X:t)zzan (t)¢n(x) ' @

n=1

where ¢n(x) are the eigenfunctions of the eigenvalue problem corresponding to the linear,

unperturbed boundary value problem for Eq. (1) or Eq. (2). By substituting the infinite series (3) into

the initial-boundary value problem for u (x,t) one obtains an infinite dimensional system of ordinary

differential equations for the functions a, (t). This infinite dimensional system is usually truncated
N
to only the first few oscillation modes, that is, the infinite series (3) is truncated to Zan (), (x)

n=1

with N =1, 2, or 3. For beam-like problems this approach seems to be working when the bending
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stiffness is sufficiently large and the initial energy is restricted to the first few modes. For string-like
problems, however, is has to been shown in [5, 6, 7, 14, 24] that application of Galerkin’s truncation
method may lead to inaccurate results on long time-scales. This is primarily caused by the fact that by
truncating the system to a finite number of oscillation modes, one in fact neglects the presence of
infinitely many internal resonances in the system. In this short paper it will be shown how string-like
problems can sometimes be solved by using a multiple timescales perturbation in combination with
the method of characteristic coordinates. This paper is organized as follows. In section 2 of this paper
an initial-boundary value problem for an axially moving string with a low and harmonically time-
varying axial velocity will be formulated. In section 3 it will be shown that application of Galerkin’s
truncation method in combination with the multiple timescales perturbation method leads to
inaccurate results on long timesscales. In section 4 it will be shown how accurate results on long
timescales can be obtained by introducing characteristic coordinates in the multiple scales approach.
Finally, in section 5 some conclusions will be drawn, and some remarks will be made.

2. Formulation of the problem
In this paper the following initial-boundary value problem in non-dimensional form (see also [5, 6, 7,

14, 24]) is considered for the function U (X,t) :

U, —U, =-V,u, —2Vu, -V, , t>0,0<x<1, (4)
u(x,0)=¢(x),u,(x,0)=w(x),0<x<1, ®)
u(0,t)=u(Lt)=0, t>0, (6)

where the axial velocity V (t) of the string is assumed to be a harmonically varying function about a

mean velocity of order £ . The velocity variation frequency is €2, and its amplitude £a, and one

writes
V(t)=&(V, +asin(Qt)), )
where £,V,,, and Q are constants with V, >|a|,Q>0,and ¢is a dimensionless small

parameter with 0 <& << 1. The conditionV, > |a| implies that the string will always move forward

in one direction. The functions @(x) and w (X) in (5) are the initial displacement and the initial

velocity of the string, respectively.
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3. A Fourier series approach and Galerkin’s method

In this section an approximation of the solution of the initial-boundary value problem (4) — (6) will be

constructed in Fourier series form by using a two-timesscales perturbation method. It is assumed that

u (x,t) can be written in the following form
u(xt)= iun (t,7;¢)sin(nzx), (8)
n=1

with 7 = &t. By substituting the series (8) into the partial differential equation (4), by using the

orthogonality  properties of the sin-functions, and by approximating U, (t,r;g)by
Wy, (t,r)+gwkl(t,r)+0(52), the following O(1)-problem and O(&)-problem for W, and

W, can be obtained

2

o(1): aa:vz“’ +(k) W =0, ©

2 2 o
0(s): aatvfkl (k) w, =2 Ztgj “ njﬂ‘kz [mzcos(gt)wno +8(V, + asin (1)) a;”t"o }

i:j:d
(10)

The solution of the O (1) -problem can be written as follows:

Wy, (t,7) = A, (z)cos(kzt)+ By, (7)sin(kzt), (11)

where A, (7)en By, (7) are still arbitrary functions, which are so determined as to make the
solution of the O(&) -problem for w, (t,7) free of secular terms. Since it assumed that W, (t,7)

and w,, (t,z') are bounded on timescales of O(g’l), these secular (unbounded) terms may destroy

the accuracy of the approximations on long timescales, so they should be avoided. From Eq. (10) it

can readily be seen that resonances will occur when Q= (k +n)z,Q=(k-n)z or
Q=(n-k)z with k £n is odd. So, secular terms in the solution of the O (&) -problem will occur

when € is an odd multiple of 7z . When Q is equal to mz with modd and fixed it follows from

(10) (see also [5, 6, 7, 14, 24]) that A, (7) and By, () have to satisfy:
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dA a
?EQ:‘ﬁﬂﬁm—k)ﬁwmw%k+m)%mmw*k‘m)%kmﬂ’

Bt [ (mk) Ay (k) Ay + (M) A, |

m

(12)

for k =1,2,3,... And for non positive indices k , the functions A, and B, are defined to be zero.

System (12) is an infinite dimensional system of coupled ordinary differential equations. It is clear
from the structure of the system (12) that infinitely many interactions between the vibration modes

occur.

3.1. Application of the truncation method

In this section system (12) with m =1 will be studied by using Galerkin’s truncation method, that is,
the infinite dimensional system is truncated to a finite dimensional one (that is, only a finite number

of vibration modes is considered). For example truncating, the infinite dimensional system (12) to the

first three modes gives X = AX , where

Ao 000 20 0
By, 00200 0
=P | aga|0 10 0 03
B, 1000 30
A, 000 -20 0
| By, 00 2 00 0

This system has eigenvalues 2\/§i,—2\/§i, and O, all with multiplicity 2. By using the computer

software package MAPLE, the eigenvalues of system (12) with m =1 have been computed and are
(up to the first 10 modes) listed in Table 1.
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No. of Eigenvalues of matrix A Dimension
modes | (all multiplicity 2) eigenspace
of A

1 0 2

2 i\/ﬁ 4

3 0,+2+/2i 6

4 +1.13i,44.33i 8

5 0,£2.30i,+5.89i 10

6 +7.50i,+1.00i, £3.56i 12

7 0,+9.15i, +2.05i, +4.90i 14

8 +10.83i,+0.93i,+3.18i,£6.30i 16

9 0,+12,54i,+1.89i,+4.38i,£7.74i 18

10 +14.26i,40.87i,+5.65i,+9.23i,+2.93i 20

Table 1. Approximations of the eigenvalues of the truncated system (12).

From Table 1, it can be seen that the eigenvalues of the truncated system are always either zero or

purely imaginary. It is well known in mathematics that in this case no conclusion can be drawn for the

infinite dimensional system.

3.2.  Analysis of the infinite dimensional system (12)

In this section, we shall show that the results obtained by applying the truncation method are not valid

on timescales of O(g'l) in all cases. By introducing X, (7)=kA, (7) and Y,,(7)=kB(7),

system (12) becomes:
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for k=1,2,3,..., and the functions X0 and Y, are zero for non positive indices kK . Then it can be

deduced that:

Xy X0 =K |:_XkOY(m—k)O + XY kampo + XkOY(k—m)O:l v

; (14)
YioYko =K |:Yk0 X(m—k)O +Yio X(k+m)0 +Yyo X(k—m)0:|
By adding both the equations in (14), and by taking the sum from k =1to oo, it follows that:
lii(xkzo +Yk20) = mi(x k+m ono _Yk m oxko)
24 dr ~ (Ik+m) (Ie+m)
+ (1)<_ X(m—l)OYlo - Y(m—l)O X0 )
+(2) _x(m-z)oYzo _Y(m—Z)OXZO) (15)
+(m - 2)(_X20Y(m—2)0 _Yzox(mfz)o )
+(m _1)(_X10Y(m—1)0 Y X(m—l)O ) '
By differentiating Eq. (15) with respect to 7 on both sides, we obtain:
1& d? 2 2) _om? < 2 2
_Z_Z(Xk0+Yk0)_ m Z(Xk0+Yk0)’ (16)
2 k=1 dr k=1
and then by putting 2::1( X2 +Y2 ) =W () into Eq. (16) yields:
d°w (z’)
————2—4m°W (7) =0. 17
dTZ ( ) ( )
The solution of (17) is: W (7)=Ce’™ +C,e™™,

where C, and C, are arbitrary constants and can be determined by using the initial conditions.

The energy of the system can be approximated using the function W (r) For C, #0,W (z’) (so the
energy) increases exponentially if 7 increases. Thus W (z') is unbounded in 7 and increases as 7

increases. This behavior is different from the behavior of A and B,,as obtained by applying the

truncation method.
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This implies that the approximations obtained by applying the truncation method to system (12) are

not accurate on long timescales, that is, on timescales of order 7.

4. The method of characteristic coordinates

In this section a two-timescales perturbation method will be used to construct asymptotic

approximations of the solution of the initial-boundary value problem (4)-(7), which are valid on long

timescales, that is, on timescales of order ™. To avoid errors due to truncation in the Fourier series
approach (see the previous section) it will turn out that the use of characteristic coordinates

o =X-1,&=Xx+tis an appropriate approach to construct asymptotic approximations on long
timescales. In this approach the initial-boundary value problem is transformed into an initial value
problem by extending the dependent variables as well as the initial values ¢(x)and y (x)to odd
and 2-perodic functions in X . This is accomplished by multiplying each term in Eq. (4) which is not
already odd in X (i.e. terms like u,and u,) with H(x), where H is an odd and 2-periodic
function in X, and on 0 < x <1 H isequal to 1. So, Eq.(4) becomes
U, —Uu, = g[—anos(Qt) H (x)u, —2(V, +asin(Qt))H (x)uxt]
+O(52).
By assuming that the function u is a function depending on the characteristic variables o, £, and

the slow time 7 =gt, that is, u(x,t)=v(o,&,7), and by assuming that v(o,&,7)has the

following formal expansion in &
V(o.& 1) =V, (0,&,7)+ev, (0,&,7)+--,

one obtains in the usual way the following O (1) -problem, and O (&) -problem:

O(1):
4, =0, o <&, >0, (18)
Vo(0,0.0) = ¢,(0), o=¢, =0, (19)
Vo (0,0,0)+ V. (0,0,0) =y, (0), o=¢ =0, (20)

598



O(e):

Q-0 +0o
v =2V, +2V,  —oQ cos( (¢ )j H (é j(vca +Vv,,)
E 5 :

2
_ (22)
+2(V, +asin(9(§ G)jH(§+6)(V0W +V,,.),
2 2 -
v,(0,0,0) =¢ (o), o=¢ =0, (22)
-V, (0,0,0)+V,.(0,0,0)=-v, (0,0,0)+y,(0), o=¢ =0, (23)

where ¢ (o) isthe O(¢')— part of ¢(c),and v, (o) isthe O(¢')— part of (o) . The general

solution of (18)-(20) is obtained by direct integration. Hence, the solution of Eq. (18) can be

expressed as
Vo(0.¢6,7) = fo(0,7) + 9, (&, 7), (24)

where f, and g, are arbitrary functions of the characteristic variables o and & and the slow time
7, which in turn are functions of x and t. The functions f; and g, can be obtained by demanding
that v, does not contain secular terms and that v, satisfies the initial conditions (19) and (20),
implying that f, and g, have to satisfy f,(0,0)+0,(c,0)=¢,(c) and
f',(0,0)+9',(0,0) =w,(c), where the prime indicates a derivative with respect to the first

argument. By eliminating g,(c,0) from the previous two equations, it follows that

1
f,, (0,0) = E(%U (o) —w, (o)) . From the odd and 2-periodic extension of the dependent variable

of the problem (4)-(7), it also follows that f, and g, have to satisfy g,(c,7)=—f,(-o,7) and
f,(o,7)=f,(c+2,7) for —0o<o<oo and >0. Now the O(g)-problem (21)-(23) can be

solved in such a way that v, does not contain secular terms. Then, it turns out that f,(c,7) has to

satisfy

2

2% cos((2m-1)7zo)f
-

fo,, —2asin((2m-Yzo) f, + @m-D)

=0 (25)

Oco
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when Q= (2m-1)z with me Z* . The reader is referred to [25] for details of the computations.

Now it should be observed that Eq. (25) is a first order partial differential equation in f,_, which can

be solved exactly by using the method of characteristics for first order PDEs. In [25] some examples
are given how these exact solutions can be obtained.

5. Conclusions and remarks

In this paper the transversal vibrations of an axially moving continuum (string) with time-varying
velocity have been discussed in detail. The drawbacks of the truncation method for these string-linke
problems are indicated, and it has been shown how these drawbacks can be prevented by using the
method of characteristic coordinates.

Up to now only a few problems have been investigated in this way, but the applicability of the
method of characteristic coordinates for these types of problems will be studied further in the near
future.
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A chain of FPU cells
(BIF212-15)

Ferdinand Verhulst

Abstract: In contrast to the classical Fermi-Pasta-Ulam (FPU) chain, the in-
homogeneous FPU chain shows nearly all the principal resonances. Using this
fact, we can construct a periodic FPU chain of low dimension, for instance a
FPU cell of four degrees-of-freedom, that can be used as a building block for a
chain of FPU cells. Differences between chains in nearest-neighbour interaction
and those in overall interaction are caused by symmetry. We will also show
some results on the dynamics of a particular chain of FPU cells where different
kinds of chaos play a part.

1. Introduction

The Fermi-Pasta-Ulam (FPU) chain or lattice is an n degrees-of-freedom (dof) Hamiltonian
system that models a chain of oscillators with nearest-neighbour interaction, see [3] and [4].
In the classical (symmetric) case all the masses m;,i = 1,...,n of the chain are equal.
To find prominent resonances in the inhomogeneous case poses an inverse problem for the
spectrum of the linearized equations of motion. Inhomogeneous nonlinear FPU chains were
studied in [1] with emphasis on the case of four particles with mass distribution producing the

3:2: 1 resonance. For any periodic inhomogeneous FPU a-chain (quadratic nonlinearities)

with four dof and masses m;, i = 1,...,4 we have, putting a; = 1/m;, the system:
G =wo1, 01 =21 + @2 + g — (@1 — q1)* = (g2 — 1) *)]aa,
G2 =wva, 02 =[2¢2+a+q —e((g2— @) — (g3 — @2)*)]az, )
Gz =wvs, 03 =[-2gs + g+ ¢ —e((g3 — ¢2)*> — (g1 — 3)*)]as,
g1 =v4, 94 =[-2q1+q1 + g3 — e((qa — q3)° — (q1 — q1)?)]aa.

The ¢; indicate the positions of the particles, the v; their velocity, € is a small parameter;
sometimes it is convenient to use momentum-position variables p,q. We call the case with
quartic terms in the Hamiltonian added (cubic terms in the equations of motion) a S-chain.
It was shown in [8], that in the classical periodic FPU problem with four identical particles
the normal form of the system is integrable, see also [9]. The implication is that for € small,

the measure of chaos is in this classical case O(g).
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We assume that the Hamiltonian can be expanded in homogeneous polynomials as H =
Hy 4+ €H3z + €% ... with the index indicating the degree of the polynomial. Apart from the

Hamiltonian H we have as a second (translational) momentum integral of system (1):
miv1 + mavs + mavs + mavs = constant. (2)

The expression for the quadratic part of the Hamiltonian Hs is:
1« 1
Hy =35> aip} + 52 — q)” + (a5 = 42)° + (04 — 00)” + (@1 — @a)’]. (3)
i=1

Ho is a first integral of the linearized system (1), it is also a first integral of the normal form
of the full system (1). This has the following implication: When using Hs from the solutions
of the truncated normal form indicated by: H(p, q) = Hz2(p, ¢)+eHz(p, q), we obtain an O(e)
approximation of the (exact) Ha(p(t), ¢(t)) valid for all time; for a proof see [10] chapter 10.

2. Transformation to a quasi-harmonic form

The presence of the momentum integral enables us to reduce system (1) to a three dof system.
It has been shown in [1] that the w1 : w2 : w3 = 3 :2: 1 resonance arises in a one-parameter

family of Hamiltonians; many other resonances can be found. Without loss of generality we

choose
2 9 2 4 o 1
w1—14,w2—14,w3—14. (4)

The one-parameter family of 3 : 2 : 1 resonances can be generated by the real parameter
u € [0,u1) with w1 = 0.887732. In an application later on we will choose a particular
value of u, called case 1 in [1]. To put system (1) in the standard form of quasi-harmonic
equations we have to apply a suitable symplectic transformation L(u) ™' : p,q — y, = with
the vector of the new position variables that is three-dimensional because of the reduction

by the momentum integral (2). This leads to a transformed Hamiltonian H2 + ¢ Hs:

1, . 9 . 4 . 1
H, = i(x% + ﬂx? + i3+ ﬁxg—i—mg—i— ﬁxg)

and Hs a cubic expression containing 10 terms, see for details [1]. Because of the 3:2:1
resonance, only two terms will be active in the normalized Hs; an intermediate normal form

will be:

1+ 921 = —514d6$2$3,
:.1}2 —+ 4.’172 = —514(d6-'171x3 + dQ:I:CQS)a (5)
T3 + x3 = 7614(6[61'11’2 + 2d9$2$3),
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0=\V2 w=1
unstable |

4 stable stable

solutions

stable complex unstable
=2 “0=2
unstable
- =3
® =\]2 unstable

classical FPU cell 1:2:3 FPU cell

Figure 1. Action simplices. A dot indicates one or more periodic solutions, at the vertices
one finds the normal modes if these exist. Left the actions of the classical FPU chain with
four particles, the v/2 : v/2 : 2 resonance has two unstable normal modes. Right the case of
the FPU chain with four particles in 1 : 2 : 3 resonance. The normal modes corresponding

with w = 3 and 2 exist but are unstable, in the second case with complex eigenvalues.

It was shown in this case that for nearly all parameter values, one of the short-periodic
solutions is complex unstable. This is highly relevant for the characterization of the chaotic
dynamics of the system as it was shown in [5] that a Shilnikov-Devaney bifurcation [2] can
take place in the 3 : 2 : 1 resonance. For a summary of the results in the parameter case
0 < u < u; see the action simplex in fig. 1 (right).

In the sequel we will treat such a FPU chain with 4 particles as a FPU cell, and we will

construct a chain of FPU cells. Such a chain is depicted in fig. 2.

L e

cell 1 cell 2 celln

Figure 2. A chain of FPU cells, each consisting of four particles.

3. Energy exchange and recurrence in PFU cells

We will use particular values for the masses, in [1] denoted by “case 1”7. We choose:

a1 = 0.00510292, a2 = 0.117265, az = 0.0854008, a4 = 0.292231,
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leading to the frequencies (4). With these mass (a; = 1/m;) values the symplectic transfor-

mation of the four-particles system produces :
de = —0.0306229, dg = —0.0089438.

The analysis in [1] for case 1 shows that the x> normal mode of an isolated cell is complex
unstable. We will study a chain of FPU cells with this choice of masses; the cells interact
weakly by the mass points g2, gs, . . . etc. so that the 3 : 2 : 1 resonances of the cells experience

only a slight detuning. Consider as an illustration the case of two cells with:

v2
Hy= 330, 5%+ 35l —a1)* + (63 — @2)° + (¢ — 03)° + (01 — 00)°] + Sen(az — g6)°

+1[(g6 — a5) + (a7 — q6)* + (as — a7)* + (a5 — gs)?], (6)

and a; = ai44, ¢ = 1,...,4; € scales the nonlinearities, eu scales the detuning. The equations

of motion produce a 16-dimensional phase-space and become:

G o=wv1, 01 =201 + @2+ g — (@1 — q1)* — (@2 — 1)*)]an,

G =wa, V2 =[—2g2+ a3+ q1 —eplq2 — g6) — e((q2 — @1)? — (g3 — q2)*)]as,

g3 =3, 03 = [~2g3 + g1 + @2 — £((¢3 — ¢2) — (g1 — ¢3)*)] a3,

g1 =wva, 01 = [-2q1 + @1 + g3 — £((ga — 43)* = (@1 — q4))]aa, )
G5 =wus, Us = [—2¢5 + g6 + g5 — (g5 — g8)* — (g6 — g5)°)]an,

ds = ve, V6 = [—2q6 + q7 + g5 + cp(q2 — g6) — £((g6 — g5)° — (g7 — ¢6)*)]az,

Gr =1, 07 = [~2q7 + g8 + g6 — £((g7 — 46)* — (g8 — q7)*)]as,

Gs =wvs, Us = [—2qs + g5 + q7 — £((gs — q7)° — (g5 — gs)*)]aa.

The recurrence theorem for volume-preserving maps was formulated by Poincaré in 1890
in his prize essay for Oscar II; it can also be found in [7] vol. 3. It implies, loosely formulated,
that for Hamiltonian systems on a compact energy manifold, nearly all solutions return after
a finite time arbitrarily close to their original position in phase-space. Analysis of recurrence
adds to our understanding of the dynamics.

For a one dof system on a compact domain recurrence is trivial as under these condi-
tions nearly all solutions are periodic. For two dof systems that are integrable, recurrence
behaviour is relatively simple near a stable periodic solution. In nearly-integrable two dof
systems a similar result can be obtained using the KAM theorem, but in general this is

already not so easy for chaotic two dof systems.
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To measure recurrence for a system of two FPU cells we will start with zero energy in
the second cell and consider energy exchange between the FPU cells. To study recurrence

we will also use the Euclidean norm:

1 1/2

d= Z(%( ) —ai(0 +Zvl+cz (qi(t)® +vi(t)?) . (8)

i=1

In the case of one cell, ¢ = 0, for two cells ¢ = 1. It would be natural to apply weights, based

on the masses, to the displacements but this does not change the picture qualitatively.

3.1. Set-up of the experiments

We will start with initial values in cell 1 and will be interested in the energy transfer to cell 2.
The initial values of the velocities were chosen to be zero. As the chain is Hamiltonian, the
flow will be recurrent, but we expect differences between the classical case of equal masses
and the case of the 3 : 2 : 1 resonance where the flow is chaotic. We restrict ourselves to
initial values in a neighbourhood of the normal modes indicated in the second and fourth
column of table 1. As the phase-flow is chaotic, see [5], we expect the transfer of energy
between the cells and the recurrence to be different from the case of a nearly integrable cell
system like the classical FPU chain with all masses equal. The numerics involves a [0, 5000]
time interval with relative tolerance e 7, absolute tolerance e~ °.

The 3 : 2 : 1 resonance will be detuned by the interaction between the cells. Keeping the
interaction small by choosing € = 0.2, u = 0.1, the detuning does not disturb the qualitative
picture of the resonance. With the mass distribution of case 1 we have for the frequencies of
the linearized system wi = 0.8019 (0.8018), w2 = 0.5487 (0.5345),ws = 0.2742 (0.2673) with
between brackets the frequencies of isolated cells (e = p = 0).

For the instantaneous energy F.; stored in cell 1 we have:

Ea= ;Y % +5la2 — 1) + (g5 — 42)” + (a4 — 3)* + (@1 — ¢a)?]
+5(q2 — q1)® + (@3 — 2)° + (@2 — 43)° + (@1 — qu)®].

The energy of cell 2 is obtained from E.; by adding 4 to all the indices.

3.2. Energy transfer between two cells

We compare the energy transfer to cell 2 between the 1 : 2 : 3 resonance of case 1 with
the behaviour of the classical FPU chain with four equal particles. In this classical case the
frequencies of the linearized system are v/2,+/2,2,0. For reasons of comparison we choose
for the masses in the classical case m = 0.1. The symmetry induced by the equal masses

means that we have to choose the initial conditions in the classical FPU case with care. For
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Table 1. The eigenmodes e of the system in x variables transformed to q variables for
the 1 : 2 : 3 resonance (case 1, 2nd column) and the classical FPU case (4th column).
Because of the presence of the momentum integral (2), the reduction to three dof makes
the values produced for the 4th eigenvector redundant. The initial values of the positions
for the numerical integrations have been chosen near the eigenmodes; the initial velocities
are zero. The symplectic transformation L(u) from [1] discussed in section 2 gives us the
relation between the normal modes of the system in quasi-harmonic coordinates (z,#) and
the initial conditions in the variables (q,v) of system (7). This means that a given position

vector (qi1,q2,q3,q4) = q is obtained from the x normal modes by putting q = L(u)x.

Initial values

Case 1 Initial values case 1 Classical FPU classical FPU
—0.00432273 —0.1 —0.5 —0.4
0.0290855 0.1 0.5 0.45
L(u)ex
—0.0969556 —0.2 —0.5 —0.4
0.506839 0.3 0.5 0.42
0.00315777 0.1 0 0.1
—0.297518 —0.2 1/v2 0.6
L(u)eg
0.126704 0.3 0 —0.1
0.127029 -0.1 —1/V2 —0.65
—0.0228266 —0.1 —1/V2 —0.65
0.152804 0.3 0 0.1
L(u)es
0.235358 0.4 1/v/2 0.6
0.121061 0.05 0 —0.1
0.0674775 0.0 0.5 0.0
0.0674775 0.0 0.5 0.0
L(u)eq
0.0674775 0.0 0.5 0.0
0.0674775 0.0 0.5 0.0
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instance there exists the family of periodic solutions defined by:
q2(t) = qa(t) = 0, q1(t) = —gs(t), G2 + 2q1 =0, Gz +2q1 = 0.

As the link between the cells involves the second particle, this means that there is no
energy transfer between the cells when starting with these solutions. It is easy to obtain a

few exact solutions by generalizing this result for the classical FPU chain with 2n dof.

L T T T T T T T T T 14

oz 4 120 =

Ecell2
Eclasscell2

s L L ‘ L L L ‘ L f L L L L . L , L
500 T000 7500 2000 2500 3000 3500 4000 4500 5000 500 000 1500 2000 2500 3000 3500 4000 4500 Gol
t t

Figure 3. Time series ([0,5000]) of the energy of the second cell, left the 1:2: 3 resonance
(scale [0,0.14]), right the classical case (scale [0,1.4]). The link is linear and exists between
g2 and gg; The initial conditions of the first cell start near the eigenmode z; and are given

in table 1, the second cell starts with zero energy; e = 0.2, u = 0.1.

In the figs 3 - 5 on the left we have energy transfer starting near respectively 3 unstable
solutions in a chaotic dynamical system; the transfer is irregular but assumes at certain
times a considerable part, more than 90 % of the energy of cell 1. On the right side of the
figs 3 - 5 we have energy transfer starting in the classical FPU case showing a rather regular

pattern. The (ir)regularity of the energy transfer is the main difference.

3.3. The recurrence of an solution

We will explore recurrence phenomena for our systems of one cell (¢ = 0, 8-dimensional) and
two FPU cells (¢ = 1, 16-dimensional) using the Euclidean distance d, see eq. (8). Increasing
the dimension will in general increase the recurrence times but other aspects of the dynamics
play a part. We will use again the initial values given in table 1. We explore the recurrence
in the first cell with the initial conditions near the complex unstable z2 normal mode, see
fig. 6 (left) and for two cells (right). In the classical FPU system we have rather regular

recurrence near the x2 normal mode, see fig. 7.
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Figure 4. Time series ([0,5000]) of the energy of the second cell, left the 1: 2 : 3 resonance
(scale [0,0.16]), right the classical case (scale [0,0.7]). The link is linear and exists between
g2 and gg; The initial conditions of the first cell start near the eigenmode x5 and are given

in table 1, the second cell starts without energy; e = 0.2, = 0.1.

Esell2
Eclasseell?

, ‘ L L L L L ‘ L | L L L L , L L
SO0 1000 1500 2000 2500 3000 3500 4000 4500 5000 500 T000 1500 2000 2500 3000 3500 4000 4500 5400
t t

Figure 5. Time series ([0,5000]) of the energy of the second cell, left the 1: 2 : 3 resonance
(scale [0,0.16]), right the classical case (scale [0,0.45]). The link is linear and exists between
g2 and gg; The initial conditions of the first cell start near the eigenmode z3 and are given

in table 1, the second cell starts without energy; e = 0.2, u = 0.1.
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Figure 6. Time series ([0,5000]) of the Euclidean distance d starting near the complex
unstable normal mode z2 in the first FPU cell in 1: 2 : 3 resonance (left, scale [0,1.4]). The

recurrence for 5000 time steps is delayed on the right (scale [0,1]) where we started with the

same initial conditions (table 1) for two cells.

, L L . I . L , L ,
500 000 1500 2000 2500 9000 9500 4000 4500 400 % 500
t

L L L L . L , L
000 7500 2000 2500 3000 3500 4000 4500 400
t

Figure 7. Time series ([0,5000]) of the Euclidean distance d starting near the x5 eigenmode
in the first classical FPU cell (left, scale [0,1.8]). For the initial conditions indicated in table

1 the recurrence is quite good. On the right (scale [0,1.8]) the time series for two cells with

the same initial conditions; the recurrence is delayed.
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Active control of a rotating composite thin-walled beam structure
(CON074-15)

Jerzy Warminski, Jarostaw Latalski

Abstract: Dynamics of a rotating composite beam attached to a hub and con-
trolled by active element is studied in the paper. The considered beam is
modelled as a thin-walled structure made of composite material. A specific
structural laminate configuration resulting in a strong coupling of specimen
lead-lag bending and twisting has been assumed. This structural property
allows controlling both coupled modes by just a single actuator. To reduce
structural vibrations, induced by external excitation, a non-linear saturation
control strategy is applied. Effectiveness of the proposed non-linear control
method is tested taking into account the dynamic properties of the combined
hub-beam system. The importance of the hub inertia in controller frequency
tuning is underlined.

1. Introduction

Rotating beams are often used as models for studying the dynamic properties and behaviour
of turbomachinery blades, helicopter rotor blades, flexible links of robotic manipulators or
lightweight satellite structure appendages. The primary interest is usually aimed at planar
bending of rotating links, often coupled to torsional deformation due to e.g. aerodynamic
or fluid-to-structure interactions. The effect of vibration mode coupling may be also ob-
served for modern lightweight structures made of composite materials as a result of inherent
directional properties of multilayered laminates. Moreover, the discussed mode coupling
phenomena may be also observed due to a non-uniform and/or non-symmetric specimen
cross-section, or due to beam pretwisting.

On the other hand the discussed feature of vibrations mode coupling in orthotropic
materials is a promising concept of material tailoring that plays a significant role in modern
structures design. This refers particularly to advanced mechanical and aerospace designs.

Further enhancement of structural performance may be achieved by the concept of intel-
ligent structures. The idea of smart systems requires integration of sensory capabilities and
actuation authority within the host structure combined with appropriate control strategy.
The possible use of this technology opens new research areas and new design perspectives.
The concept is receiving considerable attention in recent years. Apart from classical control
methods, recently nonlinear control strategy with application of active elements is proposed

in literature [4,8,13,14]. One of the most attractive methods is the so called saturation
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based control, which due to nonlinear coupling allows transfer vibration from a plant (host
structure) to the controller [10,11]. The proposed strategy can also be modified by adding
time delay to the control signal. The nonlinear saturation control has been applied mainly
for oscillating structures fixed to a immovable base.

The main goal of this paper is to study the non-linear vibration control strategy in order
to reduce structural vibrations of a rotating hub-—composite beam system. As opposed to
classical cases where the single vibration mode is addressed this paper discusses the control
of the structural coupled vibrations by using just a single active element. The considered
structural mode coupling results from the orthotropic properties of the composite and cross-
sectional circumferential lamination scheme as well. The results of the analysis are presented
for circumferentially asymmetric stiffness (CAS) which leads to coupled flexural-torsional
vibrations of the rotating thin-walled beam. The study is a continuation of the previous

authors research, reported in publications [3,4,13].

2. Mathematical model

Let us consider a slender, straight and elastic composite, single cell thin-walled beam clamped
at the rigid hub of radius Ry and inertia Jj experiencing rotational motion about fixed axis
Zo as shown in Figure 1. The composite material is linearly elastic (Hookean) and its
properties are constant in spanwise direction. The beam is clamped to the rigid hub at the
arbitrary presetting angle 0. It is assumed the beam profile is neither tapered nor pretwisted.

An active element (patch) is embedded onto the specimen flange right at the clamping
as shown in Figure 1. In order to reduce beam oscillations, the system is controlled through
a nonlinear control unit (controller).

In the structural analysis of the system the transverse beam shear deformations are
taken into account and these are assumed to be uniform over the beam cross-section. In the
analysis of torsional deformation the non-uniform model is assumed, thus the rate of beam
twist ¢’ = Z—i depends in general on the spanwise coordinate z. Moreover, the elastic warping
deformation of the cross-section is taken into account and both kinds of this phenomena are
considered i.e. due to cross-section shape (primary warping effect) as well as due to the wall
thickness (secondary warping). More detailed information on adopted assumptions is given
in paper [2].

In the foregoing calculations the graphite-epoxy laminate material is considered and
the following material data is used Ei = 206.75 - 10° Pa, Ko = E3 = 5.17 - 10° Pa, Gas =
3.1-10° Pa, G13 = G12 = 2.55 - 10° Pa, v32 = 0.25, vo1 = v31 = 0.00625, p = 1528.15 k&/m3.
Dimensions of the beam are as follows: cross-section height ¢ = 0.00508 m, width of the

cross-section d = 0.0254 m, wall thickness h = 0.001 m, beam length | = 0.254 m and hub
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Figure 1. Model of a rotating composite thin-walled beam-hub structure.

radius is Rgp = 0.1 - I. This data comes from [12] and it is used to compare the natural

frequencies of the hub-beam system if hub inertia is neglected.

3. Governing equations

The equations of motion of the rotating beam and hub sub-system are derived according
to the extended Hamilton principle of the least action. Setting formula for potential and
kinetic energy results in a set of seven partial differential equations of motion mutually
coupled. Three equations correspond to displacements of the beam cross-section reference
point (transverse and axial one), two equations for shear deformations and one corresponds
to the beam twist. The seventh equation is related to the hub rotation (t) about fixed
inertial reference frame axis. Full step-by-step derivation of these equations of motion is
presented in previous authors papers [2,5].

In connection to the derivation procedure several comments are in order. Firstly —
although the developed model is a linear one, the expression for the axial strain should include
the higher order terms associated with the transverse and lateral beam deformations. These
approach enables capturing in equations of motion the stiffening effect due to centrifugal
forces which, for rotating systems, is crucial. Other methodologies that might be used to
capture the stiffening effect in dynamics of rotating systems are reported in papers [7,9].

Second — invoking the facts that the blade is much stiffer in the longitudinal direction
than in the flapping and lagging ones, and that the effect of the axial inertia is much smaller
than the others, the original axial dynamic equation may be simplified to a quasi-static one
by discarding axial inertia term. This approach enables to relate the axial deformation with
the transversal ones, and subsequently to express the formulas for centrifugal stiffening effect

terms which are present in bending and twisting equations.
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The third comment is that significant simplification of this full system of equations may
be obtained by setting fibers in the laminate to be oriented according to the circumferentially
asymmetric stiffness (CAS) configuration scheme. This arrangement implies the ply-angle
distribution «(z) = —a(—=z) in the top and bottom walls of the box beam (flanges) and

a(y) = —a(—y) in the lateral walls (webs) — see Figure 2. As reported in the literature

Figure 2. CAS lamination scheme for upper/lower and side beam walls

(see e.g. [1,6,15]) the discussed fabric configuration decouples the full set of six equations of
motion (6 DOF) into two independent sub-systems: one exhibiting flapwise bending—shear—
twisting coupling and the second one where axial stretching and chordwise bending-shear
modes coexist. Thus, clamping the beam to the hub at # = 90° angle makes the flexible
body to exhibit lead-lag deformation to be coupled with twisting. The magnitude of the
coupling effect depends on the fiber orientation angle. It has been shown in papers [5,15]
that the maximum is observed for fiber orientation angle o &~ 75°. This orientation is used
in performed numerical simulations.

The originally derived partial differential equations of the system have been simplified
according to the postulated above assumptions. Next, they were reduced to ordinary differ-
ential ones using Galerkin’s procedure for a single coupled flexural-torsional mode. Details
considering the functions (mode shapes) used in the procedure are given in paper [4].

Finally, the dynamics of the beam-hub system with the added controller is given by a

set of dimensionless ODEs

G+ C1d1 + o129 + (a11 + 06131/;2) @ + 01y = giqc,
o + Cee + WheGe = 9241 (1)
(1+ Jn + an2) 1/) + CH/‘) + anigi + Oéh31/}111 = I,
where: ¢ is a coordinate corresponding to the first flexural-torsional mode, g. is the co-
ordinate of the controller and ¢ angle of rotation of the hub (Fig.1a). Coefficients a1,

i=1,...,4, anj, 5 =1,...,3 are computed from Galerkin procedure and then transformed

to dimensionless form, (i, (., () are damping coefficients of the beam, the controller and
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the hub respectively, Jj is the relative dimensionless mass moment of inertia of the hub
expressed with respect to the beam inertia and p is the torque imposed to the hub.

The set of equations (1) governs full system dynamics. All equations are coupled how-
ever, we can notice that the first equation is related to coupled flexural-torsional beam vi-
bration, the second equation represents the controller dynamics and the third is the driving

equation which arises from the hub rotation.

4. Nonlinear control of the rotating beam structure

In order to reduce vibrations of the combined hub-beam structure we apply an active element
which affects beam dynamics, if the input voltage is supplied. In this paper we propose
strategy based on nonlinear quadratic coupling of the plant and the controller. This kind
of coupling under some conditions may transfer energy from the hub-beam system to the
controller and, if tuned properly, the so called saturation phenomenon takes place.

The controller is designed as a linear oscillator nonlinearly coupled with the beam. The
signal from controller is squared and multiplied by gain gi. On the other hand the controller
is coupled with the beam by the gain g2 and product of coordinates ¢ and q..

The natural frequency of the controller is tuned to the beam natural frequency satisfying
the condition woe = 1/2wo1, where wo1 is the first natural frequency of the combined hub-
beam system, which depends on the angular velocity ¢ and the mass moment of inertia of

the hub and is defined as [5]

a1l + 06131/.)2
wo1 = T — Gizent (2)
e

As we can notice the controller tuning depends on the angular velocity of the rotating hub.
In the present study we assume that the hub-beam system is excited by external torque
expressed as a sum of a constant and a periodic component: p = po+ pcoswt. The numerical

dimensionless coefficient adopted from paper [5] take values
o1 = 3.2651, a2 = —2.9063, a1z = 0.3527, avrs = 0.4602,
ap1 = —0.3202, ap2 = —0.14637, aps = —0.1464,
¢1 = 0.01 X wipearmn = 0.01807, ¢r, = 0.1, (. = 0.001
g1 = 0.01, g2 = 1.0, o = 0.0, p = 0.01.
The effectiveness of the proposed control method is analysed for varied driving torques as
defined by parameters of the amplitude p and the frequency w of periodic excitation but

assuming the constant component o to be equal to zero. In practice the discussed control

can be realized by an active element and a sensor placed on the beam (Fig.1).
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Figure 3. Amplitude-frequency curves of the beam (a), the hub (b) and the controller (c);
numerical data given in (3) .

At first we test the proposed control strategy considering the periodic excitation and
data given in (3). The resonance curve for the system without control is presented by blue
curve in Fig.3(a,b) and it corresponds to a classical linear system characteristics. However,
due to nonlinear coupling and the requested controller frequency tuning, the controller is
activated in the resonance zone which is demonstrated by coordinate g. in Fig.(3c). This
phenomenon leads to energy transfer from the plant (the hub-beam system) to the controller.
Both the resonance curves in Fig.3(a,b) show system vibrations to be evidently suppressed
and both the beam and the hub oscillations are reduced almost to zero nearby the natural
frequency of the system (black curve). The arising new branches of the characteristic lead
to unstable solutions of the original resonance curve without control (blue dashed line). The
branch points are indicated by red squares.

In order to take the full benefit from the control strategy, it is crucial to set the control

parameters properly. There are two gains g1 and g2 which mutually couple the plant and
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Figure 4. Amplitude-frequency curves of the beam (a), the hub (b) and the controller (c)

obtained for gain g» = 1 - black colour, g2 = 3 - red colour; rest data as in (3).

the controller. It has been observed in numerical tests performed for various values of the
gain g1 that the system is not sensitive for the variation of this parameter. However, the
influence of gain go is essential. In Fig.4 we present a comparison for two various values of
the gain g2: g2 = 1 - black colour, g2 = 3 - red colour. The higher gain value results in larger
amplitudes of the controller. The profit of higher gain magnitude is that the controller is
activated in the wider frequency zone (red curve in Fig.4) and thus, the region of vibrations
suppression is larger too (see red curves in Fig.4 a and b). However there is also a negative
effect, visible out of the rezonanse zone where oscillations of the hub-beam system are much
higher than for the uncontrolled system. This is observed by branches on the outer left and
right side of the rezonanse zone. For the gain g» = 3 branches (in red) are significantly wider
than for the gain g» = 1 case. It means that the system is highly sensitive to the gain go,

thus this parameter has to be properly tuned according to the real plant dynamics.
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The second aspect of the analysis is the controller frequency tuning. It is necessary to
take into account the fact that both the angular velocity and the mass moment of inertia
of the hub essentially influence system dynamics. Therefore, both these parameters need to
be considered while designing the controller. In given above examples the equation (2) has
been used to tune the controller to the structure. However, in classical approach, for a non-
rotating cantilever beam, the controller frequency is fixed as a half of the separated beam
natural frequency [13]. This approach may be ineffective for rotating flexible structures.

Let us consider the same system governed by equations (1) with parameters (3), but
now we tune the controller assuming wo. = %\/a_u As we can see in such a case there
is no vibration suppression near the resonance zone (see Fig.5). Instead of this, near the

natural frequency of the beam wipearm = /11 = 1.0807 we observe an additional resonance

with large amplitudes indicated by red colour for beam response in Fig.5 (a) with zoom in
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Figure 5.

Amplitude-frequency curves of the beam (a) and zoom around natural frequency

of the beam (b), the hub (c) and the controller (d) obtained for wo. = §+/ai1; data as in (3);
red colour - controller activation.
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(b), and for the hub in Fig.5(c). This is the direct result of wrong controller tuning and its

activation in improper frequency range, presented in Fig.5(d).

5. Conclusions

In this paper we proposed the application of the nonlinear saturation control strategy for
vibration suppression of the rotating hub-beam structure. The model of the system has
been derived in papers [2,5] considering composite thin-walled beam specimen and rigid hub
dynamics. The governing PDEs equations of motions have been reduced to ODEs using
Galerkin procedure. Next, the saturation controller has been adopted and the equations of
the system complemented. It has been shown that the proposed control strategy is effec-
tive if gains of the control signal are properly chosen. Performed numerical tests allow to
conclude the system is sensitive to the gain g2, where the changes in system response are
observed for different g2 values. Thus this parameter has to be set according to the resonance
characteristics of the combined hub-beam rotating system.

A crucial factor is the proper tuning of the controller frequency to the frequency of the
rotating structure. The mass moment of inertia of the hub has to be taken into account as
well as system angular velocity. If the controller is tuned in a classical way, i.e. considering
only dynamics of a separated cantilever beam, the undesirable results are obtained. The
controller is activated in improper zone and furthermore an additional resonance with large

amplitudes is observed.
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