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In this paper there are considered functionally graded plates. To 
describe vibrations of these plates and take into account the effect of the 
microstructure it is applied the tolerance method, cf. [10, 11]. There are 
formulated governing equations of three presented models: the tolerance 
model, the asymptotic model and the combined asymptotic-tolerance model. 

1. Introduction 
 

There are considered thin plates with functionally graded macrostructure in 
planes parallel to the plate midplane, cf. Fig. 1. These plates have a tolerance-
periodic microstructure along two directions on the microlevel. Hence, they are 
consisted of many small elements. It can be observed that distant elements can be 
very different, however adjacent elements are nearly identical. It is assumed that 
every element is treated as a thin plate with spans l1 and l2 along the x1- and the 
x2-axis, respectively. In various problems of these plates the effect of the 
microstructure cannot be neglected. 
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Fig. 1. A fragment of a functionally graded plate 

These plates are described by partial differential equations, with highly 
oscillating, tolerance-periodic, non-continuous coefficients. To obtain averaged 
equations with continuous, functional coefficients, various simplified models are 
proposed, which replace tolerance-periodic plates by plates with averaged 
properties, being smooth, slowly-varying functions. Such plates are treated as 
made of functionally graded materials, cf. Suresh and Mortensen [9], and called 
thin functionally graded plates. 

FGM-type structures are often analysed using averaging approaches for 
macroscopically homogeneous structures, e.g. periodic. Some of these methods 
are presented by Suresh and Mortensen [9]. We can distinguish models based on 
the asymptotic homogenization, cf. Jikov, Kozlov and Oleinik [4]. Unfortunately, 
the effect of the microstructure size is neglected in the governing equations of 
them. 

This effect can be taken into account using the tolerance averaging 
technique (cf. Woźniak, Michalak and Jędrysiak (eds.) [11] and Woźniak et al. 
(eds.) [10]). Some applications of this method to the modelling of various 
periodic structures are shown in a series of papers, e.g. Michalak [8], Baron [1], 
Jędrysiak [2]. In the last years the tolerance modelling was adopted to 
functionally graded structures, e.g. for tolerance-periodic plates in Jędrysiak [3], 
Kaźmierczak and Jędrysiak [5, 6] and Kaźmierczak, Jędrysiak and Wirowski [7]. 
A summary can be found in Woźniak, Michalak and Jędrysiak (eds.) [9] and 
Woźniak et al. [10], and also in Jędrysiak [3], Michalak [8]. 

Here, modified governing equations of the tolerance and the asymptotic 
models for thin functionally graded plates are proposed and discussed, cf. 
Jędrysiak [3], Kaźmierczak and Jędrysiak [5, 6]. Moreover, a certain new 
combined asymptotic-tolerance model for these plates is derived. 
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2. Modelling foundations 
 

Denote by Ox1x2x3 the orthogonal Cartesian coordinate system and by t – the 
time coordinate. Let subscripts i,k,l run over 1,2,3 and ,, run over 1,2. Set 
x(x1,x2) and zx3. The region of the undeformed plate is denoted by 

},2/)(2/)(:),{(  xxxx dzdz , where  is the midplane and d() is the plate 
thickness. Let  be derivatives of x, and also . The “basic cell” on 
Ox1x2 is denoted by ]2/,2/[]2/,2/[ 2211 llll  , where l1, l2 are cell length 
dimensions along the x1-, the x2-axis, respectively, and the diameter of cell   – 
by l[(l1)2+(l2)2]1/2. This diameter is called the microstructure parameter and 
satisfies condition dmax<<l<<min(L1,L2). Thickness d() can be a tolerance-
periodic function in x and all material and inertial properties of the plate, as mass 
density=(,z) and elastic moduli aijkl=aijkl(,z), can be also tolerance-periodic 
functions in x and even functions in z. Denote by w(x,t) ( x , ),( 10 ttt ) a plate 
deflection and by p total loadings in the z-axis direction. Let a, a33, a3333 be 
the non-zero components of the elastic moduli tensor. Denote 
caa33a33(a3333)1. 

Define the mean plate properties, being tolerance-periodic functions in x, i.e. 
mass density , rotational inertia  and bending stiffnesses b, in the form: 
   


2/

2/
2

2/

2/
2

2/

2/
),()(,),()(,),()(

d

d

d

d

d

d
dzzzcbdzzzdzz xxxxxx . (1) 

Using the Kirchhoff-type plates theory assumptions to functionally graded 
plates, the fourth order partial differential equation for deflection w is derived 
 pwwwb   )()(  . (2) 
This equation has highly oscillating, non-continuous, tolerance-periodic 
functional coefficients. 
 

3. Modelling concepts and assumptions 
 

Averaged equations for functionally graded plates will be obtained using the 
tolerance modelling, cf. Woźniak et al. (eds.) [10], Woźniak, Michalak and 
Jędrysiak (eds.) [11], where basic concepts of the modelling procedure are 
defined and explained, e.g.: an averaging operator, a tolerance-periodic function, 
a slowly-varying function. Below some of them are reminded. 

Let   xx)( , })(:{  xx  , be a cell at x . The known 
averaging operator for an arbitrary integrable function f is defined by 
 .,),()(

)( 2121
1

21 
  xx

x
dydyyyff ll  (3) 

If function f is tolerance-periodic in x, then its averaged value by (3) is a slowly-
varying function in x. 
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Following the aforementioned books let us denote a set of tolerance-periodic 
functions by ),( 

TP , a set of slowly-varying functions by ),( 
SV , a set 

of highly oscillating functions by ),( 
HO , where 0, and  is a tolerance 

parameter. Let us introduce a highly oscillating function h(), ),(2  HOh , 
defined on  , continuous together with gradient 1h and having a piecewise 
continuous and bounded gradient 2h. Function h() is called the fluctuation 
shape function of the 2-nd kind, if it depends on l as a parameter and satisfies 
conditions: khO(lk) for k=0,1,…,, =2, 0hh; and <h>(x)0 for every 

x , >0, ),(1  TP . Set of all fluctuation shape functions of the 2-nd 
kind is denoted by ),(2 FS . 

Using the abovementioned concepts the modelling assumptions are 
introduced, cf. Jędrysiak [3]. 

The first of them is the micro-macro decomposition: 
 ,,,,1),,()(),(),(  xxxxx NAtQhtUtw AA   (4) 
where ),(),(),,( 2  SVtQtU A  for every t. Functions U(,t) and QA(,t) are 
kinematic unknowns, called the macrodeflection and the fluctuation amplitudes, 
respectively; hA() are the known fluctuation shape functions. 

In the tolerance averaging approximation terms O() are negligibly small, 
e.g. for ),,(2  TPf  ),,(2  SVF  ),,(2  FShA  in: 

),()()(  Off xx  ),()()()(  OFffF xxx  
)()()()()(   OFhfFhf AA xxx . 

 
4. Tolerance modelling 

 
Following the book Jędrysiak [3] the modelling procedure is outlined. The 

starting point is the formulation of the action functional in the form 

 ,)),(),,(),,(),,(,())(( 1

0
   

t

t
dtdtwtwtwtww yyyyyy   (5) 

where the lagrangean   is given by 
 .)(2

1 pwwwbwwww     (6) 
From the principle of stationary action applied to the lagrangean  , (6), we 
obtain the Euler-Lagrange equation in the form (2). 

Using the tolerance modelling to action functional (5) with the lagrangean 
(6) we have two steps. Firstly, we substitute micro-macro decomposition (4) to 
(6), and secondly we use (3) to the action functional. It leads to the tolerance 
averaging of functional (5) with the averaged lagrangean  h  in the form 
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1
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QphUpQQhhQQhh
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









 (7) 
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From the principle of stationary action applied to (7) we arrive at the Euler-
Lagrange equations for U(,t) and QA(,t): 

 
,)(

,)(
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A

BB

phQhhhhQhhb
Uhb

pUUQhbUb




 (8) 

being the system of partial differential equations. In equations (8) the underlined 
terms depend on the microstructure parameter l. All coefficients are 
slowly-varying functions in x in contrast to equation (2), which has non-
continuous, highly oscillating and tolerance-periodic functional coefficients. 
Equations (8) and micro-macro decomposition (4) represent the tolerance model 
of thin functionally graded plates, which describes the effect of the 
microstructure size on dynamic problems of these plates. This model is an 
extension of the model presented in the book by Jędrysiak [3]. The basic 
unknowns U, QA, A=1,…,N, are slowly-varying functions in x. Boundary 
conditions have to be formulated only for the macrodeflection U, but not for the 
fluctuation amplitudes QA. 
 

5. Asymptotic modelling 
 

The asymptotic modelling procedure is outlined here following Woźniak et 
al. (eds.) [10] and Jędrysiak [3]. The starting point of this procedure is equation 
(2). We introduce a parameter (0,1], an interval 

]2/,2/[]2/,2/[ 2211 llll   and -cell    xx)( , x . For function 
)(),(~ 1 Hf x , x , we define )/,(~),(~  yxyx ff , 

)()(),(~ 11  HHf   x , )(xy  , x . Let us also introduce independent 
functions )(Ah , ),()( 2  HOhA , A=1,…,N, with their periodic approximations 

),(~ xAh , given by )(),/,(~),(~ xyyxyx   AA hh , for every x . 
The fundamental assumption of the asymptotic modelling is the asymptotic 

decomposition for the deflection w(x,t), which takes the form: 
 ),(),(~),(),,( 2 tQhtUtw AA yyxyyx   , (9) 
with );,(),( 10 ttt  xy   functions w, U, QA (A=1,…,N) are continuous and 
bonded in   with their derivatives. Introduce denotation 

,|),(~),(~ˆ
/   yyyxyx AA hh  .|),(~),(~ˆ

/
2

  yyyxyx AA hh  Taking into 
account 0, since )(xy  , x , formula (9) of the deflection and their 
derivatives take the form: 

 ).(),(),(~ˆ),(),,(
),(),(),,(),(),(),,(








OtQhtUtw
OtUtwOtUtw

AA yyxyyx
yyxxyx

 (10) 
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Under the limit passage 0 in the above relations we neglect terms O(). Then 
lagrangeans ),,,,,/,(~~ AQUUU   yx  in the action functionals ),( A

h QU , 
),,(,),( 10 ttt  xxy   are introduced. In the asymptotic procedure for 0 

functions 
~  of y/, )(xy  , tend to the averaged function 0 . Using 

formulas (9) and (10) we arrive at the lagrangean 0  

 .}
)2{(2

1
0

UpQQhhbUU
UUUQhbUb

BABA

BB


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

  (11) 

From the principle of stationary action for (11) we obtain the Euler-Lagrange 
equations: 
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  (12) 

Equations (12) together with asymptotic decomposition (9) describe the 
asymptotic model of thin functionally graded plates, neglecting the effect of the 
microstructure size. These equations have smooth, slowly-varying coefficients in 
the contrast to equation (2) with non-continuous, tolerance-periodic coefficients. 
It can be observed that we obtain one differential equation (12)1 for the 
macrodeflection U and algebraic equations (12)2 for the fluctuation amplitudes 
QA. Moreover, equations (12) can be obtained from equations (8) by neglecting 
the underlined terms. 

 
6. Combined asymptotic-tolerance modelling 

 
In the combined asymptotic-tolerance modelling we can distinguish two 

fundamental steps, cf. Woźniak et al. (eds.) [10]. In the first of them the 
asymptotic modelling procedure is applied, cf. Sec. 5. Because the 
macrodeflection U is the solution of equation (12)1 and the fluctuation amplitudes 
QA are determined by relation (12)2 we have the known following function: 
 ),()(),(),(0 tQhtUtw AA xxxx  . (13) 

In the second step of the combined modelling we apply the tolerance 
modelling procedure, cf. Sec. 4. Using the known function ),(),( 2

0  TPtw  
and introducing the known fluctuation shape functions ),()( 2  FSg K , 
K=1,…,N, satisfying the condition 0),(~),(~  xx Kg , where ),(~ xKg  are 
periodic approximations of gK, we assume the additional decomposition posed on 
function w0 in the form: 
 ),()(),(),( 0 tVgtwtw KK xxxx  , (14) 
where VK are slowly-varying functions in x. Tolerance-periodic function ),( tw  , 

),(),( 2  TPtw , has a periodic approximation in )(x . We can write: 
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Setting ww   from (6) we obtain ),,( wwg x , being tolerance-periodic 

function which has a periodic approximation )~,~,(~ wwg x . Substituting (15) 

into this lagrangean and using (3) we arrive at the averaged lagrangean  g  

for (14): 
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From the principle of stationary action for (16) the Euler-Lagrange equations are: 
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The above equations stand the system of differential equations for the fluctuation 
amplitudes VJ, J=1,…,N, with the known function w0, calculated in the first step 
of the modelling by (13). Equations (17) together with (12)1 and decompositions 
(13)-(14) represent the combined asymptotic-tolerance model of thin functionally 
graded plates. 

It can be observed the this model makes it possible to analyse the effect of 
the microstructure size on vibrations of the plates under consideration, because 
equations (17) involve terms dependent of the microstructure parameter l. 

 
7. Remarks 

 
In this contribution there are shown three models of thin functionally graded 

plates: 
 the tolerance model, which describes the effect of the microstructure size 

on vibrations of these plates; 
 the asymptotic model, neglecting the aforementioned effect and 

describing only macrovibrations of the plates under consideration; 
 the combined asymptotic-tolerance model, which takes into account the 

effect of the microstructure size on vibrations of these plates. 
Two of these models – the tolerance and the combined asymptotic-tolerance 

model make it possible to investigate not only macrovibrations, but also 
microvibrations, which are related to the microstructure of the functionally 
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graded plates under consideration. Some applications of these models will be 
presented separately. 
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MODELOWANIE PŁYT O FUNKCYJNEJ  
GRADACJI WŁASNOŚCI 

W pracy rozpatrywane są płyty o funkcyjnej gradacji własności. Aby opisać 
drgania tych płyt, wykorzystano technikę tolerancyjnego modelowania [10, 11]. 
Równania zostały wyprowadzone w ramach trzech zaproponowanych modeli: 
modelu tolerancyjnego, modelu asymptotycznego oraz modelu asymptotyczno-
tolerancyjnego.
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