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Introduction
This book is concerned with deriving abstract tools which are applicable

in solving integro-differential equations posed in a Banach space setting.

Our approach relies on deriving conditions which guarantee that certain

mapping acting between two Banach spaces is a diffeomorphim thereby

obtaining that if this mapping is a solution operator to some equation

then this very equation has a unique solution which in fact is well posed

in the sense of Hadamard.

Integro-differential and integral operators are usually considered in

the space of continuous functions [14, 51], the space of square integrable

functions L2 [43] and recently in AC2
0 [38, 7]. Thus our approach shows

that other setting is also possible therefore extending existing methodol-

ogy. The application of integral operators can be found in many disp-

ciplines of science and engineering: in biology to investigate the spread

of epidemic [29], in mechanics for modelling alloys with a shape mem-

ory [60], in nuclear reactor dynamics [14, 16], etc. We believe that read-

ers would find our results motivating. Concerning possible applications,

apart from those developed in our presentation, we hope for deriving

methodology applicable to the second order problems, possibly posed in

a non-variational form. This requires some further research in the topic.

Several research suggestions are collected at the end of this book.

Our book is organized as follows. We give some motivation and out-

line of results firstly. Then we provide necessary functional setting which

although seems to be known is not easily found in accessible literature.

− 5 −



Introduction

The third chapter is concerned with the global version of a diffeomor-

phism and an implicit function theorems together with their proofs and

relevant necessary tools used in the arguments.

The fourth chapter concerns the application of a global diffeomor-

phism theorem for examining a nonlinear itegro-differential and non-

linear integral equations and related operators. The functionals consid-

ered are defined on the Banach space, instead of the setting Hilbert space

which is known from the literature, see for example [38, 7]. The most dif-

ficult part of the proof is to check, whether the functional satisfies Palais-

Smale condition. Based on the Closed Graph Theory and by usage of

the so called Bielecki norm, we discuss the alternative formulation of the

assumptions.

In the fifth chapter we present the examination of the existence, unique-

ness and continuous differentiability of a solution to a nonlinear integro-

differential control problem by means of the global implicit function the-

orem. We use very similar tool as shown in the previous chapter so only

the main steps of the proof are presented.

We conclude our presentation in the sixth chapter with some finite

dimensional invertibility results which allow us to obtain a global diffeo-

morphism out of a Fréchet-differentiable, and not necessarily C1, map-

ping. It is interesting that we use non-smooth critical point theory in

proving the result. We also suggest some application to discrete equa-

tions, namely to algebraic equaions which may be viewed as discretiza-

tions of second order problem with Dirichlet boundary conditions.

It is our pleasure to thank people who helped us in the preparation

of this book. Thanks are due to Professor Stanisław Walczak from Lodz

University for suggesting possible research in this area. We would like to

thank the student of mathematics at the Institute of Mathematics, Lodz

University of Technology, Mr Michał Bełdziński, for helping us with type-
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setting of the final version, careful reading of the text and numerous ques-

tions which we hope would be fruitful in the future.

This work was prepared in the Institute of Mathematics, Lodz Uni-

versity of Technology where the first author is an associate professor and

the second author is a Ph.D. student.
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CHAPTER 1
Overview of results
There are two basic concepts of differentiability for operators and func-

tionals, which will be given below. Let X, Y be Banach spaces, and as-

sume that U is an open subset of X. A mapping f : U → Y is said to

be Gâteaux differentiable at x0 ∈ U if there exists a continuous linear

operator f ′G(x0) : X → Y such that for every h ∈ X

lim
t→0

f (x0 + th)− f (x0)

t
= f ′G(x0)h.

The operator f ′G(x0) is called the Gâteaux derivative of f at x0.

An operator f : U → Y is said to be Fréchet-differentiable at x0 ∈ U
if there exists a continuous linear operator f ′(x0) : X → Y such that

lim
‖h‖→0

‖ f (x0 + h)− f (x0)− f ′(x0)h‖
‖h‖ = 0.

The operator f ′(x0) is called the Fréchet derivative of operator f at x0.

When F is Fréchet-differentiable it is continuous and Gâteaux differen-

tiable. A mapping f is continuously Fréchet-differentiable if f ′ : X 3
x 7→ f ′(x) ∈ L (X, Y) is continuous in the respective topologies. If f is

continuously Gâteaux differentiable then it is also continuously Fréchet-

differentiable and thus it is called C1. It is the most common way to

prove the Fréchet -differentiability that one shows that f is continuously

− 9 −



1. Overview of results

Gâteaux differentiable. In fact for critical point theory tools either the

functional usually must be C1 or locally Lipschitz and so it is no surprise

that Gâteaux differentiability is only an auxiliary tool.

Towards Fréchet-differentiability we may adopt another approach: A

continuous linear mapping f ′(x0) : X → B, f ′(x0) ∈ L (X, B), is a Fréchet

derivative of f at x0 ∈ X provided that for all h ∈ X it holds that

f (x0 + h)− f (x0) = f ′(x0)h + o (h)

and where lim‖h‖→0
‖o(h)‖
‖h‖ = 0.

A continuously Fréchet-differentiable map f : X → B is called a

diffeomorphism if it is a bijection and its inverse f−1 : B → X is con-

tinuously Fréchet-differentiable as well. Obviously if a mapping f is a

diffeomorphism, it is automatically a homeomorphism, while the vice

versa is not correct as seen by example of a function f (x) = x3. Recall-

ing the Inverse Function Theorem a continuously Fréchet-differentiable

mapping f : X → B such that for any x ∈ X the derivative is surjective,

i.e. f ′(x)X = B and invertible, i.e. there exists a constant αx > 0 such that∥∥ f ′(x)h
∥∥ ≥ αx ‖h‖

defines a local diffeomorphism. This means that for each point x in X,

there exists an open set U containing x, such that f (U) is open in B and

f
∣∣
U : U → f (U) is a diffeomorphism. If f is a diffeomorphism it ob-

viously defines a local diffeomorphism. Thus the main problem to be

overcome is to make a local diffeomorphism a global one. Or in other

words:

What assumptions should be imposed on the spaces involved and the map-
ping f to have a global diffeomorphism from the local one?

− 10 −



1. Overview of results

This task can be investigated within the critical point theory, or more

precisely with mountain geometry and is motivated by a finite dimen-

sional result known as Hadamard’s Theorem, see Theorem 5.4 from [40]:

Theorem 1.1. Let X, B be finite dimensional Euclidean spaces. Assume that
f : X → B is a C1-mapping such that

• f ′(x) is invertible for any x ∈ X,

• ‖ f (x)‖ → ∞ as ‖x‖ → ∞,

then f is a diffeomorphism.

Idczak, Skowron and Walczak [38] using the Mountain Pass Lemma

and ideas contained in the proof of Theorem 1.1 (see again [40] for some

nice version of the proof) proved the result concerning diffeomorphism

between a Banach and a Hilbert space. The result from [38] reads:

Theorem 1.2. Let X be a real Banach space, H - a real Hilbert space. If f :

X → H is a C1-mapping such that:

• for any y ∈ H the functional ϕ : X → R given by the formula

ϕ (x) =
1
2
‖ f (x)− y‖2

satisfies Palais-Smale condition,

• for any x ∈ X, f ′(x)X = H and there exists a constant αx > 0 such that∥∥ f ′(x)h
∥∥ ≥ αx ‖h‖ ,

then f is a diffeomorphism.

The question aroused whether the Hilbert space H in the formulation of
the above theorem could be replaced by a Banach space. This question is of
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1. Overview of results

some importance since one would expect diffeomorphism to act between

two Hilbert spaces or two Banach spaces rather than between a Hilbert

and a Banach space. The applications given in [38] work when both X
and H are Hilbert spaces. In our book we provide an affirmative answer

to this question. We see that given a Hilbert space H, relation x 7→ 1
2 ‖x‖

2

can be treated as x 7→ 1
2 〈x, x〉, where ‖·‖ stands for the norm, 〈·, ·〉 for

the scalar product. The other point of view is to treat x 7→ 1
2 ‖x‖

2 as a

potential of a duality mapping between H and H∗ and finally look at the

composition of identity with some C1 functional which is 0 only at 0 and

with derivative sharing the same property. These observations will lead

us towards obtaining the counterpart of Theorem 1.2 in a Banach space

setting as well as related implicit function results.

We provide also in this short introductory notes with some well known

definition of a diffeomorphism between two spaces and a local version of

the theorem, giving the sufficient conditions, for its existence [44, 77].

Definition 1.1. Let U and V be nonempty open sets in the Banach spaces

X and Y. Let 0 ≤ r ≤ ∞. The mapping f : U → V is called:

• a Cr-diffeomorphism if and only if f is bijective and both f and f−1

are Cr-mappings;

• a local Cr-diffeomorphism at the point u0 ∈ X is Cr-diffeomorphism

from some open neighborhood U(u0) in X onto some open neigh-

borhood V( f (u0)) in Y.

Obviously, C0 diffeomorphism is homeomorphism.

Theorem 1.3. Let f : U(u0) ⊆ X → Y be a Cr-mapping on some open neigh-
bourhood of the point u0, where X and Y are Banach spaces and 0 ≤ r ≤ ∞.
Then f is a local Cr-diffeomorphism at u0 (on some neighbourhood of u0) if and
only if f ′(u0) : X → Y is bijective.
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1. Overview of results

For background on ingtegral equations we refer to [14], [16], [51], [60].

A good review of global invertibility results is contained in [31].

The methods described there present some overview of results with

emphasis on what is known and what has already been obtained. In this

book we only concentrate on one of potential methods but on the other

hand we supply it with various applications and possible extensions.
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CHAPTER 2
Background on space setting
In this section we introduce Sobolev space W̃1,p

0 ([0, 1], Rn) and establish

some of its most important properties, which will be extensively used

in the sequel. First, let us recall the definition of Sobolev space on the

interval [0, 1] which we define as follows

W1,p([0, 1], Rn) = {x : [0, 1]→ Rn is absolutely continuous,

x′ ∈ Lp([0, 1], Rn)}

where x′ denotes the a.e. derivative of function x, Lp([0, 1], Rn) is the

class of all measurable (equal a.e.) functions x defined on [0, 1] such that∫ 1

0
|x(t)|p dt < ∞

with a norm

||x||pLp([0,1],Rn)
=

(∫ 1

0
|x(t)|p dt

)1/p

.

Here and further it the text, | · | denotes Euclidean norm in Rn. We will

denote Lp([0, 1], Rn) as Lp and W1,p([0, 1], Rn) as W1,p. The W1,p space is

equipped with a usual norm

||x||pW1,p = ||x||
p
Lp + ||x′||pLp .
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2. Background on space setting

Note that since any u ∈ W̃ is continuous, the definition of Sobolev space

W̃1,p
0 is given as follows

W̃1,p
0 ([0, 1], Rn) = {x ∈W1,p, x(0) = 0}.

Again, in order to simplify the notation we will denote W̃1,p
0 ([0, 1], Rn) as

W̃1,p
0 . The space W̃1,p

0 is equipped with the norm

||x||W̃1,p
0

=

(∫ 1

0

∣∣x′(t)∣∣p dt
) 1

p

(2.1)

for x ∈ W̃1,p
0 equivalent to ||x||W1,p as we shall show later. By definition,

for any p > 1, we have the following chain of imbeddings

W̃1,p
0 ↪→W1,p ↪→ Lp. (2.2)

Now, let us introduce some elements from the theory of distributions and

a weak or a distributional derivative, which will provide an alternative

definition of a space W1,p. Let Ω be a domain in Rn. By C∞
c (Ω) denote

the space of functions φ : Ω → R which are infinitely many times dif-

ferentiable and have a compact support in Ω. Such functions are usualy

called test functions. By L1
loc(Ω) we will denote the space of locally inte-

grable functions. So, let φ ∈ C∞
c (Ω) and u ∈ L1

loc (Ω). Let us introduce

the distribution Tu : C∞
c (Ω)→ R given by the equation:

Tu(φ) =
∫

Ω
u(x)φ(x) dx.

Now, we are given u ∈ C1(Ω). Since φ has a compact support in Ω (and

hence vanishes near ∂Ω) integration by parts leads to∫
Ω

uφxi dx = −
∫

Ω
uxi φ dx for i = 1, .., n. (2.3)

Now, let us take u ∈ Ck(Ω) for any k ∈ N and multiindex α = (α1, .., αn)

of order |α| = α1 + .. + αn = k, then integration by parts leads to∫
Ω

uDαφ dx = (−1)|α|
∫

Ω
Dαuφ dx, (2.4)

− 16 −



2. Background on space setting

where

Dαφ =
∂α1

∂xα1
1

...
∂αn

∂xαn
n

φ.

It is easy to notice that applying (2.3) |α| times we get (2.4). The right hand

side of (2.4) makes sense only if u ∈ Ck, otherwise (2.4) has no obvious

meaning. By introducing the definition of a weak derivative we resolve

this problem for functions which are not necessarily of Ck class.

Definition 2.1. Suppose that u, v ∈ L1
loc(Ω), and α is a multiindex. We

say that v is α-weak partial derivative of u, Dαu = v, provided that for all

test functions φ ∈ C∞
c (Ω) we have∫

Ω
uDαφ dx = (−1)|α|

∫
Ω

vφ dx. (2.5)

In other words, if there exists a function v, which verifies (2.5) for

all test functions φ ∈ C∞
c (Ω), then we say that u has an α-weak partial

derivative. If such a weak partial derivative exists then it is unique, see

[20].

Now let us show that on W1,p the distributional derivative equals to

the classical one, which exists almost everywhere on [0, 1]. Le us take

any u ∈ W1,p. By definition, since any function from W̃1,p is absolutely

continuous, u′ ∈ Lp, so the derivative exists almost everywhere on [0, 1].

Thus the following integral makes sense for all t ∈ [0, 1]:

U(t) =
∫ t

0
u′(s) ds.

The function U : [0, 1]→ R is absolutely continuous on [0, 1] and U′(t) =
u′(t) almost everywhere on [0, 1]. Let us take the test function φ ∈ C∞([0, 1])

and integrate by parts∫ 1

0
U(t)φ′(t) dt = [U(1)φ(1)−U(0)φ(0)]−

∫ 1

0
u′(t)φ(t) dt

− 17 −



2.1. Auxiliary inequalities

Since φ ∈ C∞
0 ([0, 1]) the first therm on right hand side vanishes and we

get the equation ∫ 1

0
U(t)φ′(t) dt = −

∫ 1

0
u′(t)φ(t) dt.

So function u′ is the distributional derivative of function U. Thus the dis-

tributional derivative equals to the classical one, which exists almost ev-

erywhere in [0, 1]. Due to the imbedding (2.2), of course the same equality

holds for W̃1,p
0 . Having in mind that result, we can formulate the equiv-

alent definition of space W1,p as a space of functions from Lp whose dis-

tributional derivatives belong to the Lp.

SECTION 2.1

Auxiliary inequalities

In this section some auxiliary inequalities, which will be exploited in next

chapters, are given. Most of them are taken from [1], [8].

Lemma 2.1. If 1 ≤ p < ∞ and a, b ≥ 0, then

(a + b)p ≤ 2p−1(ap + bp).

Theorem 2.1 (Hölder’s Inequality). Let Ω be a domain in Rn and let 1 ≤
p < ∞ and let q be its conjugate exponent defined by 1

p +
1
q = 1. If u ∈ Lp(Ω)

and v ∈ Lq(Ω) then ∫
Ω
|u(x)v(x)|dx ≤ ||u||Lp ||v||Lq

so uv ∈ L1(Ω).

Let us suppose that 1 ≤ p < q < ∞ and u ∈ Lp. Now by Hölder’s

Inequality, taking p ≥ 1 and its conjugate exponent q, we have∫
I
|u(t)|p dt ≤

(∫
I
|u(t)|q dt

) p
q
(∫

I
1 dt

)1− p
q

.
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2. Background on space setting

Hence

||u||Lp ≤ ||u||Lq .

Therefore

Lq ↪→ Lp.

Furthermore, we take u ∈ L∞ and then

lim
p→∞
||u||Lp = ||u||L∞ .

If u ∈ Lp for all 1 ≤ p < ∞ and if there exists a constant M (independent

of p) such that

||u||Lp ≤ M

then u ∈ L∞ and moreover

||u||L∞ ≤ M.

The proof of the part concerning L∞ can be found in [1].

Theorem 2.2 (Poincaré’s Inequality in W̃1,p
0 ). There exists a constant C such

that for any u ∈ W̃1,p
0

||u||W1,p ≤ C||u′||Lp .

Moreover, the norms ‖ · ‖W1,p and ‖ · ‖W̃1,p
0

are equivalent on W̃1,p
0 .

Proof. Let u ∈ W̃1,p
0 and let p and q be conjugate exponents. By the defini-

tion of W̃1,p
0 and by the Fundamental Theorem of Calculus, we have for

any t ∈ [0, 1]

|u(t)| = |u(t)− u(0)| =
∣∣∣∣∫ t

0
u′(s)ds

∣∣∣∣ ≤ ‖u′‖L1 .
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0

Taking the supremum and applying Hölder’s Inequality we have:

‖u‖L∞ ≤ ‖u′‖L1 ≤ ‖u′‖Lp . (2.6)

We also have the relation

‖u‖Lp ≤ ‖u‖L∞ . (2.7)

Combining inequalities (2.6) and (2.7) we get

||u||Lp ≤ ||u′||Lp = ||u||W̃1,p
0

So

||u||Lp ≤ ||u||W̃1,p
0

Now, by the definition of the norm in W̃1,p
0

||u||W̃1,p
0

= ||u′||Lp ≤ ||u||Lp + ||u′||Lp = ||u||W1,p

≤ (1 + 1) ||u′||Lp = 2||u||W̃1,p
0

This finishes the proof.

SECTION 2.2

Properties of the space W̃1,p
0

In this section we would like to give some properties of W̃1,p
0 space, as-

suming that p > 1. Several of them will also be proven by applying

relations presented in the previous section.

Lemma 2.2. The space W̃1,p
0 is uniformly convex.

Proof. Let 2 ≤ p < +∞. For each z, w ∈ Rn, it holds the well known

Clarkson inequality∣∣∣∣ z + w
2

∣∣∣∣p + ∣∣∣∣ z− w
2

∣∣∣∣p ≤ 1
2
(|z|p + |w|p) .
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2. Background on space setting

Let u, v ∈ W̃1,p
0 be such that ||u||W̃1,p

0
= ||v||W̃1,p

0
= 1 and ||u− v||W̃1,p

0
≥

ε ∈ (0, 2]. From the above, we have∥∥∥∥u + v
2

∥∥∥∥p

W̃1,p
0

+

∥∥∥∥u− v
2

∥∥∥∥p

W̃1,p
0

=
∫ 1

0

(∣∣∣∣u′(t) + v′(t)
2

∣∣∣∣p + ∣∣∣∣u′(t)− v′(t)
2

∣∣∣∣p) dt

≤ 1
2

∫ 1

0

(∣∣u′ (t)∣∣p + ∣∣v′ (t)∣∣p) dt

=
1
2

(
||u||p

W̃1,p
0

+ ||v||p
W̃1,p

0

)
= 1.

Thus

‖u + v‖W̃1,p
0
≤ 2

(
1−

( ε

2

)p) 1
p

.

Therefore there exists

δ(ε) =

(
1−

(
1−

( ε

2

)p) 1
p

)
> 0

such that

||u + v||W̃1,p
0
≤ 2(1− δ(ε)).

If p ∈ (1, 2) then for each z, w ∈ Rn it holds:∣∣∣∣ z + w
2

∣∣∣∣q + ∣∣∣∣ z− w
2

∣∣∣∣q ≤ (1
2
(|z|p + |w|p)

) 1
p−1

.

for 1
p + 1

q = 1. A simple computation shows that if v ∈ W̃1,p
0 then v′ ∈

Lp−1 and ||v′q||Lp−1 = ||v||q
W̃1,p

0

.

Let r, s ∈ W̃1,p
0 . Then |r′|q, |s′|q ∈ Lp−1, with 0 < p − 1 < 1 and

according to [17]∥∥|r′|q + |s′|q∥∥Lp−1 ≥
∥∥|r′|q∥∥Lp−1 +

∥∥|s′|q∥∥Lp−1
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2.2. Properties of the space W̃1,p
0

Consequently,∥∥∥∥ r + s
2

∥∥∥∥q

W̃1,p
0

+

∥∥∥∥ r− s
2

∥∥∥∥q

W̃1,p
0

=

∥∥∥∥∥
∣∣∣∣∣
(

r + s
2

)′∣∣∣∣∣
q∥∥∥∥∥

Lp−1

+

∥∥∥∥∥
∣∣∣∣∣
(

r− s
2

)′∣∣∣∣∣
q∥∥∥∥∥

Lp−1

≤
∥∥∥∥∥
∣∣∣∣∣
(

r + s
2

)′∣∣∣∣∣
q

+

∣∣∣∣∣
(

r− s
2

)′∣∣∣∣∣
q∥∥∥∥∥

Lp−1

=

(∫ 1

0

(∣∣∣∣ r′ + s′

2

∣∣∣∣q + ∣∣∣∣ r′ − s′

2

∣∣∣∣q)p−1
) 1

p−1

≤
(

1
2

∫ 1

0

(
|r′|p + |s′|p

)) 1
p−1

=

(
1
2
‖r‖p

W̃1,p
0

+
1
2
‖s‖p

W̃1,p
0

) 1
p−1

For u, v ∈ W̃1,p
0 with ||u||W̃1,p

0
= ||v||W̃1,p

0
= 1 and ||u− v||W̃1,p

0
≥ ε ∈ (0, 2],

we get ∥∥∥∥u + v
2

∥∥∥∥q

W̃1,p
0

≤ 1−
( ε

2

)q
.

In either cases there exists δ(ε) > 0 such that ||u + v||W̃1,p
0
≤ 2(1− δ(ε)).

Let us recall

Theorem 2.3 (Pettis-Milman). [8] A uniformly convex Banach space is reflex-
ive.

Theorem 2.4. W̃1,p
0 is a reflexive Banach space.

Proof of Theorem 2.4. Let (xn)n∈N be a Cauchy sequence in W̃1,p
0 . By

the Poincaré’s Inequality (xn)n∈N is a Cauchy sequence in W1,p, which

is complete [1]. So there exists x ∈ W1,p such that ‖xn − x‖W1,p → 0

as n → ∞. Of course functions x and xn for all n ∈ N are absolutely

− 22 −



2. Background on space setting

continuous. Since for any x ∈ W1,p we have supt∈[0,1] |x(t)| ≤ C‖x‖W1,p

for some C > 0, (see the proof of Poincaré’s Inequality) therefore (xn)n∈N

uniformly converges to x. Moreover xn(0) = 0 for all n ∈ N, so we have

x(0) = 0. Consequently, W̃1,p
0 is complete. By Lemma 2.2 and Theorem

2.3 it is reflexive.
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CHAPTER 3
Abstract invertibility tools
In this chapter we provide a global diffeomorphism theorem and two

global version of implicit function theorem. Let E and B be Banach spaces.

We denote by E∗ the dual space of E, while 〈·, ·〉 stands for the duality

pairing between E∗ and E.

Let us provide necessary background on critical point theory, see for

details [21]. Let J ∈ C1(E, R). A point u ∈ E is called a critical point of J
if J′(u) = 0, J(u) is called the critical value of J.

Definition 3.1. Let J ∈ C1(E, R). We say that functional J satisfies Palais-

Smale condition, denoted by (PS), if any sequence (un)n∈N ∈ E such that

• |J(un)| ≤ M for all n ∈ N and some M > 0,

• lim
n→∞

J′(un) = 0 in E∗

admits a convergent subsequence.

Any sequence satisfying the above conditions is called a Palais-Smale

sequence.

We say that the functional J : E → R is coercive if J(u) → ∞ as

||u|| → ∞. It is easy to check that, J is coercive if and only if for any

d ∈ R, the set Jd is bounded, where

Jd = {u ∈ E : J(u) ≤ d}.
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3. Abstract invertibility tools

The following links the (PS) condition with coercivity [40].

Proposition 3.1. Let E be a Banach space and assume that J ∈ C1(E, R) is
bounded from below and satisfies (PS) condition. Then J is coercive.

Remark 3.1. The converse statement (coercivity implying (PS) condition)

is valid in a finite dimensional space only.

When dealing with abstract critical point theorem we need a weaker

version of (PS) condition [40].

Definition 3.2. Let E be a Banach space, J ∈ C1(E, R), and c ∈ R. The

functional J is said to satisfy the (local, weak) Palais-Smale condition at

the level c, denoted by (PS)c if any sequence (un)n∈N ∈ E such that

• lim
n→∞

J(un) = c ,

• lim
n→∞

J′(un) = 0 in E∗,

admits a convergent subsequence.

Remark 3.2. When condition (PS) is satisfied, then it is easy to check that

(PS)c holds for all c ∈ R.

We also apply the weak form of Ekeland’s variational principle, see

[21].

Theorem 3.1 (Ekeland Variational Principle - weak form). Let (E, d) be a
complete metric space. Let J : E→ R∪ {+∞} be lower semicontinuous and
bounded from below. Then given ε > 0 there exists uε ∈ E such that:

• J(uε) ≤ infu∈X J(u) + ε;

• J(uε) < J(u) + εd(u, uε) for all u ∈ E with u 6= uε.
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Assuming that the functional J is defined on Banach space we can use

the differential calculus. It allow us, together with the (PS) condition, to

formulate a version of the critical point theorem [21] which serves as a

counterpart of a direct method in the calculus of variation. Namely, it

can be applied when a functional is not weakly l.s.c..

Theorem 3.2 (Proposition 10.1 [40]). Let E be a Banach space and J : E→ R

be a C1 functional which satisfies the (PS) condition. Suppose in addition that J
is bounded from below. Then the infimum of J is achieved at some point u0 ∈ E
and u0 is a critical point of J, i.e. J′(u0) = 0.

Now we will introduce the Mountain Pass Lemma given firstly by

Ambrosetti and Rabinowitz [3].

Theorem 3.3 (Mountain Pass Theorem). Let E be a Banach space and assume
that J ∈ C1(E, R) satisfies the Palais-Smale condition. Assume that

inf
‖x‖=r

J(x) ≥ max{J(0), J(e)}, (3.1)

where 0 < r < ‖e‖ and e ∈ E. Then J has a non-zero critical point x0. If
moreover inf‖x‖=r J(x) > max{J(0), J(e)}, then also x0 6= e.

We recall from [10], [17] the notion of a duality mapping from E into

E∗ relative to a normalization function. We shall write simply duality

mapping in the sequel with the understanding that we mean a duality

mapping relative to some normalization function. Let p > 1 be a real

number. A duality mapping on E corresponding to a normalization func-

tion ϕ (t) = tp−1 is an operator A : E→ 2E∗ such that for all u ∈ E

Au = {u∗ ∈ E∗, 〈u∗, u〉 = ‖u∗‖∗ ‖u‖}, ‖A (u)‖∗ = ‖u‖
p−1 .

The next Lemma provides a sufficient condition for the existence and

uniqueness of the duality mapping (which is not continuous in general)

and some of its useful properties.
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3.1. Global diffeomorphism theorem by an auxiliary functional

Lemma 3.1. Assume that E is a reflexive Banach space with a strictly convex
dual E∗ and that p > 1 is fixed. There exists a duality mapping A : E → E∗

corresponding to a normalization function t → tp−1 which is single valued.
Operator, A is monotone, i.e.

〈Au− Av, u− v〉 ≥
(
‖u‖p−1 − ‖v‖p−1

)
(‖u‖ − ‖v‖) .

for all u, v ∈ E; moreover ‖u‖p−1 = ‖u∗‖∗, u∗ ∈ Au and ‖v‖p−1 = ‖v∗‖∗,
v∗ ∈ Av. The functional u 7→ ‖u‖

p
p

is Gâteaux differentiable at any u and with
Au being a Gâteaux derivative.

Proof. Since E∗ is strictly convex, from [17, Proposition 1], it follows that

the duality mapping is single valued. Moreover, from [17, Theorem 1],

we see that the potential of a duality mapping A, i.e. the functional

u 7→ ‖u‖
p

p
as a convex functional has a subdifferential in the sense of

convex analysis which is single valued by the preceding remarks. By

[17, Proposition 3], we see that A : E → E∗ is demicontinuous. Then

Proposition 2.8. from [56] suggests that since A is demicontinuous (con-

tinuous "norm to weak" in the original terminology in [56]) we obtain

that u 7→ ‖u‖
p

p
is differentiable in the sense of Gâteaux and operator A

provides its derivative.

SECTION 3.1

Global diffeomorphism theorem by an auxiliary functional

Now we will give a first version of a global diffeomorphism theorem

which is based on an auxiliary functional and which comes from [23].

This was the first attempt to generalize the global diffeomorphism the-

orem to the Banach space setting. This version requires no additional

assumptions on the spaces.
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Theorem 3.4. Let E, B be Banach spaces. Assume that f : E → B is a C1-
mapping, η : B → R+ is a C1 functional and that the following conditions
hold

1A (η (x) = 0⇐⇒ x = 0) and (η′ (x) = 0⇐⇒ x = 0),

1B for any y ∈ B the functional ϕ : X → R given by the formula

ϕ (x) = η ( f (x)− y)

satisfies the Palais-Smale condition,

1C for any x ∈ E the Fréchet derivative is surjective, i.e. f ′(x)E = B, and
there exists a constant αx > 0 such that for all h ∈ X∥∥ f ′(x)h

∥∥ ≥ αx ‖h‖ , (3.2)

1D there exist positive constants α, c, M such that

η (x) ≥ c ‖x‖α for ‖x‖ ≤ M,

then f is a diffeomorphism.

Proof. We follow the ideas used in the proof of Main Theorem in [38]

with necessary modifications. In view of the remarks made in Chapter 1

condition 1C implies that f is a local diffeomorphism. Thus it is sufficient

to show that f is ”onto” and ”one to one”.

Firstly we show that f is ”onto”. Let us fix any point y ∈ B. Observe

that ϕ is a composition of two C1 mappings, thus ϕ ∈ C1 (X, R). More-

over, ϕ is bounded from below and satisfies the Palais-Smale condition.

Thus from the Ekeland’s Variational Principle it follows that there exists

argument of a minimum which we denote by x, see Theorem 4.7 [21]. We
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3.1. Global diffeomorphism theorem by an auxiliary functional

see by the chain rule for Fréchet derivatives and by Fermat’s Principle

that

ϕ′(x) = η′( f (x)− y) ◦ f ′(x) = 0.

Since by 1C mapping f ′(x) is invertible we see that η′( f (x) − y) = 0.

Now by 1A it follows that

f (x)− y = 0.

Thus f is surjective.

Now we argue by contradiction that f is "one to one". Suppose there

are x1 and x2, x1 6= x2, x1, x2 ∈ X, such that f (x1) = f (x2) = a ∈ B.

We will apply Lemma 3.3. Thus we put e = x1 − x2 and define mapping

g : X → B by the following formula

g (x) = f (x + x2)− a.

Observe that g (0) = g (e) = 0. We define functional ψ : X → R by the

following formula

ψ (x) = η (g (x)) .

By 1B functional ψ satisfies the Palais-Smale condition. Next we see that

ψ (e) = ψ (0) = 0. Using (3.2) we see that there is a number ρ > 0 such

that

1
2

αx ‖x‖ ≤ ‖g (x)‖ for x ∈ B (0, ρ). (3.3)

Indeed, since lim‖h‖→0
o(‖h‖)
‖h‖ = 0 we see that for ‖h‖ sufficiently small,say

‖h‖ ≤ δ, it holds that o (‖h‖) ≤ 1
2 αx2 ‖h‖ and

g (0 + h)− g (0) = g′(0)h + o (‖h‖) .
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By definition of g and by 1C we see for ‖h‖ ≤ δ that

‖g (h)‖+ 1
2

αx2 ‖h‖ ≥ ‖g (h)− o (‖h‖)‖ =
∥∥∥ f

′
(x2)h

∥∥∥ ≥ αx2 ‖h‖ .

We can always assume that δ < ρ < min {‖e‖ , M}. Thus (3.3) holds.

Take any 0 < r < ρ. Recall that by 1D we obtain since (3.3) holds

ψ(x) = η (g (x)) ≥ c ‖g (x)‖α ≥ c
(

1
2

αx2

)α

‖x‖α .

Thus

inf
‖x‖=r

ψ(x) ≥ c
(

1
2

αx2

)α

‖r‖α > 0 = ψ (e) = ψ (0) (3.4)

We see that (3.1) is satisfied for J = ψ. Thus by Theorem 3.3 we note that

ψ has a critical point v 6= 0, v 6= e and such that

ψ′(v) = η′( f (v + x2)− a) ◦ f ′(v + x2) = 0.

Since f ′(v + x2) is invertible, we see that η
′
( f (v + x2) − a) = 0. So by

the assumption 1A we calculate f (v + x2) − a = 0 and ψ(v) > 0 by

(3.4). Thus we obtain a contradiction which shows that f is a "one to one"

operator.

We supply our result with a few of remarks.

Remark 3.3. We see that from Theorem 3.4 by putting η (x) = 1
2 ‖x‖

2

we obtain easily Theorem 1.2. In that case c = 1, M > 0 is arbitrary,

α = 2. It seems there is no difference as concerns the finite and infinite

dimensional context.

Remark 3.4. Since the deformation lemma is also true with Cerami con-

dition, we can assume that ϕ satisfies the Cerami condition instead of the

Palais-Smale condition. However, in the possible applications, in which

the Ambrosetti-Rabinowitz condition could not be assumed, it seems that

checking the Palais-Smale condition would be an easier task.

− 31 −



3.1. Global diffeomorphism theorem by an auxiliary functional

It is of interest if the above proof works also in case of the global dif-

feomorphism result in [38] for p 6= 2. However, we must assume that a

functional u 7→ ‖u‖
p

p
from Lemma 3.1 is continuously Gâteaux differen-

tiable. This is the case with space W1,p
0 , see [17] and as well with W̃1,p

0

which assertion can be proved exactly as in [17].

Therefore we formulate a more subtle version of the above theorem

although we believe that it is easier to apply the less refined version.

Theorem 3.5. Let X and B be real Banach spaces and let p > 1 be a real number.
Let the potential u 7→ ‖u‖

p
p

of a duality mapping A : B → B∗ corresponding
to a normalization function t→ tp−1 be continuously Gâteaux differentiable. If
f : X → B is a C1-mapping such that:

2A for any y ∈ B the functional ϕ : X → R given by the formula

ϕ (x) =
1
p
‖ f (x)− y‖p

satisfies the Palais-Smale condition,

2B for any x ∈ X, f ′(x)X = B and there exists a constant αx > 0 such that∥∥ f ′(x)h
∥∥ ≥ αx ‖h‖ , (3.5)

then f is a diffeomorphism.

Proof. We follow the ideas used in the proof of Theorem 3.4 with neces-

sary modifications. In view of the remarks made at the beginning of this

section, condition 2B implies that f defines a local diffeomorphism. Thus

it is sufficient to show that f is ”onto” and ”one to one”. We will perform

this task with the Theorems 3.2 and 3.3.

Firstly we show that f is ”onto”. Let us fix any point y ∈ B. Observe

that ϕ is a composition of a continuously Gâteaux differentiable (and thus
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C1) functional and a C1 mapping, so it is C1 itself. Moreover, ϕ is bounded

from below and it satisfies the Palais-Smale condition.

Thus from Theorem 3.2 it follows that there exists an argument of a

minimum which we denote by x. We see by the chain rule and Fermat’s

Principle and by Lemma 3.1 that

0 = ϕ′(x) = A ( f (x)− y) ◦ f ′(x).

Since by 2B the mapping f ′(x) is invertible we see that A ( f (x)− y) = 0.

Now, by the property that ‖A (u)‖∗ = ‖u‖
p−1 we note that

‖A ( f (x)− y)‖∗ = ‖ f (x)− y‖p−1 .

So it follows that

f (x)− y = 0.

Thus f is surjective.

Now, we argue by contradiction that f is "one to one". Suppose there

are x1 and x2, x1 6= x2, x1, x2 ∈ X, such that f (x1) = f (x2) = a ∈ B. We

will apply Theorem 3.3. Thus we put e = x1 − x2 and define mapping

g : X → B by the following formula

g (x) = f (x + x2)− a.

Observe that g (0) = g (e) = 0. We define functional ψ : X → R by the

following formula

ψ (x) =
1
p
‖g (x)‖p .

By 2A functional ψ satisfies the Palais-Smale condition. Next, we see that

ψ (e) = ψ (0) = 0. Using (3.5) we see that there is a number, ρ > 0 such

that
1
2

αx2 ‖x‖ ≤ ‖g (x)‖ for x ∈ B (0, ρ). (3.6)
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3.2. Global implicit function theorem by a duality mapping

Indeed, since lim‖h‖→0
o(h)
‖h‖ = 0, we see that for ‖h‖ sufficiently small, say

‖h‖ ≤ δ, it holds that o (h) ≤ 1
2 αx2 ‖h‖ and

g(h) = g (0 + h)− g (0) = g′(0)h + o (h) = f ′(x2)h + o (h) .

By definition of g and by 2B we see for ‖h‖ ≤ δ that

‖g (h)‖+ 1
2

αx2 ‖h‖ ≥ ‖g (h)− o (h)‖ =
∥∥ f ′(x2)h

∥∥ ≥ αx2 ‖h‖ .

We can always assume that 0 < ρ < min (δ, ‖e‖). Thus (3.6) holds. Take

any 0 < r < ρ. By definition of ψ we obtain

ψ(x) =
1
p
‖g (x)‖p ≥ 1

p

(
1
2

αx2

)p

‖x‖p .

for any x ∈ B(0, r). Thus we get

inf
‖x‖=r

ψ(x) ≥ 1
p

(
1
2

αx2

)p

rp > 0 = ψ (e) = ψ (0)

We see that (3.1) is satisfied for J = ψ. Thus by Theorem 3.3 we note that

ψ has a critical point v 6= 0, v 6= e and such that

0 = ψ′(v) = A( f (v + x2)− a) ◦ f ′(v + x2) and ψ(v) > 0.

Since f ′(v + x2) is invertible, we see that A( f (v + x2) − a) = 0. Thus

f (v + x2)− a = 0. This provides the equality ψ(v) = 0 which contradicts

ψ(v) > 0. Thus we obtain a contradiction which shows that f is a "one to

one" operator.

Remark 3.5. Based on the Closed Graph Theorem it can be noticed that

assumption 2B of Theorem 3.5 is equivalent to the following: for any

v ∈ X, the differential f ′(x) : X → B is ”one to one” and ”onto”.
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SECTION 3.2

Global implicit function theorem by a duality mapping

Let us start with the classical local version of the implicit function the-

orem, to be found in many textbooks for example in [77], which is as

follows

Theorem 3.6. Let X, Y, Z be real Banach spaces. If U ⊂ X × Y is an open
set, F : U 3 (x, y) 7→ F(x, y) ∈ Z is of class C1, F(a, b) = 0 and the
differential Fx(a, b) : X → Z is bijective, then there exist balls B(a, r), B(b, ρ)

and a function f : B(b, ρ)→ B(a, r) such that B(a, r)× B(b, ρ) ⊂ U and

• equations F(x, y) = 0 and f (y) = x are equivalent in the set B(a, r)×
B(b, ρ);

• function f is of class C1 with differential f ′(y) given by

f ′(y) = − [Fx( f (y), y)]−1 ◦ Fy( f (y), y) (3.7)

for y ∈ B(b, ρ).

Remark 3.6. If F = F(x, y) : U → Z is of class C2 and all conditions of

Theorem 3.6 are fulfiled, then additionally f is of class C2.

In the two following sections we shall provide two versions of a global

implicit function theorem. Both depend on whether we apply a duality

mapping or else an auxiliary functional. While for the applications which

we mean both versions can be used, these differ as far as the assump-

tions on the underlying spaces are concerned. To prove the new version

of global implicit function theorem we apply the variational approach

and use Mountain Pass Theorem. A Palais-Smale condition connected

with function F, with respect to x, guarantees the existence of an implicit

function f : Y → X described by the equation F(x, y) = 0.
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Theorem 3.7. Let X, Y, Z be real Banach spaces. Let p > 1 be a real number.
Let the potential u → ‖u‖

p
p

of a duality mapping A : Z → Z∗ corresponding
to a normalization function t → tp−1 be continuously Gâteaux differentiable.
Assume that F : X×Y → Z is a C1 mapping such that:

3A for any y ∈ Y the functional ϕ : X → R given by the formula

ϕ (x) =
1
p
‖F (x, y)‖p satisfies (PS) condition,

3B differential Fx(x, y) : X → Z is bijective for any (x, y) ∈ X×Y,

then there exists a unique function f : Y → X such that equations F(x, y) = 0

and x = f (y) are equivalent in the set X × Y. Moreover, f ∈ C1(Y, X) with
differential given by (3.7).

Proof. The ideas of the proof come from [38] and [24] and our Theorem

3.5. In view of the classical local implicit function theorem it is sufficient

to show that for any y ∈ Y there exists exactly one x ∈ X such that

F(x, y) = 0.

Let us fix a point y ∈ Y. Functional ϕ is a composition of two C1

mappings, so it is C1 itself. Moreover, ϕ is bounded from below and it

satisfies the Palais-Smale condition by 3A. Thus from Theorem 3.2 it fol-

lows that there exists an argument of a minimum which we denote by x.

We see by the chain rule and Fermat’s Principle and by the assumptions

on a duality mapping that

0 = ϕ′(x) = A (F (x, y)) ◦ Fx(x, y).

Since by 3B the mapping Fx(x, y) is invertible we get that A (F (x, y)) = 0.

Now, by the property that ‖A (u)‖∗ = ‖u‖
p−1 we note that

‖A (F (x, y))‖∗ = ‖F (x, y)‖p−1 .
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So it follows that

F (x, y) = 0, (3.8)

which proves the existence of x ∈ X for every y ∈ Y, such that (3.8) holds.

The uniqueness will be shown by contradiction.

Let y be fixed and let us suppose that there are x1, x2 ∈ X, x1 6= x2,

such that F(x1, y) = F(x2, y) = 0. Let us put e = x2 − x1 and define a

mapping g : X → Z by the following formula:

g(x) = F(x + x1, y) (3.9)

Observe that g(0) = g(e) = 0. Consequently

g(0 + h)− g(0) = g′(0)h + o(h) = Fx(x1, y)h + o(h) (3.10)

for h ∈ X, where o(h)
||h||X → 0 in Z when h → 0 in X. Thus from the

bijectivity of Fx(x, y) there exists αx1 > 0 that

||g(h)||Z +
1
2

αx1 ||h||X ≥ ||g(h)||Z + ||o(h)||Z ≥ ||Fx(x1, y)h||Z ≥ αx1 ||h||X
(3.11)

for sufficiently small h such that ||o(h)||Z ≤ 1
2 αx1 ||h||. Thus, there exist

ρ > 0, such that for all x ∈ B(0, ρ)

||g(x)|| ≥ 1
2

αx1 ||x||. (3.12)

Let us define function ψ : X → R by the following formula

ψ(x) =
1
p
||g(x)||p =

1
p
||F(x + x1, y)||p = ϕ(x + x1)

for x ∈ X. Of course, ψ is continuously differentiable in the sense of

Gâteaux on X and

ψ′(x) = ϕ′(x + x1)
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3.2. Global implicit function theorem by a duality mapping

By assumption 3A functional ψ satisfies the Palais-Smale condition as

well. Take δ < min{ρ, ‖e‖}. By definition of ψ,

ψ(0) = ψ(e) = 0, e 6∈ B(0, δ).

Moreover

ψ(x) ≥ 1
p

(
1
2

αx1 δ

)p

for x ∈ ∂B(0, δ). Thus, ψ satisfies assumption of the Mountain Pass The-

orem, Th. 3.3. Functional ψ has a critical point v 6= 0, v 6= e such that

ψ(v) > 0 and

0 = ψ′(v) = A (F (v + x1, y)) ◦ Fx(v + x1, y).

Since Fx(v + x1, y) is invertible, we see that A (F (v + x1, y)) = 0 and by

the property of duality mapping F (v + x1, y) = 0. This provides the

equality ψ(v) = 0 which contradicts ψ(v) > 0. The obtained contradic-

tion ends the proof.

We pass to some remarks on a duality mapping which are especially

concerning the assumptions on a duality mapping. In Theorem 3.7 we

have assumed that the duality mapping has the potential which is contin-

uously differentiable in order to ascertain that the functional ϕ : X → R

given by the formula

ϕ (x) =
1
p
‖F (x, y)‖p

is continuously differentiable. Using Lemma 3.1 note that the potential

of a duality mapping A : Z → 2Z∗ is Gâteaux differentiable in case Z∗ is

strictly convex and Z is reflexive. Recall that functional

x 7→ 1
p

∫ 1

0
|ẋ (t)|p dt
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is C1 on W̃1,p
0 as already mentioned, for 2 ≤ p < +∞.

There is an easy corollary for functions on Rn. It reads as follows.

Note that in a finite dimensional space a coercive functional satisfies the

Palais-Smale condition.

Theorem 3.8. Assume that F : Rn ×Rm → Rn is a C1 mapping such that:

• for any y ∈ Rm the functional ϕ : Rn → R given by the formula

ϕ (x) =
1
2
‖F (x, y)‖2

is coercive, i.e. lim‖x‖→∞ ϕ (x) = +∞,

• the differential Fx(x, y) : Rn → Rn is bijective for any (x, y) ∈
Rn ×Rm,

then there exists a unique function f : Rm → Rn such that equations F(x, y) =
0 and x = f (y) are equivalent in the set Rn ×Rm. Moreover, f ∈ C1(Rm, Rn)

with differential given by (3.7).

SECTION 3.3

Global implicit function theorem by an auxiliary functional

Now we will formulate the second version of global implicit function

theorem. Here we make use of the auxiliary functional.

Theorem 3.9. Let X, Y, Z be real Banach spaces. Assume that F : X×Y → Z
is a C1-mapping, η : Z → R+ is a C1 functional such that the following condi-
tions hold:

4A (η (z) = 0⇐⇒ z = 0) and (η′ (z) = 0⇐⇒ z = 0),

4B for any y ∈ Y the functional ϕ : X → R given by the formula

ϕ (x) = η (F (x, y))

satisfies the Palais-Smale condition,
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4C for any (x, y) ∈ X×Y the differential Fx(x, y) : X → Z is a bijection,

4D there exist positive constants β, c, M such that

η (x) ≥ c ‖x‖β for ‖x‖ ≤ M,

then there exists a unique function f : Y → X such that equations F (x, y) = 0

and x = f (y) are equivalent on X×Y. Moreover, f ∈ C1(Y, X) with differen-
tial given by (3.7).

Proof. The proof follows in the similar manner to the proof of Theorem

3.7. The differences will be discussed below. For any fixed y functional ϕ

is C1 and shares the same properties as its counterpart. Hence its argu-

ment of a minimum x satisfies

0 = ϕ′(x) = η′ (F (x, y)) ◦ Fx(x, y).

Since by assumption 4C mapping Fx(x, y) is invertible we see that

η (F (x, y)) = 0

and so F (x, y) = 0 is solvable. Again we argue by contradiction that the

solution is unique. Supposing that there are x1, x2 ∈ X, x1 6= x2, such that

F(x1, y) = F(x2, y) = 0 by formula (3.9) we define function g : X → Z
with properties (3.10)-(3.12). We define functional ψ : X → R by

ψ(x) = η(g(x)) = η(F(x + x1, y)) = ϕ(x + x1).

By assumption 4B ψ satisfies the Palais-Smale condition as well. Take

δ < min {||e||X, ρ, M}, where e = x2 − x1. Again ψ(0) = ψ(e) = 0,

e 6∈ B(0, δ). By assumption 4D

ψ(x) = η(g(x)) ≥ c||g(x)||β ≥ c
(

1
2

αx1 δ

)β
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for x ∈ ∂B(0, δ). Such ψ also satisfies assumption of the Mountain Pass

Theorem Th. 3.3, and there exists a point v ∈ X, v 6= 0, v 6= e such that

ψ(v) > 0 and

0 = ψ′(v) = η′ (F (v + x1, y)) ◦ Fx(v + x1, y).

Since Fx(v + x1, y) is invertible, we see that η′ (F (v + x1, y)) = 0. Thus,

by assumption 4A F (v + x1, y) = 0. This means that ψ(v) = 0 holds

which contradicts ψ(v) > 0. The obtained contradiction ends the proof.
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Some refinement of results in [35] i s given in [ 36], [37] where some 
assumptions are weakened. Similar analysis could also be performed 
in our case. As well we can replace the Palais-Smale condition with its 
weak version. Moreover, in [77] there are some other versions of the local 
implicit function theorem. These cannot be successfully applied in our 
case. Also a different approach towards global implicit function theorem 
can be investigated with results contained in [66].



3.4. Conclusion and related results

SECTION 3.4

Conclusion and related results

We would like to mention work [76] for some other approach connected 
with the nonnegative auxiliary scalar coercive function and the main as-

sumption that for all positive r :

sup
‖x‖≤r

∥∥∥ f
′
(x)−1

∥∥∥ < +∞

and ‖ f (x)‖ → +∞ as ‖x‖ → +∞. The methods of the proof are quite

different as well. One of the results of [76] most closely connected to ours

and to those of [38] reads as follows

Theorem 3.10. Let X, B be real Banach spaces. Assume that f : X → B is a C1-
mapping, ‖ f (x)‖ → +∞ as ‖x‖ → +∞, for all x ∈ X f

′
(x) ∈ Isom (X, B)

and for all x ∈ X

sup
‖x‖≤r

∥∥∥ f
′
(x)−1

∥∥∥ < +∞

The main difference between our results and the existing one is that∥∥ ∥∥we do not require condition sup‖x‖6r f ′(x)−1 < +∞ for all r > 0. We 

have boundedness of 
∥∥ f ′(x)−1

∥∥ but in a pointwise manner. Recall that

− 42−
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ϕ (x) = η ( f (x)− y) is bounded from below, C1 and satisfies the Palais-

Smale condition and therefore it is coercive as well. However, coercivity

alone does not provide the existence of exactly one minimizer. We would

have to add strict convexity to the assumptions. Thus we can obtain eas-

ily the following result

Theorem 3.11. Let X, B be real Banach spaces. Assume that f : X → B is a
C1-mapping, η : B → R+ is a C1 functional and that the following conditions
hold

5A (η (x) = 0⇐⇒ x = 0) and (η′ (x) = 0⇐⇒ x = 0),

5B for any y ∈ B the functional ϕ : X → R given by the formula

ϕ (x) = η ( f (x)− y)

is coercive and strictly convex,

5C for any x ∈ X the Fréchet derivative is surjective, i.e. f ′(x)X = B, and
there exists a constant αx > 0 such that for all h ∈ X∥∥ f ′(x)h

∥∥ ≥ αx ‖h‖ ,

then f is a diffeomorphism.

Proof. Let us fix y ∈ B. Note that by 5B ϕ has exactly one minimizer x.

Thus by Fermat’s Principle we see that

ϕ′(x) = η′( f (x)− y) ◦ f ′(x) = 0.

Since by 5C mapping f ′(x) is invertible we see that η′( f (x) − y) = 0.

Now by 5A it follows that

f (x)− y = 0.
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Thus f is surjective and obviously "one to one" since x is unique.

We believe that checking that ϕ is strictly convex is still more demand-

ing than proving that ϕ satisfies the Palais-Smale condition.

It is well-known that the implicit function and inverse theorems are

equivalent in the sense that the validity of one implies the validity of the

other. The following theorem is known as the Hadamard-Lévy theorem

(see [33], [55], [57], [65])

Theorem 3.12 (Hadamard-Lévy). Let E, F be two Banach spaces and f :

E→ F be a local diffeomorphism of class C1 which satisfies the following integral
condition ∫ ∞

0
min
‖x‖=r

‖ f ′(x)−1‖−1dr = ∞.

Then f is a global diffeomorphism.

One interesting global invertibility result for non-smooth functions

was stated in [39]. In order to state the result we shall define the modulus

of surjection of a function f at a point x. Let E, F be two Banach spaces,

f : E → F and x ∈ E. We denote by B[a, r] the closed ball of radius r
centered at a ∈ E.

Sur( f , x)(t) = sup{r ≥ 0 : B[ f (x), r] ⊂ f [B(x, t)]} > 0

Thus, for any t > 0, the value of the modulus of surjection of f at x
is the maximal radius of a ball centered at f (x) contained in the f -image

of the ball of radius t centered at x. We further introduce the constant of

surjection of f at x by

sur ( f , x) = lim inf
t→0

Sur( f , x)(t)
t
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Obviously, Sur( f , x) > 0 is a sufficient condition for f to be surjective

at x, that is, for Sur( f , x)(t) to be positive for small t. The following two

theorems are taken from [39].

Theorem 3.13. Let E, F be two Banach spaces and f : E→ F. Suppose that the
graph of f is closed and there is a positive lower semicontinuous (l.s.c.) function
m : [0, ∞)→ [0, ∞) such that

sur ( f , x) ≥ m (‖x‖) , x ∈ E (3.13)

Then

Sur( f , x)(r) ≥
∫ r

0
m (s) ds for every r > 0

Theorem 3.14 (Ioffe’s). Let E, F be two Banach spaces and f : E→ F be a con-
tinuous mapping that is locally one-to-one (i.e., every x ∈ E has a neighborhood
in which f is one-to-one). Suppose that there is a positive lower semicontinu-
ous (l.s.c.) function m : [0, ∞) → [0, ∞) such that condition (3.13) and the
following condition are satisfied∫ ∞

0
m (s) ds = +∞

Then f is a global homeomorphism, the inverse mapping f−1 is locally Lipschitz,
and for every y ∈ F, the Lipschitz constant of f−1 at y is not greater than
m
(∥∥ f−1 (y)

∥∥)−1 .

In [41] Katriel proved that from Ioffe’s global inversion theorem (that

is from Theorem 3.14 stated above) one can obtain the Hadamard-Lévy

theorem.
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CHAPTER 4
Applications of a diffeomorphism
theorem
The results concerning the application of the global diffeomorphism the-

orem are presented in this chapter. First we prove the existence of a

unique solution of an integro-differential equation and its differentiable

dependence on a parameter. Consider a space W̃1,p
0 ([0, 1], Rn); with fixed

p ≥ 2. Same as before we denote Lp([0, 1] , Rn) by Lp and W̃1,p
0 ([0, 1], Rn)

by W̃1,p
0 for short.

SECTION 4.1

Application to integro-differential system

In this section we will examine the solvability and differentiability of a

non-linear operator between two Banach spaces applying a global diffeo-

morphism theorem, presented in Section 3.1. Usually, in the literature,

the existence of the solution to integro-differential equation is obtained

by the Banach fixed point theorem or another type of fixed point theorem,

see [71], [72]. Let us formulate a nonlinear integro-differential equation

with variable integration limit with an initial condition, which reads as
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4.1. Application to integro-differential system

follows

x′(t) +
∫ t

0
Φ(t, τ, x(τ)) dτ = y(t), for a.e. t ∈ [0, 1], (4.1)

x(0) = 0, (4.2)

where y ∈ Lp is fixed for the time being.

Now we impose assumptions on the nonlinear term. These ensure

that the problem is well posed in the sense that the solution to (4.1)-(4.2)

exists, it is unique and the solution operator depends in a differentiable

manner on a parameter y provided we allow it to vary. This implies that

problem (4.1)-(4.2) is well posed in the sense of Hadamard.

Let P∆ = {(t, τ) ∈ [0, 1] × [0, 1]; τ ≤ t}. We assume that function

Φ : P∆ ×Rn → Rn satisfies the following conditions:

6A Φ(·, ·, x) is measurable on P∆ for any x ∈ Rn and Φ(t, τ, ·) is contin-

uously differentiable on Rn for a.e. (t, τ) ∈ P∆;

6B there exist functions a, b ∈ Lp(P∆, R+
0 ) such that

|Φ(t, τ, x)| ≤ a(t, τ)|x|+ b(t, τ);

for a.e. (t, τ) ∈ P∆, all x ∈ Rn and such that

||a||Lp(P∆,R) < 2−
(p−1)

p ; (4.3)

6C there exist functions c ∈ Lp(P∆, R+
0 ), α ∈ C(R+

0 , R+
0 ) and a constant

C > 0 such that

|Φx(t, τ, x)| ≤ c(t, τ)α(|x|)

for a.e. (t, τ) ∈ P∆ and all x ∈ Rn, moreover∫ t

0
cq(t, τ) dτ ≤ C, for a.e. t ∈ [0, 1].

− 48 −



4. Applications of a Diffeomorphism Theorem

We shall further indicate how to weaken the condition (4.3), see Remark

4.1. This is based on work [48] which came to our attention by personal

communication of the Author. Work [48] is not already published, neither

is posed on any server.

The main result of this section is the following theorem.

Theorem 4.1. Assume that conditions 6A - 6C hold. Then for any fixed y ∈ Lp,
problem (4.1)-(4.2) has a unique solution xy ∈ W̃1,p

0 . Moreover, the operator

Lp 3 y 7→ xy ∈ W̃1,p
0

which assigns to each y ∈ Lp a solution to (4.1)-(4.2) is continuously differen-
tiable.

In order to be in the context of Theorem 3.5 we put X = W̃1,p
0 , B = Lp

and define an operator

f : W̃1,p
0 3 x(·) 7→ x′(·) +

∫ ·
0

Φ(·, τ, x(τ)) dτ ∈ Lp (4.4)

and a functional ϕ : W̃1,p
0 → R

ϕ(x) =
1
p
|| f (x)− y||pLp =

1
p

∫ 1

0

∣∣∣∣x′(t)− y(t) +
∫ t

0
Φ(t, τ, x(τ))dτ

∣∣∣∣p dt.

(4.5)

By Minkowski’s and Hölder’s Inequalities we get∫ 1

0

∣∣∣∣∫ t

0
Φ(t, τ, x(τ)) dτ

∣∣∣∣p dt ≤
∫ 1

0

∫ t

0
|Φ(t, τ, x(τ))|p dτdt

≤
∫ 1

0

∫ t

0
(a(t, τ)|x(τ)|+ b(t, τ))p dτdt

≤ 2p−1
∫ 1

0

∫ t

0
ap(t, τ)|x(τ)|p dτdt

+ 2p−1
∫ 1

0

∫ t

0
bp(t, τ) dτdt

≤ 2p−1 ‖x‖p

W̃1,p
0

||a||pLp(P∆,R)
+ 2p−1||b||pLp(P∆,R)

,
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thus it follows that f is well defined and so is functional ϕ. Before proving

the main theorem we will provide two auxiliary lemmas in which we will

show that the assumptions of Theorem 3.5 are satisfied.

Lemma 4.1. Assume that conditions 6A - 6C hold. Then mapping f given by
(4.4) is continuously Gâteaux differentiable and its Gâteaux derivative f ′(x) at
any point x ∈ W̃1,p

0 is given by

f ′(x (·)) h(·) = h′(·) +
∫ t

0
Φx(·, τ, x(τ))h(τ) dτ (4.6)

for any h ∈ W̃1,p
0 . Moreover, for any fixed x ∈ W̃1,p

0 operator f ′(x) is ”one to
one” and ”onto”.

Proof. The first part of the proof is obvious. In order to prove the second

part we will show that for any fixed v ∈ Lp(0, 1) the following linear

integro-differential equation

h′(t) +
∫ t

0
Φx(t, τ, x(τ))h(τ) dτ = v(t), for a.e. t ∈ [0, 1] (4.7)

has a unique solution in W̃1,p
0 . To prove this property we use some reduc-

ing method. First let us fix v ∈ Lp. We consider an equation:

h′(t) + u(t) = v(t), for a.e. t ∈ [0, 1].

with any fixed u ∈ Lp. Such equation has a unique solution hu ∈ W̃1,p
0

given by

hu(t) =
∫ t

0
(−u(s) + v(s)) ds, for a.e. t ∈ [0, 1].

Introducing the obtained solution into equation (4.7) we get

u(t) = (Γu)(t) for a.e. t ∈ [0, 1], (4.8)
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where the mapping Γ is given by

Γ : Lp(0, 1) 3 u(·)→
∫ ·

0
Φx(·, τ, x(τ))hu(τ) dτ ∈ Lp. (4.9)

We will show that Γ is the contraction mapping and thus it has the unique

fixed point. We make use of the Bielecki norm in Lp which for the arbi-

trary k > 0 is given by

||u||k =
(∫ 1

0
e−kt|u(t)|p dt

) 1
p

Let us observe that for any u ∈ Lp(0, 1) the following relation holds

e−
k
p ||u||Lp ≤ ||u||k ≤ ||u||Lp (4.10)

so the Bielecki and Lp norms are equivalent. For any u1, u2 ∈ Lp we have

‖Γu1 − Γu2‖p
k =

∫ 1

0
e−kt

∣∣∣∣∫ t

0
Φx(t, τ, x(τ))(hu1(τ)− hu2(τ)) dτ

∣∣∣∣p dt

=
∫ 1

0
e−kt

∣∣∣∣∫ t

0
Φx(t, τ, x(τ))

∫ τ

0
(u1(s)− u2(s)) dsdτ

∣∣∣∣p dt

≤
∫ 1

0
e−kt

(∫ t

0
|Φx(t, τ, x(τ))|q dτ

) p
q ∫ t

0

∫ τ

0
|u1(s)− u2(s)|p dsdτdt

≤
∫ 1

0
e−kt

(∫ t

0
|Φx(t, τ, x(τ))|q dτ

) p
q ∫ t

0
|u1(τ)− u2(τ)|p dτdt

≤ B
p
q

∫ 1

0

∫ t

0
e−kt|u1(s)− u2(s)|p dτdt

≤ B
p
q

k

∫ 1

0
e−kt|u1(t)− u2(t)|pdt− e−k

∫ 1

0
|u1(τ)− u2(τ)|pdτ

≤ B
p
q

k
||u1 − u2||pk ,

where B > 0 is such that

‖x‖q
C

∫ t

0
cq(t, τ)dτ ≤ B, for a.e. t ∈ [0, 1]
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(see assumption 6C). For sufficiently large k we see that B
p
q

k ∈ (0, 1), hence

the mapping Γ is a contraction with respect to the Bielecki norm. Thus it

has a fixed point u? ∈ Lp. So, for every v ∈ Lp there exists unique u? ∈ Lp

which solves (4.8). Moreover, they determine unique h ∈ W̃1,p
0 according

to:

h′(t) + u?(t) = v(t) for a.e. t ∈ [0, 1], (4.11)

which in fact depends solely on v ∈ Lp. Introducing the definition (4.9)

of Γ for u? into (4.11) we get that there exists a unique h ∈ W̃1,p
0 such that

the equation (4.7) holds which finishes the proof.

Lemma 4.2. Assume that conditions 6A - 6C hold. Let y ∈ Lp be fixed.
Then functional ϕ given by (4.5) is continuously Gâteaux differentiable and its
Gâteaux derivative at any point x ∈ W̃1,p

0 is given by

ϕ′(x)h =
∫ 1

0

∣∣∣∣x′(t)− y(t) +
∫ t

0
Φ(t, τ, x(τ)) dτ

∣∣∣∣p−2

·
(

x′(t)− y(t) +
∫ t

0
Φ(t, τ, x(τ)) dτ

)
·
(

h′(t) +
∫ t

0
Φx(t, τ, x(τ))h(τ) dτ

)
dt

for any h ∈ W̃1,p
0 . Moreover, functional ϕ satisfies the (PS) condition for any

fixed y ∈ Lp.

Proof. Using (4.6) and the formula for the derivative of x 7→ 1
p ‖x‖

p in

W̃1,p
0 together with the theorem on the differentiability of a composition

of mappings for Fréchet derivatives we obtain that the differential ϕ′(x) :

W̃1,p
0 →

(
W̃1,p

0

)∗
of ϕ at any fixed point x ∈ W̃1,p

0 is given by the above

formula for any h ∈ W̃1,p
0 .
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By Hölder’s Inequality for x ∈ W̃1,p
0 , we have

∫ t

0
|Φ(t, τ, x(τ))| dτ ≤

(∫ t

0
|1|q dτ

) 1
q
(∫ t

0
|Φ(t, τ, x(τ))|p dτ

) 1
p

= q
√

t
(∫ t

0
|Φ(t, τ, x(τ))|p dτ

) 1
p

≤
(∫ t

0
|Φ(t, τ, x(τ))|p dτ

) 1
p

.

Thus, using basic relation between norms (see Poincaré’s Inequality) we

have∥∥∥∥∫ ·0 Φ(·, τ, x(τ)) dτ

∥∥∥∥p

Lp
=
∫ 1

0

(∫ t

0
|Φ(t, τ, x(τ))| dτ

)p

dt

≤
∫ 1

0

(∫ t

0
|Φ(t, τ, x(τ))|p dτ

)
dt

≤
∫ 1

0

(∫ t

0
(a(t, τ)|x(τ)|+ b(t, τ))p dτ

)
dt

≤ 2p−1
∫ 1

0

(∫ t

0
(a(t, τ)|x(τ)|)p dτ

)
dt

+ 2p−1
∫ 1

0

(∫ t

0
(b(t, τ))p dτ

)
dt

≤ 2p−1||a||pLp(P∆,Rn)
||x||p

W̃1,p
0

+ 2p−1||b||pLp(P∆,R)

≤
(

2
p−1

p ||a||Lp(P∆,Rn)||x||W̃1,p
0

+ 2
p−1

p ||b||Lp(P∆,R)

)p

.

Therefore the following inequality might be deduced for any x ∈ W̃1,p
0

(pϕ(x))
1
p =

∥∥∥∥x′ (·)− y (·) +
∫ ·

0
Φ(·, τ, x(τ)) dτ

∥∥∥∥
Lp

(4.12)

≥ ‖x′‖Lp − ‖y‖Lp −
∥∥∥∥∫ ·0 Φ(·, τ, x(τ)) dτ

∥∥∥∥
Lp

≥
(

1− 2
p−1

p ||a||Lp(P∆,Rn)

)
||x||W̃1,p

0
− c,
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where c = ||y||Lp(0,1) + 2
p−1

p ||b||Lp(P∆,Rn).

Now, let (xn)n∈N be a (PS) sequence for ϕ, i.e.

• ϕ(xn) ≤ M for all n ∈N and some M > 0,

• limn→∞ ϕ′(xn) = 0 in
(

W̃1,p
0

)∗
.

We have by (4.12)

p
√

pM ≥ p
√

pϕ(xn) ≥
(

1− 2
p−1

p ||a||Lp(P∆,Rn)

)
||x||W̃1,p

0
− c (4.13)

for n ∈N. This means that the sequence (xn)n∈N is bounded because

1− 2
p−1

p ||a||Lp(P∆,R) > 0

Consequently the sequence (xn)n∈N is weakly convergent, possibly after

choosing a subsequence which we assume to be chosen, in W̃1,p
0 to some

x0. Note that (4.13) provides coercivity of ϕ. Observe also that (ϕ′(xn)−
ϕ′(x0))(xn − x0)→ 0 as xn → x0.

From this we see that

(ϕ′(xn)− ϕ′(x0))(xn − x0)

=
∫ 1

0

(
|β(t, xn)|p−2β(t, xn)− |λ(t, x0)|p−2λ(t, x0)

)
(β(t, xn)− λ(t, x0)) dt

+
4

∑
i=1

Ψi(xn, x0), (4.14)

where

β(t, xn) = x′n(t)− y(t) +
∫ t

0
Φ(t, τ, xn(τ)) dτ,

λ(t, x0) = x′0(t)− y(t) +
∫ t

0
Φ(t, τ, x0(τ)) dτ
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and

Ψ1(xn, x0) =
∫ 1

0

(∣∣∣∣x′n(t)− y(t) +
∫ t

0
Φ(t, τ, xn(τ)) dτ

∣∣∣∣p−2

·
(

x′n(t)− y(t) +
∫ t

0
Φ(t, τ, xn(τ)) dτ

)
·
∫ t

0
Φ(t, τ, xn(τ))−Φ(t, τ, x0(τ)) dτ

)
dt,

Ψ2(xn, x0) =
∫ 1

0

(∣∣∣∣x′0(t)− y(t) +
∫ t

0
Φ(t, τ, x0(τ)) dτ

∣∣∣∣p−2

·
(

x′0(t)− y(t) +
∫ t

0
Φ(t, τ, x0(τ)) dτ

)
·
∫ t

0
Φ(t, τ, xn(τ))−Φ(t, τ, x0(τ)) dτ

)
dt,

Ψ3(xn, x0) =
∫ 1

0

(∣∣∣∣x′n(t)− y(t) +
∫ t

0
Φ(t, τ, xn(τ)) dτ

∣∣∣∣p−2

·
(

x′n(t)− y(t) +
∫ t

0
Φ(t, τ, xn(τ)) dτ

)
(xn(t)− x0(t))

·
∫ t

0
Φx(t, τ, xn(τ)) dτ

)
dt,

Ψ4(xn, x0) =
∫ 1

0

∣∣∣∣x′0(t)− y(t) +
∫ t

0
Φ(t, τ, x0(τ)) dτ

∣∣∣∣p−2

·
(

x′0(t)− y(t) +
∫ t

0
Φ(t, τ, x0(τ)) dτ

)
(xn(t)− x0(t))

·
∫ t

0
Φx(t, τ, x0(τ)) dτ

)
dt

We will show that Ψi(xn, x0) → 0 as n → ∞ for i = 1, ..., 4. The weak

convergence of the sequence (xn)n∈N in W̃1,p
0 to x0 implies the uniform
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convergence on [0, 1] and the strong convergence in Lp of the sequence

(xn)n∈N to x0.

Let us consider the term Ψ1(xn, x0). From the Lebesgue Dominated

Convergence Theorem it follows that

∫ t

0
Φ(t, τ, xn(τ))−Φ(t, τ, x0(τ)) dτ → 0

as n→ ∞ for all t ∈ [0, 1]. Moreover

∣∣∣∣∫ t

0
Φ(t, τ, xn(τ))−Φ(t, τ, x0(τ)) dτ

∣∣∣∣ ≤ 2
∫ t

0
M1a(t, τ) + b(t, τ) dτ

for M1 > 0 such that

|xn(τ)| ≤ M1

for τ ∈ [0, 1] and n = 0, 1, .... The function

[0, 1] 3 t 7→ 2
∫ t

0
M1a(t, τ) + b(t, τ) dτ ∈ R

belongs to Lp and using the Lebesgue Dominated Convergence Theorem

we assert that

∫ ·
0

Φ(·, τ, xn(τ))−Φ(·, τ, x0(τ)) dτ → 0
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in Lp as n→ ∞. By Hölder’s inequality

Ψ1(xn, x0) ≤
∫ 1

0

(∣∣∣∣x′n(t)− y(t) +
∫ t

0
Φ(t, τ, xn(τ)) dτ

∣∣∣∣p−1

·
∫ t

0
Φ(t, τ, xn(τ))−Φ(t, τ, x0(τ)) dτ)

)
dt

≤
(∫ 1

0

∣∣∣∣x′n(t)− y(t) +
∫ t

0
Φ(t, τ, xn(τ)) dτ

∣∣∣∣(p−1)q

dt

) 1
q

·
(∫ 1

0

∣∣∣∣∫ t

0
Φ(t, τ, xn(τ))−Φ(t, τ, x0(τ)) dτ

∣∣∣∣p dt
) 1

p

=

(∫ 1

0

∣∣∣∣x′n(t)− y(t) +
∫ t

0
Φ(t, τ, xn(τ)) dτ

∣∣∣∣p dt
) 1

q

·
(∫ 1

0

∫ t

0
(Φ(t, τ, xn(τ))−Φ(t, τ, x0(τ)))

pdτ)dt
) 1

p

≤
((

1 + ||a||Lp(P∆,Rn)

)
||xn||W̃1,p

0
+ ||y||Lp + ||b||Lp(P∆,Rn)

) p
q

·
(∫ 1

0

∫ t

0

(
(Φ(t, τ, xn(τ))−Φ(t, τ, x0(τ)))

p dτ
)

dt
) 1

p

→ 0

as n→ ∞. The same reasoning might be applied to prove that Ψ2(xn, x0)

tends to 0 as n→ ∞.

Let us consider Ψ3(xn, x0). From the Dominated Convergence Theo-

rem it follows that∫ ·
0

Φx(·, τ, x0(τ))(xn(τ)− x0(τ)) dτ → 0

as n→ ∞. As in the previous case applying Hölder’s inequality and 6C

Ψ3(xn, x0) ≤
((

1 + ||a||Lp(P∆,Rn)

)
||xn||W̃1,p

0
+ ||y||Lp + ||b||Lp(P∆,Rn)

) p
q

·
(∫ 1

0

(∫ t

0
|Φx(t, τ, x0(τ))(xn(τ)− x0(τ))|p dτ

)
dt
) 1

p

→ 0
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as n → ∞. Convergence of Ψ4(xn, x0) to 0 as n → ∞ follows from the

reasoning presented above.

Now, the following well known inequality will be used: For all p ≥ 2

it holds, see [10], p. 3〈
|a|p−2a− |b|p−2b

∣∣ a− b
〉
≥ cp|a− b|p (4.15)

for all a, b ∈ Rn, n ∈ N, where cp = 2
p(2p−1−1) and 〈 · | · 〉 denotes an inner

product on Rn.

Using relation (4.15) and substituting a and b with β and λ defined in

(4.14) we conclude that

p
√

cp||xn − x0||W̃1,p
0

≤ p
√

cp

(∫ 1

0
|x′n(t)− x′0(t)−

∫ t

0
(Φ(t, τ, x0(τ))−Φ(t, τ, xn(τ)))dτ|pdt

) 1
p

+ p
√

cp

(∫ 1

0

∫ t

0
|Φ(t, τ, x0(τ))−Φ(t, τ, xn(τ))|pdτdt

) 1
p

,

where cp is given above. Considering equality (4.14) and taking the above

relation into account

(ϕ′(xn)− ϕ′(x0)(xn − x0)

≥ cp

∫ 1

0

∣∣∣∣x′n(t)− x′0(t)−
∫ t

0
(Φ(t, τ, x0(τ))−Φ(t, τ, xn(τ)))dτ

∣∣∣∣p dt

+
4

∑
i=1

Ψi(xn, x0)

so

cp

∫ 1

0

∣∣∣∣x′n(t)− x′0(t)−
∫ t

0
Φ(t, τ, x0(τ))−Φ(t, τ, xn(τ)) dτ

∣∣∣∣p dt

≤ |(ϕ′(xn)− ϕ′(x0)(xn − x0)|+
∣∣∣∣∣ 4

∑
i=1

Ψi(xn, x0)

∣∣∣∣∣ .
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On the other hand one can observe that

|ϕ′(xn)(xn − x0)| ≤ ||ϕ′(xn)||(W̃1,p
0

)∗ ||xn − x0||W̃1,p
0

Therefore

ϕ′(xn)(xn − x0)→ 0

as n → ∞ due to the fact that (xn)n∈N is bounded and ϕ′(xn) → 0 as

n → ∞. From the weak convergence of the sequence (xn)n∈N to x0 in

W̃1,p
0 it follows that

ϕ′(x0)(xn − x0)→ 0

as n→ ∞. So

(ϕ′(xn)− ϕ′(x0))(xn − x0)→ 0.

as n→ ∞. Thus∫ 1

0

∣∣∣∣x′n(t)− x′0(t)−
∫ t

0
Φ(t, τ, x0(τ))−Φ(t, τ, xn(τ)) dτ

∣∣∣∣p dt→ 0

as n→ ∞. Of course∫ 1

0

(∫ t

0
|Φ(t, τ, x0(τ))−Φ(t, τ, xn(τ))|p dτ

)
dt→ 0

as n → ∞. Consequently, ||xn − x0||W̃1,p
0
→ 0 as n → ∞, i.e. the function

ϕ satisfies the (PS) condition.

Now we can proceed with the proof of the main result.

Proof of Theorem 4.1. We will use Theorem 3.5 with E = W̃1,p
0 and

B = Lp(0, 1). Condition 2B follows from Lemma 6.3.

Based on the Closed Graph Theorem one can conclude that the as-

sumption (b2) from Theorem 3.5 is equivalent to the following one: for

any x ∈ E, the differential f ′(x) : E→ B is ”onto” and ”one to one”. Thus

it is sufficient to use Lemma 4.1 to get the assertion.
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Remark 4.1. Applying the similar reasoning as in [48] the assumption 6B

of Theorem 4.1 might be reduced to a slightly weaker form:

F2’ there exist functions a, b ∈ Lp(P∆, R+
0 ) such that

|Φ(t, τ, x)| ≤ a(t, τ)|x|+ b(t, τ)

for a.e. (t, τ) ∈ P∆, all x ∈ Rn and there exist a constant a > 0 such

that ∫ t

0
ap(t, τ)dτ ≤ ap

for a.e. t ∈ [0, 1].

For any k > 0 let us define another form of the Bielecki’s type norm

||x||W̃1,p
0 ,k =

(∫ 1

0
e−kt|x′(t)|p dt

) 1
p

.

For k = 0 the above function defines a norm introduced by (2.1) and

therefore further we will skip index 0. It is easy to notice that:

e
−k
p ||x||W̃1,p

0
≤ ||x||W̃1,p

0 ,k ≤ ||x||W̃1,p
0

.

For any k > 0 and x ∈ W̃1,p
0 we state the following relations:

||x||k ≤
||x||W̃1,p

0 ,k

k
1
p

(4.16)

and∥∥∥∥∫ ·0 |x(τ)| dτ

∥∥∥∥
k
=

(∫ 1

0
e−kt

(∫ t

0
|x(τ)| dτ

)p

dt
) 1

p

≤
||x||W̃1,p

0 ,k

k
2
p

. (4.17)
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Now let us prove the stated relations starting with (4.16). Fix k > 0 and

x ∈ W̃1,p
0 . Then

||x||pk =
∫ 1

0
e−kt|x(t)|pdt =

∫ 1

0
e−kt

∣∣∣∣∫ t

0
x′(τ)dτ

∣∣∣∣p dt

≤
∫ 1

0

(
e−kt

∫ t

0

∣∣x′(τ)∣∣p dτ

)
dt

=
∫ 1

0

∣∣x′(τ)∣∣p (∫ 1

τ
e−kt dt

)
dτ

=
1
k

∫ 1

0
e−kt|x′(t)|p dt− e−k

k

∫ 1

0
|x′(t)|p dt

≤ 1− e−k

k

∫ 1

0
e−kt|x′(t)|p dt ≤

||x||p
W̃1,p

0 ,k

k
.

Now let us turn to the relation (4.17).∥∥∥∥∫ ·0 |x(τ)|dτ

∥∥∥∥p

k
=
∫ 1

0
e−kt

(∫ t

0
|x(τ)|dτ

)p

dt

≤
∫ 1

0
e−kt

(∫ t

0
|x(τ)|pdτ

)
dt

=
∫ 1

0
|x(τ)|p

(∫ 1

τ
e−ktdt

)
dτ

=
1
k

∫ 1

0
e−kt|x(t)|pdt− e−k

k

∫ 1

0
|x(t)|pdt

≤
||x||pk

k
≤
||x||p

W̃1,p
0 ,k

k2 .

Having in mind the relation (4.10), which states that Lp norm || · ||Lp and

Bielecki norm || · ||k are equivalent we can redefine functional ϕ : W̃1,p
0 → R

in the form:

ϕ(x) =
1
p
‖ f (x)− y‖p

k

=
1
p

∫ 1

0
e−kt

∣∣∣∣x′(t)− y(t) +
∫ t

0
Φ(t, τ, x(τ))dτ

∣∣∣∣p dt.
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Therefore the following inequality might be deduced for any x ∈ W̃1,p
0

(pϕ(x))
1
p =

∥∥∥∥x′ (·)− y (·) +
∫ ·

0
Φ(·, τ, x(τ))dτ

∥∥∥∥
k

≥ ||x′||k − ||y||k −
∥∥∥∥∫ ·0 Φ(·, τ, x(τ))dτ

∥∥∥∥
k

≥ ||x′||k − ||y||k − a
∥∥∥∥∫ ·0 x(τ)dτ

∥∥∥∥
k
−
∥∥∥∥∫ ·0 b(·, τ)dτ

∥∥∥∥
k

≥ ||x||W̃1,p
0 ,k −

a

k
2
p
||x||W̃1,p

0 ,k + d,

where d = ||y||k −
∥∥∫ ·

0 b(·, τ)dτ
∥∥

k. For sufficiently large k > 0, namely

for k > max
{

1, a
p
2

}
we have the coercivity of functional ϕ.

4.1.1 Example

We finish this section with an example of a nonlinear term satisfying our

assumptions 6A - 6C. Let us consider the function

Φ : P∆ ×R→ R

given by

Φ(t, τ, x) = 21−p(t− τ)
5
2 ln
(

1 + (t− τ)2 x2
)

for t, τ ∈ [0, 1], t > τ, x ∈ R. Since

ln
(
1 + s2z2) ≤ ln

((
1 + s2) (1 + z2)) = ln

(
1 + s2)+ ln

(
1 + z2) ≤ |s|+ |z|

for s, z ∈ R, therefore

|Φ(t, τ, x)| ≤ 21−p(t− τ)
5
2 |x|+ 21−p(t− τ)

5
2

Let us put

a(t, τ) = 2
1−p
2p (t− τ)

5
2

for t, τ ∈ [0, 1], t > τ.
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||a||pLp(P∆,R)
=
∫ 1

0

(∫ t

0

(
21−p(t− τ)

5
2

)p
dτ

)
dt

= 2p(1−p) 4
(5p + 2)(5p + 4)

≤ 2p(1−p).

Consequently, ||a||Lp(P∆,R) ≤ 2−(p−1) < 2
−(p−1)

p . Moreover

|Φx(t, τ, x)| ≤ 21−p(t− τ)
5
2 |x|

and∫ t

0
c(t, τ)q dτ = 2−p

∫ t

0
(t− τ)

5q
2 dτ =

21−p

5q + 2
t

5q
2 +1 ≤ 21−p

5q + 2
, t ∈ [0, 1].

Hence, Φ satisfies assumptions 6A - 6C. Theorem 4.1 shows that the ini-

tial value problem

x′(t) +
∫ t

0
21−p(t− τ)

1
2 ln
(

1 + (t− τ)2 x2
)

dτ = y(t), t ∈ [0, 1] a.e.

with

x(0) = 0

has a unique solution xy ∈ W̃1,p
0 for any fixed y ∈ Lp. Moreover, the

solution mapping

Lp 3 y 7→ xy ∈ W̃1,p
0

is continuously differentiable.
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CHAPTER 5
Application of a global implicit
function theorem
The results of this Chapter are based on [26]. Let us consider the follow-

ing integro-differential equation

x′(t) +
∫ t

0
Φ(t, τ, x(τ), z(τ))dτ = y(t), for a.e. t ∈ [0, 1], x (0) = 0, (5.1)

where y ∈ Lp, z ∈ Lp([0, 1], Rm), P∆ = {(t, τ) ∈ [0, 1]× [0, 1]; τ ≤ t} and

p ≥ 2. The solutions belong to a W̃1,p
0 . On the function

Φ : P∆ ×Rn ×Rm → Rn

we assume that

7A Φ(·, ·, x, z) is measurable on P∆ for any x ∈ Rn and z ∈ Rm; Φ(t, τ, ·, ·)
is continuously differentiable on Rn ×Rm for a.e. (t, τ) ∈ P∆

7B there exist functions a ∈ Lp(P∆, R+
0 ), b ∈ L∞(P∆, R+

0 ) such that

|Φ(t, τ, x, z)| ≤ a(t, τ)|x|+ b(t, τ)|z|;

for a.e. (t, τ) ∈ P∆, all x ∈ Rn, all z ∈ Rm and also

||a||Lp(P∆,R) < 2
1−p

p
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7C there exist functions c, e ∈ Lp(P∆, R+
0 ), α, β ∈ C(R+

0 , R+
0 ) and con-

stants C, k, p > 0 such that

|Φx(t, τ, x, z)| ≤ c(t, τ)α(|x|) + k|z|

|Φz(t, τ, x, z)| ≤ e(t, τ)β(|x|) + p|z|

for a.e. (t, τ) ∈ P∆ , all x ∈ Rn, all z ∈ Rm and∫ t

0
cq(t, τ)dτ ≤ C, for a.e. t ∈ [0, 1].

In what follows we shall assume that 7A-7C hold.

We should show that the mapping

F : W̃1,p
0 × Lp × Lp([0, 1], Rm)→ Lp

given by the formula

F(x, y, z) = x′(t) +
∫ t

0
Φ(t, τ, x(τ), z(τ))dτ − y(t)

satisfies assumption of the global implicit function theorem 3.7 with

X = W̃1,p
0 , Y = Lp × Lp([0, 1], Rm) and Z = Lp.

We mentioned already that space Lp is a uniformly convex Banach

space and so is its dual. Hence we can use the first version of global im-

plicit function theorem. By a direct calculation we get the following (see

[70] for the excellent background on calculation of derivatives in Banach

spaces)

Lemma 5.1. Assume that 7A-7C hold. Then mapping F is of class C1 and its
differentials in x and in (y, z), respectively, read as follows

Fx(x, y, z) : W̃1,p
0 → Lp,
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Fx(x, y, z)h = h′(t) +
∫ t

0
Φx(t, τ, x(τ), z(τ))h(τ)dτ,

F(y,z)(x, y, z) : Lp × Lp([0, 1], Rm)→ Lp,

F(y,z)(x, y, z)(u, v) =
∫ t

0
Φz(t, τ, x(τ), z(τ))v(τ)dτ − u(t).

Lemma 5.2. Assume that 7A-7C hold. Fix functions y ∈ Lp and z ∈ Lp([0, 1], Rm).
Define the mapping Φ : P∆×Rn → Rn by formula Φ(t, τ, x) = Φ(t, τ, x, z(t)).
Then the functional ϕ : W̃1,p

0 → R given by the formula

ϕ (x) =
1
p
‖F (x, y)‖p =

1
p

∫ 1

0

∣∣∣∣x′(t) + ∫ t

0
Φ(t, τ, x(τ))dτ − y(t)

∣∣∣∣p dt

satisfies the (PS) condition.

Proof. Observe ϕ as a composition of two C1 mappings is in fact C1. By

Hölder’s Inequality and classical embedding results we have for any x ∈
W̃1,p

0∥∥∥∥∫ t

0
Φ(t, τ, x(τ))dτ

∥∥∥∥p

Lp
≤
∫ 1

0

(∫ t

0
|Φ(t, τ, x(τ))|p dτ

)
dt

≤
∫ 1

0

(∫ t

0

(
a(t, τ)|x(τ)|+ b̃(t, τ)

)p
dτ

)
dt

≤ 2p−1||a||pLp(P∆,Rn)
||x||p

W̃1,p
0

+ 2p−1||b̃||pLp(P∆,R)
.

with b̃(t, τ) = b(t, τ)|z(τ)|. Let

c = ||y||Lp + 2
p−1

p ||b̃||Lp(P∆,Rn).

We see that for any x ∈ W̃1,p
0

(pϕ(x))
1
p =

∥∥∥∥x′ (·)− y (·) +
∫ ·

0
Φ(·, τ, x(τ)) dτ

∥∥∥∥
Lp

≥ ||x′||Lp − ||y||Lp −
∥∥∥∥∫ ·0 Φ(·, τ, x(τ)) dτ

∥∥∥∥
Lp

(5.2)

≥
(

1− 2
(p−1)

p ||a||Lp(P∆,Rn)

)
||x||W̃1,p

0
− c
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Note that 1− 2
(p−1)

p ||a||Lp(P∆,R) > 0. Let (xn)n∈N be a (PS) sequence

for ϕ, so |ϕ (xn)| ≤ M for some M > 0. We have by (5.2)

p
√

pM ≥ p
√

pϕ(xn) ≥
(

1− 2
(p−1)

p ||a||Lp(P∆,Rn)

)
||xn||W̃1,p

0
− c

for n ∈ N which means that the sequence (xn)n∈N is bounded, so it may

be assumed to be weakly convergent in W̃1,p
0 to some x0.

Let us calculate

(ϕ′(xn)− ϕ′(x0))(xn − x0)

=
∫ 1

0
(|β(t, xn)|p−2β(t, xn)− |λ(t, x0)|p−2λ(t, x0))(β(t, xn)− λ(t, x0)) dt

+
4

∑
i=1

Ψi(xn, x0),

where

β(t, xn) = x′n(t)− y(t) +
∫ t

0
Φ(t, τ, xn(τ)) dτ

λ(t, x0) = x′0(t)− y(t) +
∫ t

0
Φ(t, τ, x0(τ)) dτ

and

Ψ1(xn, x0) =
∫ 1

0

(∣∣∣∣x′n(t)− y(t) +
∫ t

0
Φ(t, τ, xn(τ)) dτ

∣∣∣∣p−2

·
(

x′n(t)− y(t) +
∫ t

0
Φ(t, τ, xn(τ)) dτ

)
·
∫ t

0
Φ(t, τ, x0(τ))−Φ(t, τ, xn(τ)) dτ

)
dt,

Ψ2(xn, x0) =
∫ 1

0

(∣∣∣∣x′0(t)− y(t) +
∫ t

0
Φ(t, τ, x0(τ))dτ

∣∣∣∣p−2

·
(

x′0(t)− y(t) +
∫ t

0
Φ(t, τ, x0(τ)) dτ

)
·
∫ t

0
Φ(t, τ, xn(τ))−Φ(t, τ, x0(τ)) dτ

)
dt,
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Ψ3(xn, x0) =
∫ 1

0

(∣∣∣∣x′n(t)− y(t) +
∫ t

0
Φ(t, τ, xn(τ)) dτ

∣∣∣∣p−2

·
(

x′n(t)− y(t) +
∫ t

0
Φ(t, τ, xn(τ)) dτ

)
·(xn(t)− x0(t))

∫ t

0
Φx(t, τ, xn(τ)) dτ

)
dt,

Ψ4(xn, x0) =
∫ 1

0

(∣∣∣∣x′0(t)− y(t) +
∫ t

0
Φ(t, τ, x0(τ)) dτ

∣∣∣∣p−2

·
(

x′0(t)− y(t) +
∫ t

0
Φ(t, τ, x0(τ)) dτ

)
· (x0(t)− xn(t))

∫ t

0
Φx(t, τ, x0(τ)) dτ

)
dt

We will show that Ψi(xn, x0) → 0 as n → ∞ for i = 1, .., 4. The weak

convergence of the sequence (xn)n∈N in W̃1,p
0 to x0 implies the uniform

convergence on [0, 1] and the strong convergence in Lp of the sequence

(xn)n∈N to x0.

Let us consider the term Ψ1(xn, x0). From the Lebesgue Dominated

Convergence Theorem it follows that

∫ t

0
Φ(t, τ, xn(τ))−Φ(t, τ, xn(τ)) dτ → 0

as n→ ∞ for t ∈ [0, 1]. Moreover∣∣∣∣∫ t

0
Φ(t, τ, xn(τ))−Φ(t, τ, x0(τ)) dτ

∣∣∣∣ ≤ 2
∫ t

0

(
M1a(t, τ) + b̃(t, τ)

)
dτ

for M1 > 0 such that

|xn(τ))| ≤ M1, for τ ∈ [0, 1] and n = 0, 1, ... .
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Since the function

[0, 1] 3 t→ 2
∫ t

0

(
a(t, τ)M1 + b̃(t, τ)

)
dτ ∈ R

belongs to Lp and using the Lebesgue Dominated Convergence Theorem

we assert that ∫ ·
0

Φ(·, τ, xn(τ))−Φ(·, τ, x0(τ)) dτ → 0

as n→ ∞ in Lp. By Hölder’s inequality

Ψ1(xn, x0) ≤
(∫ 1

0

∣∣∣∣x′n(t)− y(t) +
∫ t

0
Φ(t, τ, xn(τ)) dτ

∣∣∣∣(p−1)q

dt

) 1
q

·
(∫ 1

0

(∫ t

0
Φ(t, τ, xn(τ))−Φ(t, τ, x0(τ)) dτ

)p

dt
) 1

p

≤
((

1 + 2
1
q ||a||Lp(P∆,Rn)

)
||xn||W̃1,p

0
+ ||y||Lp + 2

1
q ||b̃||Lp(P∆,Rn)

) p
q

·
(∫ 1

0

(∫ t

0

(
Φ(t, τ, xn(τ))−Φ(t, τ, x0(τ)

)p dτ

)
dt
) 1

p

→ 0

as n→ ∞. The same reasoning might be applied to prove that Ψ2(xn, x0)

tends to 0 as n→ ∞.

Let us consider Ψ3(xn, x0). Firstly, we see that for any t ∈ [0, 1] the

following estimation holds∣∣∣∣∫ t

0
Φx(t, τ, x0(τ) dτ (xn(t)− x0(t))

∣∣∣∣ ≤ ∫ 1

0

∣∣Φx(t, τ, x0(τ))
∣∣ dτ ‖xn − x0‖C .

Since sequence (xn)n∈N is uniformly convergent in C to x0, we see that∫ ·
0

Φx(·, τ, x0(τ)) dτ(xn(·)− x0(·))→ 0

as n→ ∞ on [0, 1]. As in the previous case we see that

Ψ3(xn, x0) ≤
((

1 + ||a||Lp(P∆,Rn)

)
||xn||W̃1,p

0
+ ||y||Lp + ||b̃||Lp(P∆,Rn)

) p
q

·
(∫ 1

0

(∫ t

0

∣∣Φx(t, τ, x0(τ))(xn(τ)− x0(τ))
∣∣p dτ

)
dt
) 1

p

→ 0
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as n → ∞. Convergence of Ψ4(xn, x0) to 0 as n → ∞ follows from the

reasoning presented above.

Using relation (4.15) and the Lebesgue Dominated Convergence The-

orem we conclude that

p
√

cp||xn − x0||W̃1,p
0

≤ p
√

cp

(∫ 1

0

∣∣∣∣x′n(t)− x′0(t)−
∫ t

0
Φ(t, τ, x0(τ))−Φ(t, τ, xn(τ)) dτ

∣∣∣∣p dt
) 1

p

+ p
√

cp

(∫ 1

0

(∫ t

0

∣∣Φ(t, τ, x0(τ))−Φ(t, τ, xn(τ))
∣∣p dτ

)
dt
) 1

p

.

From the formula for a derivative and from (4.15) we have

(ϕ′(xn)− ϕ′(x0))(xn − x0)

≥ cp

∫ 1

0

∣∣∣∣x′n(t)− x′0(t)−
∫ t

0
Φ(t, τ, x0(τ))−Φ(t, τ, xn(τ)) dτ

∣∣∣∣p dt

+
4

∑
i=1

Ψ(xn, x0).

So,

cp

∫ 1

0

∣∣∣∣x′n(t)− x′0(t)−
∫ t

0
Φ(t, τ, x0(τ))−Φ(t, τ, xn(τ)) dτ

∣∣∣∣p dt

≤
∣∣(ϕ′(xn)− ϕ′(x0))(xn − x0)

∣∣+ ∣∣∣∣∣ 4

∑
i=1

Ψ(xn, x0)

∣∣∣∣∣ .

On the other hand one can observe that

|ϕ′(xn)(xn − x0)| ≤ ||ϕ′(xn)||(W̃1,p
0

)∗ ||xn − x0||W̃1,p
0

Since (xn)n∈N is bounded and ϕ′(xn)→ 0 as n→ ∞ we see that

ϕ′(xn)(xn − x0)→ 0
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as n → ∞. From the weak convergence of the sequence (xn)n∈N to x0 in

W̃1,p
0 it follows that

ϕ′(x0)(xn − x0)→ 0

as n→ ∞. So

(ϕ′(xn)− ϕ′(x0))(xn − x0)→ 0

as n→ ∞. Thus∫ 1

0

∣∣∣∣x′n(t)− x′0(t)−
∫ t

0
Φ(t, τ, x0(τ))−Φ(t, τ, xn(τ)) dτ

∣∣∣∣p dt→ 0

as n→ ∞. Of course,∫ 1

0

(∫ t

0

∣∣Φ(t, τ, x0(τ))−Φ(t, τ, xn(τ))
∣∣p dτ

)
dt→ 0

as n→ ∞. Consequently,

||xn − x0||W̃1,p
0
→ 0

as n→ ∞.

We recall that the Bielecki norm in Lp for the arbitrary k > 0 is given

by

||u||k =
(∫ 1

0
e−kt|u(t)|p dt

) 1
p

.

Let us observe that for any u ∈ Lp the following relation holds

e−
k
p ||u||Lp ≤ ||u||k ≤ ||u||Lp

so the Bielecki and Lp norms are equivalent.
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Lemma 5.3. Assume that 7A-7C hold. Fix functions y ∈ Lp and z ∈ Lp([0, 1], Rm).
Then for any admissible h ∈ W̃1,p

0 we see that

h′(t) +
∫ t

0
Φx(t, τ, x(τ), z(τ))h(τ) dτ = h′(t) +

∫ t

0
Φx(t, τ, x(τ))h(τ) dτ

and Fx(x, y, z) is bijective for any x ∈ W̃1,p
0 .

Proof. We must prove that for any fixed v ∈ Lp the following linear

integro-differential equation

h′(t) +
∫ t

0
Φx(t, τ, x(τ))h(τ) dτ = v(t), for a.e. t ∈ [0, 1] (5.3)

has a unique solution x ∈ W̃1,p
0 . We consider an auxiliary equation

h′(t) + u(t) = v(t), for a.e. t ∈ [0, 1],

where u ∈ Lp and which is uniquely solvable by hu ∈ W̃1,p
0 given by

hu(t) =
∫ t

0
(−u(s) + v(s)) ds, for t ∈ [0, 1].

Now, consider the mapping

Γ : Lp 3 u(·) 7→
∫ ·

0
Φx(·, τ, x(τ))hu(τ) dτ ∈ Lp.

In order to show Γ is the contraction mapping and thus it has the

unique fixed point, we make use of the Bielecki norm. Let

d(t, τ) = (c(t, τ) + k|z(τ)|)max{α(|x(τ)|) + 1, τ ∈ [0, 1]}

and let B > 0 be such that (see assumption 7C).

∫ t

0
dq(t, τ) dτ ≤ B, for a.e. t ∈ [0, 1].
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For any u1, u2 ∈ Lp we have using suitable change of variables for

double integral applied to
∫ 1

0

∫ t
0 e−kt|u1(τ)− u2(τ)|p dτdt that

‖Γu1 − Γu2||pk

≤
∫ 1

0

(
e−kt

(∫ t

0
|Φx(t, τ, x(τ))|q dτ

) p
q ∫ t

0

∫ τ

0
|u1(s)− u2(s)|p dsdτ

)
dt

≤
∫ 1

0

(
e−kt

(∫ t

0
|Φx(t, τ, x(τ))|q dτ

) p
q ∫ t

0
|u1(τ)− u2(τ)|p dτ

)
dt

≤ B
p
q

∫ 1

0

(∫ t

0
e−kt|u1(τ)− u2(τ)|p dτ

)
dt

≤ B
p
q

k

∫ 1

0
e−kt|u1(t)− u2(t)|p dt− e−k

∫ 1

0
|u1(τ)− u2(τ)|p dτ

≤ B
p
q

k
||u1 − u2||pk

For sufficiently large k we see that B
p
q

k ∈ (0, 1), hence the mapping Γ is

a contraction with respect to the Bielecki norm. Thus it has a fixed point

which solves uniquely (5.3).

The above Lemmas show that all assumptions of Theorem 3.7 are sat-

isfied. Thus we can formulate the following

Theorem 5.1. Assume that 7A-7C hold. Fix functions y ∈ Lp and z ∈
Lp([0, 1], Rm). Then there exists a unique solution xy,z ∈ W̃1,p

0 of equation
(5.1) and a C1 mapping

f : Lp × Lp([0, 1], Rm) 3 (y, z) 7→ xy,z ∈ W̃1,p
0

with the differential f ′(y, z) at point (y, z) ∈ Lp × Lp([0, 1], Rm)

Lp × Lp([0, 1], Rm) 3 (u, v) 7→ gu,v ∈ W̃1,p
0 ,
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where gu,v is such that

g′u,v(t) +
∫ t

0
Φx(t, τ, xy,z(τ), z(τ))gu,v dτ

= −
∫ t

0
Φy(t, τ, xy,z(τ))v(τ) dτ + u(τ)

for a.e. t in [0, 1].

Now we provide an example of a function satisfying conditions 7A-

7C. Let Φ : P∆ ×R×R→ R be given by

Φ(t, τ, x, z) = 21−p(t− τ)
1
2 ln(1 + x2) + τ

1
3 t4(sin2 x) ln(1 + z2)

It might be noticed that

Φ(t, τ, x, z) ≤ 21−p(t− τ)
1
2 |x|+ τ

1
3 t4|z|

Let us put

a(t, τ) = 21−p(t− τ)
1
2

Consequently

||a||pLp =
∫ 1

0

(∫ t

0
(21−p(t− τ)

1
2 )p dτ

)
dt

= 2p(1−p) 4
(p + 2)(p + 4)

≤ 2p(1−p) ≤ 2(1−p)

for t, τ ∈ [0, 1], t > τ, p ≥ 2. Moreover

|Φx(t, τ, x, z)| ≤ 22−p(t− τ)
1
2 |x|+ τ

1
3 t4|z|,

|Φz(t, τ, x, z)| ≤ 2τ
1
3 t4|z|

and∫ t

0
c(t, τ)q dτ = 2(2−p)q

∫ t

0
(t− τ)

q
2 dτ =

2(2−p)q+1

q + 2
t

q
2+1 ≤ 2(2−p)q+1

q + 2

for t ∈ [0, 1]. Hence conditions 7A-7C are satisfied.
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CHAPTER 6
An application of Diffeomorphism
Theorem to Volterra integral
operator

SECTION 6.1

Introduction

We will denote space W̃1,2
0 by H̃1

0 and recall that it consists of absolutely

continuous functions x : [0, 1] → Rn that x(0) = 0, ẋ ∈ L2([0, 1] , Rn). We

define

V(x)(t) = x(t) +
∫ t

0
v(t, τ, x(τ)) dτ. (6.1)

In this chapter we shall investigate the nonlinear integral operator

V : H̃1
0 → H̃1

0 defined pointwisely for all t ∈ [0, 1] by (6.1). Thus V is

considered with an initial condition

x(0) = 0. (6.2)

We focus on showing that V is a diffeomorphism under some con-

ditions imposed on the nonlinear term v. This in turn ensures that the
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associated Volterra integral equation x(t) +
∫ t

0
v(t, τ, x(τ)) dτ = y (t) for t ∈ [0, 1],

x(0) = 0
(6.3)

is solvable for any y ∈ H̃1
0 and that the solution operator which assigns

to each y the unique solution to (6.3) is of class C1. In other words, we

can say that solution to (6.3) depends in a C1 manner on a functional pa-

rameter y. The proof relies on a global diffeomorphism theorem. We are

inspired by [7] which contains similar approach in Hilbert spaces. How-

ever it is not shown there that the mapping is C1. The Authors require

only differentiability which is not sufficient in order to obtain a diffeo-

morphism. We fill this gap. Our calculations are based on the work men-

tioned however, we use the scheme which we developed already.

In this chapter we investigate the solvability of Volterra equations by

variational methods, since the main theorem on which we base our in-

vestigation is proved with the mountain pass geometry. This again is not

very common since for the unique solvability of Volterra equations re-

searchers used to apply a fixed point approach based on the Banach fixed

point theorem, or else the successive approximations, the Schauder and

Schauder-Tikhonov Theorem together with some other tools, see for ex-

ample [5], [9], [54], [67]. We also use as a technical tool the method of suc-

cessive approximations for auxiliary linear problem. Integro-differential

and integral operators are usually considered in the space of continu-

ous functions [14, 51], the space of square integrable functions L2 [43].

The application of numerical methods such as Wavelet-Galerkin Method

(WGM), Lagrange interpolation method, Tau method, Adomian’s de-

composition method and Taylor polynomials [4, 64, 34, 19, 49], for solv-

ing the nonlinear integro-differential equations is rather common as they

are hard to solve analytically and exact solutions are scarce. The appli-
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cation of integral operators can be found in many discipline of science

and engineering: in biology to investigate the spread of epidemic [29], in

mechanics for modelling alloys with a shape memory [11, 60], in nuclear

reactor dynamics [14], [15].

The chapter is organized as follows. We formulate assumptions and

main results pertaining to the properties of the Volterra operator V de-

fined above and the associated initial value problem. For the proof of

main results, we investigate the associated Volterra equation. We use

methods typical in L2 setting in the case of equations. Then, we prove the

main result which requires construction of a suitable action functional

and demonstrating that it has a mountain geometry. An example of a

nonlinear Volterra equation satisfying our assumptions finishes the pa-

per.

SECTION 6.2

Assumptions and main results

Let

P∆ = {(t, τ) ∈ [0, 1]× [0, 1] : τ ≤ t}.

We assume that function v : P∆ ×Rn → Rn satisfies the following condi-

tions

8A (i) the function v(·, τ, ·) is continuous on the set G := [0, 1]×Rn

for a.e. τ ∈ [0, 1],

(ii) there exists vt(·, τ, ·) continuous on G for a.e. τ ∈ [0, 1],

(iii) there exists vx(·, τ, ·) continuous on G for a.e. τ ∈ [0, 1],

(iv) there exists vxt(·, τ, ·) continuous on G for a.e. τ ∈ [0, 1];
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8B (i) the function v(t, ·, x) is measurable on [0, 1] for all (t, x) ∈ G,

there exists functions c1, d1 ∈ L2(P∆, R+) such that

|v(t, τ, x)| ≤ c1(t, τ)|x|+ d1(t, τ)

for a.e (t, τ) ∈ P∆, x ∈ Rn and(
1−
√

2||c1||L2(P∆,R)

)
> 0, (6.4)

(ii) the function vt(t, ·, x) is measurable on [0, 1] for all (t, x) ∈ G
and there exist functions c2, d2 ∈ L2(P∆, R+) such that

|vt(t, τ, x)| ≤ c2(t, τ)|x|+ d2(t, τ)

for a.e. (t, τ) ∈ P∆, x ∈ Rn,

(iii) the function vx(t, ·, x) is measurable on [0, 1] for all (t, x) ∈ G
and locally bounded with respect to x,

(iv) the function vxt(t, ·, x) is measurable on [0, 1] for all (t, x) ∈ G
and locally bounded with respect to x.

Assumption 8B(i). means that v is locally bounded with respect to

x, i.e. for every ρ > 0 there exists kρ > 0 such that for (t, τ) ∈ P∆ and

x ∈ Bρ = {x ∈ Rn : |x| ≤ ρ} we have |v(t, τ, x| ≤ kρ. This follows

by the growth condition and since x is absolutely continuous. The same

comment concerns the other assumptions. Assumption 8B(i) may seem

a strong one, but it is required if one wants to prove that operator V
defined by (6.1)-(6.2) is well defined. Any weaker integrability condition

assumed on function c1 and in a consequence on d1 would provide that

the operator V would act into a space different than H̃1
0 .

Our main results read as follows

Theorem 6.1. Assume that conditions 8A-8B hold. Then operator V defined by
(6.1)-(6.2) is a diffeomorphism.
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Theorem 6.1 can be restated as follows.

Theorem 6.2. Assume that conditions 8A-8B hold. Then for any y ∈ H̃1
0 prob-

lem (6.3) has a unique solution which depends in a continuously differentiable
manner on the parameter y or in other words, the solution operator is a diffeo-
morphism.

Theorem 6.2 admits immediately the following

Corollary 6.1. Assume that conditions 8A-8B hold. Let w ∈ L2. Then the
initial value problem

ẋ(t) + v(t, τ, x(τ)) +
∫ t

0
vt(t, τ, x(τ)) dτ = w (t)

with an initial condition

x(0) = 0

has exactly one solution x which is defined on [0, 1]. Moreover, x ∈ H̃1
0 .

Proof. For the proof it suffice to use Theorem 6.2. Indeed, define

y (t) =
∫ t

0
w(τ) dτ.

Note that y ∈ H̃1
0 and then we find such a unique x that V (x) (t) = y (t).

The direct differentiation finishes the proof while the fact that x satisfies

the boundary condition follows from the definition of the space which

we consider.

The remaining part of the chapter is devoted to the proofs of the above

results preceded by some properties of the Volterra operator considered

in the setting of space H̃1
0 which we provide.
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SECTION 6.3

On the Volterra operator

This section is concerned with some Volterra equation in the setting of

space H̃1
0 . We think that such results are of independent interest. We start

with showing that in our case, operator V is well defined.

Lemma 6.1. Assume that conditions 8A(i), 8A(ii), 8B(i) and 8B(ii) are satis-
fied. Then the operator V : H̃1

0 → H̃1
0 given by (6.1) is well defined.

Proof. Let x ∈ H̃1
0 . It is enough to show that the function

u(t) =
∫ t

0
v(t, τ, x0(τ)) dτ

is absolutely continuos and its derivative is p-integrable since u (0) = 0

by definition. Note that u is already continuous as a function of an upper

integration limit. Take any system of points t1 < t2 < ... < tN+1 from

[0, 1]. By 8B(ii) using Lagrange Mean Value Theorem applied to the func-

tion v with respect to first variable we have

N

∑
i=1
|u(ti+1)− u(ti)| =

N

∑
i=1

∣∣∣∣∫ ti

0
v(ti+1, τ, x0(τ))− v(ti, τ, x0(τ)) dτ

+
∫ ti+1

ti

v(ti+1, τ, x0(τ))dτ

∣∣∣∣
≤
∫ 1

0
kρ dτ

N

∑
i=1
|ti+1 − ti|+ kρ

N

∑
i=1
|ti+1 − ti|

= 2kρ

N

∑
i=1
|ti+1 − ti|.

where 0 ≤ t1 < t2 < .. < tN < tN+1 ≤ 1. Therefore u is absolutely

continuous. Hence for almost every t ∈ [0, 1] there exists the derivative

of u which is an L1 function. Thus we must show that u̇ is integrable with
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power 2. Now, by Hölder’s inequality we see that∫ 1

0
|u̇(t)|2 dt ≤ 2

∫ 1

0
|v(t, t, x0(t)|2 dt + 2

∫ 1

0

∣∣∣∣∫ t

0
vt(t, τ, x0(t) dτ

∣∣∣∣2 dt

≤ 2
∫ 1

0
|v(t, t, x0(t)|2 dt + 2

∫ 1

0

∫ t

0
|vt(t, τ, x0(t)|2 dτ dt.

(6.5)

Consequently applying 8B(i), 8B(ii) we have the more general estimate

||v (t, τ, x (τ)) dτ||2L2(P∆,Rn) =
∫ 1

0

(∫ t

0
|v (t, τ, x (τ)) | dτ

)2

dt

≤
∫ 1

0

(∫ t

0
|v (t, τ, x (τ)) |2 dτ

)
dt

≤
∫ 1

0

(∫ t

0
(c1 (t, τ) |x (τ) |+ d1 (t, τ))2 dτ

)
dt

≤ 2
∫ 1

0

(∫ t

0
(c1 (t, τ) |x (τ) |)2 dτ

)
dt (6.6)

+ 2
∫ 1

0

(∫ t

0
(d1 (t, τ))2 dτ

)
dt

≤ 2||c1||2L2(P∆,Rn)||x||
2
H̃1

0
+ 2||d1||2L2(P∆,R)

≤
(√

2||c1||L2(P∆,Rn)||x||H̃1
0
+
√

2||d1||L2(P∆,R)

)2
,

and analogously

||vt(t, τ, x(τ)) dτ||2L2(P∆,Rn) ≤
∫ 1

0

∫ t

0
[c2(t, τ)|x(τ)|+ d2(t, τ)]2 dτ dt

≤ 2||x||2C
∫ 1

0

∫ t

0
c2

2(t, τ) dτ dt

+ 2
∫ 1

0

∫ t

0
d2

2(t, τ) dτ dt

≤ 2||c2||2L2(P∆,Rn)||x||
2
H̃1

0
+ 2||d2||2L2(P∆,R+)

≤
(√

2||c2||L2(P∆,R+)||x||H̃1
0
+
√

2||d2||L2(P∆,R+)

)2
.

(6.7)
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We have thus proved that V is well defined in H̃1
0 .

Let us now consider for any t ∈ [0, 1] and arbitrary x, g ∈ H̃1
0 the

linear integral equation of the form

h(t) +
∫ t

0
vx(t, τ, x(τ))h(τ) dτ = g(t) (6.8)

for t ∈ [0, 1]. The solvability of this equation is crucial in the application

of the Global Diffeomorphism Theorem since it provides the invertibility

of the derivative of the Volterra operator. In case of Volterra operators the

question of uniqueness requires some different means then in previous

chapters due to the nonlinear structure of this operator. The technique

which we present is commonly used for such kind of operators.

For every fixed ρ > 0 define lρ such that

lρ = max

{
sup

(t,τ)∈P∆,|x|≤ρ

|vx(t, τ, x)|, sup
(t,τ)∈P∆,|x|≤ρ

|vxt(t, τ, x)|
}

(6.9)

and fix M such that

sup
t∈[0,1]

|g(t)| ≤ M.

Constant lρ is well defined by remarks following the assumptions 8A-8B,

while M is finite by continuity.

Theorem 6.3. Assume that conditions 8A, 8B hold. Fix x, g ∈ H̃1
0 and define

ρ = supt∈[0,1] |x(t)| and lρ by (6.9). Then the equation (6.8) has a unique
solution h ∈ H̃1

0 .

Proof. Let us define the bounded linear operator T : H̃1
0 → H̃1

0 pointwisely

for all t ∈ [0, 1]

Th(t) =
∫ t

0
vx(t, τ, x(τ))h(τ) dτ.
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Note that T is linear bounded due to assumptions on vx. For any n ∈ N0,

t ∈ [0, 1] and g ∈ H̃1
0 we define the following sequence of iterations

Tnh(t) =
∫ t

0
vx(t, τ, x(τ))Tn−1h(τ) dτ.

First, we will estimate |Tnh(t)| for t ∈ [0, 1] with some fixed n. It is easy

to observe that the first iterate can be estimated by

|T1h(t)| =
∣∣∣∣∫ t

0
vx(t, τ, x(τ))h(τ) dτ

∣∣∣∣ ≤ tlρ M

for all t ∈ [0, 1]. Similarly, the second iterate might be estimated by

|T2h(t)| =
∣∣∣∣∫ t

0
vx(t, τ, x(τ))(T1h)(τ) dτ

∣∣∣∣
≤
∣∣∣∣∫ t

0
vx(t, τ, x(τ))τlρ M dτ

∣∣∣∣ ≤ t2

2
l2
ρ M

for all t ∈ [0, 1]. The third one for all t ∈ [0, 1] is estimated by

|T3h(t)| =
∣∣∣∣∫ t

0
vx(t, τ, x(τ))(T2h)(τ) dτ

∣∣∣∣
≤
∣∣∣∣∫ t

0
vx(t, τ, x(τ))

τ2

2
l2
ρ M dτ

∣∣∣∣ ≤ t3

3!
l3
ρ M.

Therefore, we assert that

|Tnh(t)| ≤ tn

n!
ln
ρ M

for all t ∈ [0, 1]. Assume that

|T(n−1)h(t)| ≤ t(n−1)

(n− 1)!
l(n−1)
ρ M
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for all t ∈ [0, 1]. Now by induction let us observe that

|Tnh(t)| =
∣∣∣∣∫ t

0
vx(t, τ, x(τ))(T(n−1)h)(τ) dτ

∣∣∣∣
≤
∣∣∣∣∣
∫ t

0
vx(t, τ, x(τ))

τ(n−1)

(n− 1)!
l(n−1)
ρ M dτ

∣∣∣∣∣
≤ 1

(n− 1)!
ln
ρ M

∣∣∣∣∫ t

0
τ(n−1) dτ

∣∣∣∣ = tn

n!
ln
ρ M (6.10)

for all t ∈ [0, 1]. Taking into account the definition of the operator T, we

see that equation (6.8) might be rewritten in the following form

h + Th = g.

Let us consider the sequence (hn)n∈N0 given by the formula

hn+1 = g− Thn

for all n ∈ N0 with h0 = 0. Note that as is the case with Volterra equa-

tion in L2, h0 can be chosen arbitrarily and the choice h0 = 0 is just for

convenience. It might be observed that

hn+1 = g− Tg + T2g− T3g + .. + (−1)nTng

= g +
n

∑
i=1

(−1)iTig (6.11)

for all n ∈ N0 with T0g = g. Again considering the estimate (6.10),

applying the induction and the fact that by Lemma 6.1 for all k ∈ N0

Tkg ∈ H̃1
0 , we get for any n ∈N0

||Tng||p
H̃1

0
=
∫ 1

0

∣∣∣∣vx(t, t, x(t))Tn−1g(t) +
∫ t

0
vxt(t, τ, x(τ)Tn−1g(τ) dτ

∣∣∣∣p dt

≤
∫ 1

0

(
ln
ρ M

tn−1

(n− 1)!
+
∫ t

0
ln
ρ M

τn−1

(n− 1)!
dτ

)p

dt

≤
∫ 1

0

( ln
ρ M

(n− 1)!
+

ln
ρ M

(n− 1)!

∫ 1

0
dτ

)p

dt ≤ 2p
( ln

ρ M
(n− 1)!

)p

.

(6.12)
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Consequently, for any n ∈N0, we get

||Tng||H̃1
0
≤ 2

ln
ρ M

(n− 1)!
.

By the classical d’Alembert’s criterion series
∞
∑

n=1
2

ln
ρ M

(n−1)! converges. More-

over, it provides majorant for the series
n
∑

i=1
(−1)iTig. Consequently, the

sequence (hn+1)n∈N0 defined by (6.11) is a Cauchy sequence in H̃1
0 , which

converges to some h ∈ H̃1
0 . The operator T : H̃1

0 → H̃1
0 is continuous.

Therefore, h is a solution to equation (6.8).

Now we will show that h is a unique solution to equation (6.8). By

contradiction, let us assume that there exists h1 ∈ H̃1
0 , which satisfies

(6.8) and h 6= h1. For h∗ = h− h1 the following equation holds

h∗ − Th∗ = 0.

Applying operator T on the above equation n times we obtain

(−1)nh∗ + Tnh∗ = 0.

Note that Tnh∗ → 0 as n→ ∞ by estimate (6.12). Then also T2nh∗ → 0 as

n → ∞ and so consequently h∗ = 0. Therefore, equation (6.8) possesses

one unique solution in H̃1
0 , what completes the proof.

SECTION 6.4

Proofs of main results

The proof of our main results relies on the application of Theorem 1.2

with X = B = H̃1
0 . Thus we must show that V is continuously Fréchet dif-

ferentiable on X, next we should properly define functional ϕ and what is

the most difficult task we must show that ϕ satisfies the PS-condition. We
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consider the functional ϕ : H̃1
0 → R+ defined by the following formula

ϕ(x) =
1
2
||V(x)− y||2H̃1

0

=
1
2

∫ 1

0

∣∣∣∣x(t)− y(t) + v(t, t, x(t)) +
∫ t

0
vt(t, τ, x(τ)) dτ

∣∣∣∣2 dt. (6.13)

By (6.6) and (6.7) the functional ϕ is well defined which is very easy to be

verified.

Before we proof the main results we will introduce some auxiliary

lemmas.

Lemma 6.2. Assume that 8A(i), 8A(ii), 8B(i) and 8B(iii) are satisfied. Then
operator V defined by (6.1) is continuously Fréchet differentiable at every point
x̂ ∈ H̃1

0 and its derivative reads

V ′(x̂)h(t) = h(t) +
∫ t

0
vx(t, τ, x̂(τ))h(τ) dτ (6.14)

for h ∈ H̃1
0 and for any t ∈ [0, 1].

Proof. It is sufficient to show that the operator

Ṽ(x̂)(t) =
∫ t

0
v(t, τ, x̂(τ)) dτ

is continuously Fréchet differentiable. Applying Mean Value Theorem

3.2.6. p. 119 [18] for any t ∈ [0, 1], any h ∈ H̃1
0 and some θ ∈ [0, 1] we can

write

Ṽ(x̂ + h)(t)− Ṽ(x̂)(t) =
∫ t

0
(v(t, τ, x̂(τ) + h(τ))− v(t, τ, x̂(τ))) dτ

=
∫ 1

0

∫ t

0
vx(t, τ, x̂(τ) + θh(τ))h(τ) dτ dθ

=
∫ t

0
[vx(t, τ, x̂(τ))h(τ) dτ

−
∫ 1

0

∫ t

0
(vx(t, τ, x̂(τ) + θh(τ))− vx(t, τ, x̂(τ))) h(τ) dτ dθ.
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Moreover∫ 1

0

∫ t

0
[vx(t, τ, x̂(τ) + θh(τ))− vx(t, τ, x̂(τ))]h(τ) dτ dθ

≤ ||h||W1,p
0

∫ 1

0

∫ t

0
|vx(t, τ, x̂(τ) + θh(τ))− vx(t, τ, x̂(τ))| dτ dθ.

Since the norm convergence in H̃1
0 implies the uniform convergence in

C (0, 1), by the assumption of the lemma and by the Lebesgue Dominated

Convergence Theorem we obtain that for all t ∈ [0, 1]

∫ t

0
|vx(t, τ, x̂(τ) + θh(τ))− vx(t, τ, x̂(τ))| dτ → 0

when ||h||H̃1
0
→ 0. Thus

||h||H̃1
0

∫ 1

0

∫ t

0
|vx(t, τ, x̂(τ) + θh(τ))− vx(t, τ, x̂(τ))| dτ dθ = o(h),

where o(h)
||h||H̃1

0

→ 0 as ||h||H̃1
0
→ 0. In a consequence

Ṽ(x̂ + h)(t)− Ṽ(x̂)(t) =
∫ t

0
vx(t, τ, x̂(τ))h(τ) dτ + o(h)

which means that Ṽ is Fréchet differentiable. In order to prove that Ṽ is

continuously Fréchet differentiable one needs to show that

H̃1
0 3 x →

∫ ·
0

vx(·, τ, x(τ))h(τ) dτ ∈
(

H̃1
0

)∗
is continuous in x uniformly in h from the unit sphere in H̃1

0 (see Theorem

5.9. p.119 from [70]). Let us take a sequence (xn)n∈N convergent in H̃1
0 to

some x0. This sequence is also convergent in L2 and in C (0, 1). Fix h ∈ H̃1
0

such that ‖h‖ = 1. Applying the same arguments as in obtaining (6.5) we
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see that∫ 1

0

∣∣∣∣ d
dt

∫ t

0
(vx(t, τ, xn(τ))− vx(t, τ, x0(τ))) h(τ) dτ

∣∣∣∣2
≤ ||h||2H̃1

0
2
∫ 1

0
|vx(t, t, xn(t))− vx(t, t, x0(t))|2 dt

+ ||h||2H̃1
0
2
∫ 1

0

∫ t

0
|vxt(t, τ, xn(τ))− vxt(t, τ, x0(τ))|2 dτ dt.

Again by the Lebesgue Dominated Convergence Theorem we get the fol-

lowing ∫ 1

0
|vx(t, t, xn(t)− vx(t, t, x0(t)|2 dt→ 0

and ∫ 1

0

∫ t

0
|vxt(t, τ, xn(τ))− vxt(t, τ, x0(τ))|2 dτ dt→ 0

as n→ ∞. This finishes the proof.

Lemma 6.3. Assume that conditions 8A and 8B hold. Then functional ϕ given
by (6.13) is continuously Gâteaux differentiable and a Gâteaux derivative at any
point x ∈ H̃1

0 is given by

ϕ′(x)h =
∫ 1

0

(
x(t)−y(t)+v(t, t, x(t)) +

∫ t

0
vt(t, τ, x(τ)) dτ

)
·
(

h(t) + vx(t, t, x(t))h(t) +
∫ t

0
vxt(t, τ, x(τ))h(τ) dτ

)
dt

(6.15)

for any h ∈ H̃1
0 . Moreover, functional ϕ satisfies the PS-condition for any fixed

y ∈ H̃1
0 .

Proof. Using (6.14) and the formula for the derivative of x 7→ 1
2 ‖x‖

2 in

H̃1
0 together with the chain rule for Fréchet derivatives we obtain that the
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differential ϕ′(x) of ϕ at any fixed point x ∈ H̃1
0 is given by (6.15) for any

h ∈ H̃1
0 .

Therefore the following inequality might be easily deduced for any

x ∈ H̃1
0 √

2ϕ(x) =
∥∥∥∥x (·)− y (·) +

∫ ·
0

v(·, τ, x(τ)) dτ

∥∥∥∥
H̃1

0

≥ ||x||H̃1
0
− ||y||H̃1

0
−
∥∥∥∥∫ ·0 v(·, τ, x(τ)) dτ

∥∥∥∥
H̃1

0

≥
(

1−
√

2||c1||L2(P∆,Rn)

)
||x||H̃1

0 ([0,1],Rn) − c̃ (6.16)

where c̃ = ||y||H̃1
0
+
√

2||d1||L2(P∆,Rn). This means that ϕ is coercive.

Now, let (xn)n∈N be a (PS) sequence for ϕ, i.e.

• ϕ(xn) ≤ M for all n ∈ N and some M > 0,

• lim
n→∞

ϕ′(xn) = 0.

We have by (6.16)

√
2M ≥

√
2ϕ(xn) ≥

(
1−
√

2||c1||L2(P∆,Rn)

)
||x||H̃1

0
− c̃

for n ∈ N. This means that the sequence (xn)n∈N is bounded because of

condition (6.4).

Consequently the sequence (xn)n∈N is weakly convergent in H̃1
0 to

some x0, and uniformly convergent on [0, 1] . Moreover, we get the weak

convergence of derivatives of (ẋn)n∈N in L2 of the sequence (xn)n∈N to

x′0.

Let us calculate

2(ϕ′(xn)− ϕ′(x0))(xn − x0) =
∫ 1

0
|η(t, xn)− η(t, x0)|2 dt +

6

∑
i=1

Ψi(xn, x0)
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where

η(t, xn) = ẋn(t) + v(t, t, xn(t)) +
∫ t

0
vt(t, τ, xn(τ)) dτ

η(t, x0) = ẋ0(t) + v(t, t, x0(t)) +
∫ t

0
vt(t, τ, x0(τ)) dτ

and

Ψ1(xn, x0) =
∫ 1

0
(η(t, xn)− η(t, x0))

·
(∫ t

0
(vt(t, τ, x0(τ))− vt(t, τ, xn(τ))) dτ

)
dt,

Ψ2(xn, x0) =
∫ 1

0
(η(t, xn)− η(t, x0)) · (v(t, t, x0(t))− v(t, t, xn(t))) dt,

Ψ3(xn, x0) =
∫ 1

0

(
η(t, xn)

∫ t

0
vxt(t, τ, xn(τ))(xn(τ)− x0(τ)) dτ

)
dt,

Ψ4(xn, x0) =
∫ 1

0
η(t, xn)vx(t, t, xn(t))(xn(t)− x0(t)) dt,

Ψ5(xn, x0) = −
∫ 1

0

(
η(t, x0)

∫ t

0
vxt(t, τ, x0(τ))(xn(τ)− x0(τ)) dτ

)
dt,

Ψ6(xn, x0) = −
∫ 1

0
η(t, x0)vx(t, t, x0(t))(xn(t)− x0(t)) dt.

We will show that Ψi(xn, x0) → 0 as n → ∞ for i = 1, . . . , 6 . First

let us consider Ψ1(xn, x0). Form the Lebesgue Dominated Convergence

Theorem it follows that for all fixed t ∈ [0, 1]∫ t

0
(vt(t, τ, xn(τ))− vt(t, τ, x0(τ))) dτ → 0

as n→ ∞. From the properties of the sequence (xn)n∈N we see that there

is M1 > 0 for which

|xn(τ))| ≤ M1
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for all τ ∈ [0, 1] and n = 0, 1, . . . . Let us consider the term Ψ1(xn, x0).

Note that for any fixed t ∈ [0, 1]∣∣∣∣∫ t

0
(vt(t, τ, xn(τ))− vt(t, τ, x0(τ))) dτ

∣∣∣∣ ≤ 2
∫ t

0
(M1c2(t, τ) + d2(t, τ)) dτ

and that the function

[0, 1] 3 t→ 2
∫ t

0
c2(t, τ)M1 + d2(t, τ)dτ ∈ R

belongs to L2([0, 1], R). Using the Lebesgue Dominated Convergence

Theorem we assert that∫ ·
0
(vt(·, τ, xn(τ))− vt(·, τ, x0(τ))) dτ → 0

as n→ ∞ in L2. Let us observe that

Ψ1(xn, x0) ≤
∫ 1

0

(∣∣∣∣∫ t

0
(vt(t, τ, x0(τ))− vt(t, τ, xn(τ))) dτ

∣∣∣∣
+
∫ t

0
(vt(t, τ, x0(τ))− vt(t, τ, xn(τ))) dτ

)
dt. (6.17)

By Hölder’s inequality and (6.6), (6.7) the first term of (6.17) might be

estimated∫ 1

0

(
|η(t, xn(t))|

∫ t

0
(vt(t, τ, x0(τ))− vt(t, τ, xn(τ))) dτ

)
dt

≤
(∫ 1

0
|η(t, xn(t))|2 dt

) 1
2

·
(∫ 1

0

∫ t

0
|vt(t, τ, x0(τ))− vt(t, τ, xn(τ))|2 dτ dt

) 1
2

=

(∫ 1

0
|η(t, xn(t))|2 dt

) 1
2

·
(∫ 1

0

∫ t

0
|vt(t, τ, x0(τ))−vt(t, τ, xn(τ))|2 dτ dt

) 1
2

→ 0
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as n → ∞. Note that by definition and since (xn)n∈N is bounded it fol-

lows that (( ∫ 1

0
|η(t, xn(t))|2 dt

) 1
2
)

n∈N

is bounded. The second term of (6.17) tends to 0 as n → ∞ as well.

Consequently Ψ1(xn, x0)→ 0 as n→ ∞.

The similar reasoning might be applied to prove that Ψ2(xn, x0) tends

to 0 as n → ∞. Let us consider Ψ3(xn, x0). Firstly, we see that for any

t ∈ [0, 1] the following estimation holds

∣∣∣∣∫ t

n
(vxt(t, τ, xn(τ))(xn(τ)− x0(τ)) dτ

∣∣∣∣
≤
∫ 1

0
|(vxt(t, τ, x0(τ)) dτ| ‖xn − x0‖C .

Since the sequence (xn)n∈N is uniformly convergent in C (0, 1) to x0, we

see that

∫ ·
0

vxt(·, τ, xn(τ)) dτ(xn(·)− x0(·))→ 0

as n→ ∞ on [0, 1]. As in the previous case applying Hölder’s inequality

Ψ3(xn, x0) ≤
(∫ 1

0
|η(t, xn)|2 dt

) 1
2

·
(∫ 1

0

∫ t

0
|vxt(t, τ, xn(τ))(xn(τ)−x0(τ))|2 dτ dt

) 1
2

→ 0.

Convergence of Ψi(xn, x0) to 0 for i = 4, 5, 6 as n → ∞ follows from

the reasoning presented above.
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Using Lebesgue Dominated Convergence Theorem we conclude that

||xn − x0||H̃1
0
≤
(∫ 1

0

∣∣∣ẋn(t)− ẋ0(t) + v(t, t, xn(t))− v(t, t, x0(t))

+
∫ t

0
(vt(t, τ, xn(τ))− vt(t, τ, x0(τ))) dτ

∣∣∣2 dt
) 1

2

−
(∫ 1

0

∣∣∣v(t, t, xn(t))− v(t, t, x0(t))

+
∫ t

0
(vt(t, τ, xn(τ))− vt(t, τ, x0(τ))) dτ

∣∣∣2 dt
) 1

2

.

From the equality (6.14) we have

(ϕ′(xn)− ϕ′(x0))(xn − x0)

≥
∫ 1

0

∣∣∣ẋn(t)− ẋ0(t) + v(t, t, xn(t))− v(t, t, x0(t))

+
∫ t

0
(vt(t, τ, xn(τ))− vt(t, τ, x0(τ))) dτ

∣∣∣2 dt +
6

∑
i=1

Ψi(xn, x0).

So,∫ 1

0

∣∣∣ẋn(t)− ẋ0(t) + v(t, t, xn(t))− v(t, t, x0(t))

+
∫ t

0
(vt(t, τ, xn(τ))− vt(t, τ, x0(τ))) dτ

∣∣∣2 dt

≤
∣∣∣(ϕ′(xn)− ϕ′(x0))(xn − x0)

∣∣∣+ ∣∣∣ 6

∑
i=1

Ψi(xn, x0)
∣∣∣.

On the other hand one can observe that

|ϕ′(xn)(xn − x0)| ≤ ||ϕ′(xn)||(H̃1
0)
∗ ||xn − x0||H̃1

0
.

Since (xn)n∈N is bounded and ϕ′(xn)→ 0 as n→ ∞ we see that

ϕ′(xn)(xn − x0)→ 0.

− 95 −



6.5. Example

as n → ∞. From the weak convergence of the sequence (xn)n∈N to x0 in

H̃1
0 it follows that

ϕ′(x0)(xn − x0)→ 0

as n→ ∞. So,

(ϕ′(xn)− ϕ′(x0))(xn − x0)→ 0

as n→ ∞. Thus∫ 1

0

∣∣∣ẋn(t)− ẋ0(t) + v(t, t, xn(t))− v(t, t, x0(t))

+
∫ t

0
(vt(t, τ, xn(τ))− vt(t, τ, x0(τ))) dτ

∣∣∣2 dt→ 0

as n→ ∞. Of course,∫ 1

0
|v(t, t, xn(t))− v(t, t, x0(t))|2 dt→ 0

and ∫ 1

0

∫ t

0
|(vt(t, τ, xn(τ))− vt(t, τ, x0(τ)))|2 dτ dt→ 0

as n→ ∞. Consequently,

||xn − x0||H̃1
0
→ 0

i.e. the function ϕ satisfies (PS) condition.

Now we are in position to prove our main result.

The proof of Theorem 6.1. Set X = B = H̃1
0 . From Lemma 6.3 we conclude

that for any y ∈ H̃1
0 the functional ϕ(x) = 1

2 ‖V(x)− y‖2
H̃1

0
satisfies (PS)

condition, i.e. the first assumption of Theorem 1.2 is fulfilled. Theorem

6.3 provides sufficient requirements for equation V ′(x) = g to possesses

a unique solution in H̃1
0 for any g ∈ H̃1

0 which is equivalent to the second

assumption of Theorem 1.2. Therefore, V : H̃1
0 → H̃1

0 is a diffeomorphism

and the theorem is proved.
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SECTION 6.5

Example

We finish the paper with an example of function satisfying assumptions

8A and 8B. Let us assume v : P∆ ×R→ R is given by

v(t, τ, x) =
1
2
(t− τ)

1
2 ln(1 + (t− τ)4x2)

for t, τ ∈ [0, 1], t > τ, x ∈ R. Since

ln(1 + s2z2) ≤ ln((1 + s2)(1 + z2)) = ln(1 + s2) + ln(1 + z2) ≤ |s|+ |z|

for s, z ∈ R, therefore

|v(t, τ, x)| ≤ 1
2
(t− τ)

1
2 |x|+ 1

2
(t− τ)5/2.

Let us put

c1(t, τ) =
1
2
(t− τ)

1
2

for t, τ ∈ [0, 1], t > τ. Then

||c1||2L2(P∆,R) =
∫ 1

0

∫ t

0

(
1
2
(t− τ)

1
2

)2

dτdt ≤ 1
24

for all t, τ ∈ [0, 1], t > τ, p ≥ 2. Consequently,

||c1||L2(P∆,R) ≤
1
2

,

hence condition (6.4) is satisfied. We see that

vt(t, τ, x) =
1
2
(t− τ)−

1
2 ln(1 + (t− τ)4x2) +

1
2
(t− τ)

1
2

4(t− τ)3x2

1 + (t− τ)4x2 .

Since ln
(
1 + a2) ≤ |a| for a ∈ R and

4(t− τ)3x2

1 + (t− τ)4x2 ≤ 4
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for all t, τ ∈ [0, 1], t > τ and any x ∈ R we see that the following inequal-

ity holds

|vt(t, τ, x)| ≤ 1
2
(t− τ)3/2|x|+ 23−p(t− τ)

1
2 .

Let us put

c2(t, τ) =
1
2
(t− τ)3/2

and

d2(t, τ) = 2(t− τ)
1
2 .

In an elementary way it can be checked that c2, d2 ∈ L2(P∆, R+). Let us

note that

vx(t, τ, x) =
1
2
(t− τ)

1
2

2(t− τ)4x
1 + (t− τ)4x2

and

vxt(t, τ, x) =
1
2
(t− τ)7/2x

9 + 17(t− τ)4x2

(1 + (t− τ)4x2)
2 .

Observe

|vx(t, τ, x)| ≤ 1
2
(t− τ)5/2

and

|vxt(t, τ, x)| ≤ 13(t− τ)7/2 |x| .

Thus we conclude that v satisfies assumptions 8A and 8B.

Then we can formulate the following result. Note the existence of

the initial value problem for the related first order differential equation is

defined on the whole interval [0, 1].
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Proposition 6.1. The integral Volterra operator V : H̃1
0 → H̃1

0 defined point-
wisely for all t ∈ [0, 1] by V(x)(t) = x(t) +

∫ t

0

1
2
(t− τ)

1
2 ln(1 + (t− τ)4x (τ)2) dτ,

x (0) = 0

defines a global diffeomorphism. Moreover, problem the initial value problem

−ẋ =(t− τ)
1
2 ln(1 + (t− τ)4x2)

+
1
2

∫ t

0

(
(t− τ)−

1
2 ln(1 + (t− τ)4x2)

+
1
2
(t− τ)

1
2

4(t− τ)3x2

1 + (t− τ)4x2

)
dτ = w (t)

with x (0) = 0 has exactly one solution for any fixed of parameter w ∈ L2 and
the solution depends in a C1 manner in parameter w.
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CHAPTER 7
Finite dimensional results
- invertibility without continuous
differentiability
In order to present our results we start with some preliminaries.

A function f : Rn → Rk is called locally Lipschitz continuous, if to

every u ∈ Rn there corresponds a neighbourhood Vu of u and a constant

Lu ≥ 0 such that

‖ f (z)− f (w)‖ ≤ Lu‖z− w‖ for all z, w ∈ Vu.

If k = 1 ( f : Rn → R) and u, z ∈ Rn, we write f 0(u; z) for the generalized

directional derivative of f at the point u along the direction z, i.e.,

f 0(u; z) := lim sup
w→u, t→0+

f (w + tz)− f (w)

t
.

The generalized gradient of the function f at u, denoted by ∂ f (u), is the

set

∂ f (u) := {ξ ∈ L (Rn, R) : 〈ξ, z〉 ≤ f 0(u; z), for all z ∈ Rn}.

For the definition of a generalized Jacobian of a vector valued function

f : Rn → Rn we refer to [13] p. 69. We denote the generalized Jacobian at
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7. Finite dimensional results

x again by ∂ f (x). For a fixed x the set ∂ f (x) being of maximal rank means

that all matrices in ∂ f (x) are nonsingular. This assumption is equivalent,

when f is smooth, with the assumption that det f ′(x) 6= 0 for every x ∈ D
where D ⊂ Rn is some open set. Compare with [66] where this condition

provides local diffeomorphism for a differentiable mapping. Note that

it is not enough to assume that det[ f ′(x)] 6= 0 whenever it exists, which

happens a.e. for a locally Lipschitz function.

A point u is called a (generalized) critical point of the locally Lipschitz

continuous functional J : Rn → R if 0 ∈ ∂J(u). In this case we identify

L (Rn, R) with Rn so that ∂J(u) ⊂ Rn. J is said to fulfill the non-smooth

Palais-Smale condition, see [53], if every sequence (un)n∈N in Rn such

that (J(un))n∈N is bounded and

J0(un; u− un) ≥ −εn‖u− un‖

for all u ∈ Rn, where εn → 0+, admits a convergent subsequence. Our

main tool will be the following result based on the zero-altitude version

of Mountain Pass Theorem from [53], where we replace non-smooth (PS)

condition with coercivity which we require and which guarantees that

(PS) condition holds.

Theorem 7.1. [52] Let J : Rn → R be a coercive locally Lipschitz continuous
functional. If there exist u1, u2 ∈ Rn, u1 6= u2 and r ∈ (0, ‖u2 − u1‖) such
that

inf{J(u) : ‖u− u1‖ = r} ≥ max{J(u1), J(u2)}

and we denote by Γ the family of continuous paths γ : [0, 1] → Rn joining u1

and u2, then

c := inf
γ∈Γ

max
s∈[0,1]

J(γ(s)) ≥ max{J(u1), J(u2)}

− 102 −



7. Finite dimensional results

is a critical value for J on Rn and Kc\{u1, u2} 6= ∅, where Kc is the set of
critical points at the level c, i.e.

Kc = {u ∈ Rn : J (u) = c and 0 ∈ ∂J(u)} .

The basic properties of generalized directional derivative and gener-

alized gradient were studied in [13] and later in [50].

We consider locally invertible mappings f : Rn → Rn that are Fréchet-

differentiable and which need not be continuously Fréchet-differentiable.

Additionally, we assume that f is strictly (Hadamard-like) differentiable.

Let us recall that a function f : D → Rn defined on a open subset D of Rn

is strictly differentiable at x0 ∈ D, see [12] p. 30, if there exists an element

f ′(x0) ∈ Rn (called the strict derivative) such that

lim
w→x0,t→0+

f (w + tz)− f (w)

t
=
〈

f ′(x0), z
〉

for all z ∈ Rn

provided the convergence is uniform for z in compact sets. We will de-

note any derivative at x0 by f ′(x0) and 〈·, ·〉 stands for the scalar prod-

uct in Rn and also for the action of linear mappings on Rn. A continu-

ously Gâteaux differentiable, thus a continuously Fréchet-differentiable

functional has necessarily the strict derivative which coincides with the

Fréchet derivative, see Corollary and its proof, p 32. [12]. On the other

hand a Fréchet-differentiable functional f : Rn → Rn need not be strictly

differentiable, see Example 2.2.3 p. 33 [12] in case n = 1. However, if f
is Fréchet-differentiable and locally Lipschitz and the generalized gradi-

ent reduces to a singleton, then both differentiability notions mentioned

coincide, see Propositions 2.2.1 and 2.2.2 from [12].

The methods which we apply are the known result on local diffeo-

morphism in case of Fréchet-differentiable mappings contained in [66]

and the Mountain Pass Theorem (MPT for short). Since the MPT works

either for C1 functionals or for locally Lipschitz ones, we must use its
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locally Lipschitz counterpart. Using non-smooth critical point theory ap-

plied to a functional x 7→ 1
2 ‖ f (x)‖2 we provide sufficient conditions for

f to be global diffeomorphism. The local invertibility results we base on

is as follows, [66], see also [6] for a result concerning homeomorphism

only.

Lemma 7.1. Let D be an open subset of Rn. Assume that f : D → Rn is a
Fréchet-differentiable map and the following condition holds:

• det f ′(x) 6= 0 for every x ∈ D.

Then f is a local diffeomorphism.

If f is strictly differentiable the Clarke subdifferential reduces to a

singleton, i.e. its strict derivative, see Proposition 2.2.4 page 33 [12]. Note

that a Fréchet-differentiable function f need not necessarily yield that the

Clarke derivative at x reduces to a singleton, namely to { f ′ (x)}, see the

mentioned Example 2.2.3 p. 33 [12].

With the above, see [25].

Theorem 7.2. If f : Rn → Rn is a Fréchet-differentiable mapping such that

9A for any y ∈ Rn the functional ϕ : Rn → R defined by

ϕ (x) =
1
2
‖ f (x)− y‖2

is coercive,

9B for any x ∈ Rn we have det f ′(x) 6= 0,

9C f : Rn → Rn is strictly differentiable,

then f is a diffeomorphism.
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Proof. By Lemma 7.1 condition 9B implies that f defines a local diffeo-

morphism. Thus it is sufficient to show that f is ”onto” and ”one to one”.

Let us fix any point y ∈ Rn. Since ϕ is a composition of a C1 mapping

and a strictly-differentiable mapping it is locally Lipschitz continuous

by Theorem 2.3.10 (Chain rule) p. 45 [12]. Moreover, by the mentioned

Chain rule and condition 9B the Clarke subdifferential ∂ f (x) is equal to

{( f (x)− y) ◦ f ′(x)} for any x ∈ Rn. Since ϕ is continuous and coercive it

has an argument of a minimum x, which, since ϕ is Fréchet-differentiable

as a composition of a C1 functional and a Fréchet-differentiable mapping,

it satisfies the classical Fermat’s rule, i.e.

( f (x)− y) ◦ f ′(x) = 0

which means that 0 = f ′(x)T ◦ f (x)− y), where ξT denotes the transpose

of the matrix ξ. Since by 9B det f ′(x) 6= 0, we see that f (x)− y = 0. Thus

f is surjective.

Now we argue by contradiction that f is "one to one". Suppose there

are x1 and x2, x1 6= x2, x1, x2 ∈ Rn, such that f (x1) = f (x2) = a ∈ Rn.

We will apply Theorem 7.1. We put e = x1 − x2 and define mapping

g : Rn → Rn and a locally Lipschitz functional ψ : Rn → R by

g (x) = f (x + x2)− a and ψ (x) =
1
2
‖g (x)‖2 .

Indeed, g is strictly differentiable and ψ is locally Lipschitz by the same

arguments as ϕ is. Note that ψ (e) = ψ (0) = 0. By 9A ϕ is coercive, so

it satisfies the non-smooth Palais-Smale condition. The same conclusion

holds for functional ψ.

Observe that g(0) = g(e) = 0. Consequently, since g is Fréchet-

differentiable

g(0 + h)− g(0) = g′(0)h + o(h) = f ′(x2)h + o(h) (7.1)
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for h ∈ Rn, where o(h)
||h|| → 0 when h → 0. From 9B there exists αx2 > 0

that || f ′(x2)h|| ≥ αx2 ||h||. Thus from (7.1) we see that

||g(h)||+ 1
2

αx2 ||h|| ≥ ||g(h)||+ ||o(h)|| ≥ || f ′(x2)h|| ≥ αx2 ||h||

for sufficiently small h such that ||o(h)|| ≤ 1
2 αx2 ||h||. Thus, there exist

ρ ∈ (0, ‖e‖), such that for all x ∈ B(0, ρ)

||g(x)|| ≥ 1
2

αx2 ||x||. (7.2)

By the classical Weierstrass Theorem ψ has an argument of a mini-

mum over ∂B (0, ρ) which we denote by w and which is non-zero and

satisfies

ψ(w) ≥ 1
2

(
1
2

αx2 ρ

)2

by definition of ψ and by (7.2). Therefore

inf
‖x‖=ρ

ψ(x) ≥ ψ (w) > 0 = ψ (e) = ψ (0) . (7.3)

Thus by Theorem 7.1 applied to J = ψ we note that ψ has a critical point

v 6= 0, v 6= e and such that

ψ′(v) = ( f (v + x2)− a) ◦ f ′(v + x2) = 0.

Since det f ′(v + x2) 6= 0 we see that f (v + x2)− a = 0. This means that

ψ(v) = 0. By (7.3) we obtain that ψ(v) = c ≥ ψ (w) > 0. The obtained

contradiction shows that f is a "one to one" operator.

Now we provide some result which extends a bit a result of Katriel.

Namely, see [25],

Corollary 7.1. Let X, B be finite dimensional spaces. Assume that f : X → B
is a C1−mapping, η : B → R+ is a C1 functional and that the following
conditions hold
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10A (η (x) = 0⇐⇒ x = 0) and (η′ (x) = 0⇐⇒ x = 0);

10B for any y ∈ B the functional ϕ : X → R given by the formula

ϕ (x) = η ( f (x)− y)

is coercive;

10C det f ′(x) 6= 0 for any x ∈ X;

10D there exist positive constants α, c, M such that

η (x) ≥ c ‖x‖α for ‖x‖ ≤ M.

Then f is a diffeomorphism from X onto B.

Remark 7.1. The notion of strict derivative (Hadamard-like) is not to be

confused with the notion of Hadamard derivative which reads

lim
t→0+

f (x0 + tz)− f (x0)

t
=
〈

f ′(x0), z
〉

for all z ∈ Rn

provided the convergence is uniform for z in compact sets. This notion

coincides with the Fréchet-differentiability in finite dimensional spaces

but it is irrelevant to our considerations, see remarks in [12] p. 30 con-

cerning classical derivatives.

SECTION 7.1

Applications to algebraic equations

We conclude this section with some applications of Theorem 7.2 to the

unique solvability of nonlinear equations of the form Ax = F(x) where

A is a nonsingular matrix and F is a C1 nonlinear operator. We mention

papers [75], [74] which concern existence and multiplicity of solutions to

such problems by variational and also monotonicity tools.
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In the following we consider the problem

Ax = F (x) + ξ, (7.4)

where ξ ∈ Rn is fixed, A is an n× n matrix which is not positive definite,

negative definite or symmetric; F : Rn → Rn is a locally Lipschitz func-

tion. We consider Rn with Euclidean norm in both theoretical results and

the example which follows.

Note that when A is such as above one cannot apply even the simplest

variational approach, i.e. the direct method relying on minimizing the

Euler action functional

J (x) = 〈Ax, x〉 − F (x)− 〈ξ, x〉 ,

and whereF : Rn → R is the potential of F. The difficulties are due to the

fact that term 〈Ax, x〉 need not be coercive nor anti-coercive. Moreover,

uniqueness which we achieve, in the classical approach requires strict

convexity of the action functional which is again an assumption rather

demanding.

In order apply Theorem 7.2 to the solvability of (7.4) we need some

assumptions. Let us recall that if A∗ denotes the transpose of matrix A,

then A∗A is symmetric and positive semidefinite. However, A∗A being

positive semidefinite is not sufficient for our purposes. We assume what

follows

11A Matrix A is nonsingular.

By assumption 11A we see that matrix A∗A is positive definite with eigen-

values ordered as

0 < λ1 ≤ · · · ≤ λn.

Now we can state the following existence theorems.
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Theorem 7.3. Assume that 11A holds, F : Rn → Rn is a locally Lipschitz
function and that the following conditions hold:

12A There exists a constant 0 < a <
√

λ1 such that

‖F (x)‖ ≤ a ‖x‖

for all sufficiently large x ∈ Rn,

12B det (A− F′ (x)) 6= 0 for every every x ∈ Rn.

Then problem (7.4) has exactly one solution for any ξ ∈ Rn.

Proof. We need to show that assumptions of Theorem 7.2 are satisfied.

We put ϕ (x) = Ax − F (x). In order to demonstrate 9A we see that for

sufficiently large x ∈ Rn

‖ϕ (x)‖ = ‖Ax− F (x)‖ ≥ ‖Ax‖ − ‖F (x)‖

≥
√
〈A∗Ax, x〉 − a ‖x‖ ≥

(√
λ1 − a

)
‖x‖ .

Hence the function ϕ is coercive. From 12B it follows that condition 9B is

satisfied and 9C is obviously satisfied. From Theorem 7.2 it follows that

ϕ is a global homeomorphism and equation (7.4) has exactly one solution

for any ξ ∈ Rn.

Theorem 7.4. Assume that 11A holds, F : Rn → Rn is a locally Lipschitz
function and that the following conditions hold:

13A There exists a constant b >
√

λn such that

‖F (x)‖ ≥ b ‖x‖

for all sufficiently large x ∈ Rn,

13B det (A− F′ (x)) 6= 0 for every every x ∈ Rn.
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Then problem (7.4) has exactly one solution for any ξ ∈ Rn.

Proof. We put ϕ1 (x) = F (x) − Ax and we observe that for sufficiently

large x ∈ Rn

‖ϕ1 (x)‖ = ‖F (x)− Ax‖ ≥ ‖F (x)‖ − ‖Ax‖ ≥
(

b−
√

λn

)
‖x‖ .

Hence the function ϕ1 is coercive and the assertion follows as in the proof

of the above result.

Remark 7.2. We note that in order to get coercivity of function ϕ in The-

orem 7.3 we can replace condition 12A with the following assumption:

14A exist constants α > 0, 0 < γ < 1 such that

‖F (x)‖ ≤ α ‖x‖γ

for all sufficiently large x ∈ Rn.

Concerning Theorem 7.4 we can replace condition 13A with the following

assumption:

15A there exist constants β > 0, θ > 1 such that

‖F (x)‖ ≥ β ‖x‖θ

for all sufficiently large x ∈ Rn.

Example 7.1. Consider an indefinite matrix A =

[
−2 1

4 −3

]
and func-

tion F : R2 → R2 given by

F (x, y) =
(

x3 + y, 4x + y + y3)
Consider on R2 the Euclidean norm, that is ‖(x, y)‖ =

√
x2 + y2. We

recall that

‖(x, y)‖ ≤ 2
1
3 6
√

x6 + y6
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Note that

F (x, y) =
(
x3, y3)+ (0, 4x) + (y, y) .

Hence

‖F (x, y)‖ ≥
∥∥(x3, y3)∥∥− ‖(0, 4x)‖ − ‖(y, y)‖ =

√
x6 + y6 − 4 · |x| −

√
2 |y|

≥ 1
2
‖(x, y)‖3 − 4 (|x|+ |y|) ≥ 1

2
‖(x, y)‖3 − 4

√
2 ‖(x, y)‖ .

Let

ϕ (x, y) = F(x, y)− A(x, y), (x, y) ∈ R2.

Note that

‖ϕ (x, y)‖ ≥ ‖F (x, y)‖ − ‖A(x, y)‖

≥ 1
2
‖(x, y)‖3 − 4

√
2 ‖(x, y)‖ − ‖A‖ ‖(x, y)‖

= ‖(x, y)‖
(

1
2
‖(x, y)‖2 −

(
4
√

2+ ‖A‖
))

.

From the last sequence of inequalities it results that ϕ is coercive.

One can easily see that F′ has the following form

F′ (x, y) =

[
3x2 + 1 0

4 3y2 + 1

]
,

for any (x, y) ∈ R2. Note also that

F′ (x, y)− A =

[
3x2 + 2 0

0 3y2 + 3

]
.

One can easily see that

det
(

F′ (x, y)− A
)
> 0.
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Sometimes it is easier to prove coercivity of ϕ (x, y) = F (x, y)−A(x, y)
directly than to use the growth conditions on the nonlinear term. More-

over, when we prove the coercivity directly, there is no need to assume

that A∗A is positive definite. Thus from the proof of Theorems 7.3 and

7.4 it follows that

Corollary 7.2. Assume that

• ‖Ax− F (x)‖ → ∞ as ‖x‖ → ∞;

• det (A− F′ (x)) 6= 0 for every x ∈ Rn.

Then (7.4) has exactly one solution for any fixed ξ ∈ Rn.

There is some easy motivation to consider the algebraic equations.

Since some discrete problems can be written in a form of a nonlinear sys-

tem, see for example [2], [74], we shall undertake the following problem

Au = f (u), u ∈ Rn (7.5)

in case when the necessarily symmetric n× n matrix A need not be posi-

tive definite. We always assume that f has the following form

f = ( f1, f2, ..., fn) and

16A fi : Rn → R is continuous for k = 1, 2, ..., n and fi (0) 6= 0 for at least

one i = 1, 2, ..., n.

We recall that a column of vector u = (u1, u2, . . . , un)T ∈ Rn is a solution

if substitution of u into (7.5) renders it an identity. Moreover, 0 is not a

solution to (7.5) due to 16A.

System (7.5) can be treated as a representation of some discrete bound-

ary value problem which in turn arises as discretization of some contin-

uous models. Let us take for example the Emden-Fowler equation

d
dt

(
tρ du

dt

)
+ tδuγ = 0
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which originated in the gaseous dynamics in astrophysics and further

was used in the study of fluid mechanics, relativistic mechanics, nuclear

physics and in the study of chemically reacting systems, see [73]. The

discrete version of the generalized Emden-Fowler equation (p(t)y′)′ +
q(t)y = f (t, y) received some considerable interest lately mainly by the

use of critical point theory, see for example [46], [30]. The discretization

of the generalized Emden-Fowler type boundary value problem can be

put as follows

∆ (p (k− 1)∆x (k− 1)) + q (k) x (k) + f (k, x (k)) = 0 (7.6)

with boundary conditions

x (0) = x (n) , p (0)∆x (0) = p (n)∆x (n) (7.7)

and where

f ∈ C ([1, n]×R→ R) , p ∈ C ([0, n + 1] , R) , q ∈ C ([1, n] , R)

p (n) 6= 0; [a, b] for a < b, a, b ∈ Z denotes a discrete interval {a, a +
1, ..., b}; ∆ is the forward difference operator defined by ∆u(k) = u(k +
1)− u(k). The realization of the form of (7.5) requires the following ma-

trices

M =



p (0) + p (1) −p (1) 0 . . . −p (0)
−p (1) p (1) + p (2) −p (2) . . . 0

0 −p (2) p (2) + p (3) . . . 0
...

...
...

. . .
...

0 0 0 . . . −p (n− 1)

−p (0) 0 0 . . . p (n− 1) + p (0)
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and

Q =



−q (1) 0 0 . . . 0 0

0 −q (2) 0 . . . 0 0

0 0 −q (3) . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . −q (n− 1) 0

0 0 0 . . . 0 −q (n)


.

Setting A = M + Q, fk (x) = f (k, x) and using the assumption that

p (n) 6= 0 we see that problem (7.6)-(7.7) has a form of a nonlinear system

(7.5). Indeed, in this case there is a "one to one" correspondence between

solutions to (7.5) and solutions to (7.6)-(7.7).
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CHAPTER 8
Future research directions
It seems that our methods and research approaches are applicable also

to some other problems. We may observe from what has been before

that the scheme which is applied in this book can be used for solving

nonlinear equations which are in some sense locally solvable. Then we

can define a suitable functional and if we can determine that it has some

mountain geometry then we can solve the equation globally. We would

suggest three possible directions:

• Volterra Integral Equations;

• Second Order Dirichlet Problem for ODE together with their ap-

proximation;

• Invertibility of locally Lipschitz mappings and related implicit func-

tion theorem.

Now we describe in some detail possible problems and motivations

for the above tasks.
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8.1. On Volterra Equations

SECTION 8.1

On Volterra equations

It is possible to investigate the nonlinear integral operator V : W̃1,p
0 →

W̃1,p
0 defined pointwisely for all t ∈ [0, 1] by

V(x)(t) = x(t) +
∫ t

0
v(t, τ, x(τ)) dτ. (8.1)

Thus V is considered with an initial condition

x(0) = 0. (8.2)

We would focus on showing that V is a diffeomorphism under some

conditions imposed on the nonlinear term v. This in turn ensures that the

associated Volterra integral equation

x(t) +
∫ t

0
v(t, τ, x(τ)) dτ = y (t) for t ∈ [0, 1], x(0) = 0, (8.3)

is solvable for any y ∈ W̃1,p
0 and that the solution operator which assigns

to each y the unique solution to (8.3) is of class C1. In other words, we

can say that solution to (8.3) depends in a C1 manner on a functional

parameter y. The proof would rely on a global diffeomorphism theorem

3.5 and on some ideas contained in Chapter 6 which followed [7] where

spaces of functions integrable with square are considered. Since such

spaces are Hilbert ones, the reasoning is of course much simpler. This is

not the case with p > 2 and therefore several technical problems have

to be overcome. Moreover, the global diffeomorphism theorem is more

involving since it now uses a duality mapping relative to a normalization

function tp−1 and not a square of a norm as is the case in the Hilbert space

setting. The main technical difficulty is to demonstrate the Palais-Smale

condition which is required by the global diffeomorphism theorem, even

continuous differentiability of the functional under consideration is more

demanding without a Hilbert space structure.
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8.1.1 Suggested assumptions and foreseen main results

Let P∆ = {(t, τ) ∈ [0, 1] × [0, 1]; τ ≤ t}. We assume, following sug-

gestions in [7], that function v : P∆ × Rn → Rn satisfies the following

conditions:

17A (i) the function v(·, τ, ·) is continuous on the set G := [0, 1]×Rn

for a.e. τ ∈ [0, 1];

(ii) there exists vt(·, τ, ·) continuous on G for a.e. τ ∈ [0, 1];

(iii) there exists vx(·, τ, ·) continuous on G for a.e. τ ∈ [0, 1];

(iv) there exists vxt(·, τ, ·) continuous on G for a.e. τ ∈ [0, 1];

17B (i) the function v(t, ·, x) is measurable on [0, 1] for all (t, x) ∈ G,

there exist functions c1, d1 ∈ Lp(P∆, R+) such that

|v(t, τ, x)| ≤ c1(t, τ)|x|+ d1(t, τ)

for a.e (t, τ) ∈ P∆, x ∈ Rn and(
1− 2

(p−1)
p ||c1||Lp(P∆,R)

)
> 0;

(ii) the function vt(t, ·, x) is measurable on [0, 1] for all (t, x) ∈ G
and there exist functions c2, d2 ∈ Lp(P∆, R+) such that

|vt(t, τ, x)| ≤ c2(t, τ)|x|+ d2(t, τ)

for a.e. (t, τ) ∈ P∆, x ∈ Rn;

(iii) the function vx(t, ·, x) is measurable on [0, 1] for all (t, x) ∈ G
and locally bounded with respect to x;

(iv) the function vxt(t, ·, x) is measurable on [0, 1] for all (t, x) ∈ G
and locally bounded with respect to x.
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Assumption 17A(i) means that v is locally bounded with respect to x,

i.e. for every ρ > 0 there exists kρ > 0 such that for (t, τ) ∈ P∆ and

x ∈ Bρ = {x ∈ Rn : |x| ≤ ρ} we have |v(t, τ, x)| ≤ kρ. This follows by

the growth condition and since x is absolutely continuous.

Our main results considering the existence and differentiability of the

solution to Volterra operator would read as follows

Theorem 8.1. Assume that conditions 17A-17B hold. Then operator V defined
by (8.1)-(8.2) is a diffeomorphism.

Theorem 8.1 can be restated as follows.

Theorem 8.2. Assume that conditions 17A-17B hold. Then for any y ∈ W̃1,p
0

problem (8.3) has a unique solution which depends in a continuously differen-
tiable manner on the parameter y or in other words, the solution operator is a
diffeomorphism.

Main problems to be overcome here are as follows:

• Then the operator V : W̃1,p
0 → W̃1,p

0 given by (8.1) is well defined.

• Fix x, g ∈ W̃1,p
0 . Then the equation

h(t) +
∫ t

0
vx(t, τ, x(τ))h(τ)dτ = g(t)

for t ∈ [0, 1] has a unique solution h ∈ W̃1,p
0 .

• V defined by (8.1) is continuously Fréchet-differentiable on W̃1,p
0

and its derivative reads

V ′(x̂)h(t) = h(t) +
∫ t

0
vx(t, τ, x̂(τ))h(τ)dτ

for h ∈ W̃1,p
0 for any t ∈ [0, 1].
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• Continuous differentiability of

ϕ(x) =
1
p
‖V(x)− y‖p

W̃1,p
0

=
1
p

∫ 1

0

∣∣∣∣x(t)− y(t) +
∫ t

0
v(t, τ, x(τ)) dτ

∣∣∣∣p dt.

• Functional ϕ satisfies the PS-condition for any fixed y ∈ W̃1,p
0 .

SECTION 8.2

On a second order Dirichlet problem

We consider in H1
0(0, 1) ∩ H2(0, 1) solvability of the following Dirichlet

problem {
ẍ (t) = f (t, x (t)) + v(t),
x (0) = x (1) = 0,

(8.4)

where f : [0, 1]×R→ R is a jointly continuous function and v ∈ L2(0, 1),

together with its standard discretization suggested in [22] and in [42].

Such problems are well described in [47]. The idea of solving (8.4) is

as expected via a global invertibility result and thus we investigate the

classical solution operator T given (pointwisely) a.e. on [0, 1] by

(Tx)(·) := ẍ(·)− f (·, x(·)),

acting from H1
0(0, 1) ∩ H2(0, 1) to L2(0, 1).

As mentioned, we shall consider discretization also of (8.4) as follows.

For a, b such that a < b < ∞, a ∈ N ∪ {0}, b ∈ N we denote N(a, b) =
{a, a + 1, ..., b− 1, b}. For a fixed N ∈N, N > 2, the non-linear difference

equation with Dirichlet boundary conditions is given as follows ∆2x(k− 1) = 1
N2 f

(
k
N , x(k)

)
+ 1

N2 v
(

k
N

)
,

x(0) = x(N) = 0,
(8.5)
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for k ∈ N(1, N − 1). Here ∆ is the forward difference operator, i.e.

∆x (k− 1) = x (k)− x (k− 1) and we see that ∆2x (k− 1) = x (k + 1)−
2x (k) + x (k− 1).

Now we introduce the idea of a non-spurious solution. This reads

as follows. Assume that both, continuous boundary value problem (8.4)

and for each fixed N ∈N, N > 2, discrete boundary value problem (8.5),

are uniquely solvable by, respectively x? and xN = (xN(k))
N
k=0. Then, if

v is at least continuous, solutions xN of (8.5) converges to solution x? of

(8.4) in following sense

lim
N→∞

max
k∈N(0,N)

∣∣∣x? ( k
N

)
− xN(k)

∣∣∣ = 0

Such solutions to discrete BVPs are called non-spurious. The spurious

solutions may diverge or else may converge to anything else but the so-

lution to a given continuous Dirichlet problem.

Example 8.1. The continuous problem{
ẍ(t) + π2

n2 x(t) = 0,

x(0) = x(n) = 0

has an infinite number of solutions x(t) = c sin πt
n (c is arbitrary) whereas

its discrete analogue ∆2x(k) + π2

n2 x(k) = 0, x(0) = x(n) = 0 has only one

solution x(k) ≡ 0. The problem ẍ(t) + π2

4n2 x(t) = 0, x(0) = 0, x(n) = 1

has only one solution x(t) = sin πt
2n , and its discrete analogue ∆2x(k) +

π2

4n2 x(k) = 0, x(0) = 0, x(n) = 1 also has one solution. The continuous

problem ẍ(t) + 4 sin2 π
2n x(t) = 0, x(0) = 0, x(n) = ε 6= 0 has only one

solution

x(t) = ε
sin
((

2 sin π
2n

)
t
)

sin
((

2 sin π
2n

)
n
) ,

whereas its discrete analogue ∆2x(k)+ 4 sin2 π
2n x(k) = 0, x(0) = 0, x(n) =

ε 6= 0 has no solution.
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The definition of a non-spurious solution which we employ follows

from paper [62] and is given as in [27]. The existence of a non-spurious

solutions have been considered by variational methods in [27] while pre-

viously there had been some research in this case addressing mainly prob-

lems whose solutions where obtained by the fixed point theorems and the

method of lower and upper solutions, [63], [69].

Main problems to be overcome here are as follows:

• Proper functional setting: typically variational second order prob-

lems are considered in H1
0 .

• Denote L2 := L2(0, 1). H2 denotes space of those functions form H1

for which ẋ ∈ H1. We define H1
0 := {x ∈ H1 : x(0) = x(1) = 0}.

The following inequalities hold for any x ∈ H1
0 , see [32],

‖x‖∞ ≤ ‖ẋ‖L2 , ‖x‖L2 ≤ 1
π‖ẋ‖L2 .

What is the relation between norms in H2 ∩ H1
0 and in H1

0

• What are the properties of the following functional ϕ : H2 ∩ H1
0 →

R by

ϕ(x) :=
1
2
‖Tx− y‖2

L2 =
1
2

∫ 1

0
|ẍ(t)− f (t, x(t))− y(t)|2dt.

• Solvability of the related discrete boundary value problem and the

bound on its solution in a uniform manner.

SECTION 8.3

On invertibility of locally Lipschitz mappings

The finite dimensional version of the Hadamard-Lévy theorem, recalling

the following result
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Let E, F be two Banach spaces and f : E → F be a local diffeomorphism of
class C1 which satisfies the following integral condition∫ ∞

0
min
‖x‖=r

∥∥∥ f ′(x)−1
∥∥∥−1

dr = ∞.

Then f is a global diffeomorphism
was extended to locally Lipschitz functions by Pourciau, see [58], [59].

This extension as expected involves a finite dimensional setting since

as mentioned before, one cannot expect any relevant results in infinite

dimensional Banach spaces. If A is a square matrix we denote [A] =

inf
‖u‖=1

‖Au‖ .

Theorem 8.3 (Pourciau’s theorem). Let f : Rn → Rn be a locally Lipschitz
function and suppose that the generalized Jacobian ∂ f (x) is of full rank for every
x ∈ Rn. Let m (t) = inf

‖z‖≤ t
[∂ f (z)] = inf

‖z‖≤ t
inf

A∈∂ f (z)
[A] and suppose that

∫ ∞

0
m (t) dt = +∞

Then f is a bijective function and the inverse of f , that is f−1, is a locally Lips-
chitz function.

Based on our earlier motivation we are concerned with generaliza-

tion of our previous results to the case of a locally Lipschitz setting as

suggested by our preliminary results contained in [28]. Due to explana-

tion contained in [61] we must resort to finite dimensional setting since

there are no contained local results in the infinite one. We will provide

conditions for the existence of a global implicit function for the equation

F (x, y) = 0, where F : Rn ×Rm → Rm is a locally Lipschitz functions.

The following theorem is a finite dimensional counterpart of the main

result given in [35].

Theorem 8.4. Assume that F : Rn ×Rm → Rn is a C1 mapping such that:

− 122 −



8. Future research directions

18A for any y ∈ Rm the functional ϕy : Rn → R given by the formula

ϕy (x) =
1
2
‖F (x, y)‖2

is coercive, i.e. lim‖x‖→∞ ϕy (x) = +∞;

18B the Jacobian matrix Fx(x, y) is bijective for any (x, y) ∈ Rn ×Rm.

Then there exists a unique function f : Rm → Rn such that equations
F(x, y) = 0 and x = f (y) are equivalent in the set Rn ×Rm, in other words
F( f (y) , y) = 0 for any y ∈ Rm. Moreover, f ∈ C1(Rm, Rn).

We see that using the following local result which is a recent one and

which shows (in the application contained in the source mentioned) that

such results are of some interest.

Theorem 8.5. [68]Assume that F : Rn × Rm → Rn is a locally Lipschitz
mapping in a neigbourhood of a point (x0, y0) such that F (x0, y0) = 0. Assume
further that ∂xF(x0, y0) is of maximal rank. Then there exists a neighborhood
V ⊂ Rm of y0 and a Lipschitz function G : V → Rn such that for every y in V
it holds F(G(y), y) = 0 and G(y0) = x0.

one can obtain the locally Lipschitz counterpart of the above result.

Problems appearing here are as follows:

• Finding proper chain formula. There is one chain formula which

is commonly used for differentiation in the sense of Clarke. But

it requires that the outer function is Clarke differentiable and the

inner function is continuously differentiable.

• Clarke differentiability of

ϕy (x) =
1
2
‖F (x, y)‖2

when F is locally Lipschitz.
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• Verify the mountain geometry for a locally Lipschitz functional. It

is much more difficult in this case due to fact that the intermediate

value theorem works differently and also one lacks the nice Taylor

expansion methods.

• Extending application to algebraic equation to this setting.

• Relation with existing results.
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Appendix
In this appendix we remark on solving by using a critical point theory

to Dirichlet problem. We will show how classical method works and de-

scribe possible problems which would appear in the application of The-

orem 1.2 This shows that method provided in Theorem 1.2 must be suit-

ably amended in the future in order to make it more applicable.

Problem on the finite interval

We firstly consider {
ẍ (t) = f (t, x (t)) ,

x (0) = x (1) = 0,
(A.1)

where f : [0, 1] × R → R is a jointly continuous function. We formu-

late such a problem in order to compare with solutions obtained with the

aid of Theorem 1.2 and to describe how variational methods work in the

classical setting. We describe at the end difficulties which would appear

in investigating this problem within the global invertibility framework.

This means that with problem under consideration we must associate the

Euler action functional, prove that this functional is weakly lower semi-

continuous in a suitable function space, coercive and at least Gâteaux

differentiable. Given this three conditions one knows that at least a weak

solution to problem under consideration exists whose regularity can fur-

ther be improved with known tools. Such a scheme, commonly used

within the critical point theory is well described in the first chapters of

[47].
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Problem on the finite interval

The solutions to (A.1) will be investigated in the space H1
0 ([0, 1], R)

consisting, as we recall, of absolutely continuous functions satisfying the

boundary conditions and with a.e. derivative being integrable with square.

Such a H1
0 ([0, 1], R) solution is called a weak one, see [47], i.e. a function

x ∈ H1
0 ([0, 1], R) is a weak H1

0 ([0, 1], R) solution to (A.1), if

∫ 1

0
ẋ (t) v̇ (t) dt +

∫ 1

0
f (t, x (t)) v (t) dt = 0 (A.2)

for all v ∈ H1
0 ([0, 1], R). In order to obtain (A.2) one multiplies the given

equation by a test function and next integration is performed.

The application of variational methods allows one to obtain only weak

solutions which are easy to obtain with classical tools. The question arises

what is the relation between equation (A.1) and its weak solution. It can

be described as follows by introducing the notion of a classical solution.

The classical solution to (A.1) is then defined as a function

x : [0, 1] → R belonging to H1
0 ([0, 1], R) such that ẍ exists a.e. and

ẍ ∈ L1 ([0, 1], R). Since f is jointly continuous, then it is known from

the Fundamental Theorem of the Calculus of Variations, see [47], that x
is in fact twice differentiable with classical continuous second derivative.

Thus x ∈ H1
0 ([0, 1], R) ∩ C2 ([0, 1]). This means that any weak solution is

in a fact a classical one and that is why we look only for weak solutions

getting at the same time classical ones.

Let

F (t, x) =
∫ x

0
f (t, s) ds

for (t, x) ∈ [0, 1]×R. We introduce the following action functional

J : H1
0 ([0, 1], R)→ R given by

J (x) =
1
2

∫ 1

0
|ẋ (t) |2 dt +

∫ 1

0
F (t, x (t)) dt. (A.3)
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Let us examine J for a while. Due to the continuity of f functional J is

well defined which means that J (x) < +∞ for any x ∈ H1
0 ([0, 1], R).

Recall that the norm in H1
0 ([0, 1], R) reads

‖x‖ =

√∫ 1

0
|ẋ (t) |2 dt.

Then we see that

x 7→ 1
2

∫ 1

0
|ẋ (t) |2dt =

1
2
‖x‖2

is a C1 functional by standard facts. Its derivative is a functional on

H1
0 ([0, 1], R) which reads at a fixed x ∈ H1

0 ([0, 1], R)

v 7→
∫ 1

0
ẋ (t) v̇ (t) dt

for any v ∈ H1
0 ([0, 1], R). Concerning the nonlinear part we see that for

any fixed v ∈ H1
0 ([0, 1], R) (which is continuous of course) function

ε 7→
∫ 1

0
F (t, x (t) + εv (t)) dt

considered on (0, 1) (where the integral we can treat as the Riemann one)

due to the Leibnitz differentiation formula under integral sign is C1 and

the derivative of

x 7→
∫ 1

0
F (t, x (t)) dt

is a functional on H1
0 ([0, 1], R) which reads

v 7→
∫ 1

0
f (t, x (t)) v (t) dt

if we recall that

F (t, x) =
∫ x

0
f (t, s) ds,

− 127 −



Problem on the finite interval

compare this with equation (A.2). Since the above is obviously continu-

ous in x uniformly in v form unit sphere, we see that J given by (A.3) is

in fact C1. This procedure is common in obtaining derivatives of integral

functionals, see [70]. Now we describe how to link solutions to (A.1) with

critical points to J. We see that a derivative of J calculated at any point

x ∈ H1
0 ([0, 1], R) reads

J′ (x) v =
∫ 1

0
ẋ (t) v̇ (t) dt +

∫ 1

0
f (t, x (t)) v (t) dt

for all v ∈ H1
0 ([0, 1], R). Thus equating J′ (x) v = 0 we obtain that a criti-

cal point to J, i.e. a point satisfying J′ (x) v = 0 for all v ∈ H1
0 ([0, 1], R) is

a weak solution to (A.1) and thus a classical one.

Recall also Poincaré inequality∫ 1

0
|x (t) |2 dt ≤ 1

π2

∫ 1

0
ẋ2 (t) dt

and Sobolev’s one

max
t∈[0,1]

|x (t)| ≤
∫ 1

0
|ẋ (t) |2 dt.

We sum up the assumptions on the nonlinear term in (A.1) since in or-

der to get the above mentioned observations continuity of f is sufficient.

We assume that

A1 f : [0, 1]×R→ R is a continuous function such that f (t, 0) 6= 0 for

t ∈ [0, 1];

A2 f is nondecreasing in x for all t ∈ [0, 1].

We recall here a bit about convex functions, see [70]. Since f is nonde-

creasing in x by A1 and since f is a derivative of F it follows that F is

convex in x for all t ∈ [0, 1]. This means by the definition of convexity

that for all u, v ∈ R and all t ∈ [0, 1] we have

F(t, v)− F(t, u) ≥ F′ (t, u) (v− u) .
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Since F′ (t, u) = f (t, u) we see that the above inequality reads

F(t, v)− F(t, u) ≥ f (t, u) (v− u) (A.4)

for all u, v ∈ R and all t ∈ [0, 1]. Note also that this an important property

of convex functionals that pointwise convexity of an integrand provides

convexity of the integral functional. This means that inequality (A.4) pro-

vides at once its integral counterpart and convexity of F implies that of

x 7→
∫ 1

0
F (t, x (t)) dt.

Proposition A.1. Assume that A1 and A2 are satisfied. Then problem (A.1)
has exactly one nontrivial solution.

Proof. Firstly, we consider the existence part. Note that by the classical

Weierstrass Theorem there exists c > 0 such that

| f (t, 0)| ≤ c (A.5)

for all t ∈ [0, 1]. Since F (t, 0) = 0 for all t ∈ [0, 1], F′ (t, u) = f (t, u)
we obtain taking v = x, u = 0 from (A.4) and from estimation (A.5) the

following inequality

F(t, x) = F(t, x)− F(t, 0) ≥ f (t, 0) x ≥ − | f (t, 0) x| ≥ −c |x| (A.6)

which is valid for any x and all for all t ∈ [0, 1]. We observe that from

(A.6) we get

F (t, x) ≥ −c |x| (A.7)

for all t ∈ [0, 1] and all x ∈ R. We see by Schwartz and Poincaré inequal-

ities that ∫ 1

0
|x (t)| dt ≤

√∫ 1

0
|x (t)|2 dt ≤ 1

π
‖x‖ .
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Integrated the both sides of (A.7) for any x ∈ H1
0 ([0, 1], R) we obtain∫ 1

0
F (t, x (t)) dt ≥ −c

∫ 1

0
|x (t)| dt ≥ − c

π
‖x‖ .

Therefore

J (x) ≥ 1
2
‖x‖2 − c

π
‖x‖ . (A.8)

Hence from (A.8) we obtain that J is coercive. Note that x 7→ 1
2 ‖x‖

2 is

obviously w.l.s.c. on H1
0 ([0, 1], R). Next, by the Arzela-Ascoli Theorem

and Lebesgue Dominated Convergence, see these arguments in full detail

in the proof of [47, Theorem 1.1], we see that

x 7→
∫ 1

0
F (t, x (t)) dt

is weakly continuous. Thus J is weakly l.s.c. as a sum of a w.l.s.c. and

weakly continuous functionals. Since J is C1 and convex functional it has

exactly one argument of a minimum which is necessarily a critical point

and thus a solution to (A.1). Putting x = 0 in (A.1) one see that we have

a contradiction, so any solution is nontrivial.

Remark A.1. In order to get the existence of nontrivial solution to (A.1)

it would suffice to assume that f (t0, 0) 6= 0 for some t0 ∈ [0, 1]. More-

over, there is another way to prove the weak lower semincontinuity of J,

namely show that J is continuous. Then it is weakly l.s.c. since it is con-

vex. However, in proving continuity of J on H1
0 ([0, 1], R) one uses the

same arguments.

Remark A.2. As we saw from the previous consideration the application

of Theorem 1.2 would require the investigation of the following func-

tional ϕ : H2([0, 1], R) ∩ H1
0([0, 1], R)→ R by

ϕ(x) :=
1
2
‖Tx‖2

L2 =
1
2

∫ 1

0
|ẍ(t)− f (t, x(t))|2 dt.
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In contrast to the already described method we would need to look for

solutions in H2([0, 1], R) ∩ H1
0([0, 1], R), thus we already obtain the ex-

istence of a classical solution by the properties of the space in which it

is considered. However, assumptions leading to the existence of solu-

tion seem insufficient for our purposes. However, as asserted before, it

would be possible to use Theorem 1.2 for our case also with some addi-

tional assumptions. Indeed, concerning the examples of nonlinear terms

any nondecreasing f is of order bounded or unbounded, see

(i) f (t, x) = g (t) exp
(

x− t2),
(ii) f (t, x) = g (t) arctan (x),

(iii) f (t, x) = g (t) x3 + exp
(
x− t2),

where g is any lower bounded continuous function with positive values.

Thus we see that with examples (i) and (iii) would not get coercivity of ϕ.

Therefore there is no direct link between coercivity of J and ϕ. However,

restricting the growth would help us obtain coercivity of ϕ. The main

problem here is the convexity of F. If only F is bounded from below then

by coercivity of the norm, we get coercivity of J. As concerns ϕ coercivity

would rather be reached by investigating coercivity of the term

1
2

√∫ 1

0
|ẍ(t)|2 dt− 1

2

√∫ 1

0
| f (t, x(t))|2 dt

which obviously requires that f is restricted in growth.

Problem on the infinite interval

Symbol Lp([0,+∞), R) for p ≥ 1 means the space of such measurable

real valued functions defined on [0,+∞) that∫ ∞

0
|u (t)|p dt < +∞.

− 131 −



Problem on the infinite interval

We say that u ∈ H1
0([0,+∞), R) if u ∈ L2([0,+∞), R) and if there exists

a function g ∈ L2([0,+∞), R), called a weak derivative and such that∫ +∞

0
u(t)ϕ̇(t) dt = −

∫ +∞

0
g(t)ϕ(t) dt

for all ϕ ∈ C∞
c ([0,+∞), R), where C∞

c ([0,+∞), R) is the space of com-

pactly supported functions from C∞ ([0, +∞), R). We denote u̇ := g. We

endow the space H1
0([0,+∞), R) with its natural norm

‖u‖ =
(∫ +∞

0
|u(t)|2 dt +

∫ +∞

0
|u̇(t)|2 dt

) 1
2

,

associated with the scalar product

〈 u | v 〉 =
∫ +∞

0
u(t)v(t) dt +

∫ +∞

0
u̇(t)v̇(t) dt.

Assume that f : [0, +∞) ×R → R is a Carathéodory function. In the

space H1
0([0,+∞), R) we consider the following Dirichlet problem{

−ü(t) + u(t) = f (t, u(t)),
u(0) = u(+∞) = 0.

(A.9)

We investigate solutions to (A.9) as critical points to the Euler action func-

tional J : H1
0([0,+∞), R)→ R given by

J(u) =
1
2

∫ +∞

0
|u̇(t)|2 dt +

1
2

∫ +∞

0
|u(t)|2 dt− λ

∫ +∞

0
F(t, u(t)) dt

(A.10)

where as always

F(t, u) =
∫ u

0
f (t, s)ds.

Let p : [0,+∞)→ (0,+∞) be a continuously differentiable and bounded

function such that M = 2 max (‖p‖L2 , ‖ ṗ‖L2) < +∞.
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In order to have term ∫ +∞

0
F(t, u(t)) dt

well defined we assume that

A3 for any constant r > 0 there exists a nonnegative function hr for

which
hr

p
∈ L1([0,+∞,R) such that

sup
|y|≤r

∣∣∣ f (t, y
p(t)

)∣∣∣ ≤ hr(t)

for a.e. t ∈ [0, ∞).

As it is common with variational problems for O.D.E. (A.9) admits two

types of solutions, namely a weak and a classical one. Function

u ∈ H1
0([0,+∞), R) is a weak solution of (A.9) if∫ +∞

0
u̇(t)v̇(t) dt +

∫ +∞

0
u(t)v(t) dt−

∫ +∞

0
f (t, u(t))v(t) dt = 0

for all v ∈ H1
0([0,+∞), R) Function u ∈ H1

0([0,+∞), R) is a classical so-

lution to (A.9) if both u and u̇ are locally absolutely continuous functions

on [0,+∞),

−ü(t) + u(t) = f (t, u(t))

for a.e. t ∈ [0, ∞) and the boundary conditions u(0) = u(+∞) are sat-

isfied. We would like to recall that any function u ∈ H1
0([0,+∞), R) is

locally absolutely continuous, i.e. absolutely continuous on any closed

bounded interval contained in [0,+∞) however it is not in general abso-

lutely continuous on the whole half line which makes the problem dif-

ferent from the classical bounded one. Another difference is that we lack

now the Poincaré inequality, which means that the term

1
2

∫ +∞

0
|u̇(t)|2 dt +

1
2

∫ +∞

0
|u(t)|2 dt
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Problem on the infinite interval

is responsible for coercivity of the norm. Thus whatever assumptions we

impose on f , we would never get coercivity of the corresponding func-

tional ϕ in an easy and direct manner. Thus we think that in order to

apply Theorem 1.2 one need to have two factors: Poincaré inequality and

some regularity of solutions.
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